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Abstract5

We compare the distributions of terminal wealth obtained from implementing the optimal investment6

strategies associated with the different approaches to dynamic mean-variance (MV) optimization available7

in the literature. This includes the pre-commitment MV (PCMV) approach, the dynamically optimal MV8

(DOMV) approach, as well as the time-consistent MV approach with a constant risk aversion parameter9

(cTCMV) and wealth-dependent risk aversion parameter (dTCMV), respectively. For benchmarking pur-10

poses, a constant proportion (CP) investment strategy is also considered. To ensure that terminal wealth11

distributions are compared on a fair and practical basis, we assume that an investor, otherwise agnostic12

about the philosophical differences of the underlying approaches to dynamic MV optimization, requires that13

the same expected value of terminal wealth should be obtained regardless of the approach. We present14

first-order stochastic dominance results proving that for wealth outcomes below the chosen expected value15

target, the cTCMV strategy always outperforms the DOMV strategy, and an appropriately chosen CP strat-16

egy always outperforms the dTCMV strategy. We also show that the PCMV strategy results in a terminal17

wealth distribution with fundamentally different characteristics than any of the other strategies. Finally, our18

analytical results are very effective in explaining the numerical results currently available in the literature19

regarding the relative performance of the various investment strategies.20
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1 Introduction23

Originating with Markowitz (1952), mean-variance (MV) portfolio optimization forms the foundation of modern24

portfolio theory (Elton et al. (2014)), in part due to its intuitive nature. In dynamic settings (see for example25

Zhou and Li (2000)), MV optimization aims to obtain an investment strategy that maximizes the expected26

value of the terminal wealth of the portfolio, for a given level of risk as measured by the associated variance of27

the terminal wealth.28

It is well-known that variance does not satisfy the law of iterated expectations. As a result, the MV objective29

is not separable in the sense of dynamic programming, resulting in three main approaches to MV optimization30

that can be identified in the literature.31

In the first approach, referred to as pre-commitment MV (PCMV) optimization, the resulting optimal32

investment strategy is typically time-inconsistent when viewed from the perspective of the original MV objective33

(Basak and Chabakauri (2010)). However, in practice the PCMV problem is solved using the embedding34

approach of Li and Ng (2000); Zhou and Li (2000), and the resulting PCMV-optimal investment strategy is35

time-consistent from the perspective of the induced quadratic objective function used in the corresponding36

embedding problem (Vigna (2014, 2020)). Therefore, the PCMV-optimal investment strategies considered in37

this paper are in fact feasible to implement as trading strategies (see Strub et al. (2019)).38

The second approach, referred to as time-consistent MV (TCMV) optimization, is based on a game-theoretic39

approach to the MV problem (Basak and Chabakauri (2010); Bjork and Murgoci (2014)). The TCMV-optimal40

investment strategies are guaranteed to be time-consistent, since optimization is performed only over a subset of41

investment strategies which are time-consistent from the perspective of the original MV problem. Equivalently,42
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in the TCMV approach the MV problem is solved subject to a time-consistency constraint on the admissible43

investment strategies (Cong and Oosterlee (2016b); Wang and Forsyth (2011)). Two main variations of the44

TCMV approach can be found in the literature, depending on the treatment of the risk aversion parameter45

which encodes the investor’s risk preferences in an MV setting. Specifically, the risk-aversion parameter is46

either assumed to be a constant over the entire investment time horizon (see for example Basak and Chabakauri47

(2010)), or it is assumed to be “wealth-dependent”, in particular, inversely proportional to the investor’s wealth48

at any given point in time (Bjork et al. (2014)). To distinguish between these two cases, we refer to the49

TCMV approach using a constant risk aversion parameter as the cTCMV approach, and to the case using50

wealth-dependent risk aversion parameter as the dTCMV approach.51

The third approach, namely the dynamically-optimal MV (DOMV) optimization approach of Pedersen and52

Peskir (2017), entails solving an infinite number of problems with the MV objective dynamically forward in53

time. In particular, starting from an initial wealth and initial time, each new wealth level attained over time54

results in a new MV problem that has to be solved, resulting in a new optimal strategy to be implemented only55

at that time instant and for that particular wealth level. The resulting DOMV-optimal strategy therefore differs56

fundamentally from the TCMV-optimal strategy, but is indeed feasible to implement as a trading strategy.57

We briefly note that each of these approaches to dynamic MV optimization is associated with a different58

underlying motivational philosophy. In this sense, preference for one strategy over another depends on the MV59

investor’s investment philosophy and perspective on time-consistency - see Vigna (2017, 2020) for a number60

of the subtle issues involved. However, for a practical assessment of the relative performance of the different61

investments strategies, we do not dwell on these philosophical considerations in this paper, and instead only62

focus on wealth outcomes.63

Recently, dynamic MV optimization has received considerable attention in institutional settings, including64

in pension fund and insurance applications - see for example Chen et al. (2013); Forsyth and Vetzal (2019b);65

Forsyth et al. (2019); Hojgaard and Vigna (2007); Liang et al. (2014); Lin and Qian (2016); Menoncin and66

Vigna (2013); Nkeki (2014); Sun et al. (2016); Vigna (2014); Wang and Chen (2018, 2019); Wei and Wang67

(2017); Wu and Zeng (2015); Zhao et al. (2016); Zhou et al. (2016), among many others. In particular, we68

also highlight the popularity of the dTCMV approach in institutional settings, for example in the case of the69

investment-reinsurance problems faced by insurance providers (Bi and Cai (2019); Li and Li (2013)), investment70

strategies for pension funds (Liang et al. (2014); Sun et al. (2016); Wang and Chen (2018, 2019)), corporate71

international investment (Long and Zeng (2016)), and asset-liability management (Peng et al. (2018); Zhang72

et al. (2017)).73

In all of these situations, it is reasonable to argue that the distribution of terminal wealth is of key importance74

to stakeholders, despite the natural focus in the literature on the mean and variance of terminal wealth. The75

reason for this is that in any practical setting, the MV investor (or indeed, any investor) is likely to also take into76

account a number of other measures of risk and investment performance1, which might be critical even if only77

as a result of regulatory considerations (see for example Antolin et al. (2009)). As noted in Goetzmann et al.78

(2002), in a complete market, a dynamic trading strategy can be viewed as a strategy consisting of the risky79

asset and options written on this asset. This changes the final wealth distribution from a standard log-normal (in80

Black-Scholes market) in a non-trivial manner. Hence, even if we consider “Sharpe ratio” maximizing strategies,81

it is of interest to examine other properties (e.g. skewness, kurtosis) of the terminal wealth distribution.82

In the light of these considerations, it is therefore not surprising that there has been significant interest83

recently in different aspects of the terminal wealth distribution obtained under various investment strategies,84

including optimal strategies associated with approaches to dynamic MV portfolio optimization - see for example85

Forsyth and Vetzal (2017a,b, 2019a,b); Forsyth et al. (2019). These papers present a very realistic formulation86

of the underlying problems, including for example the treatment of withdrawals and contributions, investment87

constraints, and so on. By necessity, these papers therefore focus on the results obtained from the numerical88

solutions of the problems under consideration.89

In contrast, there seems to be very little available research on the theoretical comparison of the terminal90

wealth distributions in cases where the optimal investment strategies can be expressed analytically. We em-91

phasize that while analytical MV-optimal strategies sometimes call for unacceptably high leverage ratios or92

unrealistic treatment of insolvency, investment constraints can be incorporated easily in the numerical solution93

of the MV optimization problem (see for example Cong and Oosterlee (2016a); Dang and Forsyth (2014); Van94

Staden et al. (2018); Wang and Forsyth (2010, 2011)). However, analytical investment strategies remain very95

1We observe that it is possible for an investor to explicitly incorporate additional risk and/or performance criteria as part of the
objective function, instead of simply performing MV optimization. For example, portfolio optimization with higher-order moments
can be performed (see for example Jurczenko et al. (2012) and Maringer and Parpas (2009)). However, as the MV objective remains
by far the most popular objective function in the recent dynamic portfolio optimization literature, we correspondingly focus on the
case of MV optimization, leaving other formulations for our future work.
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useful, in that an analytical comparison of terminal wealth distributions (i) can provide an additional perspec-96

tive on some of the implications of the various approaches to dynamic MV optimization that is currently not97

available in the literature, and (ii) can assist in explaining some of the numerical results recently reported in98

the literature, such as the results of for example Forsyth and Vetzal (2017b); Forsyth et al. (2019).99

The main objective of this paper is therefore a systematic comparison of the analytical terminal wealth dis-100

tributions resulting from the optimal investment strategies associated with the different approaches to dynamic101

MV optimization in the literature. In order to compare distributions on a fair basis, we assume that the investor102

remains agnostic as to the philosophical differences underlying the various approaches to MV optimization, and103

simply wishes to achieve a chosen expected value of terminal wealth regardless of the approach. Our main104

contributions are as follows.105

� We derive analytical results regarding the terminal wealth distributions that, despite our assumption of106

no market frictions (in particular, continuous trading with no leverage constraints, no transaction costs107

and without insolvency/bankruptcy prohibitions), are very effective in explaining the numerical results108

incorporating realistic investment constraints currently available in the literature.109

� For comparison and benchmarking purposes, our analysis includes a simple constant proportion (CP)110

strategy, whereby the investor invests a fixed proportion of wealth in the risky asset throughout the111

investment time horizon. The CP strategy is typically not MV-optimal in the sense of any of the other112

strategies considered, but our analysis proves that it easily outperforms the dTCMV-optimal investment113

strategy in the general sense of a partial first-order stochastic dominance result we present.114

� Our results also show that the dTCMV-optimal strategy performs exceptionally poorly compared to the115

other MV-optimal investment strategies, with for example the dTCMV-optimal strategy achieving both116

a higher variance and lower median terminal wealth than the cTCMV strategy. This calls into question117

the current popularity enjoyed by the dTCMV-optimal strategy in the literature.118

� We establish that the cTCMV strategy outperforms the DOMV strategy in a first-order stochastic dom-119

inance sense when we consider terminal wealth outcomes below the expected value target. The cTCMV120

strategy also achieves a lower variance of terminal wealth compared to the DOMV strategy.121

� Furthermore, we derive analytical results which prove that the PCMV strategy results in a terminal wealth122

distribution with fundamentally different characteristics than any of the other strategies. In particular,123

the PCMV-optimal strategy achieves the lowest variance and highest median value of terminal wealth124

of all the strategies considered, but the negative skewness and large kurtosis of the associated terminal125

wealth distribution means that the otherwise excellent performance of the PCMV strategy comes at the126

cost of increased left tail risk for the investor.127

� Numerical results, making use of model parameters calibrated to inflation-adjusted, long-term US market128

data (89 years), are presented to validate and illustrate the implications of our analytical results.129

The remainder of the paper is organized as follows. Section 2 describes the underlying dynamics, notational130

conventions, as well as rigorous definitions of the different approaches to dynamic MV optimization. Subject to131

certain assumptions, Section 3 presents a number of analytical results, including some new results, regarding the132

terminal wealth distributions associated with different approaches. In Section 4, we present a rigorous analytical133

comparison study of terminal wealth distributions associated with different approaches, but all achieving the134

investor’s chosen expected value target. Numerical results are presented in Section 5, while Section 6 concludes135

the paper and outlines possible future work.136

2 Formulation137

For simplicity, our analysis focuses on portfolios consisting of a well-diversified stock index (the risky asset) and138

a risk-free asset. Since the available analytical solutions for multi-asset PCMV and TCMV approaches (see,139

for example, Li and Ng (2000) and Zeng and Li (2011)) show that the overall composition of the risky asset140

basket remains relatively stable over time, it is reasonable to focus on the overall risky asset basket vs. risk-free141

asset composition of the portfolio as the primary investment question. We leave the extension of our results to142

multi-asset dynamic MV optimization problems for our future work.143

Let t0 ≡ 0 denote the start of the investment time period, and let T > 0 denote the fixed investment144

time horizon or maturity. The controlled wealth, with the control representing some investment strategy, is145

denoted by W (t), t ∈ [t0, T ]. Specifically, let u : (W (t) , t) 7→ u (t) = u (W (t) , t) , t ∈ [t0, T ] be the adapted146
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feedback control representing the amount invested in the risky asset at time t given wealth W (t), and let147

A = {u (t) = u (w, t)|u : R× [t0, T ]→ U} denote the set of admissible controls, where U ⊆ R denotes the148

admissible control space.149

We assume that the risky asset follows a geometric Brownian motion (GBM), leaving the treatment of150

jumps in the risky asset process and alternative model specifications for our future work. While this choice151

of model may appear to be overly simplistic, we observe the following: (i) The extensive backtesting results152

presented in Forsyth and Vetzal (2017b) show that the GBM assumption actually performs very well over153

long investment time horizons, suggesting that more complicated models (including for example incorporating154

stochastic volatility Ma and Forsyth (2016)) may not offer substantial advantages in this setting. (ii) As155

discussed in more detail below, the analytical results presented in this paper (based on GBM dynamics) are156

in qualitative agreement with the numerical results presented in Forsyth and Vetzal (2019a); Forsyth et al.157

