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Abstract

We present a model for the chemotactically directed migration of neu-
trophil leukocytes. It reproduces the multistep navigation by memory effects
investigated experimentally by E.F. Foxman, J.J. Campbell, and E.C. Butcher
in [Foxman, Campbell and Butcher 1997].

The model consists of a system of stochastic differential equations. The
long time behaviour of the corresponding deterministic system is analysed
and two approaches for the numerical solution of the full stochastic system
are compared. One of them consists in performing direct simulations, the
other one is based on a moment approximation of the Fokker-Planck equation
and numerical methods for convection dominated partial differential equations
(PDEs).
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1 Introduction

In the course of an inflammatory process leukocytes are attracted by messenger
substances (chemoattractants) to the location of inflammation in order to fight
microbes and to remove debris (cp. [Goldsby, Kindt, Osborne and Kuby 2000]).
In 1997, E.F. Foxman, J.J. Campbell and E. C. Butcher ([Foxman, Campbell and Butcher 1997|)
published experimental results on the migration of neutrophils being exposed
to two different chemoattractants.
They found that leukocytes follow the gradients of chemoattractants rather
than their mere concentration. Furthermore they found evidence that neu-
trophils can migrate down a local gradient towards a distant source of chemoat-
tractant. They established the hypothesis that this behaviour "reflects a more
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Figure 1: Time-lapse video microscopy taken from
[Foxman, Campbell and Butcher 1997|, cells are exposed to the two chemoat-
tractants Leukotriene B4 (LTB4) and Interleukin-8 (IL-8) and the migration paths
of representative cells are recorded during 15 minutes.

efficient or rapid adaption of the migrating cell to increasing vs. decreasing at-
tractant concentrations." They even found experimental evidence that tightly
neighbouring cells may migrate in opposite directions though they share the
same surroundings (see figure 1).

Motivated by these results we develop a mathematical model to describe
this behaviour. We denote the position of one single cell by

x(t) == (z(t),y(t)) € R? .

Furthermore we assume the presence of m chemoattractant substances. We
denote their concentrations by S;(x), 1 < i < m and assume that these
functions are given and that they are stationary, which does not affect the
qualitative properties of the model. In general, however, diffusion, production,
and decay of chemoattractants should be considered.

Every single cell has receptors which let the cell perceive the directions
and strengths of chemoattractant gradients. According to the experimental
data (see [Foxman, Campbell and Butcher 1997]) we assume that each cell
has a dynamically changing sensitivity x;(t) > 0 for the chemoattractant S;,
1 <4 < m. These represent the responsiveness of cells to the presence of the
respective chemoattractant gradient, which depends, among other things, on
the absolute number of receptors for the respective chemoattractant and on
the number of “free” receptors, i.e. on the fraction of receptors which are not
bound to a chemoattractant molecule.

As an expression for the speed of migration we therefore sum up the con-
tributions x;V.S;. This leads to a deterministic equation for the evolution of
the spatial position of a single leukocyte,

2(t) =Y xi()VSi(a(t)) . (1.1)
i=1

Observe that with respect to their function and physical dimension, the sen-
sitivities y; correspond to the notion of sensitivity used in the Patlak-Keller-



Segel-Model for chemotaxis. Experimental behaviour (see [Foxman, Campbell and Butcher 1997])
indicates that the sensitivity for a chemoattractant is downregulated in situ-
ations where the concentration of this chemoattractant is high. For that rea-
son we assume that for each sensitivity y; the vector S := (S1,...,S,)7 of
chemoattractant concentrations is mapped to some target value in the interval

[xn, xMaX]. The target values are
~ min 1 ]
XZ(S) = X; +(AS)+ 1 ) 221,...,771/, (12)
(2

max __, min

X; X;

where A = (a;j)1<i,j<m, a;; > 0 is the matrix of downregulation factors. In the
case where sensitivities are only downregulated by their associated chemoat-
tractants, it is a diagonal matrix. We may use non-diagonal entries to model
dominating chemoattractants which have the ability to downregulate sensitivi-
ties even for other chemoattractants. Experiments reflecting this phenomenon
can be found in [Foxman, Campbell and Butcher 1997].

