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Abstract. We start with a model for the actin-cytoskeleton in a symmetric lamellipodium
(cp. [OSS08]) which includes the description of the life-cycle of chemical bonds based on age-
structured models. Based on the assumption that their average lifetime is actually small as
compared to the time scale of the dynamics in which we are interested we pass, after applying
an appropriate scaling, to a limit where this average lifetime goes to zero. We obtain a gradient
flow model and formulate a time step approximation scheme. We use it to construct solutions
analytically, proving their local in time existence, and present a typical numerical solution based
on this scheme.

1. Introduction

The starting point of this work is a model for the actin-cytoskeleton in the lamellipodium,
which has been derived in [Oel09]. Here the special case of a rotationally symmetric lamel-
lipodium (already introduced in [OSS08]) will be considered and some simplifying assumptions
on the parameters will be made in order to facilitate the analysis. The model will be presented
in a dimensionless form (see [Oel09] for details on the nondimensionalization).

The basic modeling assumptions are that the lamellipodium is a 2-dimensional structure and
that the antic filaments can be described as a diagonal array of curves, i.e. the network consists
of two families of locally parallel curves intersecting each other transversally.

In the rotationally symmetric situation, all filaments can be constructed from one reference
filament, whose position at time t is given by

z(t, s) ∈ R2 ,

where s ∈ [0, 1] is an arc length parameter and 1 is the maximal length of filaments. In both
families filaments are assumed to be continuously distributed and their positions are determined
by

F+(t, α, s) = R(α)z(t, s) , F−(t, α, s) = D(−α)z(t, s) ,

for −π ≤ α < π, with

R(α) :=
(

cosα − sinα
sinα cosα

)
, D(α) := R(α)

(
1 0
0 −1

)
.

The filaments F+ of the family of the reference filament are constructed by rotation of the
reference filament and the filaments F− of the other family by reflection with respect to the
horizontal axis followed by rotation. In terms of polar coordinates z = |z|(cosφ, sinφ), the
following assumptions on the geometry of the reference filament will be made:

∂s|z| > 0 , ∂sφ < 0 .
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The first assumption means that the s-direction is pointing outward, the circle

{F+(t, α, 1) : −π ≤ α < π} = {F−(t, α, 1) : −π ≤ α < π}
represents the leading edge of the lamellipodium, and |z(t, 1)| its radius. As a consequence of the
second assumption, the filaments in the family of the reference filament are called ”clockwise”
and the others ”anti-clockwise”, cp. Fig. 1. The points z(t, 0) and z(t, 1) are called the ”pointed
end” and the ”barbed end”, respectively, of the reference filament.

Figure 1. Constituent elements of the model.

Very simple models of polymerization and depolymerization are used. It is assumed that all
barbed ends touch the leading edge and that filaments polymerize there with constant poly-
merization speed 1. The assumption that σ = s+ t is a Lagrange coordinate (identifying mass
points) incorporates this assumption as well as inextensibility of the filaments (since s represents
arc length). As a consequence of a stochastic depolymerization process at the pointed ends it is
assumed that there is a stationary length distribution of filaments, characterized by the (given)
function η(s). Its values represent the fraction of filaments having at least length 1− s as mea-
sured from the barbed end. The function η is therefore assumed nonnegative and monotonically
increasing with η(1) = 1.

The model is based on the description of chemical bonds, so called adhesions between filaments
and the substrate and cross-linking proteins between crossing filaments. Fig. 2 describes the
”life” of one cross-link. It has been established at time t− a between two binding sites, one on
each of the two dotted filaments. Observe that in this situation the two binding sites overlap.
At the present time t the two filaments, now drawn by solid lines, have moved on and the
two binding sites with them. This displacement has happened against the resistance of elastic
forces caused by stretching and twisting the cross-linking protein. Eventually, the cross-link will
break by unbinding of the protein from at least one of the two filaments. The model uses the
time-dependent density ρ(t, s, a) of cross-links in terms of binding site position s and age a ≥ 0.
Analogously, ρadh(t, s, a) is the density of adhesions in terms of position s along the reference
filament and of age a. The age structures of cross-link and adhesion distributions will be needed
in the following for the identification of the binding sites.
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Figure 2. Shifting: A cross-link between two filaments at two different points in time.

The model consists of three coupled submodels: A quasistatic balance of elastic forces deter-
mining the position of the reference filament and two age-structured population models for the
adhesion and cross-link densities. We start with the description of the former.

At each point in time, the position of the reference filament has to belong to the set of
admissible functions

(1) A :=
{
w ∈ H2(0, 1)2 : |∂sw| = 1

}
.

The model requires that at any time t ≥ 0 the filament position is a minimizer of a potential
energy functional:

(2) z(t, .) = argminw∈A U(t)[w] .