(2019) where jump-diffusion models are assumed for the risky asset, indicating that a GBM model appears to158

be sufficient in capturing the salient characteristics of the different investment strategies.159

Therefore, based on the assumption of GBM dynamics for the risky asset, the dynamics of the wealth W (t)160

of a self-financing portfolio, with no contributions or withdrawals, is given by (see for example Bjork (2009);161

Bjork et al. (2014))162

dW (t) = [rW (t) + (µ− r)u (t)] dt+ σu (t) dZ(t), t ∈ (t0, T ] , (2.1)163

W (t0) = w0 > 0. (2.2)164

Here, w0 > 0 denotes the initial wealth, r > 0 denotes the continuously compounded risk-free interest rate,165

µ > r and σ > 0 denote the drift and volatility of the dynamics of the risky asset, respectively, while Z denotes166

a standard Brownian motion. For subsequent reference, we also define the following combination of parameters,167

A =
(µ− r)2

σ2
. (2.3)168

Before presenting rigorous definitions of the various approaches to dynamic MV optimization, we introduce169

a number of notational conventions. Let Qw,tu [W (T )] denote some quantity Q associated with the terminal170

wealth W (T ), given wealth W (t) = w at time t ∈ [0, T ] and the application of control u ∈ A over the time171

interval [t, T ]. Specific examples of the quantity Q encountered in this paper include the expected value (in172

which case we set Q = E), variance (Q = V ar), standard deviation (Q = Stdev), conditional probability173

measure (Q = P), as well as the Value-at-Risk and Conditional Value-at-Risk2 at level α ∈ (0, 1), respectively174

denoted by Q = αVaR and Q = αCVaR. The optimal control and optimal terminal wealth will be denoted175

by u∗j and Wj (T ), respectively, where the subscript j ∈ {p, d, c, cd, cp} is used to distinguish the underlying176

approach with respect to which u∗j and Wj (T ) are optimal. For ease of subsequent reference, the particular177

association of the subscript j with the corresponding investment approach is outlined in Table 2.1.178

Table 2.1: Summary of notational conventions. The subscript j ∈ {p, d, c, cd, cp} is used to identify the approach
in terms of which the optimal investment strategy u∗j and associated optimal terminal wealth Wj (T ) is obtained.
For the sake of simplicity, the constant proportion (CP) strategy is identified using similar notation, but we
emphasize that the CP strategy does not represent an MV-optimal strategy in some sense as in the case of the
other strategies.

Subscript j Approach Abbreviation Optimal control u∗
j Optimal terminal wealth

using control u∗
j

j = p Pre-commitment MV PCMV u∗
p Wp (T )

j = d Dynamically-optimal MV DOMV u∗
d Wd (T )

j = c Time-consistent MV with constant

risk aversion parameter

cTCMV u∗
c Wc (T )

j = cd Time-consistent MV with

wealth-dependent risk aversion

parameter

dTCMV u∗
cd Wcd (T )

j = cp Constant proportion strategy CP u∗
cp Wcp (T )

179

We now present the definitions of the main approaches to MV portfolio optimization considered in this

paper. Using the standard scalarization method for multi-criteria optimization problems (Yu (1971)), a general

2The terms and risk measures are defined rigorously below - see Section 4.
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definition of the dynamic MV optimization problem is given by (see for example Zhou and Li (2000))

sup
u∈A

(
Ew0,t0
u [W (T )]− ρ · V arw0,t0

u [W (T )]
)
, ρ > 0, (2.4)

where the the investor’s level of risk aversion is reflected by the risk aversion (or scalarization) parameter ρ > 0.180

As noted in the Introduction, variance does not satisfy the smoothing property of conditional expectation,181

therefore dynamic programming cannot be applied directly to (2.4). The first approach to dynamic MV opti-182

mization, the pre-commitment MV (PCMV) approach, employs the technique of Li and Ng (2000); Zhou and183

Li (2000) to embed problem (2.4) in a new optimization problem, often referred to as the embedding problem,184

which can be solved using dynamic programming techniques. We follow the convention in literature (see for185

example Cong and Oosterlee (2017); Dang et al. (2017)) of defining the PCMV optimization problem as the186

associated MV embedding problem, namely187

(PCMV (γ)) : inf
u∈A

(
Ew0,t0=0
u

[(
W (T )− γ

2

)2
])

,
γ

2
> w0e

rT , (2.5)188

where the embedding parameter γ is assumed to satisfy γ > 2w0e
rT to ensure that financially meaningful results189

are obtained (see Dang and Forsyth (2016); Vigna (2014)). As per Table 2.1, we use the notation u∗p and Wp (T )190

to denote the optimal control and optimal terminal wealth for problem (2.5), respectively.191

Remark 2.1. (Time-consistency of PCMV-optimal control u∗p) As discussed in detail in Forsyth et al. (2019); Li192

and Forsyth (2019), there appears to be some confusion in the literature as to whether the PCMV-optimal control193

u∗p is time-consistent or not. This question is of great practical significance, since u∗p is typically time-inconsistent194

(see Basak and Chabakauri (2010); Bjork and Murgoci (2014)) from the perspective of the original MV objective195

(2.4), which raises questions regarding its feasibility as an implementable trading strategy. This observation196

is arguably the reason why a number different approaches to dynamic MV optimization has been developed,197

each with a different underlying philosophy as to how the problem of time-inconsistency with respect to the198

original objective (2.4) is to be addressed - see Vigna (2017, 2020) for a discussion of the various considerations199

involved. For purposes of clarity, we make a number of observations regarding this issue.200

Using the same assumptions as in this paper (including the dynamics (2.1) and the assumptions introduced201

below in Section 3), Vigna (2014) builds on the results of Zhou and Li (2000) to show that there is a one-to-one202

correspondence between the results (including optimal control and MV efficient frontier) of problems (2.4) and203

(2.5), provided that ρ in (2.4) at t0 = 0 is related to γ in (2.5) by the relationship204

ρ =
eAT

2
(
γ
2 − w0erT

) . (2.6)205

Note that the exact relationship (2.6) between ρ and γ, including its one-to-one nature, might no longer hold if206

for example jumps are included in the wealth dynamics (see Dang et al. (2016) for a detailed treatment). That207

said, the key embedding result from Li and Ng (2000); Zhou and Li (2000) can be shown to hold regardless of208

the specification of the admissible set of the controls (Dang and Forsyth (2016)).209

Therefore, given that the one-to-one relationship (2.6) holds on the basis of the assumptions of this paper,210

whether we use the formulation (2.4) or formulation (2.5) as our starting point does not affect any of the211

subsequent results, irrespective of one’s philosophical preference. However, from an investor’s perspective,212

the starting point has important practical consequences. First, Vigna (2014) points out that specifying the213

“quadratic target” γ/2 in (2.5) is far more “user-friendly” than specifying ρ in (2.4), since the literature does214

not offer much guidance as to how ρ should be selected. Second, it is worth emphasizing that, for a fixed value215

of γ in (2.5), the optimal control u∗p of (2.5) is a time-consistent control from the perspective of the quadratic216

objective function in (2.5), and is therefore feasible to implement as a trading strategy (see Strub et al. (2019)),217

whereas formulating this control in terms of ρ results in a time-inconsistent (and therefore impractical) trading218

strategy from the perspective of (2.4).219

As a result, it should be clear from this discussion that the issue of the time-consistency of u∗p is a matter220

of perspective, and in this paper we always view u∗p as the time-consistent strategy minimizing the induced221

objective function in (2.5), and correspondingly formulate all our results in terms of γ. To be precise, the222

control for the time-inconsistent problem (2.4), for a given value of ρ, specified at time t0, is identical to the223

control for time-consistent problem (2.5), with fixed γ given from equation (2.6). Since this control is the224

solution of time-consistent problem (2.5), it is a valid or implementable control for all t ≥ t0. This treatment225

aligns with our stated objective of comparing terminal wealth distributions from the perspective of an investor226

who remains agnostic as to the underlying philosophical differences of the various approaches to dynamic MV227
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optimization.228

Next, we consider the dynamically-optimal MV (DOMV) approach proposed by Pedersen and Peskir (2017).229

Informally, this entails solving an infinite number of problems of the form (2.4) dynamically forward in time.230

Starting from the initial state and time (w0, t0), each new state (W (t) , t) , t ∈ [t0, T ] attained by the controlled231

wealth process results in a new problem (2.4) to be solved to obtain the optimal control u∗d (W (t) , t) := u∗d (t)232

applicable at that time instant. In this way, the dynamically optimal control u∗d (t) is obtained for all t ∈ [t0, T ],233

resulting in a DOMV-optimal terminal wealth Wd (T ). More formally, following Pedersen and Peskir (2017),234

we define the DOMV problem and associated optimal control u∗d as follows.235

(DOMV (ρ)) : u∗d ∈ A is dynamically optimal for (2.4) with a given fixed ρ > 0,236

if ∀ (w, t) ∈ R× [t0, T ] , ∃u ∈ A satisfying u (w, t) = u∗d (w, t) ,237

such that ∀v ∈ A with v (w, t) 6= u∗d (w, t) ,we have238

Ew,tu [W (T )]− ρ · V arw,tu [W (T )] ≥ Ew,tv [W (T )]− ρ · V arw,tv [W (T )] . (2.7)239

240

The time-consistent MV (TCMV) approach (Basak and Chabakauri (2010)) involves maximizing the objec-241

tive of (2.4) subject to a time-consistency constraint (see for example Cong and Oosterlee (2016b); Van Staden242

et al. (2019); Wang and Forsyth (2011)), so that the resulting optimal control is time-consistent from the per-243

spective of the original MV objective (2.4). As noted in the Introduction, we distinguish two variants of the244

TCMV approach depending on the treatment of the risk-aversion parameter ρ in (2.4).245

First, using a constant risk-aversion parameter ρ > 0 in (2.4), we define the cTCMV problem as246

(cTCMV (ρ)) : sup
u∈A

(
Ew0,t0
u [W (T )]− ρ · V arw0,t0

u [W (T )]
)
, ρ > 0, (2.8)247

s.t. u∗c (t0; y, v) = u∗c (t′; y, v) , for v ≥ t′, t′ ∈ [t0, T ] , (2.9)248

where u∗c (t0; y, v) denotes the optimal control calculated at time t0 and to be applied at some future time249

v ≥ t′ ≥ t0 given future state W (v) = y, while u∗c (t′; y, v) denotes the optimal control calculated at some future250

time t′ ∈ [t0, T ], also to be applied at the same later time v ≥ t′ given the same future state W (v) = y. To251

lighten notation, as per Table 2.1 we will use the notation u∗c (t) to denote the optimal control of the cTCMV252

problem (2.8)-(2.9).253

A popular alternative formulation of the TCMV problem is to specify a risk aversion parameter that is254

inversely proportional to wealth - see Bjork et al. (2014) for the motivation and a detailed analysis. Specifically,255

in this formulation, the constant ρ in (2.8) is replaced by ρ (w) = ρ/ (2w) for ρ > 0, where w denotes the current256

wealth. This results dTCMV problem defined by257

(dTCMV (ρ)) : sup
u∈A

(
Ew0,t0
u [W (T )]− ρ

2w0
· V arw0,t0

u [W (T )]

)
, ρ > 0, (2.10)258

s.t. u∗cd (t0; y, v) = u∗cd (t′; y, v) , for v ≥ t′, t′ ∈ [t0, T ] , (2.11)259

where the time-consistency constraint (2.11) has the same interpretation as in (2.9). As per Table 2.1, we denote260

the dTCMV-optimal control by u∗cd (t) and the associated optimal terminal wealth by Wcd (T ).261

Finally, for benchmarking and comparison purposes, we also consider the constant proportion (CP) problem,262

defined as follows.263

(CP (θcp)) : Choose a constant proportion θcp > 0 of wealth264

to invest in the risky asset,∀t ∈ [t0, T ] , so that265

u∗cp (t) = θcpW (t) ,∀t ∈ [t0, T ] . (2.12)266

As noted in the Introduction, the CP strategy is not designed to be MV-optimal in any sense. However, as per267

Table 2.1, for convenience we use the notation u∗cp (t) and Wcp (T ) to denote the control and terminal wealth268

associated with the CP problem for some choice of the constant proportion θcp. A concrete example of choosing269

a value of θcp to achieve a specific goal is given in Section 4.270
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3 Selected analytical results271

In this section, we present analytical results relevant to the terminal wealth distributions obtained under the272

optimal investment strategies of the problems presented in Section 2. All results in this section are based on273

the assumption of no market frictions or investment constraints, formally defined as Assumption 3.1.274

Assumption 3.1. (No market frictions) Trading continues in the event of insolvency, no transaction costs are275

applicable, and no leverage constraints are in effect.276

Remark 3.1. (Relaxing Assumption 3.1) Since the simultaneous application of multiple realistic investment277

constraints can be incorporated with relative ease in the numerical solution of dynamic MV optimization278

problems (see Cong and Oosterlee (2016a); Dang and Forsyth (2014); Van Staden et al. (2018); Wang and Forsyth279

