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Abstract

We use perturbation theory to derive a continuum model for the dynamic acto-

myosin bundle/ring in the regime of very strong crosslinking. Actin treadmilling

is essential for contraction. Linear stability analysis and numerical solutions of

the model equations reveal that when the actin treadmilling is very slow, actin

and myosin aggregate into equidistantly spaced peaks. When treadmilling is

significant, actin filament of one polarity are distributed evenly, while filaments

of the opposite polarity develop a shock wave moving with the treadmilling ve-

locity. Myosin aggregates into a sharp peak surfing the crest of the actin wave.

Any actomyosin aggregation diminishes contractile stress. The easiest way to

maintain higher contraction is to upregulate the actomyosin turnover which

destabilizes nontrivial patterns and stabilizes the homogeneous actomyosin dis-

tributions. We discuss the model’s implications for the experiment.
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1. Introduction

Dynamic polar actin filaments and myosin filaments, consisting of many

molecular motors that tend to move toward the so called barbed ends of actin
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filaments, play multiple roles in cells. One of the most important of these

roles is based on the ability of the actomyosin bundles and rings to contract.

The primary examples of one-dimensional contractile bundles are stress fibers

[1], and contractile cytokinetic rings [2]. Mechanics of actomyosin contraction

plays a great role in biology, most notably in muscle cells [3]. In muscle, actin

filaments are arranged in perfect crystalline arrays of periodically spaced sar-

comeres arranged optimally for the contraction: pointed ends of actin filaments

are oriented inside the sarcomere, where myosin filaments bind and move to the

outward-pointing barbed ends. In the self-organized actomyosin structures of

other cells, there is, however, an outstanding question: how could the disordered

actomyosin array contract? Indeed, myosin would slide randomly placed actin

filaments in such a way that on the average there would be an expansion, not

contraction [4].

To solve this conundrum, roughly speaking, three classes of model were

suggested. In the first one, multiple actin filaments are nucleated at and grow

with their barbed ends focused on formin clusters, which effectively creates mini-

sarcomeres [5]. In the second mechanism, a beautiful idea is that when there are

both myosin motors and crosslinkers in the actin bundle, the actin filament pairs,

which are trying to expand, buckle, while filament pairs under tension effectively

develop contraction [6]. In the third mechanism, actin filament disassembly at

the pointed ends together with tricky deformations of crosslinkers and myosin

lead to net contraction [7]. These models emphasized the importance of passive

crosslinking forces for developing contraction, which was confirmed in vitro [8].

What is crucial for understanding the contraction mechanism is not limiting the

model to static actin structures, which some models do, but to examine the self-

organization of the actomyosin arrays coupled with force balances. Due to its

importance in cell biology and mathematical elegance of this system, there have

been a surge of modeling of the coupled problem of actomyosin self-organization

and contraction [9, 10, 11, 12].

In [13] we introduced an agent based model for the actomyosin constractile

ring based on a large system of force balance equations for each actin and myosin
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filament in the ring. The model proposes to add a novel mechanism to the list of

models reviewed above: actin filament treadmilling in combination with myosin

processivity and cross-linking is, as shown below, sufficient to guarantee the

contractility of the actomyosin ring. While the agent based model is easy to

formulate and simulate, a continuum model in the form of differential equations

is always desirable, as such model is much more amenable to analysis, and thus

its results are easier to understand qualitatively.

In this study, we formulate a continuum version of the agent based model

introduced in [13]. Then we introduce a scaling where we distinguish between

two length scales, namely the characteristic length scale of the bundle and the

length of actin filaments. We compute the asymptotic expansion in the limit

of dense crosslinking and of actin filament length being much shorter than the

length of the bundle/ring. This limit is highly relevant to cell biology, as in

almost all known structures this is exactly what is observed [14]. In this limit

we obtain a model for the actomyosin bundle treated as a viscous fluid. Analysis

and simulations of this model provide many biologically relevant insights and

estimates and predict highly nontrivial pattern formation.

The paper is organized as follows. In section 2 we formulate the microscopic

model and in section 3 we use perturbation theory to pass to the asymptotic

limit. We consider homogeneous solutions to the model in section 4, and in

section 5 we use numerical simulations and linear stability analysis to investigate

the pattern formation. We end with discussion of implications of the model.

Most of the formal calculations have been gathered in the appendix.

2. Microscopic model formulation

We start with a continuous model for the contractile ring-like actomyosin

contractile bundle, which is based on the agent based model introduced in [13],

but the model description here is self-consistent. The model consists of force

balance equations for all dependent variables, which are the radius of the ring

as well as the angular positions of actin filaments and myosin thick filaments.
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While myosin filaments are represented as point-like objects, actin filaments are

characterized by a specific length l and by their polarity, which is either +1 or

−1 according to the directions into which their pointed ends are oriented (+1

and −1 are for pointed end in positive and negative direction, respectively). In

the model derivation here, we take into account active forces generated by motor

proteins and drag forces between overlapping actin filaments caused by cross-

linking proteins. In addition to the force balance equations, there are trans-

port equations for actin filaments, including a description of their treadmilling-

process of simultaneous elongation of actin filaments at the barbed ends and

shortening at the pointed ends. Finally, we consider movements of the myosin

filaments, their random attachments to overlapping actin filaments and dissoci-

ations once they reach actin filament ends.

We initially formulate a model for an actomyosin bundle of infinite length.

Only after deriving the asymptotic limit model for short filaments, we will re-

strict the bundle to an interval of finite length coupled to periodic boundary

conditions and consider a model for a closed contractile actomyosin ring. We

denote time by t > 0 and the spatial position of actin filament center points by

x ∈ R. We introduce the number densities ρ±(t, x) of actin filaments pointing

with their pointed ends in positive, respectively negative direction. The veloc-

ity fields v± = v±(t, x) are the material velocities of these two groups of actin

filaments. In the continuum equations for their densities,

∂tρ
±(t, x) + ∂x((v±(t, x) ∓ vtr)ρ

±) = 0 , (1)

we take into account the given treadmilling velocity vtr > 0 which additionally

translocates the center points of actin filaments into the direction of their barbed

ends.

The material velocities satisfy the force-balance equations:

0 = −

∫

R

ϑ± (t, x, y) Fs

(

±1 −
v±(t, x) − v∓(t, y)

2 Vm

)

dy+

+ ηρ±(t, x)
∑

n=−1,+1

∫

R

A(x − y)
(

v±(t, x) − vn(t, y)
)

ρn(t, y) dy . (2)
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The first line in (2) represents the active forces exerted by myosin molecular

motors, which we describe, following many previous studies of molecular mo-

tors, [15, 16] using a linear force-velocity relationship. Thus, the force is the

stall force of myosin thick filaments Fs decreased by the factor in the brackets

which is equal to 1 if the overlapping antiparallel actin filaments are not moving

relative to each other, and which decreases linearly with the relative velocity

of convergence of barbed ends. If this relative velocity is equal to twice the

free myosin velocity Vm (velocity at which myosin motors move freely without

generating force), the myosin filament moves with rate Vm to the barbed ends,

and the active force becomes zero. Implicitly, the force balance on the myosin

filaments is already satisfied in this formulation because the myosin filaments

are assumed to be moving with such velocity that the total force on the myosin

filament is zero. The positions of myosin filaments are described by the time de-

pendent integration kernel ϑ = ϑ (t, x, y) representing the density of the myosin

filaments with respect to the center points of connected actin filaments, as ex-

plained below. Its first spatial argument refers to the pointed end forward actin

filaments while the second one refers to pointed end backward actin filaments.

