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Figure 1: Time-lapse video mirosopy taken from[Foxman, Campbell and Buther 1997℄, ells are exposed to the two hemoat-tratants Leukotriene B4 (LTB4) and Interleukin-8 (IL-8) and the migration pathsof representative ells are reorded during 15 minutes.e�ient or rapid adaption of the migrating ell to inreasing vs. dereasing at-tratant onentrations." They even found experimental evidene that tightlyneighbouring ells may migrate in opposite diretions though they share thesame surroundings (see �gure 1).Motivated by these results we develop a mathematial model to desribethis behaviour. We denote the position of one single ell by
x(t) := (x(t), y(t)) ∈ R

2 .Furthermore we assume the presene of m hemoattratant substanes. Wedenote their onentrations by Si(x), 1 ≤ i ≤ m and assume that thesefuntions are given and that they are stationary, whih does not a�et thequalitative properties of the model. In general, however, di�usion, prodution,and deay of hemoattratants should be onsidered.Every single ell has reeptors whih let the ell pereive the diretionsand strengths of hemoattratant gradients. Aording to the experimentaldata (see [Foxman, Campbell and Buther 1997℄) we assume that eah ellhas a dynamially hanging sensitivity χi(t) ≥ 0 for the hemoattratant Si,
1 ≤ i ≤ m. These represent the responsiveness of ells to the presene of therespetive hemoattratant gradient, whih depends, among other things, onthe absolute number of reeptors for the respetive hemoattratant and onthe number of �free� reeptors, i.e. on the fration of reeptors whih are notbound to a hemoattratant moleule.As an expression for the speed of migration we therefore sum up the on-tributions χi∇Si. This leads to a deterministi equation for the evolution ofthe spatial position of a single leukoyte,

ẋ(t) =

m
∑

i=1

χi(t)∇Si(x(t)) . (1.1)Observe that with respet to their funtion and physial dimension, the sen-sitivities χi orrespond to the notion of sensitivity used in the Patlak-Keller-2



Segel-Model for hemotaxis. Experimental behaviour (see [Foxman, Campbell and Buther 1997℄)indiates that the sensitivity for a hemoattratant is downregulated in situ-ations where the onentration of this hemoattratant is high. For that rea-son we assume that for eah sensitivity χi the vetor S := (S1, . . . , Sm)T ofhemoattratant onentrations is mapped to some target value in the interval
[χmin

i , χmax
i ]. The target values are

χ̂i(S) := χmin
i +

1

(AS)i + 1
χmax

i −χmin

i

, i = 1, . . . ,m , (1.2)where A = (aij)1≤i,j≤m, aij ≥ 0 is the matrix of downregulation fators. In thease where sensitivities are only downregulated by their assoiated hemoat-tratants, it is a diagonal matrix. We may use non-diagonal entries to modeldominating hemoattratants whih have the ability to downregulate sensitivi-ties even for other hemoattratants. Experiments re�eting this phenomenonan be found in [Foxman, Campbell and Buther 1997℄.The alternative to (1.2), χ̂i(S) := χmin
i +1

/(

(AS)i+(χmax
i −χmin

i )−
1

2

)2, hasbeen used in [Oelz and Shmeiser 2004℄, where we perform simulations of ex-periments in [Foxman, Campbell and Buther 1997℄. Both expressions an bederived from disrete random walks (see [Painter, Maini and Othmer 2000℄).Observe that χmin
i is the minimal sensitivity, whih is reahed when down-regulation is maximal. In general this will be the ase when the onentrationof the assoiated hemoattratant is very high. χmax

i , on the other hand, rep-resents the maximum level of sensitivity of the ell. The atual sensitivity willbe lose to χmax
i at points where there is hardly any hemoattratant.Our main modelling ontribution is the assumption that the sensitivitiesdo not adapt immediately to the loal values of the hemoattratant onen-trations. Instead their dynamis is determined by the relaxation model