(2010, 2011), among others), relaxing Assumption 3.1 is not challenging in a practical setting. However, as noted280

in the Introduction, this paper focuses on a theoretical comparison of optimal terminal wealth distributions in281

the particular select cases where the optimal investment strategies to dynamic MV optimization problems can282

be expressed analytically. The two main consequences of Assumption 3.1 are therefore that it (i) ensures that283

an additional perspective on the implications of the various approaches to dynamic MV optimization can be284

presented in this paper that is currently missing from the literature, and (ii) assists in explaining some of285

the numerical results reported in literature (for example Forsyth and Vetzal (2017a,b, 2019a,b); Forsyth et al.286

(2019)).287

Under Assumption 3.1, the optimal controls associated with the dynamic MV optimization problems pre-288

sented in Section 2 can be expressed analytically, as the following lemma shows.289

Lemma 3.2. (Optimal controls) Under Assumption 3.1, the optimal controls of problems PCMV (2.5), DOMV290

(2.7), cTCMV (2.8)-(2.9) and dTCMV (2.10)-(2.11) are respectively given by291

u∗p (t) =
A

(µ− r)
e−r(T−t)

[γ
2
−W (t) er(T−t)

]
, (3.1)292

u∗d (t) =
1

2ρ
· A

(µ− r)
e(A−r)(T−t), (3.2)293

u∗c (t) =
1

2ρ
· A

(µ− r)
e−r(T−t), (3.3)294

u∗cd (t) = θ (t) ·W (t) , (3.4)295

where A is defined in (2.3), and θ (t) in (3.4) is given by the unique solution to the following integral equation:296

θ (t) =
A

ρ (µ− r)

{
e−

∫ T
t (r+(µ−r)θ(τ)−σ2θ2(τ))dτ + ρe−

∫ T
t
σ2θ2(τ)dτ − ρ

}
. (3.5)297

Proof. See Basak and Chabakauri (2010); Pedersen and Peskir (2017); Zhou and Li (2000) and Bjork et al.298

(2014). The existence and uniqueness of the solution to the integral equation (3.5) is established in Bjork et al.299

(2014).300

Including the CP strategy (2.12) in this discussion would therefore result in five different investment strategies301

under consideration. However, Lemma 3.2 shows that there are only three fundamentally different forms of the302

resulting controls: (i) The DOMV- and cTCMV-optimal controls ((3.2) and (3.3), respectively) are simply303

deterministic functions of time, and do not depend on the investor’s wealth. (ii) The CP strategy (2.12) and304

the dTCMV-optimal strategy (3.4) are both proportional strategies, in that they specify the amount to invest305

in the risky asset as a proportion of the wealth at time t. In contrast to the constant proportion θcp used by the306

CP strategy, the dTCMV strategy specifies a proportion θ (t) that is a deterministic function of time satisfying307

(3.5). (iii) The PCMV-optimal control (3.1) can be viewed as a linear combination of the TCMV-optimal control308

(3.3) and the constant proportion strategy (2.12).309

Starting from a given initial wealth w0 > 0 at time t0 ≡ 0, we now assume that the optimal investment310

strategies from Lemma 3.2, as well as the CP strategy (2.12), are implemented over the investment time horizon311

[t0, T ]. As a result, we obtain the optimal terminal wealth Wj (T ) corresponding to each investment strategy312

j ∈ {p, d, c, cd}, as well as the terminal wealth under the CP strategy Wcp (T ).313

Lemma 3.3. (Optimal terminal wealth) Let w0 > 0 and t0 = 0. Under Assumption 3.1, the optimal terminal314

wealth Wj (T ) corresponding to each investment strategy j ∈ {p, d, c, cd}, given controlled wealth dynamics (2.1)315
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and optimal controls as in Lemma 3.2, are given by316

Wp (T ) =
γ

2
−
[γ

2
− w0e

rT
]

exp

{
−3

2
AT −

√
A · Z (T )

}
, (3.6)317

Wd (T ) = w0e
rT − 1

2ρ

(
1− e−AT

)
+

1

2ρ

√
A

∫ T

0

eA(T−t)dZ(t), (3.7)318

Wc (T ) = w0e
rT +

1

2ρ
AT +

1

2ρ

√
A · Z (T ) , (3.8)319

Wcd (T ) = w0e
rT · exp

{∫ T

0

[
(µ− r) θ (t)− 1

2
σ2θ2 (t)

]
dt+

∫ T

0

σθ (t) dZ(t)

}
. (3.9)320

The terminal wealth Wcp (T ) under a CP strategy u∗cp (t) = θcpW (t) is given by321

Wcp (T ) = w0e
rT · exp

{[
(µ− r) θcp −

1

2
σ2θ2

cp

]
T + σθcpZ (T )

}
. (3.10)322

Proof. The result (3.6), reported in Vigna (2014) and Pedersen and Peskir (2017), can be obtained by applying323

Itô’s lemma to the auxiliary process324

Xp (t) =
γ

2
e−r(T−t) −Wp (t) , t ∈ (t0 = 0, T ] , (3.11)325

Xp (t0) =
γ

2
e−rT − w0,326

which shows that Xp (t) follows a geometric Brownian motion (Vigna (2014)). The proof of (3.7)-(3.10) is327

straightforward, and therefore omitted.328

Based on the results of Lemma 3.3, the distribution of terminal wealth can be identified easily in all cases329

except for the PCMV-optimal terminal wealth Wp (T ), as the following lemma confirms.330

Lemma 3.4. (Distribution of terminal wealth under the DOMV, cTCMV, dTCMV, CP strategies) Under331

Assumption 3.1, the terminal wealth under the optimal controls of problems DOMV and cTCMV are normally332

distributed. Specifically, Wd (T ) ∼ N
(
µ̂d, σ̂

2
d

)
, where333

µ̂d := Ew0,t0=0
u∗d

[Wd (T )] = w0e
rT +

1

2ρ

(
eAT − 1

)
, (3.12)334

σ̂2
d := V arw0,t0=0

u∗d
[Wd (T )] =

1

2

(
1

2ρ

)2 (
e2AT − 1

)
, (3.13)335

while Wc (T ) ∼ N
(
µ̂c, σ̂

2
c

)
with336

µ̂c := Ew0,t0=0
u∗c

[Wc (T )] = w0e
rT +

1

2ρ
AT, (3.14)337

σ̂2
c := V arw0,t0=0

u∗c
[Wc (T )] =

(
1

2ρ

)2

AT. (3.15)338

The terminal wealth under the dTCMV-optimal and CP investment strategies is lognormally distributed. In339

particular, Wcd (T ) ∼ Logn
(
µ̂cd, σ̂

2
cd

)
, where340

µ̂cd := Ew0,t0=0
u∗cd

[logWcd (T )] = logw0 + rT +

∫ T

0

[
(µ− r) θ (t)− 1

2
σ2θ2 (t)

]
dt, (3.16)341

σ̂2
cd := V arw0,t0=0

u∗cd
[logWcd (T )] =

∫ T

0

σ2θ2 (t) dt, (3.17)342

while Wcp (T ) ∼ Logn
(
µ̂cp, σ̂

2
cp

)
with343

µ̂cp := Ew0,t0=0
u∗cp

[logWcp (T )] = logw0 + rT +

[
(µ− r) θcp −

1

2
σ2θ2

cp

]
T, (3.18)344

σ̂2
cp := V arw0,t0=0

u∗cp
[logWcp (T )] = σ2θ2

cpT. (3.19)345
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Proof. The results follow directly from the results of Lemma 3.3.346

It is clear from the results of Lemma 3.3 that the distribution of the PCMV-optimal terminal wealth Wp (T )347

is significantly more complex than any of the results presented in Lemma 3.4, as it appears not to conform to348

any of the commonly encountered probability distributions. However, by re-arranging (3.6), it is clear that349

γ
2 −Wp (T )
γ
2 − w0erT

∼ Logn
(
µ̂p, σ̂

2
p

)
, where µ̂p = −3

2
AT and σ̂2

p = AT, (3.20)350

so that the distribution of Wp (T ) can perhaps be best described as a “reflected lognormal distribution” (see351

Goetzmann et al. (2002) where this terminology is used for a random variable with a similar distribution). The352

following lemma makes use of the observation (3.20) to give the exact distribution of Wp (T ).353

Lemma 3.5. (Distribution of PCMV-optimal terminal wealth) Under Assumption 3.1, the cumulative distri-354

bution function (CDF) of the terminal wealth under the optimal control of problem PCMV is given by355

Pw0,t0=0
u∗p

[Wp (T ) ≤ w] =

Φ

(
− 1√

AT
· log

[ γ
2 − w

γ
2 − w0erT

]
− 3

2

√
AT

)
if w <

γ

2
,

1 otherwise,

(3.21)356

where Pw0,t0
u∗p

(·) denotes the probability calculated under the PCMV-optimal control u∗p (t) and given initial357

wealth w0 at time t0, while Φ (·) denotes the standard normal CDF. Furthermore, the non-central moments of358

the PCMV-optimal terminal wealth Wp (T ) can be expressed as359

m(n)
p (T ) := Ew0,t0=0

u∗p

[
Wn
p (T )

]
360

=

n∑
k=0

n!

k! (n− k)!

(γ
2

)n−k [
w0e

rT − γ

2

]k
· exp

{
1

2
k (k − 3)AT

}
, n ∈ N. (3.22)361

Proof. The results (3.21) and (3.22) follow from the observation (3.20). With regards to the cases of the CDF362

(3.21), it should be noted that Vigna (2014) proved that under the stated assumptions (including Assumption363

3.1 and dynamics (2.1)), the PCMV-optimal terminal wealth approaches the quadratic target γ
2 from below, so364

that it is always the case that Wp (T ) < γ
2 .365

The first four non-central moments of the distribution of the PCMV-optimal terminal wealth plays an366

important role in Section 4, and are given by the following lemma.367

Lemma 3.6. (Distribution of PCMV-optimal terminal wealth: First four non-central moments) Under Assump-368

tion 3.1, the first four non-central moments of the distribution of Wp (T ) are given by m
(n)
p (T ) = Ew0,t0=0

u∗p

[
Wn
p (T )

]
,369

n ∈ {1, 2, 3, 4}, where370

m(1)
p (T ) = w0e

rT + e−AT
(
eAT − 1

) [γ
2
− w0e

rT
]
, (3.23)371

m(2)
p (T ) =

[
m(1)
p (T )

]2
+ e−2AT

(
eAT − 1

) [γ
2
− w0e

rT
]2
, (3.24)372

m(3)
p (T ) = 3

[
m(1)
p (T )

] [
m(2)
p (T )

]
− 2

[
m(1)
p (T )

]3
373

−e−3AT
[(
eAT − 1

)3
+ 3

(
eAT − 1

)2] [γ
2
− w0e

rT
]3
, (3.25)374

m(4)
p (T ) = 4

[
m(1)
p (T )m(3)

p (T )
]
− 6

[
m(1)
p (T )

]2 [
m(2)
p (T )

]
+ 3

[
m(1)
p (T )

]4
375

+
(
e2AT − 4e−AT + 6e−3AT − 3e−4AT

) [γ
2
− w0e

rT
]4
. (3.26)376

Proof. The results follow from Lemma 3.5, where the moments (3.22) are simplified and factorized.377

Up to this point, we made no reference to any particular choices made by the investor regarding the risk aver-378

sion parameters ρ > 0, embedding parameter γ > 2w0e
rT , or constant proportion θcp > 0. In the next section379

(Section 4), we introduce specific choices for these parameters that, when substituted into the results presented380

in this section, allows the investor to consider the resulting terminal wealth distributions on a comparable basis.381
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4 Comparison of terminal wealth distributions382

The analytical results presented in Section 3 are used in this section to compare the terminal wealth distributions383

resulting from implementing the various investment strategies under consideration.384

Throughout this discussion, we assume that the investor remains agnostic as to the philosophical perspectives385

underlying the different approaches to dynamic MV optimization. Specifically, we assume that the investor386

considers the resulting optimal controls in Lemma 3.2 as well as the CP strategy (2.12) simply as different387

candidate investment strategies, each resulting in a terminal wealth distribution that can be assessed according388

to various pre-specified risk and return criteria.389

In order to compare the resulting terminal wealth distributions on a fair basis, we introduce the following390

practical assumption.391

Assumption 4.1. (Expected value target for terminal wealth) We assume that, regardless of investment strategy

j ∈ {p, d, c, cd, cp}, the investor sets a particular target value E > w0e
rT for the expected value of terminal wealth.