Therefore, in the system (2), we write this integration kernel using the special-

ized notation ϑ+ (t, x, y) = ϑ− (t, y, x) = ϑ (t, x, y). Note that myosin generates

force only between the antiparallel actin filaments. Myosin filaments simply

glide to the barbed ends of the parallel filaments without generating force. In

principle, if parallel actin filaments move with different velocities, myosin can

also generate the force between them, but this is excluded by the assumption

of local indistinguishability of parallel actin filaments.

The second line in equation (2) is responsible for effective drag force due

to the protein friction that stems from continuous turnover, attachment, de-

tachment and stretching of elastic cross-linking proteins. Many models and

much data points out that such dynamics leads to effective viscous drag char-

acterized by coefficient η > 0 ([17, 18, 19, 20, 21]). This coefficient is propor-

tional to the number of the cross-linkers per unit length of actin. The viscous

force is proportional to the difference of filament velocities (term in the brack-
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ets), to the length of the region where two actin filaments overlap (given by

A(x − y) = max(l − |x − y|, 0) for two actin filaments with center points at

positions x and y), and to the densities of the overlapping actin filaments. Note

that drag forces act between actin filaments of equal and of opposite polarity

which explains the summation with respect to n = {+1,−1}.

It should be noted that equation (2) determines the vector fields v± only up

to an additive constant as the model does not include explicit anchoring with

respect to the environment. Later, in the numerical treatment, we will include

a minor amount of background friction which will fix that missing degree of

freedom.

Finally, there is a balance between the external tension σ = σ(t) applied to

the actomyosin bundle (i.e., from the cell cortex or from focal adhesions) and

the contributions to tensile stress generated inside the actomyosin bundle by

myosin and cross-linkers. This balance holds at any point along the bundle [13]

and in the notation of this paper it reads

σ(t) =

∫ z

−∞

∫ ∞

z

[

ϑ(t, x, y)Fs

(

1 −
v+(t, x) − v−(t, y)

2Vm

)

−

− η
∑

m,n=−1,+1

ρm(t, x) ρn(t, y)A(x, y) (vm(t, x) − vn(t, y))

]

dy dx , (3)

for any position z ∈ R. Expression (3) sums up forces acting between actin

filaments to the left and right of any position z, and it states that the contractile

force σ is a global property of the bundle.

Concerning myosin filaments, we assume that they attach to at most two

actin filaments and that after reaching either the barbed or the pointed ends,

they slide off (in the model formulation, both ends are reached simultaneously)

and reattach to other actin filaments immediately. As a consequence every

myosin filament is always bound to exactly two actin filaments. For simplicity,

we assume that myosin filaments always attach to two actin filaments at the

same position simultaneously right at their center points. Equal length of actin

filaments and indistinguishability of co-localized actin filaments of equal polarity

guarantee that myosin filaments will fall off both actin filaments at the same
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Figure 1: Schematic representation of the model.

Figure 2: Turnover of myosin thick filaments: Unbound myosin filaments bind with probability

R̄ to the center points of pairs of anti-parallel actin filaments (A1), or, with probabilities

R± to the center points of parallel pointed end forward (B1), respectively backward (C1)

actin filaments. Myosin forces and F-actin treadmilling have counteracting effects on the

position of myosin binding sites as by itself myosin would move towards the barbed ends, while

treadmilling moves binding sites towards the pointed ends. A2: Myosin filaments attached

to anti-parallel actin filaments shift towards the pointed ends as treadmilling is assumed to

exceed actin filament velocities through myosin action. The value ξ represents the relative

position of myosin with respect to the centers of actin filaments in a way such that ξ = l/2

corresponds to the pointed ends of actin filaments. A3: Once myosin reaches the pointed ends

it detaches and returns to the pool of unbound myosin. B2: Myosin attached to a pair of

pointed end-forward actin filaments shifts towards the barbed ends as it can move with its

free moving velocity which is faster than F-actin treadmilling. The material velocity of actin

filaments moves actin and myosin simultaneously and therefore does not affect their relative

position. In the case of parallel actin filaments the relative position ξ = l/2 corresponds to the

barbed ends of actin filaments. B3: Once myosin reaches the barbed ends, it detaches. C2,

C3: Myosin attached to a pair of pointed end-backward actin filaments moves towards the

barbed ends where it detaches. Observe that the material velocity of pointed end backward

actin filaments is now written as −v− as v− by convention is taken as negative.
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time. We illustrate all dynamic processes for myosin and actin filaments in

figure 1.

We introduce structured distributions of myosin filaments, namely χ̄ =

χ̄(t, x, ξ) as well as χ+ = χ+(t, x, ξ) and χ− = χ−(t, x, ξ) respectively which

represent the densities of molecular motors attached to anti-parallel actin fila-

ments and parallel actin filaments with their pointed end pointing in positive,

respectively negative direction. Here the microscopic variable ξ ∈ [0, l/2] rep-

resents the relative position of the myosin filament with respect to the center

points of actin filaments (figure 1).

Transport equations for myosin filaments attached to anti-parallel actin fil-

aments have the form:


































∂tχ̄ + ∂x

(

v+(t, x − ξ) + v−(t, x + ξ)

2
χ̄

)

+

+ ∂ξ

(

v−(t, x + ξ) + vtr − (v+(t, x − ξ) − vtr)

2
χ̄

)

= 0

v−(t, x) + vtr − (v+(t, x) − vtr)

2
χ̄(t, x, 0) = R̄ Moff .

(4)

This transport equation accounts for drift in physical space according to a veloc-

ity field which is the average of the material velocities v± = v±(t, x) of the two

anti-parallel actin filaments. As reflecting in the continuum equations above, the

positions of actin filaments change according to these material velocities but tak-

ing into account a correction due to the constant treadmilling rate vtr > 0. The

relative position ξ of myosin attached to anti-parallel actin filaments changes

according to the difference of these two effective velocity fields.

The boundary condition at ξ = 0 represents reattachment of myosin molec-

ular motors to anti-parallel actin filaments. The quantity Moff , which we will

define below, represents total detachment of myosin molecular motors out of

configurations with anti-parallel as well as with parallel actin filaments. This

pool of detached myosin is immediately redistributed among parallel pairs of

actin filaments and anti-parallel pairs according to the coefficients

R+ =
(ρ+)2

(ρ+ + ρ−)2
, R− =

(ρ−)2

(ρ+ + ρ−)2
, R̄ =

2ρ+ρ−

(ρ+ + ρ−)2
, (5)
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which contain the information about the polarity of the actin filament meshwork

and which sum up to 1.

The integration kernel ϑ(t, x, y) introduced above can be written based on

the density χ̄ as

ϑ(t, x, y) =
1

2
χ̄

(

t,
x + y

2
,
y − x

2

)

. (6)

The distributions of myosin attached to parallel actin filaments satisfy the

equations:







∂tχ
± + ∂x

(

(∓Vm + v±(t, x ± ξ))χ±
)

+ ∂ξ

(

(Vm − vtr)χ
±

)

= 0 ,

(Vm − vtr)χ
±(t, x, 0) = R±Moff ,

(7)

where transport in the physical space x is according to the sum of material ve-

locity of actin filaments and the free moving velocity of myosin filaments which

shifts them in the direction of the respective barbed end of actin filaments.

Transport with respect to the relative position ξ, on the other hand, is with ve-

locity Vm corrected by the effect of treadmilling which moves any fixed structure

on actin filaments towards the pointed end.

Observe that the relative position ξ for myosin attached to parallel actin

filaments has a slightly different meaning than in the case of the antiparallel

actin filaments. While in the latter case, ξ = l/2 means that myosin is located

at the pointed ends, in the case of parallel actin filaments, this means that

myosin is located at the barbed ends. In both cases, ξ = l/2 is the value at

which myosin slides off actin filaments’ ends, and therefore the total flux of

myosin detaching from actin filaments is given by the equation:

Moff =
v−(t, x + l/2) + vtr − (v+(t, x − l/2)− vtr)

2
χ̄(t, x, l/2)+

+ (Vm − vtr)(χ
+(t, x, l/2) + χ−(t, x, l/2)) .