The potential energy of the network has the form

(3) U(t)[w] := Umembrane[w] + Ubending[w] + Uadh(t)[w] + Uscl(t)[w] + Utcl(t)[w] ,

arising from the combined effects of
(1) Stretching of the membrane, which is modelled as an elastic rubber band with elasticity

κM :

Umembrane[w] :=
κM

2
(|w(1)| −R0)2+ .

Here R0 is the force-free equilibrium radius of the membrane.
(2) Stiffness of the filaments:

Ubending[w] :=
1
2

∫ 1

0
|∂2
sw|2 η ds ,

where the bending stiffness is 1 in this scaling.
(3) Stretching of adhesions:

(4) Uadh(t)[w] :=
κA

2ε

∫ 1

0

∫ ∞
0
|w − z∗|2 ρadhη da ds ,

which involves the scaled elasticity κA/ε and the effective density ρadhη of adhesions.
The abbreviation z∗ := z(t − εa, s + εa) denotes the position of the binding site on
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the substrate of an adhesion of age a connected to the filament at the position z(t, s).
The dimensionless parameter ε is the ratio between the reference value for the age of
adhesions and the maximal life time of a monomer as part of a filament. This parameter
will be assumed small in the following, and the fact that the cross-link elasticity is O(ε−1)
is a scaling assumption required for a nonvanishing effect of adhesions in the limit ε→ 0.
This is not obvious, however. Actually, when replacing w(s) by the minimiser z(t, s),
then the energy Uadh(t)[z(t, ·)] is formally O(ε). It will be shown below that, in the limit
ε→ 0, it still contributes to the formulation of the limiting problem.

(4) Stretching of cross-links:

(5) Uscl(t)[w] :=
κS

2ε

∫ 1

0

∫ ∞
0
|S|2ρη2|∂sφ∗| da ds .

This expression involves the elasticity κS/ε and the effective density ρη2|∂sφ∗| of cross-
links, where the factor η2 accounts for the graded lengths of both filaments involved in
a cross-link, and the factor |∂sφ∗| = −∂sφ(t − εa, s + εa) requires some explanation: A
cross-link of age a, binding to the reference filament at position s at time t connects the
reference filament to the anti-clockwise filament with label α, where

z(t− εa, s+ εa) = F−(t− εa, α, s+ εa)

holds. A straightforward computation shows that this is equivalent to α = −2φ(t −
εa, s + εa) (recalling that φ is the argument of z). A more precise interpretation of ρ
is that of a probability distribution of the cross-link with respect to age a and anti-
clockwise filament label α. Therefore, the integration in (5) should actually be carried
out with respect to α instead of s. The relation above obviously implies dα = 2|∂sφ∗|ds,
explaining the last factor in the effective density (the factor 2 has been absorbed in κS).

The main term in (5) is the distance between the binding sites computed from S =
z(t, s)− F−(t,−2φ∗, s):

(6) |S| := 2|w| | sin(ψ − φ∗)| ,
where the polar coordinates w = |w|(cosψ, sinψ) have been used.

(5) Twisting of cross-links:

(7) Utcl(t)[w] :=
κT

2

∫ 1

0

∫ ∞
0

T 2ρη2|∂sφ∗| da ds .

This contribution originates from the assumption that the system of two cross-linked fila-
ments has a stress free equilibrium conformation with an angle ϕ0 between the filaments.
The effective cross-link density is as above. The term

T = arccos(∂sz(t, s) · ∂sF−(t,−2φ∗, s))− ϕ0

denotes the deviation of the angle between crossing filaments from ϕ0 (see Fig. 2). Again
a convenient expression can be derived in terms of polar coordinates:

(8) T = T0 + 2(φ∗ − ψ) , with T0 := 2 arccos(∂s|w|)− ϕ0 .

The evolution of the cross-link density is determined by

(9)
εDtρ+ ∂aρ = −ζ(S, T )ρ ,
ρ(t, s, 0) = β(T0)

(
1−

∫∞
0 ρ da

)
, ρ(t, 1, a) = 0 .

The first equation is the standard transport equation in age structured population models in-
volving the material derivative Dt := ∂t−∂s. The decay term on the right hand side models the
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breaking of cross-links whose rate might depend on their stretching and twisting, where S and
T (defined above) are evaluated at w = z(t, ·). The boundary condition at a = 0 describes the
building of new cross-links with a rate β depending on the deviation of the angle between the
filaments from the equilibrium. The second factor guarantees that the total probability of having
a cross-link does not exceed 1. In other words, there can be at most one cross-link between any
2 filaments. The boundary condition at the pointed end s = 1 is a consequence of the fact that
no preexisting cross-links are present, when filaments start to cross by polymerization.

The density of adhesions ρadh satisfies

(10)
εDtρadh + ∂aρadh = −ζadh(Sadh)ρadh ,
ρadh(t, s, 0) = βadh

(
1−

∫∞
0 ρadh da

)
, ρadh(t, 1, a) = 0 .

