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haftskolleg Di�erential Equations.Abstra
tWe present a model for the 
hemota
ti
ally dire
ted migration of neu-trophil leuko
ytes. It reprodu
es the multistep navigation by memory e�e
tsinvestigated experimentally by E.F. Foxman, J.J. Campbell, and E.C. But
herin [Foxman, Campbell and But
her 1997℄.The model 
onsists of a system of sto
hasti
 di�erential equations. Thelong time behaviour of the 
orresponding deterministi
 system is analysedand two approa
hes for the numeri
al solution of the full sto
hasti
 systemare 
ompared. One of them 
onsists in performing dire
t simulations, theother one is based on a moment approximation of the Fokker-Plan
k equationand numeri
al methods for 
onve
tion dominated partial di�erential equations(PDEs).Key words: Chemotaxis, Leuko
ytes.1 Introdu
tionIn the 
ourse of an in�ammatory pro
ess leuko
ytes are attra
ted by messengersubstan
es (
hemoattra
tants) to the lo
ation of in�ammation in order to �ghtmi
robes and to remove debris (
p. [Goldsby, Kindt, Osborne and Kuby 2000℄).In 1997, E.F. Foxman, J.J. Campbell and E. C. But
her ([Foxman, Campbell and But
her 1997℄)published experimental results on the migration of neutrophils being exposedto two di�erent 
hemoattra
tants.They found that leuko
ytes follow the gradients of 
hemoattra
tants ratherthan their mere 
on
entration. Furthermore they found eviden
e that neu-trophils 
an migrate down a lo
al gradient towards a distant sour
e of 
hemoat-tra
tant. They established the hypothesis that this behaviour "re�e
ts a more
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Figure 1: Time-lapse video mi
ros
opy taken from[Foxman, Campbell and But
her 1997℄, 
ells are exposed to the two 
hemoat-tra
tants Leukotriene B4 (LTB4) and Interleukin-8 (IL-8) and the migration pathsof representative 
ells are re
orded during 15 minutes.e�
ient or rapid adaption of the migrating 
ell to in
reasing vs. de
reasing at-tra
tant 
on
entrations." They even found experimental eviden
e that tightlyneighbouring 
ells may migrate in opposite dire
tions though they share thesame surroundings (see �gure 1).Motivated by these results we develop a mathemati
al model to des
ribethis behaviour. We denote the position of one single 
ell by
x(t) := (x(t), y(t)) ∈ R

2 .Furthermore we assume the presen
e of m 
hemoattra
tant substan
es. Wedenote their 
on
entrations by Si(x), 1 ≤ i ≤ m and assume that thesefun
tions are given and that they are stationary, whi
h does not a�e
t thequalitative properties of the model. In general, however, di�usion, produ
tion,and de
ay of 
hemoattra
tants should be 
onsidered.Every single 
ell has re
eptors whi
h let the 
ell per
eive the dire
tionsand strengths of 
hemoattra
tant gradients. A

ording to the experimentaldata (see [Foxman, Campbell and But
her 1997℄) we assume that ea
h 
ellhas a dynami
ally 
hanging sensitivity χi(t) ≥ 0 for the 
hemoattra
tant Si,
1 ≤ i ≤ m. These represent the responsiveness of 
ells to the presen
e of therespe
tive 
hemoattra
tant gradient, whi
h depends, among other things, onthe absolute number of re
eptors for the respe
tive 
hemoattra
tant and onthe number of �free� re
eptors, i.e. on the fra
tion of re
eptors whi
h are notbound to a 
hemoattra
tant mole
ule.As an expression for the speed of migration we therefore sum up the 
on-tributions χi∇Si. This leads to a deterministi
 equation for the evolution ofthe spatial position of a single leuko
yte,

ẋ(t) =

m
∑

i=1

χi(t)∇Si(x(t)) . (1.1)Observe that with respe
t to their fun
tion and physi
al dimension, the sen-sitivities χi 
orrespond to the notion of sensitivity used in the Patlak-Keller-2



