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Abstract. This paper introduces FourNet, a novel single-layer feed-forward neural network
(FFNN) method designed to approximate transition densities for which closed-form expressions of
their Fourier transforms, i.e. characteristic functions, are available. A unique feature of FourNet
lies in its use of a Gaussian activation function, enabling exact Fourier and inverse Fourier trans-
formations and drawing analogies with the Gaussian mixture model. We mathematically establish
FourNet’s capacity to approximate transition densities in the L2-sense arbitrarily well with finite
number of neurons. The parameters of FourNet are learned by minimizing a loss function derived
from the known characteristic function and the Fourier transform of the FFNN, complemented by a
strategic sampling approach to enhance training. We derive practical bounds for the L2 estimation
error and the potential pointwise loss of nonnegativity in FourNet for d-dimensions, d ≥ 1, high-
lighting its robustness and applicability in practical settings. FourNet’s accuracy and versatility are
demonstrated through a wide range of dynamics common in quantitative finance, including Lévy pro-
cesses and the Heston stochastic volatility models-including those augmented with the self-exciting
Queue-Hawkes jump process.
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1 Introduction The application of machine learning, especially deep learning, in
quantitative finance has garnered considerable interest. Recent breakthroughs in com-
putational resources, data availability, and algorithmic enhancements have encouraged
the adoption of machine learning techniques in various quantitative finance domains.
These include, but are not limited to, portfolio optimization [33, 55], asset pricing
[57, 4], model calibration and option pricing [52, 34, 24], solution of high-dimensional
partial differential equations [22, 26, 56, 50], valuation adjustments [16, 19, 20], as
well as aspects of stochastic control and arbitrage-free analysis [27, 46, 9].

Transition (probability) density functions, which are crucial in quantitative fi-
nance due to their primary role in governing the dynamics of stochastic processes,
often do not admit a closed-form expression. Consequently, the utilization of nu-
merical methods for estimating these density functions becomes necessary. Classi-
cal methods include kernel density estimation, as referenced in [43, 48, 18]. Yet,
surprisingly, the development of neural network (NN) methods for estimating these
transition probability density functions is significantly underdeveloped. While some
existing NN strategies tackle the associated high-dimensional Kolmogorov partial dif-
ferential equations (PDEs) using deep NNs, these are primarily black-box in nature.
Such methodologies have seen applications in option pricing ([52, 51]) and general Itô
diffusions ([21]). While these methods are generally effective and versatile, they come
with a major limitation: their model-dependent nature necessitates a constant refor-
mulation of the Kolmogorov PDEs for different stochastic models. In addition, the
inherent complexity associated with deploying NNs to solve PDEs might deter their
practical application. Furthermore, a notable gap in the NN literature, particularly
regarding transition density function estimation, is the limited analysis of estimation
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error and potential compromise of non-negativity.
In quantitative finance, many popular stochastic models have unknown transition

densities; however, their Fourier transforms, i.e. characteristic functions, are often
explicitly available via the Lévy-Khintchine formula [28]. This property has been
extensively utilized in option pricing through various numerical methods. Promi-
nent among these are the Carr-Madan approach [7], the Convolution (CONV) tech-
nique [35], Fourier Cosine (COS) method proposed by [13], Shannon-wavelet methods
[45, 11], with the COS method being particularly noteworthy. Specifically, the COS
method is known for achieving high-order convergence for piecewise smooth problems.
However, within the broader framework of stochastic optimal control, where problems
often exhibit complex and non-smooth characteristics, this high-order convergence is
unattainable, as noted in [38, 15]. A notable drawback of the COS method is its lack
of a mechanism to control the potential loss of non-negativity in estimated transition
densities. This issue–more pronounced with short maturities–may lead to violations
of the no-arbitrage principle in numerical value functions, posing significant challenges
in stochastic optimal control where the accuracy of these values is crucial for mak-
ing optimal decisions [15]. In the same vein of research, recent works on ϵ-monotone
Fourier methods for control problems in finance merit attention [15, 37, 38, 36].

In response to the noted observations, this paper sets out to achieve three pri-
mary objectives. Firstly, we present a single-layer feed-forward (FF) NN approach
to approximate transition densities with closed-form Fourier transforms, facilitating
training in the Fourier domain. This approach simplifies the implementation consid-
erably when compared to deeper NN structures. Second, we conduct a rigorous and
comprehensive analysis of the L2 estimation error between the exact and the esti-
mated transition densities obtained through the proposed approach. This methodol-
ogy, dubbed the Fourier-trained Neural Network method or “FourNet”, showcases the
benefits of using the Fourier transform in FFNN models. Lastly, we validate Four-
Net’s accuracy and versatility across a spectrum of stochastic financial models. The
main contributions of this paper are as follows.