Let us note that a very important feature of the model is hidden behind

math: in order to generate contraction, the treadmilling rate has to be non-zero,

in which case overlapping antiparallel actin filaments are constantly remodeled

into configurations where their pointed ends converge while barbed ends diverge
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from each other. Then, action of myosin that tends to bring together the barbed

ends, on the average, pulls the overlapping antiparallel actin filament pairs

together resulting in the net contraction.

2.1. Non-dimensionalisation

We scale the system of equations (1), (2), (3), (4), (7) as follows: x̃ = x/x0

where x0 is a characteristic length scale of the actomyosin bundle, for example,

radius of the contractile ring. The microscopic spatial coordinate, naturally,

scales as the actin filament length: ξ̃ = ξ/l. The approximations we derive below

work in the limit l ≪ x0. We use the free myosin velocity as the natural velocity

scale, and so ṽ± = v±/Vm, and t0 = x0/Vm becomes the time scale. Therefore,

the rescaled time t̃ = t/t0. The densities of actin filaments (number of filaments

per unit length) are rescaled with the filament length: ρ̃± = ρ±l. The myosin

densities (number of filaments per unit area (per physical unit length per unit

length of the microscopic coordinate)) scale as follows: ˜̄χ = χ̄x0l, χ̃± = χ±x0l.

All these scales are chosen so that the dimensionless variables are of the order of

unity. The contractile stress scales as: η̃ = η x0Vm

Fs

. Our system is characterized

by three dimensionless parameters: ṽtr = vtr/Vm, l̃ = l/x0, σ̃ = σ/(Fs l̃). In

what follows, in the dimensionless equations we omit the tildes; for details we

refer to Appendix A.

The continuum equations for ρ± (1) are not changed after the scaling, while

(2) becomes

0 = M± + η C± , (8)

where

M± = −

∫

R

χ̄ (t, x ± lξ, ξ) ×

(

±1 −
v±(t, x) − v∓(t, x ± l2ξ)

2

)

dξ , (9)

C± = ρ±(t, x)
∑

n=−1,1

∫

R

A(∆x)
(

v±(t, x) − vn(t, x + l∆x)
)

ρn(t, x + l∆x) d∆x ,

(10)

and where we applied the transformations (x − y)/2 = lξ and y − x = l∆x.

Observe that after scaling we have A(∆x) = 1 − |∆x|. The equation for the
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contractile force (3) reads after scaling

σ = M̄ − ηC̄ , (11)

where

M̄ =

∫ 1/2

0

∫ ξ

−ξ

χ̄(t, z + l∆z, ξ)×

×

(

1 −
v+(t, z + l(∆z − ξ)) − v−(t, z + l(∆z + ξ))

2

)

d∆z dξ ,

C̄ =

∫ ∞

0

A(∆x)

∫ ∆x/2

−∆x/2

∑

m,n=−1,+1

ρm(t, z + l(∆z − ∆x/2)) ρn(t, z + l(∆z + ∆x/2))×

× (vm(t, z + l(∆z − ∆x/2)) − vn(t, z + l(∆z + ∆x/2))) d∆z d∆x .

3. Perturbation approximation

It is convenient to rewrite the equations for total and differential densities

and velocities of actin:

v =
v+ + v−

2
, v̄ =

v+ − v−

2
, ρ = ρ+ + ρ− , ρ̄ = ρ+ − ρ− . (12)

Transport equations for ρ and ρ̄ have the form:







∂tρ + ∂x(vρ + (v̄ − vtr)ρ̄) = 0 ,

∂tρ̄ + ∂x(vρ̄ + (v̄ − vtr) ρ) = 0 .
(13)

Below, we explain that we use the regime in which v̄− vtr < 0. These equations

are coupled to the sum and difference, respectively, of the two force balance

equations (8):

0 = (M+ + M−) + η (C+ + C−) ,

0 = (M+ − M−) + η (C+ − C−) .

We introduce the total density of myosin filaments χ = χ̄ + χ+ + χ− and

the macroscopic myosin densities

µ =

∫ 1/2

0

χ(t, x, ξ) dξ , µ̄ =

∫ 1/2

0

χ̄(t, x, ξ) dξ , µ± =

∫ 1/2

0

χ±(t, x, ξ) dξ .
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Furthermore, we introduce expansions of all the dependent quantities with re-

spect to the small parameter l as l → 0 (actin filaments are much shorter than

the length of the whole bundle) and use subscript 0 to denote the zeroth or-

der approximations with respect to this small parameter, e.g. ρ = ρ0 + O(l),

ρ̄ = ρ̄0 + O(l), v = v0 + O(l), v̄ = v̄0 + O(l), χ̄ = χ̄0 + O(l), µ = µ0 + O(l), etc.

Our goal is to use perturbation theory in the limit l → 0 and to obtain a

system of equations for ρ0, ρ̄0, v0, v̄0 and µ0. The equations for ρ0 and ρ̄0 are

(13) with the velocity fields v0 and v̄0. The derivation of the limit equations for

µ0, µ̄0, µ±
0 can be found in Appendix A. In the limit, we obtain a transport

differential equation for µ0 and algebraic expressions which allow to obtain µ±
0

and µ̄0 directly from µ0 (see below). What we need for the derivation of the

contractile stress in the limit is the fact that in this limit, χ̄0 is a constant with

respect to variable ξ, i.e. χ̄0(t, x, ξ) = χ̄0(t, x), which sets the expectation value

for the myosin position relative to the actin filament coordinates:
∫ 1/2

0

ξ χ̄0 dξ = χ0

1

8
=

1

4
µ̄0 . (14)

Here we focus on the limit equations (8) and (11). We expand (9) as follows:

M± = −

∫

R

(χ̄ (t, x, ξ) ± l ξ∂xχ̄ (t, x, ξ))×

×

(

±1 −
v±(t, x) − v∓(t, x) ∓ l 2ξ∂xv∓(t, x)

2

)

dξ + O(l2) ,

= ∓

∫

R

(χ̄ (t, x, ξ) ± l ξ∂xχ̄ (t, x, ξ))
(

1 − v̄ + l ξ∂xv∓(t, x)
)

dξ + O(l2) ,

and obtain the following asymptotic expansions,

M+ + M− = −l

∫

R

[2 (−χ̄0 ξ ∂xv̄0) + 2 ξ ∂xχ̄0 (1 − v̄0)] dξ + O(l2)

= −2l
d

dx

∫

R

χ̄0ξ (1 − v̄0) dξ + O(l2)

= −l
1

2

d

dx
[µ̄0 (1 − v̄0)] + O(l2) ,

where we used (14) and

M+ − M− = −2

∫

R

χ̄0 (1 − v̄0) dξ + O(l)

= −2µ̄0 (1 − v̄0) + O(l) .
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We also obtain (see Appendix B):

C+ + C− = −
l2

12
∂x

(

ρ2
0∂x

(

v0 +
ρ̄0v̄0

ρ0

))

+ O(l4) ,

C+ − C− = v̄0(ρ
2
0 − ρ̄2

0) + O(l2) .

Together, these results imply that expanding (8), we obtain:

0 = −
l

2

d

dx
[µ̄0 (1 − v̄0)] + O(l2) − η

[

l2

12
∂x

(

ρ2
0∂x

(

v0 +
ρ̄0v̄0

ρ0

))

+ O(l3)

]

,

(15)

0 = −2µ̄0 (1 − v̄0) + O(l) + η
[

v̄0(ρ
2
0 − ρ̄2

0) + O(l)
]

. (16)

Note that the first of two equations (16), roughly speaking, describes the balance

of myosin force with the shear force generated by crosslinking resistance to the

shear-like deformations of the actin arrays. The second equation is the balance

of the myosin stress and viscous stress between sub-groups of actin filaments of

the opposite polarity. There are two force-balance equations because of two sub-

groups of actin filaments. This system of equations is very involved, however,

in the limit of short actin filament length and dense crosslinking, it simplifies

greatly.