Segel-Model for 
hemotaxis. Experimental behaviour (see [Foxman, Campbell and But
her 1997℄)indi
ates that the sensitivity for a 
hemoattra
tant is downregulated in situ-ations where the 
on
entration of this 
hemoattra
tant is high. For that rea-son we assume that for ea
h sensitivity χi the ve
tor S := (S1, . . . , Sm)T of
hemoattra
tant 
on
entrations is mapped to some target value in the interval
[χmin

i , χmax
i ]. The target values are

χ̂i(S) := χmin
i +

1

(AS)i + 1
χmax

i −χmin

i

, i = 1, . . . ,m , (1.2)where A = (aij)1≤i,j≤m, aij ≥ 0 is the matrix of downregulation fa
tors. In the
ase where sensitivities are only downregulated by their asso
iated 
hemoat-tra
tants, it is a diagonal matrix. We may use non-diagonal entries to modeldominating 
hemoattra
tants whi
h have the ability to downregulate sensitivi-ties even for other 
hemoattra
tants. Experiments re�e
ting this phenomenon
an be found in [Foxman, Campbell and But
her 1997℄.The alternative to (1.2), χ̂i(S) := χmin
i +1

/(

(AS)i+(χmax
i −χmin

i )−
1

2

)2, hasbeen used in [Oelz and S
hmeiser 2004℄, where we perform simulations of ex-periments in [Foxman, Campbell and But
her 1997℄. Both expressions 
an bederived from dis
rete random walks (see [Painter, Maini and Othmer 2000℄).Observe that χmin
i is the minimal sensitivity, whi
h is rea
hed when down-regulation is maximal. In general this will be the 
ase when the 
on
entrationof the asso
iated 
hemoattra
tant is very high. χmax

i , on the other hand, rep-resents the maximum level of sensitivity of the 
ell. The a
tual sensitivity willbe 
lose to χmax
i at points where there is hardly any 
hemoattra
tant.Our main modelling 
ontribution is the assumption that the sensitivitiesdo not adapt immediately to the lo
al values of the 
hemoattra
tant 
on
en-trations. Instead their dynami
s is determined by the relaxation model

χ̇i(t) = αi(χ̂i(S(x(t))) − χi(t)) , (1.3)where αi > 0 is the rate of adaption of the sensitivity χi to its target value.It would be unrealisti
 to expe
t leuko
ytes to behave 
ompletely determin-isti
ally. Therefore we modify the system (1.1)-(1.3) to a system of sto
hasti
di�erential equations to des
ribe the time dependent state of one single leuko-
yte. Thus, we 
onsider a sto
hasti
 pro
ess
X(t) :=











x(t)
χ1(t)...
χm(t)









in the state spa
e R
2 × [χmin

1 , χmax
1 ] × . . . × [χmin

m , χmax
m ], determined by thesto
hasti
 di�erential equation (SDE)

dX = b(X)dt + Σ dB, where (1.4)b(x, χ1, . . . , χm) :=











∑m
i=1 χi∇Si(x)

α1(χ̂1(S(x)) − χ1)...
αm(χ̂m(S(x)) − χm)











, Σ :=















σ 0
0 σ
0 0... ...
0 0















, (1.5)
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dB :=

(

dBx

dBy

)

,and σ > 0. The drift ve
tor b(X) re�e
ts the deterministi
 model, and the(
onstant) volatility matrix Σ 
reates some randomness in the evolution ofthe spatial 
omponents. By Bx and By we denote independent identi
ally dis-tributed nomalised Brownian motions. Refer to [Ionides, Fang, Issero� and Oster 2004℄for another appli
ation of SDEs in modelling 
ell motion.We s
ale the problem with respe
t to typi
al values of the variables. Let Dbe the average distan
e between sour
es of 
hemoattra
tant. Let 〈Si〉 be someaverage value of the 
hemoattra
tant 
on
entration Si on the domain. Wefurthermore introdu
e the average (s
alar) 
hemota
ti
 velo
ity V of one 
ell.Finally let 〈α〉 be an average value of the 
oe�
ients αi. Then we introdu
ethe following s
aling,
t̃ = t〈α〉, x̃ =

x

D
, S̃i =

Si

〈Si〉
, χ̃i =

χi〈Si〉
V D

, dB̃ = dB
√

〈α〉

α̃i =
αi

〈α〉 , χ̃min, max
i =

χmin, max
i 〈Si〉

V D
, ãij = V D

〈Sj〉
〈Si〉

aij , σ̃ =
σ

D
√

〈α〉
,and rewrite the system (1.4), but stay with the old expressions for the s
aledquantities

dX = b(X)dt + Σ dB, where (1.6)b(x, χ1, . . . , χm) :=















1
ε

∑m
i=1 χi∇Si(x)