• We establish two key results for FourNet: (i) transition densities can be
approximated arbitrarily well in the L2-sense using a single-layer FFNN with
a Gaussian activation function and a finite number of neurons; and (ii) the
L2-error in this approximation remains invariant under the Fourier transform
map. Here, L2 (R) denotes the space of square-integrable functions.
FourNet’s methodology underscores the potential and efficacy of shallow NN
architectures for complex approximation tasks. The inherent invariance under
Fourier transformation opens opportunities for training and error analysis
in the Fourier domain, rather than the conventional spatial domain. This
unique capability allows us to utilize the the known closed-form expression
of the characteristic function and the Fourier transform of the FFNN for an
in-depth analysis of the L2 estimation error.

• Using FourNet, we formulate an approximation for transition densities using
a single-layer FFNN equipped with a Gaussian activation function. Four-
Net’s parameters are fine-tuned by minimizing a mean-squared-error (MSE)
loss, supplemented with a mean-absolute-error (MAE) regularization. Both
the loss function and regularization term stem from the known characteris-
tic function and the Fourier transform of the FFNN. A strategic sampling
approach is proposed, maximizing the benefits of MAE regularization.
We establish practical bounds for the L2 estimation error and potential loss
of nonnegativity in FourNet for the general case of d-dimensions (d ≥ 1),
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which are attributed to truncation, training, and sampling errors. These
bounds highlight FourNet’s advantages over existing Fourier-based and NN-
based density estimation methods, offering valuable insights into its reliability
and robustness in practical applications.

• We showcase FourNet’s accuracy and versatility across a broad spectrum
of financial models, with a particular focus on option pricing. Our analy-
sis encompasses the class of exponential Lévy processes, such as the CGMY
model [6], Merton jump-diffusion model [42], and Kou asymmetric double
exponential model [31], along with their multi-dimensional extensions. We
also explore the Heston model [23] and its recent adaptations that incorpo-
rate the self-exciting Queue-Hawkes jump process [12, 2]. Notably, FourNet
demonstrates exceptional robustness in handling ultra-short maturities and
asymmetric heavy-tailed distributions, scenarios that pose significant chal-
lenges for traditional Fourier-based methods.

This paper introduces the FourNet method and its initial applications, setting the
stage for subsequent works. Primarily focusing on European options, it also demon-
strates FourNet’s capabilities in pricing Bermudan options within Lévy process-based
models. Future work will extend FourNet’s application to complex stochastic control
problems, including portfolio optimization, thereby broadening its scope and utility.
Although this work centers on transition densities, FourNet’s methodology and its
comprehensive error analysis are also relevant to the study of Green’s functions for
parabolic integro-differential equations [17], due to their foundational relationship.

The remainder of the paper is organized as follows. Section 2 outlines the struc-
ture of single-layer FFNNs with non-sigmoid activation functions and introduces a
related universal approximation theorem. Section 3 presents FourNet, detailing key
mathematical results and the MSE loss function. An error analysis of FourNet is
detailed in Section 4. Section 5 discusses sampling strategies, training considerations,
and algorithms. Section 6 demonstrates FourNet’s accuracy and versatility through
extensive numerical experiments. The paper concludes in Section 7 with a discussion
of potential future work.
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Fig. 2.1: Single-layer FFNN with one-
dimensional input x ∈ R, featuring N neurons
with weights wn and βn, biases bn, and activa-
tion function φ(·).

2 Background on single-layer
FFNNs

2.1 Non-sigmoid activation func-
tions Feed-forward neural networks
can be perceived as function ap-
proximators comprising of several
inputs, hidden layers composed of
neurons/nodes, an activation func-
tion, and several outputs. This
study primarily concentrates on
shallow NNs characterized by a
single input, a single output, and a
number of nodes within the hidden layer. We also consider only the case that the
input is one-dimensional. Figure 2.1 depicts a single-layer FFNN having a total of N
nodes in the hidden layer.

We now start with FFNNs with (Borel measurable) non-sigmoid activation func-
tions, and the associated Universal Approximation Theorem [40][Theorem 2.1]. This
class of of FFNNs is defined below.
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Definition 2.1 (Σ†(φ) - activation function φ). Let Σ†(φ) be the class of single-
layer FFNNs having arbitrary Borel measurable activation functions φ defined by

(2.1) Σ†(φ) =

{
ĝ : R→ R

∣∣∣∣ĝ(x; θ) = N∑
n=1

βnφ (wnx+ bn) , βn, wn, bn ∈ R, N ∈ N
}
.

Here, x ∈ R is the input; for a fixed N , the parameter θ ∈ R3N is constituted by the
weights wn and βn, and the bias terms bn, n = 1, . . . , N .