In other words, the investor requires

Ew0,t0=0

uE∗j

[
W E
j (T )

]
≡ E , with E > w0e

rT , for all j ∈ {p, d, c, cd, cp} , (4.1)

where uE∗j denotes the optimal control for investment strategy j achieving the optimal terminal wealth W E
j (T )392

with expected value E. We will refer to W E
j (T ) as the target terminal wealth, and its distribution as the target393

terminal wealth distribution.394

Using the results of Section 3, the targeted expected value (4.1) is achieved as follows. For investment395

strategies j ∈ {p, d, c, cd}, the strategy uE∗j is found by choosing the appropriate value of γ or ρ in Lemma 3.2,396

while uE∗cp is found by choosing the appropriate proportion θcp in (2.12). Specifically, for j ∈ {p, d, c, cd, cp}, we397

respectively set γ ≡ γEp , ρ ≡ ρEd, ρ ≡ ρEc , ρ ≡ ρEcd and θcp ≡ θEcp, where398

PCMV
(
γ ≡ γEp

)
: γEp = 2w0e

rT +
2eAT

(eAT − 1)

(
E − w0e

rT
)
, (4.2)399

DOMV (ρ ≡ ρEd) : ρEd =

(
eAT − 1

)
2 (E − w0erT )

, (4.3)400

cTCMV (ρ ≡ ρEc ) : ρEc =
AT

2 (E − w0erT )
, (4.4)401

dTCMV (ρ ≡ ρEcd) : ρEcd together with the function t→ θE (t) determined numerically402

using (3.5) such that Ew0,t0=0

uE∗cd
[W E

cd (T )] ≡ E , (4.5)403

CP
(
θcp ≡ θEcp

)
: θEcp =

log (E/w0)− rT
(µ− r) · T

. (4.6)404

Using the results of Lemma 3.4 and Lemma 3.6, it is straightforward to verify that the choices (4.2)-(4.6)405

result in the terminal wealth distributions with the required expected value target E .406

Remark 4.1. (Risk preferences and the basis for comparing terminal wealth distributions) Assumption 4.1 is407

clearly reasonable from the classical Markowitz (1952) perspective, where, according to one interpretation, the408

investor simply wishes to achieve the lowest variance for a given expected value (see for example Perrin and409

Roncalli (2020)). It is therefore not surprising that when different investment strategies are compared in the410

literature, it is often on the basis of a fixed level/target of either the expected value or alternatively of the411

volatility of portfolio wealth or returns. For some recent examples, see Bender et al. (2019); Dopfel and Lester412

(2018); Soupé et al. (2019); Zhang et al. (2020). According to this view, the scalarization or risk aversion413

parameter ρ in (2.4) would be “calibrated” (Bender et al. (2019)) on the basis of the chosen target, which in our414

case results in the particular values (4.2)-(4.5). This sidesteps the explicit selection of a value of ρ appropriate415

for the investor, a matter on which the literature offers very little guidance (Vigna (2014)), and it also avoids the416

selection of some arbitrary value of ρ to be used for illustrative purposes without any reference to the investor’s417

goals (as is commonly used in the literature to illustrate analytical results, see for example DeMiguel et al.418

(2020)).419

A possible objection to this perspective and therefore to Assumption 4.1, is that using different parameters420

(4.2)-(4.5) imply that we are comparing the results of different MV problem formulations on the basis of different421

levels of risk aversion, since different values of ρ are effectively being used in (2.4).422

Suppose, for the sake of argument, that we intend to compare the terminal wealth distributions corresponding423

to the same value of the risk aversion parameter ρ in (2.4) for all formulations of the MV problem. First, to424
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the detriment of the subsequent results, we will have to exclude the CP strategy from the comparison, since425

its definition (2.12) does not explicitly incorporate any notion of a risk aversion parameter, and therefore it is426

not clear how to select θcp to ensure a fair comparison on the basis of risk preferences. Next, in the case of the427

dTCMV problem (2.10), from the perspective of t0 ≡ 0 the effective risk-aversion parameter at time t ∈ (0, T ]428

depends on the wealth at (future) time t, and is therefore stochastic (see Bensoussan et al. (2019); Bjork et al.429

(2014) for a detailed analysis).430

This leaves the PCMV, DOMV and cTCMV problems. We observe that by Remark 2.1, the value of γEp in431

(4.2) is consistent with a scalarization parameter value ρEp in the original MV objective (2.4) given by432

ρEp =
eAT − 1

2 (E − w0erT )
(by (2.6) and (4.2)) , (4.7)433

= ρEd, (by (4.3)) .434

From the perspective of the MV objective (2.4), the PCMV and DOMV problems with the same expected435

terminal wealth E therefore make use of identical risk aversion parameter values. However, this does not mean436

that the PCMV problem with γ ≡ γEp (4.2) and the DOMV problem with ρ ≡ ρEd (4.3) incorporate the same437

investor risk preferences for t ∈ (0, T ]. Instead, (4.7) only implies that PCMV and DOMV risk preferences agree438

instantaneously at t0 ≡ 0 (Vigna (2020)).439

It is worth emphasizing that the issues involved are subtle, and outside the scope of this paper. Vigna (2017,440

2020) rigorously defines and analyzes the notion of “preferences consistency” in dynamic MV optimization441

approaches, which can informally be defined as the case when the investor’s risk preferences at time t ∈ (0, T ]442

agrees with the investor’s original risk preferences at time t0 ≡ 0. Vigna (2017, 2020) show that only the443

DOMV approach is “preferences-consistent”, i.e. instantaneously consistent with the investor’s original risk444

preferences at any time t ∈ (0, T ]. The PCMV approach is consistent with the target γ/2, but not with initial445

risk preferences (Cong and Oosterlee (2016b)). In addition, Vigna (2020) shows that the cTCMV investor is also446

not preferences-consistent, which is to be expected, since as shown originally in Bjork and Murgoci (2010), the447

TCMV problem is equivalent to a stochastic control problem with a different objective but no time-consistency448

constraint, namely the mean-quadratic variation problem (see Van Staden et al. (2019) for a detailed analysis).449

Therefore, insisting that the resulting terminal wealth distributions should be compared on the basis of equal450

risk preferences is not just less practical than setting a risk or return target as in Assumption 4.1, but would451

be arguably meaningless in the context of dynamic MV-optimal investment strategies.452

Figure 4.1 illustrates the probability density functions (PDFs) of the distributions ofW E
j (T ) , j ∈ {p, d, c, cd, cp}453

for the particular choices (4.2)-(4.6), all with the same expected value E = 250. In the case of j ∈ {d, c, cd, cp},454

these PDFs can be obtained analytically by appropriately substituting (4.3)-(4.6) into the corresponding results455

of Lemma 3.4. In the case of PCMV (j = p), the simulated PDF of W E
p (T ) can be obtained using the expression456

(3.6) in Lemma 3.3 with γ = γEp as per (4.2).457

The rest of this section is devoted to a quantitative analysis of the differences in the distributions of W E
j (T )458

for investment strategies j ∈ {p, d, c, cd, cp}, illustrated by Figure 4.1.459

460

As an introductory result, the following lemma gives a relationship between the parameters of the target461

terminal wealth distributions in the case of the CP and dTCMV strategies that turns out to have far-reaching462

consequences.463

Lemma 4.2. (Parameters of the distribution of W E
j (T ), j ∈ {cd, cp}: CP vs dTCMV) Assume that the condi-

tions of Assumption 3.1 and Assumption 4.1 are satisfied. For any target value E satisfying (4.1), the parame-

ters µ̂Ej and σ̂Ej of the lognormally distributed target terminal wealth distributions, W E
j (T ) ∼ Logn

(
µ̂Ej ,
(
σ̂Ej
)2)

,

j ∈ {cp, cd}, satisfy the following relationships:

µ̂Ecp ≥ µ̂Ecd, σ̂Ecp ≤ σ̂Ecd. (4.8)

Proof. By Lemma 3.4, µ̂Ecp = log (E) − 1
2

(
σ̂Ecp
)2

and µ̂Ecd = log (E) − 1
2 (σ̂Ecd)

2
, so we only need to prove that

σ̂Ecp ≤ σ̂Ecd, where

σ̂Ecp =
1√
AT

[log (E/w0)− rT ] , σ̂Ecd = σ ·

(∫ T

0

[θE (t)]
2
dt

) 1
2

. (4.9)

To ensure that W E
cd (T ) has the required mean E , the function t → θE (t) and risk aversion parameter ρEcd in464

11



-200 0 200 400 600 800

Terminal wealth W(T)

0

0.5

1

1.5

2

2.5

3

3.5

4

P
D

F
×10-3

E = 250

DOMV

cTCMV

(a) cTCMV vs DOMV

-200 0 200 400 600 800

Terminal wealth W(T)

0

1

2

3

4

5

6

P
D

F

×10-3

CP

E = 250

dTCMV

(b) CP vs dTCMV

-200 0 200 400 600 800

Terminal wealth W(T)

0

0.01

0.02

0.03

0.04

0.05

P
D

F

E = 250

PCMV

(c) PCMV

Figure 4.1: Probability density functions (PDFs) of the target terminal wealth W E
j (T ), for j ∈ {p, d, c, cd, cp},

all with the same expected value E = 250. w0 = 100, t0 = 0, T = 10, and other parameters as in Section 5, so
that w0e

rT = 106.43. Note that the same scale is used on the x-axis.

(4.5) are solved numerically using the integral equation (3.5) to guarantee that465 ∫ T

0

θE (t) dt ≡ log (E/w0)− rT
(µ− r)

. (4.10)466

With θEcp defined as the constant proportion in (4.6), we recognize that θEcpT =
∫ T

0
θE (t) dt. Furthermore, the467

Cauchy-Schwarz inequality implies that468

1

T

(
θEcpT

)2
=

1

T

(∫ T

0

θE (t) dt

)2

≤
∫ T

0

[θE (t)]
2
dt. (4.11)469

Therefore, (4.9) and (4.11) implies that we always have σ̂Ecp ≤ σ̂Ecd, regardless of the target E > w0e
rT .470

As noted before, the dTCMV-optimal strategy is an example of a deterministic “glide path” strategy typically471

encountered in the pension fund literature, and in that particular context the result (4.11) used in the proof of472

Lemma 4.2 is a known result (see for example Forsyth and Vetzal (2019b); Graf (2017)). However, it is worth473

emphasizing the result (4.8) in this paper for two reasons.474

First, in the specific case of the dTCMV problem, the conclusion of Lemma 4.2 enables the comparison of475

the distributions of W E
cd (T ) and W E

cp (T ) without resorting to the numerical solution of the function t→ θE (t)476

using the cumbersome integral equation (3.5). In particular, note that the exact form of the function t→ θE (t)477

does not matter; the only relevant fact regarding θE (t) is that its integral satisfies (4.10), which is just a constant478

multiple of the value of θEcp in (4.6). Second, the result (4.8) turns out to be sufficient to prove a number of very479

interesting results, not just limited to mean and variance, but also including a first-order stochastic dominance480

result (see Theorem 4.13 below). This follows since we have a complete description of the relevant distributions481

under the stated assumptions.482

We now return to our comparison of the distributions of the target terminal wealth W E
j (T ), for investment483

strategies j ∈ {p, d, c, cd, cp}. First, consider an investor primarily interested in the first two moments of the484

terminal wealth. Since all the target terminal wealth distributions W E
j (T ) have the same mean E as per (4.1),485

we start by considering the variance W E
j (T ) obtained for each investment strategy j.486

Lemma 4.3. (Variance: Target terminal wealth distribution) Assume that the conditions of Assumption 3.1

and Assumption 4.1 are satisfied. The variance of the target terminal wealth W E
j (T ), for j ∈ {p, d, c, cd, cp}, is

given by the following expressions:

V arw0,t0=0
uE∗p

[
W E
p (T )

]
=

1

(eAT − 1)

(
E − w0e

rT
)2
, V arw0,t0=0

uE∗d
[W E

d (T )] =

(
eAT + 1

)
2 (eAT − 1)

(
E − w0e

rT
)2
, (4.12)

V arw0,t0=0
uE∗c

[W E
c (T )] =

1

AT

(
E − w0e

rT
)2
, V arw0,t0=0

uE∗j

[
W E
j (T )

]
= E2 ·

(
e(σ̂
E
j )

2

− 1
)
, j ∈ {cd, cp} , (4.13)
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where σ̂Ej , j ∈ {cp, cd} are given by (4.9).487

Proof. The results follow from Lemma 3.4, Lemma 3.6 and (4.2)-(4.6).488

The following lemma compares the variances of the target terminal wealth distributions.489

Lemma 4.4. (Comparison: Variance) Assume that the conditions of Assumption 3.1 and Assumption 4.1 are490

satisfied. The variance of the target wealth distributions for investment strategies j ∈ {p, d, c, cd, cp} are related491

as follows.492

V arw0,t0=0
uE∗p

[
W E
p (T )

]
< V arw0,t0=0

uE∗c
[W E

c (T )] (4.14)493

<

V ar
w0,t0=0

uE∗d
[W E

d (T )] ,

V arw0,t0=0
uE∗cp

[
W E
cp (T )

]
≤ V arw0,t0=0

uE∗cd
[W E

cd (T )] .
(4.15)494

Proof. Inequality (4.14) is obvious from the variance results (4.12)-(4.13) in Lemma 4.3. Considering (4.15), we495

first observe that (x− 2) ex + x+ 2 > 0,∀x > 0. Since A > 0 (recall that µ > r, σ > 0) and T > 0, AT > 0, we496

exploit the following inequality which turns out to be very useful for proving some of the subsequent results,497

AT >
2
(
eAT − 1

)
(eAT + 1)

, ∀A, T > 0. (4.16)498

Considering the results of Lemma 4.3, the inequality (4.16) implies that V arw0,t0=0
uE∗c

[W E
c (T )] < V arw0,t0=0

uE∗d
[W E

d (T )].