χ̇i(t) = αi(χ̂i(S(x(t))) − χi(t)) , (1.3)where αi > 0 is the rate of adaption of the sensitivity χi to its target value.It would be unrealisti to expet leukoytes to behave ompletely determin-istially. Therefore we modify the system (1.1)-(1.3) to a system of stohastidi�erential equations to desribe the time dependent state of one single leuko-yte. Thus, we onsider a stohasti proess
X(t) :=











x(t)
χ1(t)...
χm(t)









in the state spae R
2 × [χmin

1 , χmax
1 ] × . . . × [χmin

m , χmax
m ], determined by thestohasti di�erential equation (SDE)

dX = b(X)dt + Σ dB, where (1.4)b(x, χ1, . . . , χm) :=











∑m
i=1 χi∇Si(x)

α1(χ̂1(S(x)) − χ1)...
αm(χ̂m(S(x)) − χm)
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0 0... ...
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, (1.5)
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dB :=

(

dBx

dBy

)

,and σ > 0. The drift vetor b(X) re�ets the deterministi model, and the(onstant) volatility matrix Σ reates some randomness in the evolution ofthe spatial omponents. By Bx and By we denote independent identially dis-tributed nomalised Brownian motions. Refer to [Ionides, Fang, Issero� and Oster 2004℄for another appliation of SDEs in modelling ell motion.We sale the problem with respet to typial values of the variables. Let Dbe the average distane between soures of hemoattratant. Let 〈Si〉 be someaverage value of the hemoattratant onentration Si on the domain. Wefurthermore introdue the average (salar) hemotati veloity V of one ell.Finally let 〈α〉 be an average value of the oe�ients αi. Then we introduethe following saling,
t̃ = t〈α〉, x̃ =

x

D
, S̃i =

Si

〈Si〉
, χ̃i =

χi〈Si〉
V D

, dB̃ = dB
√

〈α〉

α̃i =
αi

〈α〉 , χ̃min, max
i =

χmin, max
i 〈Si〉

V D
, ãij = V D

〈Sj〉
〈Si〉

aij , σ̃ =
σ

D
√

〈α〉
,and rewrite the system (1.4), but stay with the old expressions for the saledquantities

dX = b(X)dt + Σ dB, where (1.6)b(x, χ1, . . . , χm) :=















1
ε

∑m
i=1 χi∇Si(x)

α1

(

χ̂1(S(x)) − χ1

)...
αm

(

χ̂m(S(x)) − χm

)















,with χ̂i(S), Σ and dB as in (1.5), (1.2). The dimensionless parameter
ε :=

〈α〉D
Vis the ratio of the mean migration time between two soures of hemoattratantto the relaxation time of the sensitivities.For the rest of the paper we restrit ourselves to the ase of two hemoat-tratants, i.e. m = 2. In Setion 2 the long time behaviour of the orre-sponding deterministi system is analysed by onsidering speial hoies forthe funtions χ̂i(S) and Si(x). It is shown that the memory e�et in ourmodel may lead to osillations of ells between the hemoattratant entres.In Setion 3, a marosopi model is derived by a moment expansion of theFokker-Plank equation orresponding to (1.6). The marosopi model is asystem of paraboli equations for the ell density and the mean values of thehemotati sensitivities. Numerial approahes to the solution of the SDEsystem and to the marosopi model are presented in Setion 4. Finally theresults of numerial experiments and omparisons between the models are theontent of Setion 5.The main goal of this work is to highlight the basi qualitative propertiesof the models re�eted in their long time behaviour.4



2 Deterministi dynamisTo study the dynamis, a simpli�ed model is used. One di�erene to thebiologially more aurate model presented in the introdution lies in the sen-sitivity funtions χ̂i. They are hosen as χ̂i = 1/Si, whih orresponds toa speial ase of the sensitivity equation (1.2), obtained by setting A = I,
αi = 1, χmin = 0 and χmax = ∞. More importantly, we only study thedeterministi model, equations (1.1), (1.3), for two hemoattratants.We assume that the onentrations of the hemoattratants are given byGaussians entred around �xed points x1 = (x1, 0) and x2 = (x2, 0):

Si(x) = exp

(−|x − xi|2
Ti

)

, Ti > 0, i = 1, 2 . (2.1)The following system of equations is obtained,
ẋ = 1

ε

(

χ1∇S1(x) + χ2∇S2(x)
)

,
χ̇1 = 1

S1(x) − χ1 ,

χ̇2 = 1
S2(x) − χ2 .