For subsequent use, for 1 ≤ p < ∞, we define the sets of p-integrable and p-locally-
integrable functions, respectively denoted by Lp (R) and Lp (R, loc), as follows

Lp (R) =
{
f ∈M

∣∣ ∥f∥p ≡ [ ∫
|f(x)|pdx

]1/p
<∞

}
,

Lp (R, loc) =
{
f ∈M

∣∣ f I[−A,A] ∈ Lp (R) ,∀A ∈ {1, 2, 3, . . .}
}
.(2.2)

Here,M is the space of all Borel measurable functions f : R→ R.1
Closeness of two elements f1 and f2 of Lp (R, loc) is measured by a metric ρp,loc(f1, f2)

defined as follows [40]

(2.3) ρp,loc (f1, f2) =

∞∑
A=1

(
2−A

)
min

(∥∥(f1 − f2) I[−A,A]

∥∥
p
, 1
)
, f1, f2 ∈ Lp (R, loc) .

Here, the indicator function ID(·) is defined as follows: ID(x) = 1 if x ∈ D and zero
otherwise. We now introduce the notion of ρp,loc-denseness for Lp(R, loc) [40].

Definition 2.2 (ρp-denseness, 1 ≤ p < ∞). A subset S of Lp (R, loc) is ρp,loc-
dense in Lp (R, loc) if, for any f1 in Lp (R, loc) and any ε > 0, there is a f2 in S such
that ρp,loc (f1, f2) < ε, where ρp,loc (f1, f2) is defined in (2.3).

2.2 Universal Approximation Theorem The Universal Approximation Theo-
rem proposed in [25] for sigmoid activation functions play a key theoretical foundation.
However, sigmoid activation functions are not necessary for universal approximation
as highlighted in [40][Theorem 2.1] - therein, an identical universal approximation the-
orem to the one in [25] was obtained. The key finding of [40] is that, for sufficiently
complex single-layer FFNNs with an arbitrary (Borel measurable) activation function
at the hidden layer can approximate an arbitrary target function f(·) ∈ Lp(R, loc),
1 ≤ p < ∞, arbitrary well, provided that the activation function, denoted by φ(x),
belong to L1(R) ∩ Lp(R) and

∫
R φ(x)dx does not vanish. Formally, we state the

Universal Approximation Theorem for non-sigmoid activation functions below.

Theorem 2.3 (Universal Approximation Theorem [40] Theorem 2.1). Let φ be
the (Borel measurable) activation function that belongs to L1(R)∩Lp(R), 1 ≤ p <∞.
If

∫
R φ(x) dx ̸= 0, then Σ†(φ) is ρp,loc-dense in Lp(R, loc). Here, Σ†(φ) and ρp,loc are

respectively defined in Definitions 2.1 and 2.2.

3 A Fourier-trained network (FourNet)We denote by T > 0 a finite horizon,
and let t and ∆t be fixed such that 0 ≤ t < t +∆t ≤ T . For the sake of exposition,
we focus on estimating a time and spatially homogeneous transition density, denoted
by g(·) and is represented as g(x, t+∆t; y, t) = g(x−y; ∆t). Such transition densities
are characteristic of Lévy processes.

1The set M essentially contains all functions relevant to practical applications.
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Our methodology also applies to models like the Heston and Heston-Queue-
Hawkes, which exhibit non-homogeneity in variance. For these models, pricing Euro-
pean options needs only a single training session; however, control problems typically
require multiple independent sessions to address time-stepping. Each session uses
a dataset derived from characteristic functions conditioned on different starting and
ending variance values. These sessions can be conducted in parallel, thereby enhancing
computational efficiency. This aligns with existing Fourier methods (e.g. [14, 15, 49])
which similarly utilize characteristic functions conditioned on variance values at each
timestep. We plan to explore Heston-type models in control problems in future work.

For notational simplicity, we momentarily suppress the explicit dependence of the
transition density on ∆t, denoting g(·) ≡ g(·; ∆t) : R → R as the transition density
we seek to approximate using single-layer FFNNs. The importance of ∆t will be
highlighted in our applications detailed in Section 6.

Since the transition density g(·) is almost everywhere bounded on R, together with
the fact that g ∈ L1(R), we have g ∈ L2(R). Therefore, we consider approximating a
transition density g ∈ L1(R) ∩ L2(R).

3.1 A universal approximation result in L2(R)We now provide a refined ver-
sion of the Universal Approximation Theorem 2.3 for target functions in L2(R).
Specifically, by invoking Hölder’s inequality, we have that L2 (R) ⊂ L2 (R, loc). A
natural question thus emerges: if the function we aim to approximate, f , belongs to
L2(R) rather than L2(R, loc), can we identify an FFNN in Σ†(φ)∩L2(R) that approx-
imates f arbitrarily well, in the sense of the Universal Approximation Theorem 2.3?
In the forthcoming lemma, we affirmatively address this question.