The alternative to (1.2), xi(S) = X" +1/((AS)i+ ("= —x0)~ )2, has
been used in [Oelz and Schmeiser 2004|, where we perform simulations of ex-
periments in [Foxman, Campbell and Butcher 1997|. Both expressions can be
derived from discrete random walks (see [Painter, Maini and Othmer 2000]).

Observe that X?in is the minimal sensitivity, which is reached when down-
regulation is maximal. In general this will be the case when the concentration
of the associated chemoattractant is very high. x/*®*, on the other hand, rep-
resents the maximum level of sensitivity of the cell. The actual sensitivity will
be close to x;"** at points where there is hardly any chemoattractant.

Our main modelling contribution is the assumption that the sensitivities
do not adapt immediately to the local values of the chemoattractant concen-

trations. Instead their dynamics is determined by the relaxation model

Xi(t) = ai(X:(S(z(1))) — xi(t)) (1.3)

where «; > 0 is the rate of adaption of the sensitivity x; to its target value.

It would be unrealistic to expect leukocytes to behave completely determin-
istically. Therefore we modify the system (1.1)-(1.3) to a system of stochastic
differential equations to describe the time dependent state of one single leuko-
cyte. Thus, we consider a stochastic process

a(t)

NI

x1(t
X(t) = 1)
Xm(t)
in the state space R2 x [\ xT'®] x ... x [x™", xMaX] determined by the
stochastic differential equation (SDE)
dX = b(X)dt + dB, where (1.4)
S iV Si(2) -
a1(x1(S(x)) — x
ERTR P B BT ] )
(X (5()) = Xm) -



dB*
i - (1),
and o > 0. The drift vector b(X) reflects the deterministic model, and the
(constant) volatility matrix ¥ creates some randomness in the evolution of
the spatial components. By B* and BY we denote independent identically dis-
tributed nomalised Brownian motions. Refer to [Ionides, Fang, Isseroff and Oster 2004]
for another application of SDEs in modelling cell motion.

We scale the problem with respect to typical values of the variables. Let D
be the average distance between sources of chemoattractant. Let (S;) be some
average value of the chemoattractant concentration S; on the domain. We
furthermore introduce the average (scalar) chemotactic velocity V' of one cell.
Finally let (o) be an average value of the coefficients «;. Then we introduce
the following scaling,

;. . T & S; ~ Xz(Sz> _ /
t= t<Oé>, T = 9 SZ - <Sz>, Xi V.D ) dB - dB <Oé>
min, max
~ Q; ~min, max X ’ <SZ> ~ (SJ> ~ g
Q; = ) ’ = =t s ij =V D ijs = )
(a) N VD 7 Sy T D@

and rewrite the system (1.4), but stay with the old expressions for the scaled
quantities
dX =b(X)dt + £dB, where (1.6)

%2121 XiVSi(x)
aq <)21(S($)) - X1>
b(x, X1, Xm) := : )

(X (S (@)) = xom)
with x;(5), ¥ and dB as in (1.5), (1.2). The dimensionless parameter

{0)D
%

is the ratio of the mean migration time between two sources of chemoattractant
to the relaxation time of the sensitivities.

For the rest of the paper we restrict ourselves to the case of two chemoat-
tractants, i.e. m = 2. In Section 2 the long time behaviour of the corre-
sponding deterministic system is analysed by considering special choices for
the functions x;(S) and S;(x). It is shown that the memory effect in our
model may lead to oscillations of cells between the chemoattractant centres.
In Section 3, a macroscopic model is derived by a moment expansion of the
Fokker-Planck equation corresponding to (1.6). The macroscopic model is a
system of parabolic equations for the cell density and the mean values of the
chemotactic sensitivities. Numerical approaches to the solution of the SDE
system and to the macroscopic model are presented in Section 4. Finally the
results of numerical experiments and comparisons between the models are the
content of Section 5.