α1

(

χ̂1(S(x)) − χ1

)...
αm

(

χ̂m(S(x)) − χm

)















,with χ̂i(S), Σ and dB as in (1.5), (1.2). The dimensionless parameter
ε :=

〈α〉D
Vis the ratio of the mean migration time between two sour
es of 
hemoattra
tantto the relaxation time of the sensitivities.For the rest of the paper we restri
t ourselves to the 
ase of two 
hemoat-tra
tants, i.e. m = 2. In Se
tion 2 the long time behaviour of the 
orre-sponding deterministi
 system is analysed by 
onsidering spe
ial 
hoi
es forthe fun
tions χ̂i(S) and Si(x). It is shown that the memory e�e
t in ourmodel may lead to os
illations of 
ells between the 
hemoattra
tant 
entres.In Se
tion 3, a ma
ros
opi
 model is derived by a moment expansion of theFokker-Plan
k equation 
orresponding to (1.6). The ma
ros
opi
 model is asystem of paraboli
 equations for the 
ell density and the mean values of the
hemota
ti
 sensitivities. Numeri
al approa
hes to the solution of the SDEsystem and to the ma
ros
opi
 model are presented in Se
tion 4. Finally theresults of numeri
al experiments and 
omparisons between the models are the
ontent of Se
tion 5.The main goal of this work is to highlight the basi
 qualitative propertiesof the models re�e
ted in their long time behaviour.4



2 Deterministi
 dynami
sTo study the dynami
s, a simpli�ed model is used. One di�eren
e to thebiologi
ally more a

urate model presented in the introdu
tion lies in the sen-sitivity fun
tions χ̂i. They are 
hosen as χ̂i = 1/Si, whi
h 
orresponds toa spe
ial 
ase of the sensitivity equation (1.2), obtained by setting A = I,
αi = 1, χmin = 0 and χmax = ∞. More importantly, we only study thedeterministi
 model, equations (1.1), (1.3), for two 
hemoattra
tants.We assume that the 
on
entrations of the 
hemoattra
tants are given byGaussians 
entred around �xed points x1 = (x1, 0) and x2 = (x2, 0):

Si(x) = exp

(−|x − xi|2
Ti

)

, Ti > 0, i = 1, 2 . (2.1)The following system of equations is obtained,
ẋ = 1

ε

(

χ1∇S1(x) + χ2∇S2(x)
)

,
χ̇1 = 1

S1(x) − χ1 ,

χ̇2 = 1
S2(x) − χ2 .

(2.2)The only 
riti
al point is given by








x∞

y∞
χ1∞

χ2∞









=









x1T2+x2T1

T1+T2

0
1/S1(x∞, y∞)
1/S2(x∞, y∞)









. (2.3)Note that x∞ lies on the line segment 
onne
ting x1 and x2. The eigen-values of the linearised system are
λ1 = −2(T1+T2)

εT1T2
, λ2 = −1,

λ3 = −p
2 +

√

p2

4 − q, λ4 = −p
2 −

√

p2

4 − q,
(2.4)where p =

2(T1 + T2)

εT1T2
− 8(x2 − x1)

2

ε(T1 + T2)2
+ 1 and q =

2(T1 + T2)

εT1T2While λ1 and λ2 are always negative, the pair (λ3, λ4) 
rosses the imaginaryaxis when p 
hanges sign, and a Hopf bifur
ation o

urs. As an example, we
hoose the parameter values (also used in the numeri
al experiments in Se
tion5)
T1 = T2 = 6, x1 = −2, x2 = 2 (2.5)when
e p = 1 − 2