Lemma 3.1 (ρ2,loc-denseness of Σ
† (φ)∩L2(R)). Let φ be a continuous activation

function that belongs to L1(R)∩L2(R). Assume that f(·) is in L2(R). For any ϵ > 0,
there exists a neural network f ′(·; θ′) ∈ Σ† (φ) ∩ L2(R) such that ρ2,loc (f, f

′) < ϵ,
where ρ2,loc(·) is defined in Definition 2.3.

Proof of Lemma 3.1. Since φ ∈ L1(R)∩L2(R), it satisfies the conditions of The-
orem 2.3 for p = 2. Therefore, ∃f ′(·; θ′) ∈ Σ† (φ) such that ρ2,loc (f, f

′) < ϵ. Here,

f ′(x; θ′) =
∑N ′

n=1 β
′
nφ(w

′
nx + b′n), where N ′ is the finite number of neurons. As

f ′(·; θ′) ∈ L2(R, loc), each β′
nφ(w

′
nx + b′n) is square-integrable on any compact set.

Since φ ∈ L2(R), the square-integrability of β′
nφ(w

′
nx+ b′n) implies that |β′

n| <∞ for
all n ≤ N ′. Finally, as f ′(·; θ′) is a finite sum of functions in L2(R), it follows that
f ′(·; θ′) ∈ L2(R). This concludes the proof.

3.2 Gaussian activation function e−x2

Building upon Lemma 3.1, we present a

corollary focusing on the Gaussian activation function φ(x) ≡ ϕ(x) = e−x2

.

Corollary 3.2. For a target function f(·) in L2(R) and any ϵ > 0, there exists

an FFNN f ′(·; θ′) ∈ Σ†(ϕ) ∩ L2(R) with ϕ(x) = e−x2

, where f ′ approximates f such
that ρ2,loc(f, f

′) < ϵ. The FFNN f ′(·; θ′) has bounded parameters: 0 < |β′
n| < ∞,

0 < |w′
n| <∞, and |b′n| <∞, ∀n = 1, . . . , N ′.

Proof. Through integration, we verify that ϕ(x) = e−x2 ∈ L1(R) ∩ L2(R). Thus,
by Lemma 3.1, ∃ f ′(·; θ′) ∈ Σ†(ϕ)∩L2(R) such that ρ2,loc(f, f

′) < ϵ. Here, f ′(x; θ′) =∑N ′

n=1 β
′
nφ(w

′
nx+ b′n). By Lemma 3.1, |β′

n| < ∞, ∀n ≤ N ′. Additionally, it must be
true that β′

n ̸= 0, ∀n ≤ N ; otherwise the corresponding neuron output is zero. For
the same reason, we also have |w′

n|, |b′n| < ∞, ∀n ≤ N ′. Lastly, it is also the case
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that w′
n ̸= 0 for all n ≤ N ′. Otherwise, suppose that w′

k = 0 for n = k ≤ N ′, then
0 < |β′

k| exp(−(w′
kx + b′k)

2) = |β′
k| exp(−(b′k)2) ≤ c, where 0 < c < ∞, contradicting

with f ′(·; θ′) ∈ L2. This concludes the proof.

Corollary 3.2 establishes that for any target function in L2(R), an FFNN with bounded

parameters exists within Σ†(ϕ)∩L2(R), where ϕ(x) = e−x2

, capable of approximating
the target function arbitrarily well as measured by ρ2,loc(·, ·). This result allows us
to narrow down our focus to Σ(ϕ), a more specific subset of Σ†(ϕ), that encapsulates
FFNNs characterized by parameter bounds. We now formally define Σ(ϕ) and its
associated bounded parameter space Θ, both of which are crucial for our subsequent
theoretical analysis and practical application:

Σ(ϕ) =
{
ĝ : R→ R

∣∣ ĝ(x; θ) = N∑
n=1

βnϕ(wnx+ bn), ϕ(x) = e−x2

, θ ∈ Θ
}
,(3.1)

Θ =
{
θ ∈ R3N

∣∣ 0 < |βn| <∞, 0 < |wn| <∞, |bn| <∞, n = 1, . . . , N
}
.(3.2)

Remark 3.3. All FFNNs in Σ(ϕ), where ϕ(x) = e−x2

, belong to L2(R) as per
definitions (3.1) and (3.2). By Corollary 3.2, given any target function in f(·) in
L2(R) and any ϵ > 0, there exists an FFNN f ′(·; θ′) ∈ Σ(ϕ) such that ρ2,loc(f, f

′) < ϵ.