(2.2)The only ritial point is given by
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y∞
χ1∞

χ2∞









=









x1T2+x2T1

T1+T2

0
1/S1(x∞, y∞)
1/S2(x∞, y∞)









. (2.3)Note that x∞ lies on the line segment onneting x1 and x2. The eigen-values of the linearised system are
λ1 = −2(T1+T2)

εT1T2
, λ2 = −1,

λ3 = −p
2 +

√

p2

4 − q, λ4 = −p
2 −

√

p2

4 − q,
(2.4)where p =

2(T1 + T2)

εT1T2
− 8(x2 − x1)

2

ε(T1 + T2)2
+ 1 and q =

2(T1 + T2)

εT1T2While λ1 and λ2 are always negative, the pair (λ3, λ4) rosses the imaginaryaxis when p hanges sign, and a Hopf bifuration ours. As an example, wehoose the parameter values (also used in the numerial experiments in Setion5)
T1 = T2 = 6, x1 = −2, x2 = 2 (2.5)whene p = 1 − 2

9ε
and ε an be used as bifuration parameter with thebifuration point ε∗ = 2/9.The Hopf bifuration theorem applies sine the eigenvalues (λ3, λ4) rossthe imaginary axis at nonzero speed. Numerial simulations (see Figure 2) sug-gest that the system has a stable limit yle for ε < 2/9, hene a superritialHopf bifuration ours.The stable limit yle for strong enough memory e�ets (small enough

ε) re�ets the main qualitative property of our model: The ells' ability tomigrate away from the loation of peak onentration of one hemoattratantby following the hemial gradient of a seond hemoattratant with distantsoure. 5



For the full stohasti model we expet the existene of an attrative timeinvariant probability distribution, whih is spread out around the limit yleof the deterministi model. This will be veri�ed by the numerial experimentsin setion 5.
The Cells Initial Position
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Chemo Attractant Center 2
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(a) Stable steady state.
The Cells Initial Position
Chemo Attractant Center 1
Chemo Attractant Center 2
Leukocyte Path

(b) Stable limit yle.Figure 2: Numerial solution of the deterministi system (2.1), (2.2) with parame-ter values (2.5) and di�erent values of ε. The horizontal and vertial (downward)diretions are the x- and, resp., t-diretions.3 A marosopi modelThe Fokker-Plank equation (p. [×ksendal 1995℄, 'Kolmogorov forward equa-tion') assoiated to the SDE (1.6) in the ase m = 2 is the linear partialdi�erential equation (PDE)
∂g

∂t
=

σ2

2
∆xg −∇X ·

(

gb(X)
) (3.1)for the distribution funtion g(t,X) = g(t, x, y, χ1, χ2), whih may be inter-preted as probability density for the state of one ell or as density of a popu-lation of ells. The equation (3.1) is of mixed hyperboli-paraboli type sinedi�usion only ats in the position diretions.As a diret numerial approah to (3.1) would be very expensive we applythe tehnique of moment expansion to redue the four dimensional model totwo dimensions by integrating with respet to the sensitivities. Note that(3.1) preserves the property supp g ⊆ R

2× [χmin
1 , χmax

1 ]× [χmin
2 , χmax

2 ]. For anyfuntion f(t,X) we therefore de�ne
f(t, x, y) :=

∫ χmax
1

χmin
1

∫ χmax
2

χmin
2

f(t, x, y, χ1, χ2) dχ2dχ1 .Then g an be viewed as a marginal probability density of one ell or asposition density of a population of ells.By integrating (3.1) with respet to χ1 and χ2 we derive
∂g

∂t
=

σ2

2
∆g − 1

ε
∇ · (

2
∑

i=1

gχi ∇Si) , (3.2)6



where from now on, ∇ and ∆ are meant with respet to x. Equations for the�rst order moments gχj are derived by multiplying (3.1) by χj and integratingas in (3.2):
∂