Next, observing that log x ≥ [1− (1/x)] ,∀x > 1, and exp
{
y · log2 x

}
>
[
1 + y · log2 x

]
, ∀x, y > 0, it follows

that

exp
{
y · log2 x

}
− y

(
1− 1

x

)2

− 1 > 0, ∀x > 1, y > 0. (4.17)

Since E/
(
w0e

rT
)
> 1 by (4.1) andAT > 0, (4.17) implies that we also have V arw0,t0=0

uE∗c
[W E

c (T )] < V arw0,t0=0
uE∗cp

[
W E
cp (T )

]
.499

Finally, the conclusion V arw0,t0=0
uE∗cp

[
W E
cp (T )

]
≤ V arw0,t0=0

uE∗cd
[W E

cd (T )] follows from (4.13) and (4.8).500

Lemma 4.4 therefore shows that a hypothetical MV investor who is only narrowly interested in the mean and501

variance of terminal wealth and agnostic as to the philosophical differences underlying the various approaches502

to dynamic MV optimization would conclude the following: (i) the PCMV strategy always outperforms all503

the other strategies, (ii) the cTCMV strategy outperforms both the DOMV and CP strategies, and (iii) as504

expected based on the result of Lemma 4.2, the CP strategy outperforms the dTCMV strategy. Our analytical505

results therefore confirm and assist in explaining the conclusions from numerical tests regarding the relative506

performance of the PCMV and the CP strategies in Forsyth and Vetzal (2017b), as well as the performance507

comparison of the PCMV, cTCMV, dTCMV, and CP strategies presented in Forsyth and Vetzal (2019b).508

Remark 4.5. (Comparison of quantities other than mean and variance) The subsequent results include the com-509

parison of higher-order moments, median values, cumulative distribution functions and downside risk measures510

associated with the target terminal wealth distributions obtained under the various MV approaches. However,511

since the investor is performing MV optimization, a question might arise as to why aspects of the distribution512

other than mean and variance might be of importance to the investor. Furthermore, if other qualities of the513

distribution are important, should these be incorporated in the objective function?514

First, as observed in the Introduction, dynamic MV optimization appears to be very popular in institutional515

settings. Some recent applications include deriving optimal investment strategies for pension funds (for example,516

Forsyth and Vetzal (2019b); Forsyth et al. (2019); Hojgaard and Vigna (2007); Liang et al. (2014); Menoncin517

and Vigna (2013); Nkeki (2014); Sun et al. (2016); Vigna (2014); Wang and Chen (2018, 2019); Wu and Zeng518

(2015)), solving investment-reinsurance problems faced by insurance providers (Bi and Cai (2019); Chen et al.519

(2013); Li and Li (2013); Lin and Qian (2016); Zhao et al. (2016); Zhou et al. (2016)), optimization in corporate520

international investment (Long and Zeng (2016)) and asset-liability management (Peng et al. (2018); Wei and521

Wang (2017); Zhang et al. (2017); Zweng and Li (2011)). In all of these practical settings, it is highly likely that522

the investor and other stakeholders will be concerned with other aspects of the distribution in addition to its523

mean and variance. Not only might the investor have secondary risk and investment performance considerations524

(for example, other risk and return measures might have to be reported even though they are not explicitly525

included in the optimization), but external stakeholders such as regulators might require the investor to consider526

other aspects of the distribution (see for example Antolin et al. (2009)), including downside risk measures like527

expected shortfall and value-at-risk which are discussed below.528
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Of course, the investor might wish to augment the objective function to include aspects of the distribution529

other than mean and variance. Back et al. (2018) observes that there is evidence indicating that investors are530

concerned with higher-order moments, and portfolio optimization with higher-order moments has in fact been531

proposed (see for example Aracioglu et al. (2011); Jondeau and Rockinger (2006); Jurczenko et al. (2012); Lai532

et al. (2006); Maringer and Parpas (2009)). Furthermore, if downside risk is a major consideration, the investor533

might replace variance in the objective with a downside risk measure (see for example Forsyth (2020); Miller534

and Yang (2017)).535

However, as the MV objective remains by far the most popular objective function in the recent dynamic536

portfolio optimization literature, and (as noted above) is especially popular in applications in institutional set-537

tings, we correspondingly focus on comparing the terminal wealth distributions in the case of MV optimization,538

leaving other formulations for our future work.539

In the next two lemmas, we focus on the skewness and (excess) kurtosis of the target wealth distribution, since540

these are the quantities typically included in portfolio optimization problems that generalize MV optimization541

to include higher-order moments - see for example Jurczenko et al. (2012). We remind the reader, that as542

discussed in Goetzmann et al. (2002), dynamic trading strategies essentially contain embedded options. Hence543

it is useful to compare the higher moments of the various strategies.544

Lemma 4.6 compares the skewness3 of the target terminal wealth distributions.545

Lemma 4.6. (Comparison: Skewness) Assume that the conditions of Assumption 3.1 and Assumption 4.1 are546

satisfied. The skewness of the target wealth distributions, Skeww0,t0=0

uE∗j

[
W E
j (T )

]
, j ∈ {p, d, c, cd, cp}, are related547

as follows.548

Skeww0,t0=0
uE∗p

[
W E
p (T )

]
< 0 = Skeww0,t0=0

uE∗c
[W E

c (T )]549

= Skeww0,t0=0

uE∗d
[W E

d (T )] (4.18)550

< Skeww0,t0=0
uE∗cp

[
W E
cp (T )

]
(4.19)551

≤ Skeww0,t0=0

uE∗cd
[W E

cd (T )] . (4.20)552

553

Proof. From Lemma 3.6, it follows that554

Skeww0,t0=0
uE∗p

[
W E
p (T )

]
= −

(
eAT − 1

) 1
2
[(
eAT − 1

)
+ 3
]
< 0, ∀A, T > 0, (4.21)555

which together with Lemma 3.4 implies (4.18). It follows from Lemma 4.2 that556

Skeww0,t0=0

uE∗j

[
W E
j (T )

]
=

[
e(σ̂
E
j )

2

+ 2
]
·
[
e(σ̂
E
j )

2

− 1
] 1

2

, j ∈ {cd, cp} , (4.22)557

which implies (4.19), and together with (4.8) also implies (4.20).558

Before discussing the implications of Lemma 4.6, we present the comparison of the excess kurtosis of the559

target terminal wealth distributions.560

Lemma 4.7. (Comparison: Excess kurtosis) Assume that the conditions of Assumption 3.1 and Assumption 4.1561

are satisfied. The excess kurtosis of the target wealth distributions, Kurtw0,t0=0

uE∗j

[
W E
j (T )

]
, j ∈ {p, d, c, cd, cp},562

are related as follows.563

0 = Kurtw0,t0=0
uE∗c

[W E
c (T )] = Kurtw0,t0=0

uE∗d
[W E

d (T )] (4.23)564

<

Kurt
w0,t0=0
uE∗p

[
W E
p (T )

]
,

Kurtw0,t0=0
uE∗cp

[
W E
cp (T )

]
≤ Kurtw0,t0=0

uE∗cd
[W E

cd (T )] .
(4.24)565

Proof. (4.23) follows from Lemma 3.4. Noting the following factorization,566

e2AT − 4e−AT + 6e−3AT − 3e−4AT
567

= e−4AT
(
eAT − 1

)2 [(
eAT − 1

)4
+ 6

(
eAT − 1

)3
+ 15

(
eAT − 1

)2
+ 16

(
eAT − 1

)
+ 3
]
,568

3We use the standard definition of Pearson’s moment coefficient of skewness, which in this context is simply given by

Skeww0,t0
uE∗j

[
W Ej (T )

]
= Ew0,t0

uE∗j

[(
W Ej (T )− E

)3]
/

[
V arw0,t0

uE∗j

[
W Ej (T )

]]3/2
.
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Lemma 3.6 implies that the excess kurtosis of W E
p (T ) is always positive,569

Kurtw0,t0=0
uE∗p

[
W E
p (T )

]
=

(
eAT − 1

) [(
eAT − 1

)3
+ 6

(
eAT − 1

)2
+ 15

(
eAT − 1

)
+ 16

]
> 0. (4.25)570

In the case of CP and dTCMV, Lemma 4.2 implies that571

Kurtw0,t0=0

uE∗j

[
W E
j (T )

]
= e4(σ̂Ej )

2

+ 2e3(σ̂Ej )
2

+ 3e2(σ̂Ej )
2

− 6 > 0, j ∈ {cd, cp} , (4.26)572

which together with (4.8) implies (4.24).573

Considering the results of Lemma 4.6 and Lemma 4.7, we note that there is overwhelming evidence in574

the literature that investors prefer positive skewness under very general assumptions - see for example Agren575

(2006); Back et al. (2018); Barberis et al. (2016); Barberis and Huang (2008); Boyer et al. (2010); Goetzmann576

and Kumar (2008); Hagestande and Wittussen (2016); Heuson et al. (2016); Kumar (2009); Maringer and Parpas577

(2009); Mitton and Vorkink (2007); Omed and Song (2014), among many others. This appears to follow from an578

investor preference for the possibility of a large gain (Agren (2006)), which may not be entirely rational (Omed579

and Song (2014)). In contrast, the evidence on kurtosis preferences is far more complicated4 - see for example580

Haas (2007). However, when portfolio optimization with higher-order moments is performed (see for example581

Jurczenko et al. (2012)), kurtosis is usually minimized, suggesting that lower kurtosis is preferred (Maringer582

and Parpas (2009)).583

Based on these observations, the results of Lemma 4.6 and Lemma 4.7 indicate that the excess kurtosis and584

especially the negative skewness associated with the PCMV-optimal strategy are at least somewhat undesirable585

from the perspective of an investor concerned with higher-order moments. The desirable variance result re-586

ported in Lemma 4.4 for the PCMV strategy therefore comes at the cost of other potentially undesirable shape587

characteristics. These results therefore explain the numerical results reported in Forsyth and Vetzal (2019b)588

where the increased left tail risk of the PCMV strategy compared to the cTCMV and CP strategies is observed.589

We also observe that the dTCMV strategy results in the largest (positive) skewness, but is also associated590

with the largest variance and the largest excess kurtosis. The normally distributed terminal wealth of the591

DOMV and cTCMV strategies result in zero skewness and excess kurtosis, as expected. Therefore, for an592

investor concerned with the first four moments, the cTCMV strategy is always to be preferred to the DOMV593

strategy, since the associated target terminal wealth distributions have the same mean (Assumption 4.1), the594

same skewness and kurtosis (Lemma 4.6 and Lemma 4.7), but the cTCMV strategy has a lower variance (Lemma595

4.4).596

Finally, we note the interesting fact that the skewness and kurtosis results for the CP and dTCMV strategies597

depends on the target E , but this is not the case for PCMV, cTCMV or DOMV strategies. As discussed in598

Section 5, this has some interesting consequences.599

Given the preceding results on skewness and kurtosis, and the fact that as per Assumption 4.1 all the target600

distributions considered in this section have identical means E , the comparison of the median terminal wealth601

outcomes, given in the following lemma, is instructive. All else being equal, investors are expected to prefer602

larger median values (Forsyth et al. (2019)).603

Lemma 4.8. (Comparison: Medians) Assume that the conditions of Assumption 3.1 and Assumption 4.1 are604

satisfied. The medians of the target wealth distributions, Medw0,t0=0

uE∗j

[
W E
j (T )

]
, j ∈ {p, d, c, cd, cp}, are related605

as follows.606

Medw0,t0=0

uE∗cd
[W E

cd (T )] ≤ Medw0,t0=0
uE∗cp

[
W E
cp (T )

]
(4.27)607

< Medw0,t0=0

uE∗d
[W E

d (T )]608

= Medw0,t0=0
uE∗c

[W E
c (T )] (4.28)609

= E610

< Medw0,t0=0
uE∗p

[
W E
p (T )

]
. (4.29)611

612

Proof. Since Medw0,t0=0

uE∗j

[
W E
j (T )

]
= E · exp

{
− 1

2

(
σ̂Ej
)2}

for j ∈ {cd, cp}, results (4.27) and (4.28) follow from613

4As Haas (2007) notes, “while risk aversion implies that investors dislike large losses more than they like large profits, kurtosis
aversion requires that they dislike fat tails more than they like high peaks.”
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Lemma 3.4 and Lemma 4.2. Using Lemma 3.5 and (4.2), it can be shown that614