3.3 Existence and invariance of FourNetWe now establish a key result demon-
strating the existence of ĝ(·; θ∗ϵ ) ∈ Σ (ϕ), where Σ (ϕ) is defined in (3.1), that is capable
of approximating the exact transition density g(·) arbitrarily well in the L2-sense. We
hereafter refer to ĝ(·; θ∗ϵ ) as a theoretical FFNN approximation to the true transition
density g(·). Furthermore, we also show that the associated theoretical approximation
error in L2 remains invariant under the Fourier transform map.

To this end, we recall that the transition density g(·) and the associated charac-
teristic function G(η) are a Fourier transform pair. They are defined as follows

F[g(·)](η) ≡ G(η) =
∫ ∞

−∞
eiηx g(x) dx, F−1[G(·)](x) ≡ g(x) = 1

2π

∫ ∞

−∞
e−iηxG(η) dη.

For subsequent discussions, for a complex-valued function f : R → C, we denote by
Ref (·) and Imf (·) its real and imaginary parts. We also have |f(·)|2 = f(·)f(·), where
f(·) is the complex conjugate of f(·).

We will also utilize the Plancherel Theorem, which is sometimes also referred to as
the Parseval-Plancherel identity [58, 1, 30]. For the sake of convenience, we reproduce
it below. Let f : R → R be a function in L1(R) ∩ L2(R). The Plancherel Theorem
states that its Fourier transform F[f(·)](η) is in L2(R), and

(3.3)

∫
R
|f(x)|2 dx =

1

2π

∫
R
|F[f(·)](η)|2 dη.

Theorem 3.4 (FourNet’s existence result). Given any ϵ > 0, there exists an
FFNN ĝ(·; θ∗ϵ ) ∈ Σ(ϕ), where Σ(ϕ) is defined in (3.1), that satisfies the following

(3.4)

∫
R
|g(x)− ĝ(x; θ∗ϵ )|2 dx =

1

2π

∫
R

∣∣∣G(η)− Ĝ(η; θ∗ϵ )∣∣∣2 dη < ϵ.

Here, Ĝ(η; θ∗ϵ ) is the Fourier transform of ĝ(·; θ∗ϵ ), i.e. Ĝ(η; θ∗ϵ ) = F [ĝ(·; θ∗ϵ )] (η).
Proof of Theorem 3.4. We first show

∫
R |g(x)− ĝ(x; θ∗ϵ )|

2
dx < ϵ, then the equal-

ity in (3.4). Since g(·) and ĝ(·; θ∗ϵ ) are in L2(R), ∃A′ sufficiently large such that∫
R\[−A′,A′]

|g(x)|2 dx < ϵ/8,

∫
R\[−A′,A′]

|ĝ(x; θ∗ϵ )|2 dx < ϵ/8.(3.5)
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By Remark 3.3, there exists ĝ(x; θ∗ϵ ) ∈ Σ (ϕ) such that

ρ2,loc (g, ĝ (·; θ∗ϵ )) =
∞∑

A=1

2−A min
(∥∥(g − ĝ(·; θ∗ϵ )) I[−A,A]

∥∥
2
, 1
)
<
ϵ1/2

21/2
2−A′

.

Therefore,

2−A′
min

(∥∥(g − ĝ(·; θ∗ϵ )) I[−A′,A′]

∥∥
2
, 1
)
<
ϵ1/2

21/2
2−A′

,

from which, we have

(3.6)

∫
[−A′,A′]

(g(x)− ĝ(x; θ∗ϵ ))2 dx < ϵ/2.

Using (3.5)-(3.6), we have

∫
R
(g(x)− ĝ(x; θ∗ϵ ))2 dx = . . .

. . . =

∫
[−A′,A′]

|g(x)− ĝ(x; θ∗ϵ )|2 dx+

∫
R\[−A′,A′]

|g(x)− ĝ(x; θ∗ϵ )|2 dx(3.7)

< ϵ/2 +

∫
R\[−A′,A′]

2
∣∣g(x)2 + ĝ(x; θ∗ϵ )

2
∣∣ dx < ϵ,

as wanted. Next, the equality in (3.4) follows directly from the Plancherel Theorem
(3.3), noting L1(R) and L2(R) are closed under addition. This completes the proof.

Remark 3.5. Theorem 3.4 presents a significant theoretical result, demonstrating
that the FourNet can approximate the exact transition density g(·) within an error
of any given magnitude in the L2-sense.

2 Interestingly, this error is invariant under
the Fourier transform, tying together FourNet’s approximation capabilities in both
spatial and Fourier domains. This invariance opens opportunities for training and
error analysis in the Fourier domain instead of the spatial domain. In particular, it
enables us to utilize the known closed-form expression of the characteristic function
G(·), a process we elaborate on in subsequent sections.