Namely, rather than considering constant parameter η independent of the

filament length l (invariant number of crosslinkers per unit length), we consider

the limit l → 0, ηl ∼ 1. This limit means that we consider a constant average

number of crosslinkers per filament as the filament length decreases, or, in other

words, this is the limit of a very strong crosslinking. In what follows, we use

the constant model parameter η̄ = ηl which has the meaning of characteristic

viscous drag coefficient per filament (not per unit length). In this case, η → ∞

as l → 0, in the second equation, the second term dominates, so in the limit

v̄0(ρ
2
0 − ρ̄2

0) = 0 implies v̄0 = 0, since the factor (ρ2
0 − ρ̄2

0) can be zero only in a

fully anisotropic actin filament bundle. Equality v̄0 = 0 means that in the limit

of the dense crosslinking, relative movement of the antiparallel filaments relative

to each other in the opposite direction is negligible. However, the slow shear

displacement of the filaments is not negligible, because this shear originates from
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relative sliding of neighboring filaments overlapping only a little. Then, in the

limit, (15) becomes:

0 = −
1

2

d

dx
µ̄0 −

η̄

12
∂x

(

ρ2
0∂xv0

)

,

The limit of (11) in this case is (see Appendix B):

σ =
1

2
µ̄0 +

η̄

12
ρ2
0∂xv0 .

3.1. Asymptotic model for a closed actomyosin ring in the limit of strong crosslink-

ing and short actin filaments.

Returning to the dimensional variables, dropping subscript 0 and gathering

all transport and force balance equations, we arrive at the asymptotic model:

v(L(t)) = v(0) + L̇ , (17)

Fs
l

2
∂x (ᾱ µ(t, x)) + η̄

l

12
∂x

(

ρ̃2∂xv
)

= 0 , (18)

σ = Fs
l

2
ᾱµ + η̄

l

12
ρ̃2∂xv, (19)























∂tµ + ∂x

([

v − Vm(α+ − α−)
]

µ)
)

= 0 ,

∂tρ + ∂x(vρ − vtr ρ̄) = 0 ,

∂tρ̄ + ∂x(vρ̄ − vtr ρ) = 0 ,

The transport equations are complemented by the periodic boundary condi-

tions. We use the notation ρ̃ = lρ for the length density of actin filaments;

this density is equivalent to what is called F-actin density in physical and bi-

ological literature. Note that (18) describes the balance of the active myosin

and passive crosslinking viscous forces at each point along the actomyosin bun-

dle. Effectively, this equation gives the resulting actin velocity in the bundle.

This velocity is needed to solve three transport equations for three densities.

Equation (19) gives the value of the contractile stress in the bundle, which is

constant in space along the bundle, but not necessarily constant in time. Note

that equations (18) and (19) are not independent: the local force is the deriva-

tive of the local stress, and so differentiation of (19) gives (18). Finally, note
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that our derivation results in the expression for the effective viscosity of the

actin bundle equal to l(η̄/12)ρ̃2, which is proportional to the square of the local

actin density.

The coefficients α’s are given by formulas:

α± =
1
2
(ρ ± ρ̄)2(vtr − v̄0)

(ρ2 + ρ̄2)(vtr − v̄0) + (ρ2 − ρ̄2)(Vm − vtr)
, (20)

ᾱ =
(ρ2 − ρ̄2)(Vm − vtr)

(ρ2 + ρ̄2)(vtr − v̄0) + (ρ2 − ρ̄2)(Vm − vtr)
, (21)

and satisfy the equality ᾱ+α++α− = 1. These important coefficients determine

fractions of myosin associated with antiparallel actin filament pairs (ᾱ) and with

parallel actin filament pairs of both orientations (α±). These fractions are not

constant but depend on actin densities, which leads to very nontrivial effects as

described below.

4. General constraints on the contractile stress and rate of contrac-

tion.

By integration of (19), we obtain the force-velocity relation:

L̇ = −
6Fs

η̄

∫ L

0

ᾱµ

ρ̃2
dx +

12σ

η̄l

∫ L

0

1

ρ̃2
dx . (22)

Equation (22) predicts that the magnitude of the rate of contraction L̇(σ) de-

creases linearly with the magnitude of the contractile stress. The latter can be,

for example, a certain constant given by resistance of the dividing cell cortex,

and then the greater the given stress is, the slower is the rate of the contractile

ring shrinking.

Two quantities are of special importance: stress developed by the actomyosin

bundle under isometric conditions, and rate of contraction under zero external

load, respectively:

σ = Fs
l

2

∫ L

0

ᾱµ
ρ̃2 dx

∫ L

0
1
ρ̃2 dx

, L̇ = −
6 Fs

η̄

∫ L

0

ᾱµ

ρ̃2
dx . (23)

Equation (23) has profound consequences for how much force the actomyosin

bundle can generate in isometric condition, and how fast it can contract against
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zero load. First, the isometric stress is proportional to actin filament length.

This result is easy to understand: effectively, the actomyosin bundle is a number

of contractile units with the length of the order of l in series. The total stress is

simply of the order of magnitude of the force developed in one such unit. The

latter is proportional to the number of myosin motors working in parallel in one

contractile unit, and this number, at given myosin density, is proportional to

the actin filament length. Thus, if the cell needs a greater contractile stress, the

filament length has to be increased. Second, the isometric stress is independent

of the crosslinking density in the limit of this study. Third, the ratio of two in-

tegrals in expression for the stress in (23) can be interpreted as the probabilistic

expectation for the myosin distribution in the bundle, such that the probability

measure is equal to 1/ρ̃2. According to this interpretation, in order to maximize

the contractile stress, the cell has to concentrate myosin where the actin den-

sity is minimal. Indeed, in this case the least myosin action will be wasted on

balancing effective local viscous shear of actin. The distribution of actin away

from myosin does not affect the outcome. These conclusions, of course, are only

valid if the actin density does not become so low that it becomes limiting for

the myosin action (we do not consider such limit). As we will see below, myosin

tends to aggregate together with actin, so by itself, the self-organization of the

actomyosin bundle tends to decrease the contraction. The cell probably needs

some special negative feedbacks to redistribute myosin into regions of the low

actin density. The second of equations (23) states that the rate of zero-load

contraction is independent of the actin filament length. Indeed, if the filaments

are shorter, the contraction rate of each contractile unit is smaller, but the num-

ber of such units in series is greater. This rate increases proportionally to the

bundle size, unlike the isometric stress: more contractile units in series add up

to faster contraction, which is well-known from muscle mechanics [22]. Finally,

intuitively, the denser the crosslinking and the denser the actin array is, the

slower is the contraction rate.

The formulas for the contraction stress and rate become especially simple in

the case of the space-homogeneous, isotropic actomyosin ring, which is especially
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important due to two factors. First, in many experiments the actin and myosin

densities along the actomyosin bundles are, in fact, roughly constant [14] (it is

much harder to measure actin polarity in dense arrays). Second, as we show

below, in the absence of special additional feedbacks, such ring architecture is

both the easiest to maintain, and optimal in terms of greatest possible contractile

force. In this case, ρ+ = ρ− and therefore α+ = α− and ᾱ = 1 − vtr

Vm

, and by

integration of (19) we obtain the force-velocity relation:

σ =
Fsµl

2

(

1 −
vtr

Vm

)

+
η̄lρ̃2

12

L̇

L
.