∂t
(gχj) =

σ2

2
∆(gχj) −

1

ε
∇ · (

2
∑

i=1

gχiχj ∇Sj) + αj(χ̂j(S)g − gχj) . (3.3)In these equations the seond order moments appear and we are onfrontedwith the standard losure problem. We introdue the positive de�nite ovari-ane matrix of the two sensitivities
C :=

(

c11 c12

c12 c22

)

,and use the losure relations
gχiχj = g

(

cij + χi χj

)

, with χi :=
gχi

g
.The sensitivities are distributed around the expeted value, the ovarianematrix C representing the �width� of their ommon distribution. Thus, alsoin the marosopi model di�erent values of the sensitivities and, therefore,di�erent hemotati veloities oexist at one position.Substituting these expressions into (3.3), we obtain

∂

∂t
(g χj) =

σ2

2
∆(g χj) −

1

ε
∇ · (

2
∑

i=1

g
(

cij + χi χj

)

∇Sj)+

+ αj g(χ̂j(S) − χj) , j = 1, 2. (3.4)Note that, by the linearity of the �ux b with respet to χ1 and χ2, nofurther losure assumptions are needed, and (3.2), (3.4) form a losed systemof paraboli equations for the density g and the expeted sensitivities χj .We introdue the notation
u(t,x) :=





g(t,x)
g χ1(t,x)
g χ2(t,x)



and rewrite (3.2) and (3.4) to obtain
∂

∂t
u =

σ2

2
∆u − 1

ε
∇ · f(u,x) + Ψ(u,x) , (3.5)with the �ux vetor f = (fx, fy) and the soure term

Ψ(u,x) =





0
α1 g(χ̂1(S(x)) − χ1)
α2 g(χ̂2(S(x)) − χ2)



 . (3.6)The �uxes fx and f y share the same struture. They di�er only insofar as
fx depends on derivatives of the hemoattratants with respet to x whereas7



fy depends on the respetive derivatives with respet to y. We therefore lookat the generi �ux funtion
fd(u,x) :=





g
∑2

i=1 χiSid(x)

g
∑2

i=1

(

ci1 + χi χ1

)

Sid(x)

g
∑2

i=1

(

ci2 + χi χ2

)

Sid(x)



 , (3.7)from whih we obtain linear ombinations αfx + βfy by setting Sid = αSix +
βSiy. To implement the numerial method presented in Setion 4.2 and tohek for hyperboliity we need the spetral deomposition of the Jaobian
Dufd. We de�ne

ωd :=
√

SdCST
d , where Sd := (S1d, S2d) ,whih is real beause of the positive de�niteness of C. Then Dufd has thefollowing eigenvalues and assoiated eigenvetors:

λ1,2 =

2
∑

i=1

χiSid ± ωd, r1,2 =







1

χ1 ±
P

2

i=1
ci1Sid

ωd

χ2 ±
P

2

i=1
ci2Sid

ωd






,

λ3 =

2
∑

i=1

χi Sid, rj =





0
S2d

−S1d



 .The struture is similar to the Euler equations of gas dynamis with theell veloity λ3 replaing the gas veloity and with the "speed of sound" ωd.Also the 1- and 2-�elds are genuinely nonlinear, and the 3-�eld is linearlydegenerate.These observations show the hyperboliity and well posedness of the system
∂

∂t
u +

1

ε
∇ · f(u,x) = 0 , (3.8)whose solution will be part of an operator splitting approah to (3.5) in Setion4.2. There we also use another strutural property of the �ux funtions, theirhomogeneity in the sense that they satisfy fd(αu,x) = αfd(u,x) for any salar

α, whih implies Euler's identity
fd(u,x) = Dufd(u,x)u . (3.9)4 Numerial methods4.1 Diret simulation of the mirosopi equationsFor the numerial solution of the stohasti di�erential equation (1.6) a semiimpliit Euler sheme is used. It is a strong approximation method and thanksto the additive noise of order one, see [Kloeden and Platen 1992℄ for details.8