3.4 Loss function Recall that ĝ(x; θ) in Σ(ϕ) has the form

(3.8) ĝ(x; θ) =

N∑
n=1

βnϕ (wnx+ bn) , ϕ(x) = exp(−x2), θ ∈ Θ.

We let Ĝ(·; θ) be the Fourier transform of ĝ(·; θ), i.e. Ĝ(η; θ) = F [ĝ(·; θ)] (η). By
substitution, we have

Ĝ(η; θ) =

∫
eiηxĝ(x; θ) dx =

N∑
n=1

βn

∫
eiηxϕ(wnx+ bn) dx

=

N∑
n=1

βn

∫
R
cos(ηx) ϕ(wnx+ bn) dx+ i

N∑
n=1

βn

∫
R
sin(ηx) ϕ(wnx+ bn) dx

= ReĜ(η; θ) + iImĜ(η; θ).(3.9)

Here, by integrating the integral terms with ϕ(x) = exp(−x2), we obtain

ReĜ(·)=
N∑

n=1

βn
√
π

wn
cos

(
ηbn
wn

)
exp

(−η2
4w2

n

)
, ImĜ(·)=

N∑
n=1

βn
√
π

wn
sin

(−bnη
wn

)
exp

(−η2
4w2

n

)
.

2This result is proved in [5] when the variances are fixed.
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Recall that our starting point is that G(·), the Fourier transform of the transition
density g(·), is known in closed form. Therefore, motivated by Theorem 3.4, the key
step of our methodology is to use the known data {(η,ReG(η; θ))} and {(η, ImG(η; θ))}
to train Ĝ(η; θ) using the expressions in (3.9).

To this end, we restrict the domain of η from R to a fixed finite interval [−η′, η′],
where 0 < η′ < ∞ and is sufficiently large. We denote the total number of training
data points by P , and we consider a deterministic, potentially non-uniform, partition
{ηp}Pp=1 of the interval [−η′, η′]. With δp = ηp+1 − ηp, p = 1, . . . , P − 1, we assume

(3.10) δmin = C0/P, δmax = C1/P, with δmin = min
p
δp and δmax = max

p
δp,

where the constants C0, C1 > 0 are finite and independent of P . Letting Θ̂ ⊆ Θ be the
empirical parameter space, we introduce an empirical loss function LossP (θ), θ ∈ Θ̂,
below

LossP (θ) =
1

P

P∑
p=1

∣∣∣G(ηp)− Ĝ(ηp; θ)∣∣∣2 +RP (θ), {ηp}Pp=1 satisfying (3.10).(3.11)

Here, Ĝ(ηp; θ) is defined in (3.9), with RP (θ) as the MAE regularization term

(3.12) RP (θ) =
1

P

P∑
p=1

(
|ReG(ηp)− ReĜ(ηp; θ)|+ |ImG(ηp)− ImĜ(ηp; θ)|

)
.

By training LossP (·), we aim to find the empirical minimizer θ̂∗ ∈ Θ̂, where

(3.13) θ̂∗ = argmin
θ∈Θ̂

LossP (θ).

Remark 3.6 (MAE regularization). The incorporation of the MAE regularization
term in the loss function (3.11) is strategically motivated by its ability to significantly
enhance FourNet’s robustness and accuracy through two key mechanisms listed below.

• Control over non-negativity: As detailed in Remark 4.2, the MAE component
enables direct control over the upper bound of the potential pointwise loss of
non-negativity in ĝ(·; θ). This control over non-negativity though training of
the loss function not only enhances the mathematical integrity of our density
estimates but also underscores FourNet’s significant practical advantages over
traditional Fourier-based and NN-based density estimation methods.

• Enhanced training accuracy in critical regions: The MAE component im-
proves accuracy specifically at critical regions identified through determinis-
tic partition points ηp

P
p=1. These points target critical areas, such as those

with convexity changes and peaks, in both the real (ReG(·)) and imaginary
(ImG(·)) components of G(·). This focus ensures precise local fits, thereby
complementing L2-error minimization. This strategy not only aims for an op-
timal overall fit across the entire domain of G(·) but also prioritizes precision
at points critical to FourNet’s effectiveness. It aligns with our overarching
goal of minimizing L2-errors, crucial for subsequent L2-error analysis. Fur-
ther details on the selection of {ηp}Pp=1 are discussed in Subsection 5.2