This relation results in the contractile force under isometric condition:

σ =
Fsµl

2

(

1 −
vtr

Vm

)

, (24)

and the differential equation for the ring length under zero external load:

L̇ = −
6FsµL(t)

η̄ρ̃2

(

1 −
vtr

Vm

)

. (25)

Two nontrivial conclusions can be made from formulas (24) and (25). First,

both, contraction stress and rate, are proportional to the factor
(

1 − vtr/Vm

)

,

suggesting that contraction is most efficient when the treadmilling rate is equal

to zero. This seemingly contradicts the point we made above that the finite

treadmilling rate is necessary for net contraction. However, when we are in the

strong crosslinking limit, the relative sliding of the antiparallel actin filament

pairs is very slow, and so even very slow treadmilling suffices for contraction.

Clearly, there is the smallest finite treadmilling rate that has to be maintained;

we estimate it in the Discussion. The reason this rate has to be as small as

possible to maintain maximal contraction is that this is the condition for con-

centrating as much myosin as possible between the antiparallel actin filament

pairs, where myosin actually contributes for contraction, instead of between the

parallel actin filament pairs. Indeed, the faster the actin filaments treadmill,

the longer it takes for myosin filaments to reach the growing barbed ends, slide

off them and enter into the cytoplasmic pool.
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Second, it was observed in many experimental systems, most notably in [23]

that the rate of the ring contraction stays constant in time, and, remarkably, is

proportional to the initial radius of the ring. It is also observed experimentally

that the length density of actin, ρ̃, stays roughly constant during the contrac-

tion, meaning that actin is released from the ring with the rate tightly coupled

to the ring radius by an as yet unidentified mechanism. In this regime, equation

(25) suggests that the following two mechanisms could maintain a steady rate

of contraction: One mechanism is such that actin filaments are released from

the ring while the length distribution of actin filaments remains constant. Re-

taining all myosin filaments in the ring (as observed in one of the systems, [24])

during contraction implies that µ L ∼ const, and guarantees a constant rate of

contraction.

The other mechanism could rely on releasing myosin from the ring keep-

ing µ at a constant level (as observed in another system, [23]), but releasing

actin from the ring by keeping their total number constant, yet by shortening

actin filaments in a manner such that their length is proportional to the ring

circumference, l ∼ L. While both mechanisms would keep the contraction rate

constant and proportional to the initial ring size, the contractile force (24) would

behave differently. The contractile force would increase proportionally to the

growth of myosin concentration in the first case, and it would decrease being

proportional to filament length in the second case.

5. Linear stability analysis and numerical solutions.

In this section we focus on the isometric case where the ring length is held

constant, L̇ = 0. In addition, we add three factors that would be relatively

trivial to consider in the derivation of the model, and so we did not include

them until now for simplicity, but which affect model solutions significantly and

in a way that makes the model much more realistic, as these factors are present

in vitro and it in vivo. The first factor is effective viscous friction relative to

the surface along which actin filaments slide [25]; this factor adds the term ζρv
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into the force balance equation where ζ is the background friction coefficient.

The second factor is the turnover of both actin and myosin due to ongoing

complete disassembly of actin filaments in the ring and constant nucleation of

nascent filaments, as well as the exchange of myosin between the ring and the

cytoplasmic pools [26]. Respective terms are the reaction terms ∼ κ(ρ0 − ρ)

where ρ is appropriate density, ρ0 is the steady state level of this density, and

κ is the respective turnover rate. Finally, we consider effective diffusion of

both myosin and actin filaments. The former originates from molecular motors

stepping occasionally backward [27]; the latter - from occasional disassembly

events at the barbed ends and assembly at the pointer ends [28]. Respective

terms in the transport equations have the form D∂xxρ where D is the effective

diffusion coefficient and ρ is the appropriate density. The modified model for

the constant-length actomyosin ring reads:







































∂tµ + ∂x

([

v − Vm(α+ − α−)
]

µ
)

= Dm∂xxµ + κm(µ0 − µ) ,

∂tρ + ∂x(vρ − vtr ρ̄) = Da∂xxρ + κa(ρ0 − ρ) ,

∂tρ̄ + ∂x(vρ̄ − vtr ρ) = Da∂xxρ̄ + κa(ρ̄0 − ρ̄) ,

0 = ζ ρ v − Fs
l

2
∂x (ᾱ µ) − η̄

l

12
∂x

(

ρ̃2∂xv
)

,

(26)

together with initial data and periodic boundary conditions for the interval

[0, L]. Parameters α are computed as given by (20). We compute the contractile

stress using (23). Table 1 lists the model parameters. In what follows, the

turnover rates κa and κm are generally assumed to be zero; only in the end of

this section we discuss the effect of the turnover.

5.1. Without treadmilling, actin and myosin aggregate into periodically spaced

peaks.

Linear stability analysis provides valuable insight into self-organization of the

actomyosin bundle. It is easy to see that there is a simple steady state in which

all densities are constant and velocity of actin and myosin is zero. Sine waves

are the eigenfunctions of the linearized model (appendix section Appendix C).
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Table 1: List of parameters and initial constant densities.

Description Symbol Value Reference

length of actin filaments l 6 µm used in this

study

density of actin filaments ρ 2 µm−1 used in this

study

density of myosin filaments µ 2 µ−1 used in this

study

Ring length L 5 × 2π µm used in this

study

Treadmilling rate vtr 0.1 µm s−1 [29]

Stall force for myosin fila-

ments

Fs 5 pN [30]

Free myosin velocity Vm 0.5 µm s−1 [30]

Drag friction due to cross-

linkers

η ∼ 15 pN s µm−2 [31]

diffusion rate of F-actin Da ∼ 0.004 µm2 s−1 [32]

diffusion rate of myosin Dm ∼ 0.004 µm2 s−1 estimated in [33]

background friction ζ ∼ 10 − 100 pN s µm−1 same order of

magnitude as

[31]

F-actin turnover κa ∼ 0.01 − 0.1 s−1 [34]

Myosin filament turnover κm ∼ 0.01 − 0.1 s−1 estimated in [33]
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Figure 3: In the absence of treadmilling (vtr = 0), myosin and actin accumulate at regularly

spaced foci. The density profiles correspond to the dominating unstable mode.
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The analysis shows that myosin contraction destabilizes this state, while diffu-

sion, friction, viscosity and turnover stabilize it. Furthermore, if average myosin

density is higher than a complex expression, which is an increasing function of

average actin density, diffusion and friction coefficients, crosslinking drag and

turnover rate, the homogeneous state is destabilized. We start with the sim-

plifying assumption of the negligible treadmilling rate vtr (it still has to be

greater than the threshold, see Discussion, for contraction effect to work). Lin-

ear stability analysis (see appendix section Appendix C) in this case shows that

eigenvalues of the linearized system are real and for the parameters listed in

Table 1 they satisfy the dispersion relation shown in figure 3(a). Note that

modes which are consistent with the length of the periodic domain are high-

lighted with points. The first five modes are unstable, and the second mode

dominates. Numerical simulation shows that indeed this second mode evolves

starting from randomly perturbed initial data. Myosin and action accumulate

into two distinct, evenly spaced spots. During the simulation of the nonlinear

model, accumulation at these spots continues until the numerical simulation

cannot be continued due to ring disruption when the density of actin filaments

approaches zero.

Note that accumulation in this case is caused by myosin contracting the

actin bundle against the viscous resistance of the bundle. The resulting actin

flow not only concentrates actin, but also myosin itself, as both densities in

the case without treadmilling satisfy the same equation and are transported

exclusively by the actin flow. The characteristic spacing between the actomyosin

peaks is of the order of the square root of the ratio of the effective crosslinking

drag to the background friction drag, as was noted before [33, 35]. In our case,

this length scale is
√

ηρ/10ζ l2 ∼ 10µm. When background friction decreases,

spacing between peaks increases, as is evident from figure 4.
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Figure 4: Dispersion relations (three branches) show eigenvalues as functions of the wave num-

ber q in the case with stronger (ζ = 100 pN s µm−1) and weaker friction (ζ = 0.1 pN s µm−1).