Here the upper bound 1 for the integral of the density with respect to age has to be interpreted
as the scaled density of possible binding sites for integrins along the filament, and Sadh = z− z∗
is the stretching of adhesions.

The problem (2)–(10) is a problem with distributed delays. For the computation of z(t, ·)
the filament positions at all previous times are required, where the values of the cross-link and
adhesion densities do not vanish. Initially, a start-up procedure is necessary, where initial data
for the cross-link and adhesion density distributions have to be given satisfying ρ(0, s, a) =
ρadh(0, s, a) = 0 for a > a and then the filament positions z(t, s) have to be prescribed for
−εa < t < 0.

2. The limit of instantaneous cross-link and adhesion turnover

The main inconvenience (in particular from a simulation point of view) of the problem (2)–
(10) is the fact that it is a delay problem. In our scaling however, the average value for delays
is O(ε). In this section the limit ε → 0 will be carried out formally. The limiting problem will
be local in time.

We start with (10). The formal limiting equations

∂aρadh = −ζadh(0)ρadh , ρadh(a = 0) = βadh

(
1−

∫ ∞
0

ρadh da

)
,

have the solution

ρadh(t, s, a) = ρadh(a) =
βadhζadh(0)
βadh + ζadh(0)

e−ζadh(0)a .

This is a singular limit, since the small parameter ε multiplies the time derivative. An eventual
initial time layer will be ignored and the quasi-stationary approximation used in the following.

Analogously we deal with (9). The main difference is that the limiting equations

∂aρ = −ζ(0, T0)ρ , ρ(a = 0) = β(T0)
(

1−
∫ ∞

0
ρ da

)
,

and therefore also the limiting solution

ρ =
β(T0)ζ(0, T0)
β(T0) + ζ(0, T0)

e−ζ(0,T0)a

depend on the displacement of the filaments via T0.
If the limit ε→ 0 is carried out formally in (4) and (5), these contributions from the adhesions

and from stretching the cross links disappear. In order to reveal their influence, the solution of
the variational problem needs to be discussed.
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The displacement z(t, ·) at time t has to satisfy the variational equation δU(t)[z]δz = 0 for all
admissible variations δz, where δU(t) is the variation of the total energy (3). Considering the
constraint |∂sz| = 1, admissible variations have to satisfy ∂sδz · ∂sz = 0. In the following the
variations of the energy contributions and their limits as ε→ 0 are computed individually.

(1) The variation of the stretching energy of the membrane reads

δUmembrane[z]δz = κM (|z(t, 1)| −R0)+
z(t, 1)
|z(t, 1)|

· δz(1) .

(2) For the variation of the bending energy of the filaments we obtain

δUbending[z]δz =
∫ 1

0
∂2
sz · ∂2

sδz η ds .

(3) The remaining contributions involve delay terms. The variation of the stretching energy
of the adhesions is straightforward and reads

δUadh(t)[z]δz =
κA

ε

∫ 1

0

∫ ∞
0

(z − z∗) · δz ρadhη da ds .

In the limit ε→ 0, a material derivative occurs:

(11) δUadh(t)[z]δz = µA
∫ 1

0
Dtz · δz η ds ,

with

(12) µA = κA
∫ ∞

0
aρadh da =

κAβadh

ζadh(0)(βadh + ζadh(0))
.

(4) Using δ|z| = z·δz
|z| and δφ = z⊥·δz

|z|2 with z⊥ = (−z2, z1), we get for the variation of the
stretching

δS =
2
|z|

(
sin(φ− φ∗)z + cos(φ− φ∗)z⊥

)
· δz .

The variation of the energy contribution by stretching the cross-links can now be written
as

δUscl(t)[z]δz = 4κS
∫ 1

0

∫ ∞
0

sin(φ− φ∗)
εa(

sin(φ− φ∗)z + cos(φ− φ∗)z⊥
)
· δz aρη2|∂sφ∗| da ds .

(13)

The definition of φ∗ implies sin(φ − φ∗) = εaDtφ + O(ε2), and therefore passing to the
limit ε→ 0 gives

(14) δUscl(t)[z]δz =
∫ 1

0
µSDtφ(z⊥ · δz) η2 ds ,

with

(15) µS(∂sφ, ∂s|z|) = 4κS
∫ ∞

0
aρ da =

4κSβ(T0)|∂sφ|
ζ(0, T0)(β(T0) + ζ(0, T0))

.
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(5) We now consider the variation of the energy contribution by twisting the cross-links.
First observe that

δ(∂s|z|) =
1
|z|

((
∂sz −

z · ∂sz
|z|2

z

)
· δz + z · ∂s(δz)

)
=

1
|z|

(
z⊥ · ∂sz
|z|2

z⊥ · δz + z · ∂s(δz)
)

= |z|∂sφ δφ+
z · ∂sz⊥

|z|
∂sz
⊥ · ∂s(δz) ,

since the spatial derivative of an admissible variation can be written as ∂s(δz) = ∂sz
⊥ ∂sz

⊥·
∂s(δz). Now the constraint 1 = |∂sz|2 = (∂s|z|)2 + |z|2(∂sφ)2 implies

arccos′(∂s|z|) =
−1√

1− (∂s|z|)2
=

1
|z|∂sφ

.