We conclude that, for deep NNs, the function ĝ(·; θ) is expressed as a composition
of functions. However, computing its Fourier transform can be very complex, as noted
by [3]. Yet, our extensive numerical experiments have demonstrated that a single-layer
FFNN possesses remarkable estimation capabilities.
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Remark 3.7 (Truncation error in the Fourier domain). Note that, given the
boundedness of the parameter space Θ, both |ReĜ(·; θ)| and |ImĜ(·; θ)|, θ ∈ Θ, are in
L1(R). We also recall that both |ReG(·)| and |ImG(·)| ∈ L1(R). Furthermore, since
both g(·) and ĝ(·; θ) ∈ Σ(ϕ), for any θ ∈ Θ, are in L1(R) ∩ L2(R), by the Plancherel

Theorem (3.3), both |G(·)| and |Ĝ(·; θ)| are in L2(R). Therefore, for any given ϵ > 0,

∃η′ > 0 such that, with f ∈ {ReG, ImG,ReĜ(·; θ), ImĜ(·; θ)} and h ∈ {G(·), Ĝ(·; θ)},∫
R\[−η′,η′]

|f(η)| dη < ϵ,

∫
R\[−η′,η′]

|h(η)|2 dη < ϵ, ∀θ ∈ Θ.(3.14)

That is, the truncation error in the Fourier domain can be made arbitrarily small by
choosing η′ > 0 sufficiently large. In practice, given a closed-form expression for G(·),
η′ can be determined numerically, as illustrated in Subsection 6.1.

Remark 3.8 (Gaussian mixtures). There are two potential interpretations of our
methodology. The first sees ĝ(x; θ) in (3.8) as an FFNN approximation of the exact
transition density g(·), and its parameters are learned by minimizing the loss function
LossP (θ) (defined in (3.11)). Alternatively, ĝ(x; θ) in (3.8) can be written as

(3.15) ĝ(x; θ) =

N∑
n=1

1√
2πσ2

n

exp

(
− (x− µn)

2

2σ2
n

)
, µn = − bn

wn
, σ2

n =
1

2w2
n

.

This can be essentially viewed as a Gaussian mixture with N components [41], where
the n-th Gaussian component has mean µn = − bn

wn
and variance 1

2w2
n
. Unlike tradi-

tional Gaussian mixtures, the centers of the component distributions are not prede-
termined but are also learned through training. Finally, it is worth noting that the
set of all normal mixture densities is dense in the set of all density functions under
the L1-metric (see [32]), hence a mixture of Gaussian like in (3.15) can be used to
estimate any unknown density function.

4 Error analysisWe denote by θ̂ the parameter learned from training the loss func-

tion LossP (θ), and refer to ĝ(·; θ̂) as the corresponding estimated transition density.

We aim to derive an upper bound for the L2 estimation error
∫
R |g(x)−ĝ(x; θ̂)|2 dx. By

the Plancherel Theorem (3.3), we have
∫
R |g(x)− ĝ(x; θ̂)|2 dx =

∫
R
∣∣G(η)−Ĝ(η; θ̂)∣∣2dη.

This underscores the unique advantages of the proposed approach: error analysis is
better suited to the Fourier domain than to the spatial domain, as we can directly
benefit from the loss function LossP (θ), which is designed specifically for this domain.

In our error analysis, we require C ′ := supη,θ |∂|G(η) − Ĝ(η; θ)|2/∂η| < ∞, for

all η ∈ [−η′, η′] and θ ∈ Θ. Given that Θ is bounded and thus Ĝ(η; θ) possesses a
bounded first derivative, the requirement for C ′ <∞ is that G(η) also has a bounded
first derivative. This leads us to the assumption that the random variable associated
with the density g(·) is absolutely integrable. We also recall C0 and C1 from (3.10).
We now present an error analysis of the FourNet method in Lemma 4.1 below.

Lemma 4.1. As per Remark 3.7, for a given ϵ1 > 0, let the truncated Fourier
domain [−η′, η′] be such that, with f ∈ {ReG(·), ImG(·),ReĜ(·; θ), ImĜ(·; θ)} and

h ∈ {G(·), Ĝ(·; θ)},∫
R\[−η′,η′]

|f(η)| dη < ϵ1,

∫
R\[−η′,η′]

|h(η)|2 dη < ϵ1, ∀θ ∈ Θ.(4.1)

Suppose that the parameter θ̂ learned by training the empirical loss function LossP (θ),
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θ ∈ Θ̂, defined in (3.11), is such that

(4.2)

∣∣∣∣ 1P
P∑

p=1

∣∣G(ηp)− Ĝ(ηp; θ̂)∣∣2 +RP (θ̂)

∣∣∣∣ < ϵ2,

and the regularization term RP (θ̂) < ϵ3, where ϵ2, ϵ3 > 0. Then, we have

(4.3)

∫
R

∣∣g(x)− ĝ(x; θ̂)∣∣2 dx < 1

2π

(
4ϵ1 + C1(ϵ2 + ϵ3) +

C ′C2
1

P

)
.