Dots mark the wavenumbers of modes which are consistent with the periodicity of the ring.

The growth rate λ is in s−1.
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5.2. When actin treadmills, myosin peak surfs on a traveling actin peak leading

to a loss of contractility.

When the treadmilling rate is negligible, linear stability analysis accurately

predicts solutions far from the bifurcation from the homogeneous solution. The

general case with non-vanishing treadmilling rate is much more complex, as an

unexpected pattern emerges far from the bifurcation.

The linear stability analysis for the parameter values shown in Table 1 shows

that as in the case without treadmilling a band of lower wavenumbers is unstable

while diffusion guarantees the stability of the higher wave numbers. In the

(almost) absence of friction the lowest mode will be dominant (figure 4(c)).

Higher modes become dominant with increased background friction (figure 4(a)).

The imaginary parts of the eigenvalues reveal directed transport of actin

filaments and myosin thick filaments due to treadmilling and, depending on the

polarity of the actin filament bundle, the free moving velocity of myosin motors.

As both velocity fields add to the material velocity v, damping of the imaginary

parts of eigenvalues through friction is not expected.

In figure 5 we show two simulation snapshots; the evolution of the densi-

ties can be gleaned from the supplemental movie. Initially, traveling sine waves

evolve. Later, in the nonlinear regime, a highly nontrivial pattern emerges

(figure 5(a)). Namely, the system converges to a state where only one of the

two antiparallel families of actin filaments concentrates in one peak while actin

filaments with the opposite polarity adopt a fairly uniform distribution (fig-

ure 5(b)). The evolved peak is a shock wave with sharp front. Simultaneously,

myosin also concentrates at the actin traveling front and surfs together with the

peak in actin density at a speed set by the treadmilling rate.

Observe that myosin co-localization with actin greatly attenuates the isomet-

ric contractile force, according to (23), leading to a massive drop in contractility

(see figure 6). Higher frequency oscillations are caused by treadmilling rotations

around the finite length actomyosin ring, whereas longer term decay of contrac-

tile force is caused by simultaneous myosin and F-actin accumulation.
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Figure 5: Simulation of an actomyosin ring under isometric conditions starting from per-

turbed initial constant distributions. Unstable sine waves develop initially. Distributions with

one traveling actin peak of one polarity evolve. Myosin peak surfs together with the actin

peak at treadmilling velocity. Actin filaments of the opposite polarity are distributed almost

homogeneously.

The explanation for this observed pattern is illustrated in a series of simula-

tion snapshots in Appendix D (figure D.9). First, a few peaks of actin filaments

of the same polarity evolve being condensed by myosin. These peaks ‘compete

for myosin; the ‘winning peak becomes sharper and greater due to contrac-

tion, while the ‘loosing peaks associated with less and less myosin eventually

dissolve due to viscosity, diffusion and friction. Whenever two peaks in actin

distributions of opposite polarity cross, similarly, the larger actin peak attracts

an over-proportional fraction of myosin. This mechanism first promotes the

co-localization of myosin with the highest peak in the actin distribution and

finally leads to the emergence of one single peak in actin distribution. One of

the main reasons for competition for myosin stems from the fact that myosin

interacts with actin filament pairs, hense nonlinearities in the coefficients (20)

which result in the winner-takes-all mechanism.
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of an actomyosin ring under isometric conditions.
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Figure 7: Turnover of myosin and F-actin lowers the real parts of eigenvalues. Dispersion

relations (three branches) show eigenvalues as functions of the wave number q. Dots mark

the wavenumbers of modes which are consistent with the periodicity of the ring. The growth

rate λ is in s−1. For κa = κm = 0.001 s−1 some modes are still unstable, for higher turnover,

κa = κm = 0.002 s−1, all modes are stable.

6. Actin and myosin turnover stabilizes the homogeneous steady state

and maintains contractility.

Finally, we consider the model with non-zero values of the turnover rates κa

and κm. As can be seen from the linearized problem (see Appendix C) finite

turnover rates κa = κm lower the dispersion relation by a constant. In figure 7(a)

we show the results of the linear stability analysis at ρ ≡ ρ0, ρ̄ = ρ̄0 ≡ 0 and µ ≡

µ0, where ρ0 and µ0 take the constant values listed in Table 1. With the turnover

rates κa = κm = 0.001 s−1, the first sinusoid mode becomes stable, while the 2nd

and 3rd mode remain unstable. Simulations starting from randomly perturbed

constant distributions, however, are governed by the same mechanism of pattern

formation as without turnover, which leads to concentration of myosin in one
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peak surfing on a wave of F-actin.

Further increasing the turnover stabilizes the homogeneous steady state

which we demonstrate in figure 7(b) with the parameters κa = κm = 0.002 s−1.

Simulations of the full model starting from perturbations of the homogeneous

solution show perturbation’s decay and return to the homogeneous actomyosin

distribution.

7. Discussion

As we discuss in more detail in [13], treadmilling rate vtr exceeding the

velocity at which actin filaments are slid apart is crucial for contraction in the

mechanism we suggest. In this regime, myosin is effectively shifted towards

the pointed ends of overlapping antiparallel actin filaments, and then myosin

tendency to glide towards the barbed ends keeps bringing the filament centers

closer together. It is a remarkable result of the singular perturbation limit that

the expection value of myosin binding site positions along the actin filament

(14) translates directly into the coefficient for the effective contractile stress. It

is also striking that this coefficient for contractile stress is not affected by the

actual value of the treadmilling rate in the limit of the strong crosslinking.

We found that in this limit, relative movement of the antiparallel filaments

in the opposite direction is negligible. However, the slow shear displacement of

the filaments is not negligible, because this shear originates from relative sliding

of neighboring filaments overlapping only a little. In the limit, myosin works

near stall, which is a very efficient way to develop a contractile stress, but which

makes the rate of contraction slow.

One of the highly nontrivial modeling predictions is that the treadmilling has

to be as slow as possible for greater contractile stress. However, the treadmilling

rate cannot be zero, because the contraction does not work in this limit. There-

fore, there is an optimal treadmilling rate, which can be estimated as follows. In

the perturbation limit, the rate of antiparallel sliding v̄ vanishes and therefore

even considering very small values of vtr is consistent with the basic modeling
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assumption. Realistically though, the contraction mechanism requires a posi-

tive treadmilling rate dominating the velocity at which anti-parallel filaments

slide apart. Equation (16) suggests that this velocity is of first order in l. Note

that there are no derivatives of v̄, etc. in what would be the first order terms of

the right hand side of (16) since odd moments of A vanish (see Appendix B).

Therefore it holds that v̄ = l 2 µ̄0/(η̄(ρ2
0 − ρ̄2

0)) + O(l2). In dimensional units,

the first order term reads v̄ ≈ 2Fsµ̄0/(ηl2(ρ2
0 − ρ̄2

0)) which represents the lower

threshold value for the rate of treadmilling at which contraction works, and

which hense is the optimal rate for greater contractile stress.

The model makes a number of useful predictions. We found that isometric

stress is not proportional to the length of the bundle/ring, similar to the well-

known result for muscle, and that the stress is proportional to the actin filament

length, as far as our limit works. The rate of contraction, on the other hand,

is independent of the filament length but decreases with actin and crosslinking

densities. We derive the formula for macroscopic actin bundle viscosity from

microscopic considerations.