We finally obtain for the twisting, as defined in (8),

(16) δT = δ
(

2 arccos (∂s|z|)− 2φ
)

=
2z · ∂sz⊥

|z|2∂sφ
∂sz
⊥ · ∂s(δz) = −2∂sz⊥ · ∂s(δz) .

Passing to the limit ε→ 0 in the variation of the energy contribution from twisting the
cross links gives

(17) δUtcl(t)[z]δz =
∫ 1

0
µT (2 arccos (∂s|z|)− ϕ0) (−∂sz⊥) · ∂s(δz) η2 ds ,

with

(18) µT (∂sφ, ∂s|z|) = 2κT
∫ ∞

0
ρ da =

2κTβ(T0)|∂sφ|
β(T0) + ζ(0, T0)

.

Collecting our results leads to the variational equation

(19) κM (|z| −R0)+
z · δz
|z|

∣∣∣∣
s=1

+
∫ 1

0

[
∂2
sz · ∂2

sδz + µADtz · δz

+ µSDtφ (z⊥ · δz) η − µT (2 arccos (∂s|z|)− α) ∂sz⊥ · ∂s(δz) η
]
η ds = 0

for all admissible variations δz. One might interpret this equation also in the following way:
If we look at the set of admissible functions as a submanifold of the function space, then the
admissible variations can be seen as tangent vectors to that manifold. Hence the equation (19)
describes an equality in the space of linear functionals on the tangent space, namely the equality
of a linear functional which involves the time derivative of the solution, i.e. the left hand side,
and another functional that involves the actual position z(t, .). We therefore may see the solution
z(t, s) as a gradient flow on the manifold. However, the role of the term involving Dtφ does not
quite fit into this interpretation.

In order to represent (19) in a less abstract way we enforce the side condition by a Lagrangian
approach, introduce the Lagrange-multiplier function λ(t, s), and add the contribution

UL[z, λ] :=
∫ 1

0

λ

2
(
|∂sz|2 − 1

)
ds ,

to the energy functional. Its z-variation reads

(20) δUL[z, λ]δz =
∫ 1

0
λ∂sz · ∂sδz ds ,
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where now the variations δz are unrestricted. Combining (19) and (20) and a formal integration
by parts yields the (vector valued) Euler-Lagrange equation

(21) ∂2
s

(
η∂2

sz
)
− ∂s(λ∂sz) + µAη Dtz

+ µSη2 Dtφ z
⊥ + ∂s

(
µT η2 (2 arccos (∂s|z|)− α) ∂sz⊥

)
= 0

coupled with the (vector valued) boundary conditions

(22) −∂s
(
η∂2

sz
)

+ λ∂sz − µT η2 (2 arccos (∂s|z|)− α) ∂sz⊥ = 0 ,
∂2
sz = 0 ,

at s = 0 and

(23)
−∂s

(
η∂2

sz
)

+ λ∂sz − µT η2 (2 arccos (∂s|z|)− α) ∂sz⊥ + κM (|z| −R0)+
z
|z| = 0 ,

∂2
sz = 0 ,

at s = 1, and complemented by the constraint

(24) |∂sz| = 1 .

The Euler-Lagrange equation (21) together with (22)–(24), is a reformulation of the problem
(19). We expect this problem subject to an initial condition

(25) z(0, s) = zI(s) ,

with an appropriate initial datum to be well posed.

3. Analysis - construction of solutions

In this section, an approximation scheme in the spirit of the Jordan-Kinderlehrer-Otto time-
step approximation for gradient flows (see [DGMT80, DG93, AGS05]) will be presented. On
the one hand this provides a numerical scheme to approximate solutions to (21)–(25), on the
other hand it will allow to prove their existence. The existence result is local in time since we
are unable to prove that our basic assumptions on the geometry of the network persist. In the
rotationally symmetric situation these are represented by the facts that the standard filament
is clockwise and heading outwards, and that the meshwork stays away from the origin. It will
be proved that these conditions are preserved at least locally in time if satisfied by the initial
data. For that purpose we define for every δ > 0:

Aδ := {z ∈ A : δ ≤ ∂s|z| ≤ 1− δ, |z| ≥ δ} .

It will be important in the following that Aδ is a closed subset of H2(0, 12.

Assumption 1. There exists δ > 0 such that zI ∈ A2δ.