The main goal of this work is to highlight the basic qualitative properties
of the models reflected in their long time behaviour.



2 Deterministic dynamics

To study the dynamics, a simplified model is used. One difference to the
biologically more accurate model presented in the introduction lies in the sen-
sitivity functions x;. They are chosen as y; = 1/5;, which corresponds to
a special case of the sensitivity equation (1.2), obtained by setting A = I,
& = 1, Xmin = 0 and Ymaz = 00. More importantly, we only study the
deterministic model, equations (1.1), (1.3), for two chemoattractants.

We assume that the concentrations of the chemoattractants are given by
Gaussians centred around fixed points & = (1,0) and x2 = (x2,0):

|z — ;|

Si(m):exp<_ - > T,>0, i=1,2. (2.1)

The following system of equations is obtained,

T = %(XllVSl(iE) + XQVSQ(CC)) ,
X1 = 5@ — X1 (2.2)
X2 = S — X2+

The only critical point is given by

T z1To4a0T
o T1+T5
Yoo 0
= . 2.3
Xloso 1/Sl($00ayoo) ( )
X200 1/52( o0, Yoo)

Note that x, lies on the line segment connecting x; and x5. The eigen-
values of the linearised system are

R oy
_ 2 _ 2 .
=2 VE 0 u=2 T g
201 +To)  8(wy — x1)? 2(T) + T»)
where  p el Ty E(Tl +T2)2 + an 9 el Ty

While \; and Ag are always negative, the pair (A3, A\4) crosses the imaginary
axis when p changes sign, and a Hopf bifurcation occurs. As an example, we
choose the parameter values (also used in the numerical experiments in Section
5)

T1 = T2 = 6, T = —2, T = 2 (25)
whence p = 1 — % and ¢ can be used as bifurcation parameter with the
bifurcation point ¢* = 2/9.

The Hopf bifurcation theorem applies since the eigenvalues (A3, A4) cross
the imaginary axis at nonzero speed. Numerical simulations (see Figure 2) sug-
gest that the system has a stable limit cycle for € < 2/9, hence a supercritical
Hopf bifurcation occurs.

The stable limit cycle for strong enough memory effects (small enough
e) reflects the main qualitative property of our model: The cells’ ability to
migrate away from the location of peak concentration of one chemoattractant
by following the chemical gradient of a second chemoattractant with distant

source.



For the full stochastic model we expect the existence of an attractive time
invariant probability distribution, which is spread out around the limit cycle
of the deterministic model. This will be verified by the numerical experiments

in section 5.

o The Cells Initial Position o The Cells Initial Position
* Chemo Attractant Center 1 * Chemo Attractant Center 1
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(a) Stable steady state. (b) Stable limit cycle.

Figure 2: Numerical solution of the deterministic system (2.1), (2.2) with parame-
ter values (2.5) and different values of €. The horizontal and vertical (downward)
directions are the x- and, resp., t-directions.

3 A macroscopic model

The Fokker-Planck equation (cp. [(Eksendal 1995|, 'Kolmogorov forward equa-
tion’) associated to the SDE (1.6) in the case m = 2 is the linear partial
differential equation (PDE)
2

O T ey~ V- (4b(X) (3.1
for the distribution function ¢(t, X) = g(¢,z,y, x1, x2), which may be inter-
preted as probability density for the state of one cell or as density of a popu-
lation of cells. The equation (3.1) is of mixed hyperbolic-parabolic type since
diffusion only acts in the position directions.