For omputational simpliity the di�erential equations for the hemota-ti sensitivities χ1 and χ2 are disretised semi-impliitly with the positionsevaluated at the old time step:
χn+1

i − χn
i

∆t
=

1

Si(xn)
− χn+1

i i = 1, 2 . (4.1)Disretisation of the ontinuous Brownian motion omes naturally from itsde�nition. Replaing the in�nitesimal inrement dt by a �nite time interval oflength ∆t, dB is approximated by ∆B =
√

∆t(N1,N2), where N1, N2 iid ∼
N(0, 1), meaning that they are two independent normally distributed randomvariables with zero expetation and variane equal to one.The di�erene equations for the stohasti spatial position are fully impliitand take the following form:

x
n+1 − x

n

∆t
=

χn+1
1

ε
∇S1(x

n+1) + σ∆B . (4.2)At every time step a nonlinear algebrai system for the new position has tobe solved.Probability density approximations are obtained by omputing many pathswhile reording the ells positions in a spatial grid.4.2 Numerial method for the marosopi equationWe use the frational step method (see [Leveque 2002℄, p. 380) to deal withthe evolution of the solution of (3.5) with 4 substeps aording to the termson the right hand side. In partiular we use a retangular grid and treat the�uxes in x-diretion and y-diretion independently, a strategy whih is alleddimensional splitting.
• For the di�usion problem, ∂u1

∂t
= σ2

2 ∆u1, we use the Crank-Niolsonsheme.
• For the transport problems, ∂u2

∂t
+ ∂fx(u2,x)

∂x
= 0 and ∂u3

∂t
+ ∂fy(u3,x)

∂y
=

0, we use the upwind sheme with a high resolution orretion. Theorretion is based on a spei� �ux vetor splitting whih makes use of(3.9) (see [Leveque 2002℄, "Method by Steger and Warming").
• For the reation problem, ∂u4

∂t
= Ψ(u4,x), we use the impliit Eulersheme.5 Numerial experimentsIn order to ompare the results obtained by the two di�erent models, weompare the steady state solutions with parameters hosen suh that the de-terministi system has a stable limit yle.We onsider an equidistant grid with 361 × 121 grid points on the spatialdomain [−3, 3] × [−1, 1] and use the funtions S1 and S2 from (2.1) togetherwith (2.5). Furthermore we hoose the following values for the saled model9



(1.6)
σ =

√
5/3, α1 = α2 = 1, A :=

(

1 0
0 1

)

,

χmax
1 = χmax

2 = ∞, χmin
1 = χmin

2 = 0,

ε = 0.12 <
2

9
= ε∗, whih equal those of the analysis in Setion 2.To obtain the steady state solution of the mirosopi equations, one Leuko-yte is started on the deterministi limit yle and at eah time step its posi-tion is reorded with respet to a grid. The simulation time depends on therequired smoothness. At the end of the simulation the omputed density isnormalised to obtain a probability density.The results of the numerial simulation are visualised in Fig. 3. The

Figure 3: Steady state solution (i.e. invariant measure) of the mirosopi equations(1.6). ell migrates bak and forth between the two hemoattratant soures. Bythe smallness of ε, the movement is like a relaxation osillation, where thetransition time between the soures is small ompared to the time spent nearthe soures, whih explains the two peaks in Fig. 3. In our simulations, ellsnever reahed the boundary of the spatial domain.Furthermore, the variane and ovariane of the distribution of sensitivitiesis omputed for every grid point the ell reahes within the domain. The resultsare visualised by plotting the ross-setion y = 1/120 of the variane of theleft-entred hemoattratant sensitivity and the ovariane (Figure 4).We use average values of these results to determine values for the (onstant)ovariane matrix in the marosopi model
C =

(

0.54 −0.36
−0.36 0.54

)