In the next assumption the properties of the parameters are collected. In particular, the model
will be simplified compared to the previous section by assuming that the macroscopic elasticity
parameters are constant. Also the graded length distribution is assumed to be bounded away
from zero, implying that a nonvanishing fraction of the filaments has the maximal length.

Assumption 2. The parameters R0, κM , µA, µS , and µT are positive constants. The function
η : [0, 1]→ [0, 1] is nondecreasing and satisfies η(0) > 0.
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A time stepping procedure will be introduced, which, in a sense, undoes the limit of the last
section. However, instead of distributed delays, a delay of fixed length τ is introduced. This can
be seen as a caricature of the original model, where all cross-links and adhesions are built and
broken at discrete times in a synchronized way. In the discretized model, the polymerization at
the barbed end is described by adding a straight piece of filament of length τ (since the scaled
polymerization speed is 1) at each time step. This and the corresponding shift in the s-variable
is contained in the definition

ẑ(s) =
{
z(s+ τ) , for 0 ≤ s ≤ 1− τ ,
z(1) + (s+ τ − 1)∂sz(1) , for 1− τ < s ≤ 1 .

Now we are ready for defining modified versions of the energy contributions due to adhesions
and stretching and twisting of cross-links:

Uadh(z)[w] := µA
∫ 1

0

|w − ẑ|2

2τ
η ds ,(26)

U scl(z)[w] := µS
∫ 1

0
|z|2 (ψ − φ̂)2

2τ
η2 ds ,(27)

U tcl(z)[w] :=
µT

4

∫ 1

0
(2 arccos(∂s|w|)− ϕ0 − 2ψ + 2φ̂)2 η2 ds .

These functionals are chosen such that the limits as τ → 0 of their variations for z = z(t−τ) are
the same as the limits for the original functionals as ε→ 0. We define a time stepping procedure
by Z0 = zI and by the recursion

Zn+1 = argminw∈Aδ U(Zn)[w] ,

with

U(Zn)[w] := Umembrane[w] + Ubending[w] + Uadh(Zn)[w] + U scl(Zn)[w] + U tcl(Zn)[w] ,

and δ as in Assumption 1. The norm defined by

‖z‖2H2(0,1) := |z(1)|2 + ‖∂2
sz‖2L2(0,1) ,

will be used, which is equivalent to the standard norm on H2(0, 1)2. It simplifies the proof of
the following coercivity result.

Lemma 1. There exist positive constants κ and c such that

Umembrane[w] + Ubending[w] ≥ κ‖w‖2H2(0,1) − c .

Proof. It is easily seen that

Umembrane[w] + Ubending[w] ≥ κM

4
|z(1)|2 − κM

2
R2

0 +
η(0)

2
‖∂2

sw‖2L2(0,1) ,

implying the result. �

Lemma 2. Let δ, τ > 0 and Zn ∈ Aδ. Then Ubending is weakly lower semicontinuous and
Umembrane, Uadh(Zn), U scl(Zn), and U tcl(Zn) are weakly continuous on Aδ with respect to the
H2(0, 1)2-topology.

Proof. Weak lower semicontinuity is a consequence of the convexity of Ubending. The integrands
of the other energy contributions only depend on the values of w and of ∂sw in a Lipschitz
continuous way. The result is therefore a consequence of the compact imbedding of H2(0, 1) in
C1([0, 1]). �
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The preceding two results prove the existence of the sequence {Zn : n ≥ 0}. However, it is
not defined uniquely do to a lack of convexity. In particular, the set A (and therefore also Aδ)
is made nonconvex by the condition |∂sw| = 1. The time-stepping procedure is in the spirit of
the JKO-scheme. It corresponds to a gradient flow of the functional obtained as formal limit as
τ → 0 of U(Zn)[Zn+1]:

E[w] := Umembrane[w] + Ubending[w] +
µT

4

∫ 1

0
(2 arccos(∂s|w|)− ϕ0)2η2 ds .

However, our problem is not conservative. Energy is added to the system by polymerization and
therefore stretching the membrane and/or cross-links and adhesions as well as by creating cross-
links, where the angle between the involved filaments is different from the equilibrium angle.
On the other hand, energy is removed by depolymerization. A bound on the energy growth can
be proven.

Lemma 3. There exists a constant c, independent from n and τ , such that

E[Zn] ≤ E[zI ] + cnτ .