An interesting model prediction is that to develop maximal contraction

stress, myosin has to be concentrated at location(s) of the lowest actin den-

sity, as far as the actin density does not become force-limiting. In the absence

of special feedback that tends to anticorrelate myosin and actin, the best the

cell can do is probably to keep both actin and myosin densities homogeneous,

which can be achieved simply by turning actin and myosin over with a sufficient

rate. In this homogeneous regime we found two ways to keep the contraction

rate constant and proportional to the initial radius of the ring or length of the

bundle.

It is of interest to estimate how efficient the proposed way of developing

contractile stress is. The maximal contractile force with optimal sarcomeric

organization is FsMl/L where M is the number of myosin filaments ([13]). In the

case of our model, the maximal contractile force of a homogeneous contractile

ring is given by (24), where µ = M/L. In our calculation we have
(

1 − vtr

Vm

)

=

4/5, so we estimate the efficiency by (50 × 4/5)% = 40% compared to the
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maximal possible stress in the ideally organized sarcomeric configuration.

We found that in the limit of very slow treadmilling, myosin and actin aggre-

gate into periodic structure (having nothing to do with sarcomeres). This aggre-

gation dampens contraction. The number of aggregates decreases with smaller

background friction. Similar aggregation was observed in the experiment [36].

We also predict that a highly nontrivial pattern evolves when treadmilling is

fast enough. Due to the effective competition between actin peaks for myosin,

one actin peak consisting of filaments of the same polarity wins. Myosin won by

this peak maintains a highly aggregated shock-wave shape which travels with

the treadmilling speed. Myosin also aggregates into the front of this actin wave

and surfs on the peak of actin; meanwhile, the contractile stress drops. Recently,

the traveling wave of actomyosin was experimentally observed for the first time

in [37]. It remains to be investigated if the mechanism of this observed wave is

the same as the one our model suggests. Another great open question for the

future is how the mechanism of contraction proposed here works together with

the other mechanisms discussed in the Introduction, or how the cell does choose

which mechanism to use when.
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Appendix A. Perturbation limit for the distribution of molecular mo-

tors

Applying the scaling introduced in section 3 the system (4), (7) reads


































∂tχ̄ + ∂x

(

v+(t, x − lξ) + v−(t, x + lξ)

2
χ̄

)

+

+
1

l
∂ξ

(

v−(t, x + lξ) + vtr − (v+(t, x − lξ) − vtr)

2
χ̄

)

= 0 ,

v−(t, x) + vtr − (v+(t, x) − vtr)

2
χ̄(t, x, 0) = R̄ Moff ,

(A.1)











∂tχ
± + ∂x

(

(∓Vm + v±(t, x ± ξ))χ±
)

+
1

l
∂ξ

(

(Vm − vtr)χ
±

)

= 0 ,

(Vm − vtr)χ
±(t, x, 0) = R±Moff ,

(A.2)
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where

Moff =
v−(t, x + 1/2l) + vtr − (v+(t, x − 1/2l)− vtr)

2
χ̄(t, x, 1/2)+

+ (Vm − vtr)(χ
+(t, x, 1/2) + χ−(t, x, 1/2)) .

We apply Taylor expansions, use the notation (12) and develop the truncated

expansions, e.g. v = v0 + lv1 + O(l2), etc., to obtain:























∂tχ̄0 + ∂x (v0 χ̄0)+

+
1

l
∂ξ ((−v̄0 − lv̄1 + lξ∂xv0 + vtr)(χ̄0 + lχ̄1)) + O(l) = 0 ,

(−v̄0 − lv̄1 + vtr))(χ̄0(t, x, 0) + lχ̄1(t, x, 0)) = R (Moff
0 + lMoff

1 ) + O(l2) ,











∂tχ
± + ∂x

(

(∓Vm + v0 ± v̄0)χ
±
0

)

+
1

l
∂ξ

(

(Vm − vtr)(χ
±
0 + lχ̄±

1 )
)

+ O(l) = 0 ,

(Vm − vtr)(χ
±
0 (t, x, 0) + lχ±

1 (t, x, 0)) = R± (Moff
0 + lMoff

1 ) + O(l2) ,

where

Moff
0 = (−v̄0 + vtr)χ̄0(t, x, 1/2) + (Vm − vtr)(χ

+
0 (t, x, 1/2) + χ−

0 (t, x, 1/2)) ,

Moff
1 = (−v̄1 + 1/2 ∂xv0)χ̄0(t, x, 1/2) + (−v̄0 + vtr)χ̄1(t, x, 1/2)+

+ (Vm − vtr)(χ
+
1 (t, x, 1/2) + χ−

1 (t, x, 1/2)) .

The equations of order 1/l are







∂ξ ((−v̄0 + vtr))χ̄0) = 0 ,

(vtr − v̄0)χ̄0(t, x, 0) = R Moff
0 ,

and






∂ξ

(

(Vm − vtr)χ
±
0

)

= 0 ,

(Vm − vtr)χ
±
0 (t, x, 0) = R± Moff

0 .

Using equality χ0 = χ̄0 + χ+
0 + χ−

0 and the fact that all these quantities are

constant in ξ implies that χ0 = χ0(t, x) and µ0(t, x) =
∫ 1/2

0
χ0 dξ = 1

2
χ0, and

furthermore

χ̄0 = ᾱχ0 , χ±
0 = α±χ0,
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where

α± =
(ρ±)2(vtr − v̄0)

((ρ+)2 + (ρ−)2)(vtr − v̄0) + 2ρ+ρ−(Vm − vtr)
,

ᾱ =
2ρ+ρ−(Vm − vtr)

((ρ+)2 + (ρ−)2)(vtr − v̄0) + 2ρ+ρ−(Vm − vtr)
,

and ᾱ+α+ +α− = 1. Integrating the equations systems of order l0 and adding

them up yields

∂t(µ0 + µ+
0 + µ−

0 ) + ∂x

(

v0µ0 + v+
0 µ+

0 + v−0 µ−
0 + Vm(µ−

0 − µ+
0 ))

)

= 0 ,

which, using the notation µ0 = µ̄0 + µ+
0 + µ−

0 , becomes

∂tµ0 + ∂x

([

v0 − (Vm − v̄0)(α
+ − α−)

]

µ0

)

= 0 .

Appendix B. Asymptotic limits for the cross-linking related terms

We define

Im =
∑

n=−1,1

(vm(t, x) − vn(t, y)) ρm(t, x) ρn(t, y) ,

and write vm = v + m v̄ and ρm = (ρ + m ρ̄)/2 for any index m = −1, +1 and

find that

I+ + I− = (v(t, x) − v(t, y)) ρ(t, y)ρ(t, x)− (B.1)

− v̄(t, y)ρ̄(t, y)ρ(t, x) + v̄(t, x)ρ(t, y) ρ̄(t, x) ,

I+ − I− = 4 (v(t, x) − v(t, y)) ρ(t, y)ρ̄(t, x)+ (B.2)

+ (v̄(t, x)ρ(t, y)ρ(t, x) − v̄(t, y)ρ̄(t, x)ρ̄(t, y)) .

Observe that moments of the length of the overlapping region A(∆x) (see fig-

ure B.8), where ∆x is the distance between the two center points of overlapping

actin filaments, are given by:
∫ ∞

−∞

A(∆x) d∆x = l2 ,

∫ ∞

−∞

A(∆x)∆x d∆x = 0 ,

∫ ∞

−∞

A(∆x)∆x2 d∆x =
l4

6
,

∫ ∞

−∞

A(∆x)∆x3 d∆x = 0 , etc.

(B.3)
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Figure B.8: Function A(∆x) = l − |∆x|.

Using (B.1), we obtain:

C+ + C− =

∫

R

A(∆x) (v(t, x) − v(t, x + l∆x)) ρ(t, x + l∆x)ρ(t, x) d∆x+

+

∫

R

A(∆x) (− v̄(t, x + l∆x)) ρ̄(t, x + l∆x)ρ(t, x) d∆x+

+

∫

R

A(∆x) ( v̄(t, x)) ρ(t, x + l∆x) ρ̄(t, x) d∆x .