As a direct numerical approach to (3.1) would be very expensive we apply
the technique of moment expansion to reduce the four dimensional model to
two dimensions by integrating with respect to the sensitivities. Note that
(3.1) preserves the property supp g C R? x [\, x8X] x [y&" yJ2X] For any
function f(t, X) we therefore define

max max

_ X1 X3
f(t,.%',y) = /min /min f(t7x7y7X17X2) dXQdX1 .
X1 X
Then g can be viewed as a marginal probability density of one cell or as
position density of a population of cells.

By integrating (3.1) with respect to x1 and yo we derive

5 _ gty (22: VS)) (3.2)
ot~ 2 g - izngZ i) .
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where from now on, V and A are meant with respect to . Equations for the
first order moments gx; are derived by multiplying (3.1) by x; and integrating
as in (3.2):

o, o? 1 2 N o
5 T0) = 5 A@G) ~ V- Q76K VS)) +05(%5(S)g - 9%) - (33)
=1

In these equations the second order moments appear and we are confronted
with the standard closure problem. We introduce the positive definite covari-
ance matrix of the two sensitivities

Cc11 €12
C:= ,
Cl2 €22
and use the closure relations

e = dlen + ), with 5= 20
IXiXj = Q(Cij + Xi Xj), with 35 := Z&° .

The sensitivities are distributed around the expected value, the covariance
matrix C representing the “width” of their common distribution. Thus, also
in the macroscopic model different values of the sensitivities and, therefore,
different chemotactic velocities coexist at one position.

Substituting these expressions into (3.3), we obtain

o, o? 1 2 _ o
5 0%G) = 5 AE@X) — V- (Q_9(e; + X X5) VS)+
=1

+a;3(%5(8) —x7), =12 (34)

Note that, by the linearity of the flux b with respect to x; and x2, no
further closure assumptions are needed, and (3.2), (3.4) form a closed system

of parabolic equations for the density g and the expected sensitivities .
We introduce the notation

g(t, )
u(t, @) := | gxi(t, )
gxz2(t, x)
and rewrite (3.2) and (3.4) to obtain
0 o? 1
G=ZAu—2v.f v .
5l = 5 Au 6V (u, ) + ¥(u,x) , (3.5)

with the flux vector f = (f*, f¥) and the source term

0
V(u,z) = | arg(xa(S(=)) —X1) | - (3.6)
azg(X2(5(®)) — X2)

The fluxes f* and fY share the same structure. They differ only insofar as
f* depends on derivatives of the chemoattractants with respect to x whereas



fY depends on the respective derivatives with respect to y. We therefore look
at the generic flux function

g3 XiSid(z)
fuz) =757 (ca + X x1) Sia(®) | (3.7)
97 (cio + Xix2) Sia()

from which we obtain linear combinations af* 4+ 3fY by setting S;q = a.S;, +
BSiy. To implement the numerical method presented in Section 4.2 and to
check for hyperbolicity we need the spectral decomposition of the Jacobian
D, f?% We define

wq = 1/84C8T,  where S;:= (S14,52) ,

which is real because of the positive definiteness of C. Then D, f¢ has the
following eigenvalues and associated eigenvectors:

p zl .
_ — i—1 Cil9g
Al,ZZZXiSidiwd, T2 = Xli—z_i}dl d :
i=1 — | >iCi2Sia
7 X2 i T
2 0
As =Y XiSia, 1= So
i=1 —S514

The structure is similar to the Euler equations of gas dynamics with the
cell velocity Ag replacing the gas velocity and with the "speed of sound" wy.
Also the 1- and 2-fields are genuinely nonlinear, and the 3-field is linearly
degenerate.

These observations show the hyperbolicity and well posedness of the system

%u + év A(u,x) =0, (3.8)
whose solution will be part of an operator splitting approach to (3.5) in Section
4.2. There we also use another structural property of the flux functions, their
homogeneity in the sense that they satisfy f¢(au, ) = af?(u, x) for any scalar
«, which implies Euler’s identity

fu, ) = Dy f(u, x)u . (3.9)

4 Numerical methods

4.1 Direct simulation of the microscopic equations

For the numerical solution of the stochastic differential equation (1.6) a semi
implicit Euler scheme is used. It is a strong approximation method and thanks
to the additive noise of order one, see [Kloeden and Platen 1992] for details.