Proof. We start with the obvious inequality

U(Zn)[Zn+1] ≤ U(Zn)[Zn](28)

and estimate the contributions to the right hand side. Since

Zn(s)− Ẑn(s) =
{
Zn(s)− Zn(s+ τ) , 0 ≤ s ≤ 1− τ ,
Zn(s)− Zn(1)− (s− 1 + τ)∂sZn(1) , 1− τ ≤ s ≤ 1 ,

the inequality

|Zn − Ẑn| ≤ τ(29)

is a consequence of |∂sZn| = 1 by Zn ∈ Aδ. Therefore also

Uadh(Zn)[Zn] ≤ cτ ,

holds. Here and in the rest of the proof, c denotes positive constants independent from n and
τ , whose value might change from one formula to the next. For the angles we have by the mean
value theorem

φn − φ̂n =
z̃⊥

|z̃|2
· (Zn − Ẑn) =⇒ |φn − φ̂n| ≤ τ

|z̃|
,

where z̃ lies between Zn and Ẑn. Since |Ẑn| > |Zn| by Zn ∈ Aδ, |z̃| ≥ |Zn| holds. These
observations imply

U scl(Zn)[Zn] ≤ cτ .

By Zn ∈ Aδ also |φn − φ̂n| ≤ τ/δ holds. This and the fact that the integrand in U tcl(Zn)[Zn]
depends Lipschitz continuously on φn − φ̂n (with a Zn-independent Lipschitz constant), imply

U tcl(Zn)[Zn] ≤ µT

4

∫ 1

0
(2 arccos(∂s|Zn|)− ϕ0)2η2 ds+ cτ ,

with the consequence

U(Zn)[Zn] ≤ E[Zn] + cτ .(30)
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An analogous argument leads to

U tcl(Zn)[Zn+1] ≥ µT

4

∫ 1

0
(2 arccos(∂s|Zn+1|)− ϕ0)2η2 ds− c‖Zn+1 − Ẑn‖L2(0,1) .

Since, by Assumption 2,

Uadh(Zn)[Zn+1] ≥ κ

τ
‖Zn+1 − Ẑn‖2L2(0,1) ,

holds, we have

U(Zn)[Zn+1] ≥ E[Zn+1]− c‖Zn+1 − Ẑn‖L2(0,1) +
κ

τ
‖Zn+1 − Ẑn‖2L2(0,1)(31)

≥ E[Zn+1]− c2τ

4κ
.

Using this and (30) in (28) gives E[Zn+1] ≤ E[Zn] + cτ , concluding the proof. �

Approximations of the solution of the continuous problem are defined by linear interpolation
and by piecewise constant extension:

Zτ (t, s) := Zn(s) +
(
t
τ − n

) (
Zn+1(s)− Zn(s)

)
,

Zold
τ (t, s) := Zn(s) ,

Znew
τ (t, s) := Zn+1(s) ,

 for nτ < t ≤ (n+ 1)τ .

Lemma 4. For every fixed finite T > 0, Zτ ∈ H1((0, T ), L2(0, 1)) uniformly in τ .

Proof. From (28), (30), and (31) we obtain

κ

τ

(
‖Zn+1 − Ẑn‖L2(0,1) − cτ

)2
≤ E[Zn]− E[Zn+1] + cτ .(32)

Since the time derivative of Zτ is piecewise constant, we have∫ mτ

0
‖∂tZτ‖2L2(0,1)dt =

1
τ

m−1∑
n=0

‖Zn+1 − Zn‖2L2(0,1) ≤
1
τ

m−1∑
n=0

(
‖Zn+1 − Ẑn‖L2(0,1) + τ

)2
,

where the inequality is due to (29). With the constant c from (32), this implies∫ mτ

0
‖∂tZτ‖2L2(0,1)dt ≤

2
τ

m−1∑
n=0

(
‖Zn+1 − Ẑn‖L2(0,1) − cτ

)2
+ 2(c+ 1)2mτ ,

≤ 2
κ

(E[zI ] + cmτ) + 2(c+ 1)2mτ ,

completing the proof. �

This result sets the stage for passing to the limit in the approximate solutions.

Lemma 5. For every fixed finite T > 0,

lim
τ→0

Zτ = z ∈ L∞
(
(0, T );H2(0, 1)

)
∩ C0,1/8

(
[0, T ];C1([0, 1])

)
∩H1

(
(0, T );L2(0, 1)

)
,

(restricting to subsequences) where the convergence is strong in C
(
[0, T ];C1([0, 1])

)
, weak in

H1
(
(0, T );L2(0, 1)

)
, and weak* in L∞

(
(0, T );H2(0, 1)

)
. The piecewise constant approximations

Zold
τ and Znew

τ converge to z strongly in L∞
(
[0, T ];C1([0, 1])

)
and weakly* in L∞

(
(0, T );H2(0, 1)

)
.
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Proof. Lemma 1 and Lemma 3 imply Zτ ∈ L∞
(
(0, T );H2(0, 1)

)
uniformly in τ , which already

shows the weak* convergence. The weak convergence is a consequence of the previous lemma,
which also implies that Zτ is uniformly bounded in C0,1/2

(
[0, T ];L2(0, 1)

)
. The interpolation

inequality

‖u‖C1,α([0,1]) ≤ c‖u‖
(1−2α)/4
L2(0,1)

‖u‖(3+2α)/4
H2(0,1)

for 0 ≤ α ≤ 1/2, can then be used together with the H2(0, 1)-bound to obtain

‖Zτ (t2)− Zτ (t1)‖C1,α([0,1]) ≤ cT |t2 − t1|(1−2α)/8 ,

completing the convergence proof for Zτ by an application of the Arzela-Ascoli theorem. The
convergence results for Zold

τ and Znew
τ are straightforward consequences. �

By the continuity in time and by zI ∈ A2δ, the solution initially stays away from the δ-
dependent bounds defining Aδ.