Applying Taylor expansions, we conclude:

∫

R

A(∆x) (v(t, x) − v(t, x + l∆x)) ρ(t, x + l∆x)ρ(t, x) d∆x =

=

∫

R

A(∆x)

[(

−l∆x∂xv(t, x) −
(l∆x)2

2
∂xxv(t, x)

)

(ρ(t, x) + l∆x∂xρ(t, x))

]

×

× ρ(t, x) d∆x + O(l4) =

=
l2

6

[(

−∂xv(t, x)∂xρ(t, x) − ρ(t, x)
1

2
∂xxv(t, x)

)]

ρ(t, x) + O(l4) =

= −
l2

12
∂x(ρ2

0∂xv0) + O(l3)

as l → 0, where we used (B.3). Observe that although odd moments of A vanish,

we get expressions of order l3 from the expansions of v = v0 + lv1 + ..., etc. We

also obtain

∫

R

A(∆x) [v̄(t, x)ρ(t, x + l∆x) ρ̄(t, x) − v̄(t, x + l∆x)ρ̄(t, x + l∆x)ρ(t, x)] d∆x =

=

(

l2

12
ρ̄0v̄0∂xxρ0 −

l2

12
ρ0∂xx(ρ̄0v̄0)

)

+ O(l3)
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as l → 0, which implies that

C+ + C− = −
l2

12
∂x

(

ρ2
0∂x

(

v0 +
ρ̄0v̄0

ρ0

))

+ O(l3) .

Similarly, using (B.2), Taylor expansions and (B.3), we obtain

C+ − C− = 4

∫

R

A(∆x) (v(t, x) − v(t, x + l∆x)) ρ(t, x + l∆x)ρ̄(t, x) d∆x+

+

∫

R

A(∆x) (v̄(t, x)ρ(t, x + l∆x)ρ(t, x) − v̄(t, x + l∆x)ρ̄(t, x)ρ̄(t, y)) d∆x =

= v̄0(ρ
2
0 − ρ̄2

0) + O(l1)

as l → 0.

Using (B.1), we also find that

C̄ =

∫ ∞

0

A(∆x)

∫ ∆x/2

−∆x/2

[

(v(t, z + l(∆z − ∆x/2)) − v(t, z + l(∆z + ∆x/2)))×

× ρ(t, z + l(∆z + ∆x/2))ρ(t, z + l(∆z − ∆x/2))+

+ (− v̄(t, z + l(∆z + ∆x/2))) ρ̄(t, z + l(∆z + ∆x/2))ρ(t, z + l(∆z − ∆x/2))+

+( v̄(t, z + l(∆z − ∆x/2))) ρ(t, z+l(∆z+∆x/2)) ρ̄(t, z+l(∆z−∆x/2))

]

d∆z d∆x .

Applying Taylor expansions at x = z and using
∫ ∆x/2

−∆x/2
∆x d∆z = (∆x)2 as well

as
∫ ∆x/2

−∆x/2
∆z d∆z = 0, we obtain:

C̄ = l

∫ ∞

0

A(∆x)

[

−(∆x)2 ∂xv(t, z)ρ(t, z)2 − (∆x)2∂xv̄(t, z)ρ̄(t, z)ρ(t, z)−

− v̄(t, z)(∆x)2∂xρ̄(t, z)ρ(t, z)+ v̄(t, z)ρ̄(t, z)(∆x)2∂xρ(t, z)+O((∆x)3)

]

d∆x .

Finally, using
∫ ∞

0
A(∆x) (∆x)2 d∆x = 1/12, we conclude that:

C̄ = −l
1

12
ρ(t, z)2∂x

(

v(t, z) +
v̄(t, z)ρ̄(t, z)

ρ(t, z)

)

+ O(l2) .

Appendix C. Linear stability analysis

We apply linear stability analysis to analyze the system (26) linearized with

respect to the space-homogeneous steady state, in which v ≡ 0, ρ̄ ≡ 0, µ ≡ µ0,
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ρ ≡ ρ0. Observe that in this case α+ −α− = 0 and ᾱ = 1− vtr

Vm

. The variations

of these coefficients at the homogeneous steady state are

δ(α+ − α−)
∣

∣

∣

ρ̄=0
=

2

ρ

vtr

Vm
δρ̄ and δᾱ

∣

∣

∣

ρ̄=0
= 0 .

Linearization of (26) implies that



























∂tµ + ∂x

([

δv − vtr

2

ρ
δρ̄

]

µ

)

= −κmδµ + Dm∂xxδµ ,

∂tδρ + ∂x(δv ρ − vtr δρ̄) = −κaδρ + D∂xxδρ ,

∂tδρ̄ + ∂x(−vtr δρ) = −κaδρ̄ + D∂xxδρ̄ ,







0 = ζρδv − Fsᾱ∂xδµ − η̂ ∂x

(

ρ2 ∂xδv
)

,

δv(L(t)) = δv(0) ,

where we used the notation η̂ = ηl3/6.

Setting δv = V eλteiqx, δρ = Reλteiqx, δρ̄ = R̄eλteiqx and δµ = Meλteiqx,

we obtain


























λM + iq

(

V − vtr

2

ρ
R̄

)

µ̄ = −κmM − q2DmM ,

λR + iq
(

V ρ − vtr R̄
)

= −κaR − q2DR ,

λ R̄ − iq vtr R = −κaR̄ − q2DR̄ ,

and

0 = ζρV − Fsᾱ iqM + η̂ q2 ρ2 V ,

which implies that

V = iq
1

ρ

Fsᾱ

ζ + q2 ρ η̂
M .

Thus, the linearized system reads in matrix notation:











λ − µ̄
ρ

q2 Fsα
ζ+q2 ρ η̂ + κm + q2Dm 0 −iq vtr µ̄ 2

ρ

−q2 Fs ᾱ
ζ+q2ρ η̂ λ + κa + q2D −iq vtr

0 − iq vtr λ + κa + q2D





















M

R

R̄











= 0 ,

from which we obtain the dispersion relation numerically.
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Figure D.9: Numerical test to illustrate the tendency of a large F-actin peak to capture an

over-proportionally large amount of myosin when colliding with and passing through a smaller

F-actin peak.

Appendix D. Myosin surfing on the F-actin wave.

In the simulation visualized in figure D.9, we used symmetric initial data

in which actin filaments of both polarities and also myosin densities had peaks

at the center point of the simulation domain. We set the initial densities such

that the height of the peak of barbed end-forward actin filaments was exactly

twice the height of the peak of pointed end-forward actin filaments (widths of

the peak were the same). Simulation during only a short time interval shows

that as the two peaks, driven by treadmilling, move apart, the peak in myosin

is split into two parts, which move together with the two actin peaks. Those

peaks in myosin distribution literally surf on the actin waves. In each frame, we

measure the content of myosin in its left and in its right peak and we compute

the ratio. The striking observation is that this ratio, which is 2.33 in the third
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frame, is well above the size ratio of 2 between the size of the two actin peaks.

This implies that at every crossing of two actin peaks, each of which is

accompanied by a peak in myosin density, an exchange takes place in which

a significant amount of myosin is taken over by the larger actin peak. This

mechanism leads to the co-localization of myosin density with the highest peaks

in the actin distribution so that finally one single myosin peak emerges. Myosin

aggregates actin, so a single actin peak emerges as well. This explains the

disappearance of higher modes in the early distributions of actin and myosin,

and this also explains the fact that in the long time limit we always observe the

concentration of myosin in one single peak accompanying one pronounced peak

in actin distribution.
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