Medw0,t0=0
uE∗p

[
W E
p (T )

]
= E +

(
1− e− 1

2AT

eAT − 1

)(
E − w0e

rT
)
. (4.30)615

By Assumption 4.1,
(
E − w0e

rT
)
> 0, so (4.30) implies (4.29).616

On the basis of median terminal wealth, Lemma 4.8 shows that the investor would prefer the CP strategy617

to the dTCMV strategy, and prefer either the cTCMV and DOMV strategies to the CP strategy, while the618

PCMV strategy dominates all other strategies in terms of median wealth. This conclusion therefore provides619

an analytical explanation of the numerically calculated median results reported in Forsyth and Vetzal (2019b);620

Forsyth et al. (2019).621

The following lemma reports the analytical expressions of the cumulative distribution functions (CDFs) of622

W E
j (T ), for j ∈ {p, d, c, cd, cp}.623

Lemma 4.9. (CDFs: Target terminal wealth distributions) Assume that the conditions of Assumption 3.1 and624

Assumption 4.1 are satisfied . Then the CDFs of the target terminal wealth W E
j (T ), for j ∈ {p, d, c, cd, cp}, are625

as follows.626

Pw0,t0=0
uE∗p

[
W E
p (T ) ≤ w

]
627

=

Φ

(
− 1√

AT
· log

[
1−

(
1− e−AT

E − w0erT

)(
w − w0e

rT
)]
− 3

2

√
AT

)
, if w <

(
E − w0e

(r−A)T

1− e−AT

)
,

1 otherwise,

(4.31)628

and629

Pw0,t0=0

uE∗d
[W E

d (T ) ≤ w] = Φ

(
(w − E)

E − w0erT
·

√
2 (eAT − 1)

(eAT + 1)

)
, w ∈ R, (4.32)630

Pw0,t0=0
uE∗c

[W E
c (T ) ≤ w] = Φ

(
(w − E)

(E − w0erT )
·
√
AT

)
, w ∈ R, (4.33)631

Pw0,t0=0

uE∗j

[
W E
j (T ) ≤ w

]
= Φ

(
log (w/E) + 1

2

(
σ̂Ej
)2

σ̂Ej

)
, w > 0, j ∈ {cd, cp} , (4.34)632

where we recall that Φ (·) denotes the standard normal CDF.633

Proof. Follows from the results of Lemma 3.4 and Lemma (3.5), as well as the definitions (4.1) and (4.9).634

The remaining results of this section make use of the analytical expressions of the CDFs of W E
j (T ) given in635

Lemma 4.9. However, considering the results (4.31)-(4.34), it is clear that the distribution of the PCMV-optimal636

target terminal wealth W E
p (T ) in (4.31) is fundamentally different and far more analytically challenging than637

the distributions of the target terminal wealth under the other strategies.638

We leave further analysis of the PCMV target wealth distribution for our future work, and instead focus639

on the strategies j ∈ {d, c, cd, cp} in the subsequent analysis. The reason is that in practice it is simply far640

easier to use (4.31) to numerically calculate and compare desired quantities of interest involving the PCMV641

target wealth, rather than to derive analytical comparison results which would be significantly more complex642

and cumbersome to use. By contrast, as we show subsequently, we can derive a number of simple comparison643

results for strategies j ∈ {d, c, cd, cp}, which has very interesting and potentially far-reaching implications for644

the MV investor.645

We now recall the concept of first-order stochastic dominance by applying the definition given in Joshi and646

Paterson (2013) in our setting.647

Definition 4.10. (First-order stochastic dominance) W E
j (T ) has first-order stochastic dominance over W E

k (T )648

for some j, k ∈ {p, d, c, cd, cp} if649

Pw0,t0
uE∗j

[
W E
j (T ) ≤ w

]
≤ Pw0,t0

uE∗k
[W E

k (T ) ≤ w] , for all w, (4.35)650

and651

Pw0,t0
uE∗j

[
W E
j (T ) ≤ w

]
< Pw0,t0

uE∗k
[W E

k (T ) ≤ w] , for some w. (4.36)652
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We observe that Definition 4.10 is a very general result, since it implies that any investor preferring more653

wealth to less wealth (i.e. any investor with an increasing utility function) would prefer W E
j (T ) over W E

k (T ) if654

(4.35)-(4.36) are satisfied.655

Remark 4.11. (Practical challenges of applying Definition 4.10) While very general, the conditions of Definition656

4.10 can be impossible to satisfy in the case of non-trivial investment strategies, including the strategies consid-657

ered in this paper. In particular, note that (4.35) is required to hold for all values of w. Therefore, even when658

comparing two relatively simple strategies, for example (i) the constant proportion strategy defined in (2.12)659

and (ii) the strategy of regularly participating in a lottery with a sufficiently large payout (not conventionally660

considered an “investment strategy”, with good reason), condition (4.35) would be violated despite the fact that661

strategy (ii) is unlikely to be preferred by any reasonable investor over strategy (i). However, relaxing condition662

(4.35) by requiring that it holds only for values of w below a certain level is particularly useful, in that it would663

readily show that strategy (i) is to be preferred over strategy (ii) in this simple example.664

As a result of the observations in Remark 4.11, the weaker definition of stochastic dominance proposed by665

Atkinson (1987) is adapted to our setting, and is given by Definition 4.12.666

Definition 4.12. (Partial first-order stochastic dominance relative to a level `) Let j, k ∈ {p, d, c, cd, cp}. We667

define W E
j (T ) as having partial first-order stochastic dominance over W E

k (T ) relative to a level `, if668

Pw0,t0
uE∗j

[
W E
j (T ) ≤ w

]
≤ Pw0,t0

uE∗k
[W E

k (T ) ≤ w] , ∀w < `. (4.37)669

Note that Definition 4.12 focuses on “downside risk”, in that (4.37) is only concerned with the behavior of670

the CDFs below the given level `. In what follows, we typically set ` equal to the investor’s expected value target671

E . In other words, we assume that the investor is primarily concerned with the possibility of underperforming672

the expected value target, while considering the “upside” of outcomes above E as a satisfying windfall, but673

not critical for investment strategy comparison purposes. We argue that this treatment is reasonable given674

the popularity of dynamic MV strategies in institutional settings5, especially in the case of pension funds and675

insurance companies who are likely to take a keen interest in avoiding the underperformance of expectations.676

Using Definition 4.12, the following theorem gives one of the key results of this paper.677

Theorem 4.13. (Partial first-order stochastic dominance for underperforming expectations) Assume that the678

conditions of Assumption 3.1 and Assumption 4.1 are satisfied. We have the following relationships between the679

CDFs of W E
j (T ), for j ∈ {d, c, cd, cp}.680

Pw0,t0=0
uE∗c

[W E
c (T ) ≤ w] < Pw0,t0=0

uE∗d
[W E

d (T ) ≤ w] , ∀w < E , (4.38)681

and682

Pw0,t0=0
uE∗cp

[
W E
cp (T ) ≤ w

]
≤ Pw0,t0=0

uE∗cd
[W E

cd (T ) ≤ w] , ∀w < E . (4.39)683

Furthermore, there exists a unique value of terminal wealth w0
cp;c ∈ (0, E), with the upper bound684

w0
cp;c <

E − w0e
rT

log (E/w0)− rT
, (4.40)685

such that686

Pw0,t0=0
uE∗cp

[
W E
cp (T ) ≤ w

]
< Pw0,t0=0

uE∗c
[W E

c (T ) ≤ w] , ∀w < w0
cp;c, (4.41)687

Pw0,t0=0
uE∗c

[W E
c (T ) ≤ w] < Pw0,t0=0

uE∗cp

[
W E
cp (T ) ≤ w

]
, ∀w ∈

(
w0
cp;c, E

]
. (4.42)688

Proof. Result (4.38) follows from (4.32)-(4.33), the relationship (4.16), and the fact that Φ is strictly increasing.689

To prove (4.39), we first note that690

x log (z)− 1

2
xy2 − 1

2
x2y ≤ 0, ∀x ≥ 0, y ≥ 0, z ≤ 1.691

The result (4.39) follows from setting y = σ̂Ecp, x = σ̂Ecd − σ̂Ecp (so that x ≥ 0, by (4.8)) and z = w/E , noting

the definition (4.34) and using the fact that Φ is strictly increasing. Next, let x0
cp;c be the unique root in the

5See for example Alia et al. (2016); Bi and Cai (2019); Liang et al. (2014); Liang and Song (2015); Lin and Qian (2016); Sun
et al. (2016); Vigna (2014); Wu and Zeng (2015), among many others.
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interval (0, 1) of the function x→ fpc;c (x; c1, c2), defined by

fpc;c (x; c1, c2) =

[
c1
c2

]
· log (x)−

[
c1e

c2

ec2 − 1

]
· (x− 1) +

1

2
c2, x ∈ (0, 1] , (c1 > 0, c2 > 0) .

Then (4.40)-(4.42) follows by setting w0
cp;c = E · x0

cp;c, c1 = AT and c2 = [log (E/w0)− rT ].692

The results of Theorem 4.13 are illustrated in Figure 4.2 and Figure 4.3 below, and provide theoretical693

support for the qualitatively similar observations regarding the numerical results6 presented in Forsyth and694

Vetzal (2019b). We make the following observations regarding our analytical results.695

First, subject to the stated assumptions, any investor who is agnostic about the philosophy underlying the696

different MV optimization approaches and simply concerned about the risk of underperforming the expectation697

E , would never choose the DOMV or the dTCMV strategies, since better results can be obtained using the698

cTCMV or the CP strategies, respectively. Note that, as in the case of (4.38), we typically have strict inequality699

in (4.39) as well, since in typical applications it is the case that σ̂Ecd > σ̂Ecp in (4.8).700

Second, (4.41)-(4.42) indicates that the CP strategy is preferred to the cTCMV strategy if we set the level701

` ≤ w0
cp;c in Definition 4.12. Note that the upper bound (4.40) on w0

cp;c is strictly (and often substantially)702

less than E , so this bound can be very useful for a quick assessment depending on the critical value of w under703

consideration in (4.41)-(4.42). This behavior is to be expected, since wealth can assume negative values in the704

case of the cTCMV strategy but not in the case of the CP strategy (see Lemma 3.4). However, the skewness705

results of the target wealth distribution in the case of the CP strategy (see Lemma 4.6 and Lemma 4.8) means706

that it starts (in aggregate probability) underperforming the cTCMV strategy fairly quickly as E is approached707

from below - see Figure 4.3.708

For illustrative purposes, Figure 4.3 also includes the simulated CDF of the PCMV target terminal wealth709

distribution. Compared to the CP and cTCMV strategies, it is clear that the negative skewness (Lemma710

4.6) and excess kurtosis (Lemma 4.7) in this case combines to imply that the PCMV-optimal strategy holds711

substantial downside risks, as noted above.712
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Figure 4.2: Illustration of the results of Theorem 4.13: CDFs of W E
j (T ), j ∈ {d, c, cd, cp}, all with the same

expected value E = 250. w0 = 100, t0 = 0, T = 10, other parameters as in Section 5, w0e
rT = 106.43.