Corollary 6. There exists T ∗ > 0 such that, for all t ∈ [0, T ∗] and s ∈ [0, 1],

δ < ∂s|z(t, s)|, ∂s|Zτ (t, s)| < 1− δ , |z(t, s)|, |Zτ (t, s)| > δ .

This implies that these side conditions are not active and can be neglected in the time stepping
procedure:

(33) Zn+1 = argminw∈A U(Zn)[w] , for (n+ 1)τ ≤ T ∗ .

It is our goal to show that the limit z of Zτ satisfies the weak formulation of (21)–(25). By
construction, Zn+1 satisfies δU(Zn)[Zn+1]δz = 0 for all admissible variations, i.e., δz ∈ H2(0, 1),
∂sZ

n+1 · ∂s(δz) = 0. A Lagrange multiplier λn+1 will be identified, such that

δU(Zn)[Zn+1]δz + δUL[Zn+1, λn+1]δz = 0

for arbitrary variations δz ∈ H2(0, 1). An arbitrary variation can be written in the form

δz = δz(1)−
∫ 1

s

(
θ⊥(∂sZn+1)⊥ + θ∂sZ

n+1
)
ds̃ ,

with arbitrary δz(1) ∈ R2 and θ, θ⊥ ∈ H1(0, 1). It can be split into its admissible and unadmis-
sible parts

u = δz(1)−
∫ 1

s
θ⊥(∂sZn+1)⊥ds̃ , v = −

∫ 1

s
θ∂sZ

n+1ds̃ ,

respectively. Since

δUL[Zn+1, λn+1]δz =
∫ 1

0
λn+1∂sZ

n+1 · ∂s(δz)ds =
∫ 1

0
λn+1θ ds = δUL[Zn+1, λn+1]v ,

λn+1 has to satisfy

δU(Zn)[Zn+1]v + δUL[Zn+1, λn+1]v = 0 ,

for every choice of θ. The computation of the first term is a lengthy exercise where most of the
work has been done in the previous section already. We only state the result that the above
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equation is the weak formulation of

λn+1 = −|∂2
sZ

n+1|2η + µA∂sZ
n+1 ·

∫ s

0

Zn+1 − Ẑn

τ
η ds̃(34)

+µS∂sZn+1 ·
∫ s

0
|Zn+1|2φ

n+1 − φ̂n

τ
(Zn+1)⊥η2 ds̃

−µT
(

2 arccos(∂s|Zn+1|)− ϕ0 − 2φn+1 + 2φ̂n
) Zn+1 · ∂sZn+1

(Zn+1)⊥ · ∂sZn+1
η2 .

By the first term on the right hand side, no better information than λn+1 ∈ L1(0, 1) is available.
By the second term, this is not uniform with respect to τ . A continuous-time-version of the
approximate Lagrange multiplier is defined as piecewise constant:

λτ (t) := λn+1 for nτ < t ≤ (n+ 1)τ .(35)

Lemma 7. The approximate Lagrange multiplier defined by (34), (35) satisfies λτ ∈ L2
(
(0, T ∗);L1(0, 1)

)
,

uniformly in τ . Therefore limτ→0 λτ = λ (restricting to subsequences) in L2 ((0, T ∗);M(0, 1))
weak*, where M(0, 1) is the set of bounded Radon measures on the interval (0, 1).

Proof. On the right hand side of (34), the first term is uniformly bounded in L∞
(
(0, T ∗);L1(0, 1)

)
by Lemma 3. In the second term,

(36)
Zn+1 − Ẑn

τ
= ∂tZτ +

Zn − Ẑn

τ
,

which is uniformly bounded in L2
(
(0, T ∗);L2(0, 1)

)
by Lemma 4 and (29). An analogous argu-

ment can be used for the third term, and the fourth term is uniformly bounded. �

Theorem 8. There exist z ∈ L∞
(
(0, T );H2(0, 1)

)
∩C0,1/8

(
[0, T ];C1([0, 1])

)
∩H1

(
(0, T );L2(0, 1)

)
and λ ∈ L2 ((0, T ∗);M(0, 1)), where T ∗ > 0 is as in Corollary 6, satisfying |∂sz| = 1 and∫ T ∗

0

[
κM (|z| −R0)+

z · w
|z|

∣∣∣∣
s=1

+
∫ 1

0

[
∂2
sz · ∂2

sw η + µADtz · w η

+µSDtφ(z⊥ · w) η2 − µT (2 arccos (∂s|z|)− α) ∂sz⊥ · ∂sw η2 + λ∂sz · ∂sw
]
ds

]
dt = 0 ,

for every smooth w : [0, T ∗]× [0, 1]→ R2.