For computational simplicity the differential equations for the chemotac-
tic sensitivities x1 and yo are discretised semi-implicitly with the positions
evaluated at the old time step:

1
X;H -xi_ 1 n+1

At Si(xn) N

i=1,2. (4.1)

Discretisation of the continuous Brownian motion comes naturally from its
definition. Replacing the infinitesimal increment d¢ by a finite time interval of
length At, dB is approximated by AB = v/At(Ny, N»), where Ny, Ny iid ~
N(0,1), meaning that they are two independent normally distributed random
variables with zero expectation and variance equal to one.

The difference equations for the stochastic spatial position are fully implicit
and take the following form:

n+l _ ..n n+1
i Atm :Xlg VS (z") + oAB . (4.2)

At every time step a nonlinear algebraic system for the new position has to
be solved.

Probability density approximations are obtained by computing many paths
while recording the cells positions in a spatial grid.

4.2 Numerical method for the macroscopic equation

We use the fractional step method (see [Leveque 2002|, p. 380) to deal with
the evolution of the solution of (3.5) with 4 substeps according to the terms
on the right hand side. In particular we use a rectangular grid and treat the
fluxes in z-direction and y-direction independently, a strategy which is called
dimensional splitting.

e For the diffusion problem, % = U—;Aul, we use the Crank-Nicolson
scheme.
e For the transport problems, % + 7afzg;2,m) = 0 and % + 78#((91;3,1:) =

0, we use the upwind scheme with a high resolution correction. The
correction is based on a specific flux vector splitting which makes use of
(3.9) (see [Leveque 2002], "Method by Steger and Warming").

e For the reaction problem, % = W(ug,x), we use the implicit Euler

scheme.

5 Numerical experiments

In order to compare the results obtained by the two different models, we
compare the steady state solutions with parameters chosen such that the de-
terministic system has a stable limit cycle.

We consider an equidistant grid with 361 x 121 grid points on the spatial
domain [—3,3] x [—1,1] and use the functions S; and Sy from (2.1) together
with (2.5). Furthermore we choose the following values for the scaled model



(1.6)

c=V5/3, o =ay=1, A:z(1 O),

0 1
X = X3 =00, X" =3 =0,
2
e=0.12< 9= e

, which equal those of the analysis in Section 2.

To obtain the steady state solution of the microscopic equations, one Leuko-
cyte is started on the deterministic limit cycle and at each time step its posi-
tion is recorded with respect to a grid. The simulation time depends on the
required smoothness. At the end of the simulation the computed density is
normalised to obtain a probability density.

The results of the numerical simulation are visualised in Fig. 3. The

Figure 3: Steady state solution (i.e. invariant measure) of the microscopic equations
(1.6).

cell migrates back and forth between the two chemoattractant sources. By
the smallness of €, the movement is like a relaxation oscillation, where the
transition time between the sources is small compared to the time spent near
the sources, which explains the two peaks in Fig. 3. In our simulations, cells
never reached the boundary of the spatial domain.

Furthermore, the variance and covariance of the distribution of sensitivities
is computed for every grid point the cell reaches within the domain. The results
are visualised by plotting the cross-section y = 1/120 of the variance of the
left-centred chemoattractant sensitivity and the covariance (Figure 4).

We use average values of these results to determine values for the (constant)
covariance matrix in the macroscopic model

0.54 —0.36
¢= <—O.36 0.54> ‘ (5.1)
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(a) Sample variances of the sen- (b) Sample covariance of the sen-
sitivity for the chemoattractant sitivities.
centred at (—2,0).

Figure 4: Variance and covariance as a function of = for y = 1/120.