. (5.1)10
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(a) Sample varianes of the sen-sitivity for the hemoattratantentred at (−2, 0). −3 −2 −1 0 1 2 3 4
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(b) Sample ovariane of the sen-sitivities.Figure 4: Variane and ovariane as a funtion of x for y = 1/120.As initial ondition for the simulation of the marosopi model we use anapproximate δ-distribution in spae entred at (1, 0), so the initial onditionis not symmetri but ells start near the seond soure of hemoattratant.Their initial sensitivities are given by χ̂i(S). We use von-Neumann boundaryonditions.The distribution of ells osillates between the hemoattratant soures(Fig. 5) with amplitudes beoming smaller and smaller. Finally the solutionapproximates an equilibrium distribution (Fig. 6) whih is similar to theequilibrium distribution obtained by diret simulation (Fig. 3).Qualitatively the results for the steady states oinide, ells gather roundthe soures of hemoattratant and there is a ertain fration loated in theentre. The di�erene between the mirosopi solution and the marosopisolution is displayed in Figure 7.The equilibrium distribution of the diret simulation is higher than the oneof the marosopi equations near the soures of hemoattratants and lowerin the entre of the domain.These deviations an be explained by the fat, that we used onstant aver-age (o)varianes as parameters in the marosopi model equations. Atuallythe distributions of sensitivities depend on the ells' spatial positions, but theseare not taken into aount by the marosopi model. Instead we overestimatethe (o)varianes lose to the hemoattratant entres and underestimate themin the middle of the domain (see Figure 4 in omparison to the average valuesin matrix C in (5.1)).We expet to �nd two groups of ells in the entre of the domain, one goingto the right and one going to the left. By underestimating (Co)varianes there,we introdue a smaller disrepany of sensitivities between those to groups.This implies that the dominating sensitivity of all these ells is assumed tobe lower whih translates diretly into lower migrational speed. But lowerspeed of ells in the entre of the domain implies that atually more ells aresupposed to be loated in that region.The equilibrium density of the marosopi equations is also lower lose tothe soures of hemoattratants (see Figure 7). In the diret simulations we11



Figure 5: Time evolution of the leukoyte distribution.observe that the distribution of ells is more pointed in this region and thedistributions of their sensitivities are relatively thin ompared to the rest ofthe domain (Figures 3, 4). By overestimating the (o)varianes of their distri-butions of sensitivities, we allow ells to behave less uniformly and thereforeto spread into a wider area.Further numerial experiments showed that setting c11 = c12 = c22 =
c21 = 0 fully inhibits onvergene to equilibrium. Cells rather stay togetherand keep shuttling to and fro. Therefore the magnitude of the (o)varianesseems to be related to the extent of desynhronisation and further to the"speed" of onvergene to equilibrium whereas the frequeny of osillationbetween hemoattratant soures does not seem to be in�uened.6 ConlusionIn the parallel study [Oelz and Shmeiser 2004℄, simulations of the experi-ments in [Foxman, Campbell and Buther 1997℄ are arried out and satisfa-tory quantitative agreement with the experimental results is ahieved. Theseexperiments and even more the later experimental publiation [Foxman, Kunkel and Buther 1999℄fouses on the ability of the ells to undergo sequential hemotaxis to one at-12



Figure 6: Steady state solution of the marosopi model (3.2), (3.4).

Figure 7: Di�erene (mirosopi solution - marosopi solution) between the twosteady states as a funtion of x for y = 0.tratant soure after another and to be guided in a step-by-step fashion totheir destinations within tissues. In fat, the results of Setions 2 and 5 re-�et this behaviour, although restrited to the two-hemoattratant ase. Itmight be possible to realise this situation in an experimental setting. Onemight establish stationary onentrations of two hemoattratants, enteredat distant positions, by generating onstant di�usive �uxes into the mediumat the tips of two pipets and orresponding di�usive drainage �uxes using apermeable boundary membrane. In mathematial terms this would reproduefundamental solutions of the Laplaian in ontrast to the Gaussian pro�les in(2.1). By performing time lapse video-mirosopy as in �g. 1 long enough, oneshould be able to observe osillations of single leukoytes between the souresof hemoattratants with harateristi frequeny. We suggest to omparethese to numerial results, either in order to estimate parameters or to vali-date the model. 13
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