9ε
and ε 
an be used as bifur
ation parameter with thebifur
ation point ε∗ = 2/9.The Hopf bifur
ation theorem applies sin
e the eigenvalues (λ3, λ4) 
rossthe imaginary axis at nonzero speed. Numeri
al simulations (see Figure 2) sug-gest that the system has a stable limit 
y
le for ε < 2/9, hen
e a super
riti
alHopf bifur
ation o

urs.The stable limit 
y
le for strong enough memory e�e
ts (small enough

ε) re�e
ts the main qualitative property of our model: The 
ells' ability tomigrate away from the lo
ation of peak 
on
entration of one 
hemoattra
tantby following the 
hemi
al gradient of a se
ond 
hemoattra
tant with distantsour
e. 5



For the full sto
hasti
 model we expe
t the existen
e of an attra
tive timeinvariant probability distribution, whi
h is spread out around the limit 
y
leof the deterministi
 model. This will be veri�ed by the numeri
al experimentsin se
tion 5.
The Cells Initial Position
Chemo Attractant Center 1
Chemo Attractant Center 2
Leukocyte Path

(a) Stable steady state.
The Cells Initial Position
Chemo Attractant Center 1
Chemo Attractant Center 2
Leukocyte Path

(b) Stable limit 
y
le.Figure 2: Numeri
al solution of the deterministi
 system (2.1), (2.2) with parame-ter values (2.5) and di�erent values of ε. The horizontal and verti
al (downward)dire
tions are the x- and, resp., t-dire
tions.3 A ma
ros
opi
 modelThe Fokker-Plan
k equation (
p. [×ksendal 1995℄, 'Kolmogorov forward equa-tion') asso
iated to the SDE (1.6) in the 
ase m = 2 is the linear partialdi�erential equation (PDE)
∂g

∂t
=

σ2

2
∆xg −∇X ·

(

gb(X)
) (3.1)for the distribution fun
tion g(t,X) = g(t, x, y, χ1, χ2), whi
h may be inter-preted as probability density for the state of one 
ell or as density of a popu-lation of 
ells. The equation (3.1) is of mixed hyperboli
-paraboli
 type sin
edi�usion only a
ts in the position dire
tions.As a dire
t numeri
al approa
h to (3.1) would be very expensive we applythe te
hnique of moment expansion to redu
e the four dimensional model totwo dimensions by integrating with respe
t to the sensitivities. Note that(3.1) preserves the property supp g ⊆ R

2× [χmin
1 , χmax

1 ]× [χmin
2 , χmax

2 ]. For anyfun
tion f(t,X) we therefore de�ne
f(t, x, y) :=

∫ χmax
1

χmin
1

∫ χmax
2

χmin
2

f(t, x, y, χ1, χ2) dχ2dχ1 .Then g 
an be viewed as a marginal probability density of one 
ell or asposition density of a population of 
ells.By integrating (3.1) with respe
t to χ1 and χ2 we derive
∂g

∂t
=

σ2

2
∆g − 1

ε
∇ · (

2
∑

i=1

gχi ∇Si) , (3.2)6



where from now on, ∇ and ∆ are meant with respe
t to x. Equations for the�rst order moments gχj are derived by multiplying (3.1) by χj and integratingas in (3.2):
∂

∂t
(gχj) =

σ2

2
∆(gχj) −

1

ε
∇ · (

2
∑

i=1

gχiχj ∇Sj) + αj(χ̂j(S)g − gχj) . (3.3)In these equations the se
ond order moments appear and we are 
onfrontedwith the standard 
losure problem. We introdu
e the positive de�nite 
ovari-an
e matrix of the two sensitivities
C :=

(

c11 c12

c12 c22

)

,and use the 
losure relations
gχiχj = g

(

cij + χi χj

)

, with χi :=
gχi

g
.The sensitivities are distributed around the expe
ted value, the 
ovarian
ematrix C representing the �width� of their 
ommon distribution. Thus, alsoin the ma
ros
opi
 model di�erent values of the sensitivities and, therefore,di�erent 
hemota
ti
 velo
ities 
oexist at one position.Substituting these expressions into (3.3), we obtain

∂

∂t
(g χj) =

σ2

2
∆(g χj) −

1

ε
∇ · (

2
∑

i=1

g
(

cij + χi χj

)