713

714

Up to this point, we have only focused on the expectation E of the target terminal wealth distribution.715

However, the expectation conditional on W E
j (T ) being below the risk-free investment outcome w0e

rT or sim-716

ply conditional on underperforming the expectation target E is also likely to be of particular interest to the717

investor. The following lemma summarizes the conditional expectation results for the investment strategies718

j ∈ {d, c, cd, cp}.719

Lemma 4.14. (Conditional expectations of target terminal wealth distributions) Assume that the conditions720

of Assumption 3.1 and Assumption 4.1 are satisfied, and let φ (·) and Φ (·) be the probability density function721

6The numerical results in Forsyth and Vetzal (2019b) does not include the DOMV-optimal strategy.
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Figure 4.3: Illustration of the results of Theorem 4.13: CDFs of W E
j (T ), j ∈ {p, c, cp}, all with the same

expected value E = 250. w0 = 100, t0 = 0, T = 10, other parameters as in Section 5. The value of w0
cp;c in

(4.41)-(4.42) is indicated in both figures.

and CDF of the standard normal distribution, respectively. The conditional expectations of W E
j (T ), given that722

W E
j (T ) ≤ w, for j ∈ {d, c, cd, cp}, are as follows.723

Ew0,t0=0

uE∗d
[W E

d (T )|W E
d (T ) ≤ w] = E −

√
(eAT + 1)

2 (eAT − 1)
·
(
E − w0e

rT
) φ( (w−E)

E−w0erT
·
√

2(eAT−1)
(eAT +1)

)
Φ
(

(w−E)
E−w0erT

·
√

2(eAT−1)
(eAT +1)

) , (4.43)724

Ew0,t0=0
uE∗c

[W E
c (T )|W E

c (T ) ≤ w] = E − 1√
AT
·
(
E − w0e

rT
) φ( (w−E)

E−w0erT
·
√
AT
)

Φ
(

(w−E)
E−w0erT

·
√
AT
) , (4.44)725

Ew0,t0=0

uE∗j

[
W E
j (T )

∣∣W E
j (T ) ≤ w

]
= E ·

Φ

(
log(w/E)− 1

2 (σ̂Ej )
2

σ̂Ej

)
Φ

(
log(w/E)+ 1

2 (σ̂Ej )
2

σ̂Ej

) , j ∈ {cd, cp} . (4.45)726

Proof. Follows from Lemma 3.4 and Assumption 4.1.727

We now use the results of Lemma 4.14 to compare the expectations of the target terminal wealth distributions728

conditional on W E
j (T ) ≤ w, for any w < E , where j ∈ {d, c, cd, cp}. The results, given in Lemma 4.15, are729

intuitively expected given the results up to this point.730

Lemma 4.15. (Comparison: Conditional expectations for underperforming target E) Assume that the condi-731

tions of Assumption 3.1 and Assumption 4.1 are satisfied. The conditional expected values of W E
j (T ), conditional732

on W E
j (T ) ≤ w, where w < E and j ∈ {d, c, cd, cp}, satisfy the following.733

Ew0,t0=0

uE∗d
[W E

d (T )|W E
d (T ) ≤ w] < Ew0,t0=0

uE∗c
[W E

c (T )|W E
c (T ) ≤ w] , ∀w < E , (4.46)734

Ew0,t0=0

uE∗cd
[W E

cd (T )|W E
cd (T ) ≤ w] ≤ Ew0,t0=0

uE∗cp

[
W E
cp (T )

∣∣W E
cp (T ) ≤ w

]
, ∀w ∈ (0, E) . (4.47)735

Proof. The inverse Mills ratio λ (x) := φ (x) /Φ (x) is strictly decreasing for all x ∈ R, with λ′ (x) ∈ (−1, 0) ,∀x.736

Since λ′ (x) = −λ (x) [x+ λ (x)] and λ (x) > 0 for all x, we have in particular, x + λ (x) > 0 for all x < 0.737

Therefore, we have738

d

dx

[
1

x
λ (x)

]
< − 1

x2
[x+ λ (x)] < 0, ∀x < 0, (4.48)739

so that the function 1
xλ (x) is strictly decreasing for all x < 0. Considering (4.43) and (4.44), together with the740

requirement that w < E and the inequality (4.16), this is sufficient to conclude (4.46). To prove (4.47), we fix741
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some constant c ≥ 0 and consider the auxiliary function x→ fΦ (x; c) defined by742

fΦ (x; c) =
Φ
(
− c
x −

1
2x
)

Φ
(
− c
x + 1

2x
) , x ≥ 0, (c ≥ 0) . (4.49)743

We observe that fΦ ≥ 0, and f ′Φ (x; c) ≤ 0 if and only if744 [
c

x2
− 1

2

]
· λ
(
− c
x
− 1

2
x

)
≤

[
c

x2
+

1

2

]
· λ
(
− c
x

+
1

2
x

)
, x ≥ 0, (c ≥ 0) . (4.50)745

If
[
c
x2 − 1

2

]
≤ 0, then (4.50) holds since λ (x) is positive and decreasing for all x ∈ R. If

[
c
x2 − 1

2

]
> 0,746

or equivalently c > 1
2x

2, the inequality (4.50) also holds since y → 1
yλ (y) ,∀y < 0 is decreasing as a result of747

(4.48). Therefore, since fΦ (x; c) is decreasing in x ≥ 0 for any fixed c ≥ 0, the relationship (4.8) and expressions748

(4.45) imply the result (4.47).749

The results of Lemma 4.15, while not making as general a statement as Theorem 4.13, are arguably of more750

practical relevance to investors since its conclusions are simple and intuitive to interpret. Informally, (4.46)-751

(4.47) simply states that when the investor is primarily concerned with outcomes underperforming the target752

E , the DOMV and dTCMV strategies always lead to worse underperformance on average than the cTCMV and753

the CP strategies, respectively.754

Note that Lemma 4.15 does not also provide a comparison of the conditional expectations in the case of755

CP and cTCMV. The reason is that such a comparison depends on the process and investment parameters in756

a fairly complicated way, and we instead explore the relationship between CP and cTCMV outcomes in more757

detail in the αVaR results below. Here we simply observe that since the cTCMV strategy can result in negative758

wealth outcomes, we do know that for some sufficiently small value7 of wδ > 0 we have759

Ew0,t0=0
uE∗c

[W E
c (T )|W E

c (T ) ≤ w] < Ew0,t0=0
uE∗cp

[
W E
cp (T )

∣∣W E
cp (T ) ≤ w

]
for w ∈ (0, wδ] , (4.51)760

which turns out to be sufficient to explain the numerical results observed in Section 5.761

We introduce the following definition of the αVaR and αCVaR, which has been adapted from the definition762

given in Forsyth et al. (2019) to our setting. Note that depending on application, slightly different formulations763

are used in literature (for example, focusing on the “loss distribution” instead - see Miller and Yang (2017);764

Rockafellar and Uryasev (2002)), but all these definitions have same qualitative content.765

Definition 4.16. (αVaR and αCVaR) Fix a level α ∈ (0, 1). The Value-at-Risk at level α, or αVaR, is defined766

as the terminal wealth value αVaRw0,t0
u∗j

, where767

αVaRw0,t0
u∗j

:= wα, such that α ≡ Pw0,t0
uE∗j

[
W E
j (T ) ≤ wα

]
, j ∈ {p, d, c, cd, cp} . (4.52)768

The Conditional Value-at-Risk (also known as the Expected Shortfall) at level α, or αCVaR, is the expected769

value of terminal wealth W E
j (T ) given that it is below the level of the associated αVaR. In other words,770

αCVaRw0,t0
u∗j

:= Ew0,t0
u∗j

[
W E
j (T )

∣∣W E
j (T ) ≤ αVaRw0,t0

u∗j

]
, j ∈ {p, d, c, cd, cp} . (4.53)771

Note that according to Definition 4.16, all else being equal, smaller values of αVaRw0,t0
u∗j

and αCVaRw0,t0
u∗j

772

represent a worse outcome for the investor than larger values. This qualitative interpretation is of course the773

opposite in those examples in literature where these quantities are defined in terms of the loss distribution.774

Typical values of α used in Definition 4.16 are fairly small, for example α = 0.05 (5%) or α = 0.01 (1%).775

However, the following lemma compares the αVaR results for any choice of α ∈ (0, 0.5), since this interval is776

wide enough to ensure that all likely values of interest of α will be included.777

Lemma 4.17. (Comparison: αVaR) Assume that the conditions of Assumption 3.1 and Assumption 4.1 are778

satisfied. Fix a level α ∈ (0, 0.5). The following comparison results hold for αVaRw0,t0=0
u∗j

, j ∈ {d, c, cd, cp}.779

αVaRw0,t0=0

uE∗d
< αVaRw0,t0=0

uE∗c
, ∀α ∈ (0, 0.5) , (4.54)780

αVaRw0,t0=0

uE∗cd
≤ αVaRw0,t0=0

uE∗cp
, ∀α ∈ (0, 0.5) . (4.55)781

7The value of wδ should be sufficiently small in context of all the investment and process parameters. For example, in Section
5 we give an example where wδ > w0erT .
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Proof. Follows from the results of Theorem 4.13. However, a direct proof is instructive due to the key role782

played by αVaR in the risk management literature (Jorion (2009)). We start by noting that the definition783

(4.52) together with the results of Lemma 4.9 implies that784

αVaRw0,t0=0

uE∗d
= E +

√
(eAT + 1)

2 (eAT − 1)

(
E − w0e

rT
)
· Φ−1 (α) , (4.56)785

αVaRw0,t0=0
uE∗c

= E +
1√
AT

(
E − w0e

rT
)
· Φ−1 (α) , (4.57)786

αVaRw0,t0=0

uE∗j
= E · exp

{
σ̂Ej · Φ−1 (α)− 1

2

(
σ̂Ej
)2}

, j ∈ {cd, cp} . (4.58)787

The result (4.54) therefore follows from (4.56)-(4.57) and the inequality (4.16), together with the fact that788

Φ−1 (α) < 0, ∀α < 0.5. Next, we observe that if σ̂Ecp = σ̂Ecd, then it is clear that αVaRw0,t0=0

uE∗cd
= αVaRw0,t0=0

uE∗cp
.789

Assume therefore that σ̂Ecp < σ̂Ecd. Then (4.58) implies that αVaRw0,t0=0

uE∗cd
< αVaRw0,t0=0

uE∗cp
for all α > 0 such that790

α < Φ
(

1
2

[
σ̂Ecd + σ̂Ecp

])
. Observing that 0.5 < Φ

(
1
2

[
σ̂Ecd + σ̂Ecp

])
, the result (4.55) also holds.791

Given the results of Theorem 4.13, Lemma 4.17 as well as the fact that the αVaR might be of particular792

interest to investors, we analyze the αVaR results for the CP and cTCMV strategies in more detail. To this793

end, we give the following simple initial result.794

Lemma 4.18. (Comparison: αVaR for CP and cTCMV, a simple condition) Assume that the conditions of795

Assumption 3.1 and Assumption 4.1 are satisfied. Then796

αVaRw0,t0=0
uE∗c

< αVaRw0,t0=0
uE∗cp

, if α < Φ

(
− E

(E − w0erT )
·
√
AT

)
. (4.59)797

Proof. By Lemma 3.4, W E
c (T ) can assume negative values, but W E

cp (T ) cannot. Therefore, if α is chosen such798

that αVaRw0,t0=0
u∗c

< 0, then it necessarily follows that αVaRw0,t0=0
u∗c

< αVaRw0,t0=0
u∗cp

. The condition on α in799

(4.59) follows from the expression for αVaRw0,t0=0
uE∗c

in (4.57), ensuring that αVaRw0,t0=0
u∗c

< 0.800

The result of Lemma 4.18 is useful in that it is easy to verify, and if α is small the condition (4.59) is often801

easily satisfied; for example, it is sufficient to explain the 1%VaR results for CP and cTCMV reported in Section802

5. However, if we consider more general values for α ∈ (0, 0.5), the comparison results of αVaR for CP and803

cTCMV are more involved, as the following lemma shows. Specifically, we give two conditions on the process804

and investment parameters, either of which can be used to obtain more specific comparison results regarding805

αVaR for CP and cTCMV.806

Lemma 4.19. (Comparison: αVaR for CP and cTCMV) Assume that the conditions of Assumption 3.1 and807

Assumption 4.1 are satisfied. Furthermore, assume that the wealth process (2.1) and investment parameters are808

such that either Condition C1 or Condition C2 is satisfied, where809

C1 : log2

(
E

w0erT

)
· exp

{
− 1

2AT
log2

(
E

w0erT

)}
>

2

5

√
AT

(
E − w0e

rT

E

)
, (4.60)810

C2 :
1√
AT

[
log

(
E
w0

)
− rT

]2

· exp

{
− 1

2AT

[
log

(
E
w0

)
− rT

]2
}
>

2

5

(
E − w0e

rT
)

E
. (4.61)811

Then there exists a unique value αcp;c ∈ (0, 0.5) such that812

αVaRw0,t0=0
uE∗c

< αVaRw0,t0=0
uE∗cp

, ∀α ∈ (0, αcp;c) , (4.62)813

αVaRw0,t0=0
uE∗cp

< αVaRw0,t0=0
uE∗c

, ∀α ∈ (αcp;c, 0.5) , (4.63)814

while the difference
[
αVaRw0,t0=0

uE∗c
− αVaRw0,t0=0

uE∗cp

]
attains a maximum at α∗ ∈ (αcp;c, 1) given by815

α∗ = Φ

( √
AT

log (E/w0)− rT
· log

(
1− E

w0erT

log (E/w0)− rT

)
+

1

2
· log (E/w0)− rT√

AT

)
. (4.64)816

Proof. From Lemma 4.18, we know that αVaRw0,t0=0
u∗c

< αVaRw0,t0=0
u∗cp

provided α is sufficiently small. From the817
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results (4.57)-(4.58), it is clear that αVaRw0,t0=0
u∗cp

< αVaRw0,t0=0
u∗c

if α = 0.5, and by continuity therefore also for818

some ε-neighborhood of α = 0.5. It is straightforward to show that either of the relatively simple conditions819

(4.60)-(4.61) are sufficient to ensure that the function α→
[
αVaRw0,t0=0

uE∗c
− αVaRw0,t0=0

uE∗cp

]
is strictly concave, so820

that the results (4.62)-(4.64) follow.821

The results of Lemma 4.19 are useful in providing an explanation of the numerical results presented in822

Section 5, where we encounter a particular example where both conditions (4.60)-(4.61) are satisfied and αcp;c ∈823

(0.05, 0.1).824

Given the recent interest in using αCVaR as a risk measure in dynamic portfolio optimization applications825