Proof. By construction,

δU(Zn)[Zn+1]w(t, ·) + δUL[Zn+1, λn+1]w(t, ·) = 0 ,

for nτ < t ≤ (n+ 1)τ . With the definitions of Zτ , Zold
τ , and Znew

τ , this can be written as

δUmembrane[Znew
τ ]w + δUbending[Znew

τ ]w + µA
∫ 1

0

(
∂tZτ +

Zold
τ − Ẑold

τ

τ

)
· w η ds

+µS
∫ 1

0

|Zold
τ |2

|Znew
τ |2

(
∂tφτ +

φold
τ − φ̂old

τ

τ

)
(Znew

τ )⊥ · w η2 ds+
∫ 1

0
λτ∂sZ

new
τ · ∂sw ds

−µT
∫ 1

0

(
2 arccos(∂s|Znew

τ |)− ϕ0 − 2φnew
τ + 2φ̂old

τ

)
∂s(Znew

τ )⊥ · ∂sw η2 ds = 0 .

After integration with respect to t, we pass to the limit. Note that the weakly convergent terms
∂2
sZ

new
τ (appearing in δUbending[Znew

τ ]), ∂tZτ + (Zold
τ − Ẑold

τ )/τ , ∂tφτ + (φold
τ − φ̂old

τ )/τ , and λτ
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(converging to, respectively, ∂2
sz, Dtz, Dtφ, and λ) occur only linearly, and that all other terms

converge strongly. �

4. Numerical computations

We use the scheme (33) to compute a numerical approximation of a solution to the model
(21). The scaled parameters of the model as well as the macroscopic parameters are determined
on the basis of the parameter values used in [OSS08] to simulate the microscopic model. To
maintain the comparability with those numerical results, we do not scale with respect to the
polymerisation rate and to the maximal length of the filaments and keep their numerical values
at v0 = 8 and L = 6 respectively. Furthermore we use κM = 6.7705, R0 = 8, α = 70◦ and
η(s) = 0.1 + 0.9s/L. The macroscopic parameters which describe the effect of the cross-links
according to (15) and (18) are given by µS = 1.1946× 106 |∂sφ| and µT = 2150.4 |∂sφ|.

Unfortunately, with respect to integrin bonds, the scaling, which leads to (12) and which is
based on the assumption that the average lifetime of chemical bonds is small, is not well justified
by experimental findings (cp. [LREM03]). They suggest that integrin complexes typically do
not detach spontaneously but when the mechanical load exceeds a certain threshold value.
Hence a scaling limit which considers this threshold value as small compared to the typical
mechanical load on an integrin would be the appropriate one. The necessary computations,
however, turn out to be lengthy. Therefore, and since the present study focuses on justifying
the use of the macroscopic model (21)–(24) in general, we follow another procedure to obtain
an appropriate macroscopic friction coefficient µA for the numerical computations: Since the
symmetric lamellipodium is stationary, i.e. it does not move, integrin bonds within one time
interval typically will be stretched by a distance in the magnitude of τv0. This value, by
evaluating 0.012 exp(τv0/0.04) (cp. [OSS08] and [LREM03]), already gives a typical decay rate
which we plug into (12) (replacing ζadh(0)) obtaining the macroscopic value µA = 1.9531.

The following six frames are picked from a numerically computed sequence (Zn)n=1,2,... with
the size of time steps given by τ = 0.02. We use a uniform grid in s-direction with size N = 41.
The discretised material derivatives in the expressions (26) and (27) are represented as the sum
of the time derivative and the spatial derivative (cp. (36)).
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(f) Almost quasi-equilibrium situation.

The six frames at times t = 0, 0.04, 0.18, 0.5, 0.98, 2.38 illustrate the evolution of the network
starting with the initial condition depicted in Fig. 3(a). The filaments perform a rotating
movement, i.e. those showing in clockwise direction move clockwise and those pointing in anti-
clockwise direction move anti-clockwise. This is indeed the movement which in the biological
literature is referred to as lateral flow. In the figures 3(a)-3(f) we painted one specific filament
(the standard filament z) with a thicker line to illustrate this movement. Additionally the dots
along this filament represent fixed points (monomers) and you may follow them through the
series of frames thus observing their backward movement. In the literature this movement is
referred to as treadmilling. The rotating quasi-equilibrium state is reached quickly. Already at
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time t = 0.5 the shape of the filaments resembles the numerical result for a long-time quasi-
equilibrium state of the microscopic model (cp. Fig. 3 in [OSS08]) which stresses the usefulness
of the scaling limit we perform in this study.
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