∇Sj)+

+ αj g(χ̂j(S) − χj) , j = 1, 2. (3.4)Note that, by the linearity of the �ux b with respe
t to χ1 and χ2, nofurther 
losure assumptions are needed, and (3.2), (3.4) form a 
losed systemof paraboli
 equations for the density g and the expe
ted sensitivities χj .We introdu
e the notation
u(t,x) :=





g(t,x)
g χ1(t,x)
g χ2(t,x)



and rewrite (3.2) and (3.4) to obtain
∂

∂t
u =

σ2

2
∆u − 1

ε
∇ · f(u,x) + Ψ(u,x) , (3.5)with the �ux ve
tor f = (fx, fy) and the sour
e term

Ψ(u,x) =





0
α1 g(χ̂1(S(x)) − χ1)
α2 g(χ̂2(S(x)) − χ2)



 . (3.6)The �uxes fx and f y share the same stru
ture. They di�er only insofar as
fx depends on derivatives of the 
hemoattra
tants with respe
t to x whereas7



fy depends on the respe
tive derivatives with respe
t to y. We therefore lookat the generi
 �ux fun
tion
fd(u,x) :=





g
∑2

i=1 χiSid(x)

g
∑2

i=1

(

ci1 + χi χ1

)

Sid(x)

g
∑2

i=1

(

ci2 + χi χ2

)

Sid(x)



 , (3.7)from whi
h we obtain linear 
ombinations αfx + βfy by setting Sid = αSix +
βSiy. To implement the numeri
al method presented in Se
tion 4.2 and to
he
k for hyperboli
ity we need the spe
tral de
omposition of the Ja
obian
Dufd. We de�ne

ωd :=
√

SdCST
d , where Sd := (S1d, S2d) ,whi
h is real be
ause of the positive de�niteness of C. Then Dufd has thefollowing eigenvalues and asso
iated eigenve
tors:

λ1,2 =

2
∑

i=1

χiSid ± ωd, r1,2 =







1

χ1 ±
P

2

i=1
ci1Sid

ωd

χ2 ±
P

2

i=1
ci2Sid

ωd






,

λ3 =

2
∑

i=1

χi Sid, rj =





0
S2d

−S1d



 .The stru
ture is similar to the Euler equations of gas dynami
s with the
ell velo
ity λ3 repla
ing the gas velo
ity and with the "speed of sound" ωd.Also the 1- and 2-�elds are genuinely nonlinear, and the 3-�eld is linearlydegenerate.These observations show the hyperboli
ity and well posedness of the system
∂

∂t
u +

1

ε
∇ · f(u,x) = 0 , (3.8)whose solution will be part of an operator splitting approa
h to (3.5) in Se
tion4.2. There we also use another stru
tural property of the �ux fun
tions, theirhomogeneity in the sense that they satisfy fd(αu,x) = αfd(u,x) for any s
alar

α, whi
h implies Euler's identity
fd(u,x) = Dufd(u,x)u . (3.9)4 Numeri
al methods4.1 Dire
t simulation of the mi
ros
opi
 equationsFor the numeri
al solution of the sto
hasti
 di�erential equation (1.6) a semiimpli
it Euler s
heme is used. It is a strong approximation method and thanksto the additive noise of order one, see [Kloeden and Platen 1992℄ for details.8



For 
omputational simpli
ity the di�erential equations for the 
hemota
-ti
 sensitivities χ1 and χ2 are dis
retised semi-impli
itly with the positionsevaluated at the old time step:
χn+1

i − χn
i

∆t
=

1

Si(xn)
− χn+1

i i = 1, 2 . (4.1)Dis
retisation of the 
ontinuous Brownian motion 
omes naturally from itsde�nition. Repla
ing the in�nitesimal in
rement dt by a �nite time interval oflength ∆t, dB is approximated by ∆B =
√