(see for example Forsyth (2020); Miller and Yang (2017)), the following lemma compares the αCVaR results826

for investment strategies j ∈ {d, c, cd, cp}, for any choice α ∈ (0, 1). We highlight that while the conditional827

expectation comparison (Lemma 4.15) compares the results below a fixed wealth level regardless of the associated828

percentile, the αCVaR comparison in Lemma 4.20 considers the conditional expectations of wealth outcomes829

below a fixed percentile (see Definition 4.16).830

Lemma 4.20. (Comparison: αCVaR) Assume that the conditions of Assumption 3.1 and Assumption 4.1 are831

satisfied. Fix a level α ∈ (0, 1). The following comparison results hold for αCVaRw0,t0=0
u∗j

, j ∈ {d, c, cd, cp}.832

αCVaRw0,t0=0

uE∗d
< αCVaRw0,t0=0

uE∗c
, ∀α ∈ (0, 1) , (4.65)833

αCVaRw0,t0=0

uE∗cd
≤ αCVaRw0,t0=0

uE∗cp
, ∀α ∈ (0, 1) . (4.66)834

Proof. Given Definition 4.16, the results of Lemma 4.15 and the results for αVaRw0,t0=0

uE∗j
in (4.56)-(4.58), we835

have the following expressions for αCVaRw0,t0=0
u∗j

, j ∈ {d, c, cd, cp}:836

αCVaRw0,t0=0

uE∗d
= E −

√
(eAT + 1)

2 (eAT − 1)
·
(
E − w0e

rT
)
·
φ
(
Φ−1 (α)

)
α

, (4.67)837

αCVaRw0,t0=0
uE∗c

= E − 1√
AT

(
E − w0e

rT
)
·
φ
(
Φ−1 (α)

)
α

(4.68)838

αCVaRw0,t0=0

uE∗j
= E ·

Φ
(
Φ−1 (α)− σ̂Ej

)
α

, j ∈ {cd, cp} . (4.69)839

Since φ (x) > 0,∀x and α > 0, the result (4.65) follows from the inequality (4.16) together with (4.67)-(4.68).840

Secondly, (4.66) follows from (4.69) together with (4.8) and the fact that Φ is strictly increasing.841

The results of Lemma 4.20 are intuitively expected given the results of Lemma 4.15 and Lemma 4.17. We do842

not provide a comparison of αCVaR in the case of CP and cTCMV, since such a comparison too cumbersome843

to be of much practical use - this can be seen by comparing the requirement of Definition 4.16 with the αVaR844

results in Lemma 4.19.845

In the next section, we present numerical results illustrating the analytical results presented in this section.846

5 Numerical results847

To obtain the numerical results presented in this section, we assume a fixed initial wealth of w0 = 100 at time

t0 ≡ 0, and an investment time horizon of T = 10 years. The wealth dynamics (2.1) is parameterized using the

same calibration data and calibration techniques as detailed in Dang and Forsyth (2016); Forsyth and Vetzal

(2017a), which we now briefly summarize. In terms of the empirical data sources, the risky asset data are

based on inflation-adjusted daily total return data (including dividends and other distributions) for the period

1926-2014 from the CRSP’s VWD index8, which is a capitalization-weighted index of all domestic stocks on

major US exchanges. The risk-free rate is based on 3-month US T-bill rates9 over the period 1934-2014, and

has been augmented with the NBER’s short-term government bond yield data10 for 1926-1933 to incorporate

the impact of the 1929 stock market crash. Prior to calculations, all time series were inflation-adjusted using

8Calculations were based on data from the Historical Indexes 2015©, Center for Research in Security Prices (CRSP), The
University of Chicago Booth School of Business. Wharton Research Data Services was used in preparing this article. This service
and the data available thereon constitute valuable intellectual property and trade secrets of WRDS and/or its third party suppliers.

9Data has been obtained from See http://research.stlouisfed.org/fred2/series/TB3MS.
10Obtained from the National Bureau of Economic Research (NBER) website, http://www.nber.org/databases/macrohistory/contents/chapter13.html.
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data from the US Bureau of Labor Statistics11. Standard maximum likelihood techniques are used to calibrate

the GBM dynamics - see Dang and Forsyth (2016); Forsyth and Vetzal (2017a) for more information regarding

the relevant details. As a result, we obtain the following parameters for use throughout this section,

µ = 0.0816, σ = 0.1863, r = 0.00623. (5.1)

Table 5.1 presents the numerical results on various aspects of the target terminal wealth distributions for848

two expected value targets, E = 125 and E = 250. Note that investing all wealth in the risk-free asset over the849

entire time period [0, T ] results in a terminal wealth of w0e
rT = 106.43. Therefore, the strategies associated850

with the target E = 125 are quite risk-averse, but not to the extent that all wealth is invested in the risk-free851

asset. In contrast, a target of E = 250 requires a substantial investment in the risky asset during at least a852

significant portion of the investment time period.853

We make the following observations regarding the results in Table 5.1:854

� The role of the expected value target in shaping the results is worth highlighting. Specifically, the larger855

the expected value target, the larger the investment required in the risky asset, which magnifies the856

differences between the investment strategies, as expected. As a result, for purposes of clarity we focus857

mostly on the results for the target E = 250 in the subsequent discussion.858

� The first-order stochastic dominance results of Theorem 4.13 are illustrated quite dramatically in Table859

5.1. It is clear from the results that, subject to the stated assumptions under which these results were860

derived, no rational investor purely interested in the terminal wealth distributions would pursue the861

DOMV-optimal or the dTCMV-optimal strategies, since the cTCMV-optimal and CP strategies perform862

respectively much better.863

� The performance of the dTCMV-optimal strategy can be exceptionally poor. Of course, while this has been864

established convincingly by the results presented in Section 4, the sheer degree of the underperformance865

can be quite dramatic, as the case of E = 250 highlights. Observe for example that in this case, the866

standard deviation of W E
cd (T ) is more than double that of W E

cp (T ), about four times that of W E
c (T ), and867

more than six times that of W E
p (T ). The median of W E

cd (T ) is also exceptionally poor, and there is a 45%868

chance that W E
cd (T ) is below w0e

rT . Arguably the only redeeming feature of W E
cd (T ) is the role of its869

lognormal distribution in limiting the downside tail risk in the most extreme cases; this is illustrated by870

the 1%VaR and 1%CVaR results. However, the same can be said of the corresponding CP strategy, which871

as per Theorem 4.13 performs much better overall the dTCMV strategy. Since the poor performance of872

the dTCMV strategy has also been confirmed in Forsyth and Vetzal (2019b) using numerical experiments873

for the case where multiple realistic investment constraints are applied simultaneously, the popularity874

of applying the dTCMV approach in institutional settings in the literature (see for example Bi and Cai875

(2019); Li and Li (2013),Liang et al. (2014); Sun et al. (2016); Wang and Chen (2018, 2019); Liang et al.876

(2014); Sun et al. (2016); Wang and Chen (2018, 2019); Long and Zeng (2016); Peng et al. (2018); Zhang877

et al. (2017)) raises some concerns.878

� The cTCMV-optimal strategy performs very well compared to the CP strategy by a number of the879

measures considered, for example standard deviation and the probability that the terminal wealth will fall880

below w0e
rT or the target E . However, the CP strategy performs better where the extreme left tail of the881

distribution is concerned (for example, the αVaR and αCVaR for α ∈ {1%, 5%}), which agrees with the882

numerical results presented in Forsyth and Vetzal (2019b), and also confirms the analytical conclusions of883

Section 4, especially Theorem 4.13.884

� The PCMV-optimal strategy is the best performing strategy in terms of the standard deviation (Lemma885

4.4) and also in terms of the median wealth (Lemma 4.8). However, as observed in Forsyth and Vetzal886

(2019b), this performance comes at the cost of increased left tail risk, as confirmed by our negative887

skewness and excess kurtosis results for the distribution of W E
p (T ) - see Lemma 4.6 and Lemma 4.7. The888

implication in this example is that the resulting 1%VaR and 1%CVaR is the worst of all the strategies889

considered. However, this is only true for very extreme tail outcomes, since already the 5% VaR and890

5%CVaR associated with W E
p (T ) are the best of all the strategies considered.891

Finally, we note that while the numerical results presented in Table 5.1 illustrate the analytical results of892

Section 4, and are therefore also subject to Assumption 3.1 and Assumption 4.1, the qualitative observations893

11The annual average CPI-U index, which is based on inflation data for urban consumers, were used - see http://www.bls.gov.cpi
.
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regarding the relative performance of the different strategies are in agreement with the observations from the894

relevant numerical results available in the literature. In particular, we refer the reader to Forsyth and Vetzal895

(2017b, 2019a,b); Forsyth et al. (2019), where the portfolio optimization problems are solved numerically subject896

to multiple realistic investment constraints being applied simultaneously. This illustrates that our analytical897

results, while obtained under stylized assumptions regarding trading in the underlying market, are nevertheless898

of practical use in explaining the performance of dynamic MV-optimal investment strategies in a realistic setting.899

Table 5.1: Numerical results related to the target terminal wealth distributions for two expected value targets,
E = 125 and E = 250. Initial wealth w0 = 100, t0 = 0 and T = 10 years. “Parameter” reports the values
of γEp , ρEd, ρ

E
c , ρ

E
cd/ (2w0) and θEcp respectively for each strategy achieving the stated expected value target E as

per (4.2)-(4.6). “Prob.≤ k” refers to the probability Pw0,t0=0

uE∗j

[
W E
j (T ) ≤ k

]
, and “CExp.≤ k” to the conditional

expectation Ew0,t0=0

uE∗j

[
W E
j (T )

∣∣W E
j (T ) ≤ k

]
, respectively, for j ∈ {p, d, c, cd, cp}. Numbers rounded to nearest

integer except where doing so would obscure relevant information.

Quantity Target expected value E = 125 Target expected value E = 250

PCMV DOMV cTCMV dTCMV CP PCMV DOMV cTCMV dTCMV CP

Parameter 259 0.111 0.044 0.041 0.213 569 0.014 0.006 0.001 1.133

Mean 125 125 125 125 125 250 250 250 250 250

Median 127 125 125 124 124 269 250 250 123 200

Stdev 9 16 15 16 16 71 124 112 444 187

Skewness -15 0 0 0.4 0.4 -15 0 0 11 3

Ex.Kurtosis 1042 0 0 0.3 0.3 1042 0 0 487 15

1% VaR 91 88 91 92 93 -15 -38 -11 8 42

5% VaR 113 99 101 101 101 159 47 65 17 67

10% VaR 119 105 106 105 106 206 92 106 27 85

1% CVaR 63 82 86 89 89 -228 -80 -49 5 34

5% CVaR 97 92 95 96 96 37 -5 19 11 52

10% CVaR 107 97 100 99 100 112 33 53 17 64

Prob.≤ w0erT 3% 12% 10% 11% 11% 3% 12% 10% 45% 17%

Prob.≤ E 26% 50% 50% 53% 53% 26% 50% 50% 72% 63%

CExp.≤ w0erT 87 99 100 100 100 -45 45 53 52 77

CExp. ≤ E 117 112 113 113 113 187 151 160 95 146

900

6 Conclusion901

In this paper, we compared the terminal wealth distributions obtained by implementing the optimal investment902

strategies associated with the different approaches to dynamic MV optimization available in the literature. In903

particular, we considered the pre-commitment MV (PCMV) approach, the dynamically optimal MV (DOMV)904

approach, as well as the time-consistent MV approach with a constant risk aversion parameter (cTCMV) and905

wealth-dependent risk aversion parameter (dTCMV), respectively. For comparison and benchmarking purposes,906

a constant proportion (CP) strategy was also considered.907

We introduced some simplifying assumptions regarding the underlying market in order to analytically com-908

pare the resulting terminal wealth distributions on a fair basis. Specifically, we assumed that the investor is909

agnostic about the philosophical differences underlying the various approaches to MV optimization, and simply910

wishes to achieve a chosen expected value of terminal wealth regardless of the approach. We also assumed that911

the investor faced no leverage constraints or transaction costs, and could trade continuously in the market.912

Subject to these assumptions, we presented first-order stochastic dominance results proving that for wealth913

outcomes below the chosen expected value target, the cTCMV strategy always outperforms the DOMV strategy,914

and the CP strategy always outperforms the dTCMV strategy. We also show that the dTCMV strategy performs915

exceptionally poorly among the strategies considered according to a number of criteria, including variance916

and median of terminal wealth, raising concerns regarding the popularity of the dTCMV in the literature917

applying this strategy in institutional settings. Furthermore, we showed that the PCMV-optimal terminal918

wealth distribution has fundamentally different characteristics than any of the other strategies, including some919

characteristics which may be desirable (higher median, lower standard deviation) but also some which may be920

less desirable (large negative skewness and excess kurtosis).921

24



Our analytical results, while derived under simplifying assumptions, nonetheless proves effective in explaining922

the numerical results incorporating realistic investment constraints currently available in the literature923

Finally, we leave further analysis of the PCMV-optimal target terminal wealth distribution, extension of our924

results to solutions for multiple risky assets, and treatment of alternative model specifications (e.g. jumps in925

the risky asset process and alternative model specifications) for our future work.926
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