As initial condition for the simulation of the macroscopic model we use an
approximate d-distribution in space centred at (1,0), so the initial condition
is not symmetric but cells start near the second source of chemoattractant.
Their initial sensitivities are given by x;(S). We use von-Neumann boundary
conditions.

The distribution of cells oscillates between the chemoattractant sources
(Fig. 5) with amplitudes becoming smaller and smaller. Finally the solution
approximates an equilibrium distribution (Fig. 6) which is similar to the
equilibrium distribution obtained by direct simulation (Fig. 3).

Qualitatively the results for the steady states coincide, cells gather round
the sources of chemoattractant and there is a certain fraction located in the
centre. The difference between the microscopic solution and the macroscopic
solution is displayed in Figure 7.

The equilibrium distribution of the direct simulation is higher than the one
of the macroscopic equations near the sources of chemoattractants and lower
in the centre of the domain.

These deviations can be explained by the fact, that we used constant aver-
age (co)variances as parameters in the macroscopic model equations. Actually
the distributions of sensitivities depend on the cells’ spatial positions, but these
are not taken into account by the macroscopic model. Instead we overestimate
the (co)variances close to the chemoattractant centres and underestimate them
in the middle of the domain (see Figure 4 in comparison to the average values
in matrix C in (5.1)).

We expect to find two groups of cells in the centre of the domain, one going
to the right and one going to the left. By underestimating (Co)variances there,
we introduce a smaller discrepancy of sensitivities between those to groups.
This implies that the dominating sensitivity of all these cells is assumed to
be lower which translates directly into lower migrational speed. But lower
speed of cells in the centre of the domain implies that actually more cells are
supposed to be located in that region.

The equilibrium density of the macroscopic equations is also lower close to
the sources of chemoattractants (see Figure 7). In the direct simulations we
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Figure 5: Time evolution of the leukocyte distribution.

observe that the distribution of cells is more pointed in this region and the
distributions of their sensitivities are relatively thin compared to the rest of
the domain (Figures 3, 4). By overestimating the (co)variances of their distri-
butions of sensitivities, we allow cells to behave less uniformly and therefore
to spread into a wider area.

Further numerical experiments showed that setting c11 = c19 = co20 =
co1 = 0 fully inhibits convergence to equilibrium. Cells rather stay together
and keep shuttling to and fro. Therefore the magnitude of the (co)variances
seems to be related to the extent of desynchronisation and further to the
"speed" of convergence to equilibrium whereas the frequency of oscillation
between chemoattractant sources does not seem to be influenced.

6 Conclusion

In the parallel study [Oelz and Schmeiser 2004], simulations of the experi-
ments in [Foxman, Campbell and Butcher 1997] are carried out and satisfac-
tory quantitative agreement with the experimental results is achieved. These

experiments and even more the later experimental publication [Foxman, Kunkel and Butcher 1999]

focuses on the ability of the cells to undergo sequential chemotaxis to one at-
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Figure 7: Difference (microscopic solution - macroscopic solution) between the two
steady states as a function of x for y = 0.

tractant source after another and to be guided in a step-by-step fashion to
their destinations within tissues. In fact, the results of Sections 2 and 5 re-
flect this behaviour, although restricted to the two-chemoattractant case. It
might be possible to realise this situation in an experimental setting. One
might establish stationary concentrations of two chemoattractants, centered
at distant positions, by generating constant diffusive fluxes into the medium
at the tips of two pipets and corresponding diffusive drainage fluxes using a
permeable boundary membrane. In mathematical terms this would reproduce
fundamental solutions of the Laplacian in contrast to the Gaussian profiles in
(2.1). By performing time lapse video-microscopy as in fig. 1 long enough, one
should be able to observe oscillations of single leukocytes between the sources
of chemoattractants with characteristic frequency. We suggest to compare
these to numerical results, either in order to estimate parameters or to vali-
date the model.
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