∆t(N1,N2), where N1, N2 iid ∼
N(0, 1), meaning that they are two independent normally distributed randomvariables with zero expe
tation and varian
e equal to one.The di�eren
e equations for the sto
hasti
 spatial position are fully impli
itand take the following form:

x
n+1 − x

n

∆t
=

χn+1
1

ε
∇S1(x

n+1) + σ∆B . (4.2)At every time step a nonlinear algebrai
 system for the new position has tobe solved.Probability density approximations are obtained by 
omputing many pathswhile re
ording the 
ells positions in a spatial grid.4.2 Numeri
al method for the ma
ros
opi
 equationWe use the fra
tional step method (see [Leveque 2002℄, p. 380) to deal withthe evolution of the solution of (3.5) with 4 substeps a

ording to the termson the right hand side. In parti
ular we use a re
tangular grid and treat the�uxes in x-dire
tion and y-dire
tion independently, a strategy whi
h is 
alleddimensional splitting.
• For the di�usion problem, ∂u1

∂t
= σ2

2 ∆u1, we use the Crank-Ni
olsons
heme.
• For the transport problems, ∂u2

∂t
+ ∂fx(u2,x)

∂x
= 0 and ∂u3

∂t
+ ∂fy(u3,x)

∂y
=

0, we use the upwind s
heme with a high resolution 
orre
tion. The
orre
tion is based on a spe
i�
 �ux ve
tor splitting whi
h makes use of(3.9) (see [Leveque 2002℄, "Method by Steger and Warming").
• For the rea
tion problem, ∂u4

∂t
= Ψ(u4,x), we use the impli
it Eulers
heme.5 Numeri
al experimentsIn order to 
ompare the results obtained by the two di�erent models, we
ompare the steady state solutions with parameters 
hosen su
h that the de-terministi
 system has a stable limit 
y
le.We 
onsider an equidistant grid with 361 × 121 grid points on the spatialdomain [−3, 3] × [−1, 1] and use the fun
tions S1 and S2 from (2.1) togetherwith (2.5). Furthermore we 
hoose the following values for the s
aled model9



(1.6)
σ =

√
5/3, α1 = α2 = 1, A :=

(

1 0
0 1

)

,

χmax
1 = χmax

2 = ∞, χmin
1 = χmin

2 = 0,

ε = 0.12 <
2

9
= ε∗, whi
h equal those of the analysis in Se
tion 2.To obtain the steady state solution of the mi
ros
opi
 equations, one Leuko-
yte is started on the deterministi
 limit 
y
le and at ea
h time step its posi-tion is re
orded with respe
t to a grid. The simulation time depends on therequired smoothness. At the end of the simulation the 
omputed density isnormalised to obtain a probability density.The results of the numeri
al simulation are visualised in Fig. 3. The

Figure 3: Steady state solution (i.e. invariant measure) of the mi
ros
opi
 equations(1.6). 
ell migrates ba
k and forth between the two 
hemoattra
tant sour
es. Bythe smallness of ε, the movement is like a relaxation os
illation, where thetransition time between the sour
es is small 
ompared to the time spent nearthe sour
es, whi
h explains the two peaks in Fig. 3. In our simulations, 
ellsnever rea
hed the boundary of the spatial domain.Furthermore, the varian
e and 
ovarian
e of the distribution of sensitivitiesis 
omputed for every grid point the 
ell rea
hes within the domain. The resultsare visualised by plotting the 
ross-se
tion y = 1/120 of the varian
e of theleft-
entred 
hemoattra
tant sensitivity and the 
ovarian
e (Figure 4).We use average values of these results to determine values for the (
onstant)
ovarian
e matrix in the ma
ros
opi
 model
C =

(

0.54 −0.36
−0.36 0.54

)

. (5.1)10
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(b) Sample 
ovarian
e of the sen-sitivities.Figure 4: Varian
e and 
ovarian
e as a fun
tion of x for y = 1/120.As initial 
ondition for the simulation of the ma
ros
opi
 model we use anapproximate δ-distribution in spa
e 
entred at (1, 0), so the initial 
onditionis not symmetri
 but 
ells start near the se
ond sour
e of 
hemoattra
tant.Their initial sensitivities are given by χ̂i(S). We use von-Neumann boundary
onditions.The distribution of 
ells os
illates between the 
hemoattra
tant sour
es(Fig. 5) with amplitudes be
oming smaller and smaller. Finally the solutionapproximates an equilibrium distribution (Fig. 6) whi
h is similar to theequilibrium distribution obtained by dire
t simulation (Fig. 3).Qualitatively the results for the steady states 
oin
ide, 
ells gather roundthe sour
es of 
hemoattra
tant and there is a 
ertain fra
tion lo
ated in the
entre. The di�eren
e between the mi
ros
opi
 solution and the ma
ros
opi
solution is displayed in Figure 7.The equilibrium distribution of the dire
t simulation is higher than the oneof the ma
ros
opi
 equations near the sour
es of 
hemoattra
tants and lowerin the 
entre of the domain.These deviations 
an be explained by the fa
t, that we used 
onstant aver-age (
o)varian
es as parameters in the ma
ros
opi
 model equations. A
tuallythe distributions of sensitivities depend on the 
ells' spatial positions, but theseare not taken into a

ount by the ma
ros
opi
 model. Instead we overestimatethe (
o)varian
es 
lose to the 
hemoattra
tant 
entres and underestimate themin the middle of the domain (see Figure 4 in 
omparison to the average valuesin matrix C in (5.1)).We expe
t to �nd two groups of 
ells in the 
entre of the domain, one goingto the right and one going to the left. By underestimating (Co)varian
es there,we introdu
e a smaller dis
repan
y of sensitivities between those to groups.This implies that the dominating sensitivity of all these 
ells is assumed tobe lower whi
h translates dire
tly into lower migrational speed. But lowerspeed of 
ells in the 
entre of the domain implies that a
tually more 
ells aresupposed to be lo
ated in that region.The equilibrium density of the ma
ros
opi
 equations is also lower 
lose tothe sour
es of 
hemoattra
tants (see Figure 7). In the dire
t simulations we11



Figure 5: Time evolution of the leuko
yte distribution.observe that the distribution of 
ells is more pointed in this region and thedistributions of their sensitivities are relatively thin 
ompared to the rest ofthe domain (Figures 3, 4). By overestimating the (
o)varian
es of their distri-butions of sensitivities, we allow 
ells to behave less uniformly and thereforeto spread into a wider area.Further numeri
al experiments showed that setting c11 = c12 = c22 =
c21 = 0 fully inhibits 
onvergen
e to equilibrium. Cells rather stay togetherand keep shuttling to and fro. Therefore the magnitude of the (
o)varian
esseems to be related to the extent of desyn
hronisation and further to the"speed" of 
onvergen
e to equilibrium whereas the frequen
y of os
illationbetween 
hemoattra
tant sour
es does not seem to be in�uen
ed.6 Con
lusionIn the parallel study [Oelz and S
hmeiser 2004℄, simulations of the experi-ments in [Foxman, Campbell and But
her 1997℄ are 
arried out and satisfa
-tory quantitative agreement with the experimental results is a
hieved. Theseexperiments and even more the later experimental publi
ation [Foxman, Kunkel and But
her 1999℄fo
uses on the ability of the 
ells to undergo sequential 
hemotaxis to one at-12



Figure 6: Steady state solution of the ma
ros
opi
 model (3.2), (3.4).

Figure 7: Di�eren
e (mi
ros
opi
 solution - ma
ros
opi
 solution) between the twosteady states as a fun
tion of x for y = 0.tra
tant sour
e after another and to be guided in a step-by-step fashion totheir destinations within tissues. In fa
t, the results of Se
tions 2 and 5 re-�e
t this behaviour, although restri
ted to the two-
hemoattra
tant 
ase. Itmight be possible to realise this situation in an experimental setting. Onemight establish stationary 
on
entrations of two 
hemoattra
tants, 
enteredat distant positions, by generating 
onstant di�usive �uxes into the mediumat the tips of two pipets and 
orresponding di�usive drainage �uxes using apermeable boundary membrane. In mathemati
al terms this would reprodu
efundamental solutions of the Lapla
ian in 
ontrast to the Gaussian pro�les in(2.1). By performing time lapse video-mi
ros
opy as in �g. 1 long enough, oneshould be able to observe os
illations of single leuko
ytes between the sour
esof 
hemoattra
tants with 
hara
teristi
 frequen
y. We suggest to 
omparethese to numeri
al results, either in order to estimate parameters or to vali-date the model. 13
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