Proof of Lemma 4.1. Applying the error bound for the composite left-hand-side
quadrature rule on a non-uniform partition gives∣∣ P∑

p=1

δp
∣∣G(ηp)− Ĝ(ηp; θ)∣∣2−∫

[−η′,η′]

∣∣G(η)− Ĝ(η; θ)∣∣2 dη∣∣ ≤ C ′P (δmax)
2 = C/P.(4.4)

noting δmax = C1/P , as in (3.10), where C = C ′C2
1 . Therefore,∫

R

∣∣G(η)− Ĝ(η; θ̂)∣∣2 dη (i)
=

∫
R\[−η′,η′]

∣∣G(η)− Ĝ(η; θ̂)∣∣2 dη + ∫
[−η′,η′]

∣∣G(η)− Ĝ(η; θ̂)∣∣2 dη
(ii)
< 4ϵ1 +

C1

P

P∑
p=1

∣∣∣G(ηp)− Ĝ(ηp; θ̂)∣∣∣2 + C/P

(iii)
< 4ϵ1 + C1

(
ϵ2 + ϵ3

)
+ C/P.(4.5)

Here, from (i) to (ii), we respectively bound the first and the second terms in (i) by

4ϵ1, using (4.1), and by C/P +
∑P

p=1 δmax

∣∣∣G(ηp)− Ĝ(ηp; θ̂)∣∣∣2, using (4.4) with θ = θ̂,

noting that δp ≤ δmax = C1/P ∀p. In (iii), we use (4.2) and RP (θ̂) < ϵ3 to bound the
second term in (ii) by C1(ϵ2+ ϵ3). Using the Plancherel Theorem (3.3) and (4.5) gives

2π

∫
R

∣∣g(x)− ĝ(x; θ̂)∣∣2 dx < 4ϵ1 + C1(ϵ2 + ϵ3) +
C ′C2

1

P
,

noting C = C ′C2
1 . Rearrange the above gives (4.3). This completes the proof.

Lemma 4.1[Eqn. (4.3)] decomposes the upper bound for the L2 estimation error into
several error components listed below.

• Truncation error (Fourier domain): This arises from truncating the sampling
domain from R to [−η′, η′]. It is bounded by ϵ1 (see (4.1)), contributing
4ϵ1/(2π) to the derived error bound in (4.3).

• Training error: This error results from the deviation of the learned parameters
θ̂ from minimizing the empirical loss function, which includes the MSE error
and MAE regularization. Its total contribution to the error bound in (4.3) is
C1(ϵ2 + ϵ3)/(2π).

• Sampling error: This is caused by the use of a finite set of P data points in
training. This error, captured as numerical integration error, is represented

as
C′C2

1

2πP in the error bound in (4.3).

Remark 4.2 (Nonnegativity of ĝ(·; θ̂).). We now investigate the potential loss of

nonnegativity in ĝ(·; θ̂), where θ̂ is learned as per Lemma 4.1. To this end, we use

|min(ĝ(x; θ̂), 0)|, for an arbitrary x ∈ R, as a measure of this potential pointwise loss.

Following similar steps (i)-(ii) of (4.4), noting RP (θ̂) < ϵ3, we have∫
R

(
|ReG(η)− ReĜ(η; θ̂)|+ |ImG(η)− ImĜ(η; θ̂)|

)
dη < 4ϵ1 + C1ϵ3 + C ′C2

1/P.
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Hence, |min(ĝ(x; θ̂), 0)| ≤ |g(x)− ĝ(x; θ̂)| = 1
2π

∣∣ ∫
R e

−iηx(G(η)− Ĝ(η; θ̂))dη
∣∣ = . . .

. . .≤ 1

2π

∫
R
|ReG(η)− ReĜ(η; θ̂)|+|ImG(η)− ImĜ(η; θ̂)| dη <

1

2π

(
4ϵ1 + C1ϵ3 +

C ′C2
1

P

)
.

As demonstrated above, the derived upper bound for |min(ĝ(x; θ̂), 0)| can be decom-
posed into several error components: truncation error (4ϵ1/(2π)), the MAE regular-
ization term (C1ϵ3/(2π)), and sampling error (C ′C2

1/(2πP )).

Remark 4.3 (Multi-dimensional). We now extend Lemma 4.1 and Remark 4.2
to the general d-dimensional case, where d ≥ 1. In this context, the target density is
g(x), where x ∈ Rd, and ĝ(x; θ̂), with θ̂ ∈ Θ̂ ⊆ Θ ⊂ R(d+2)N , is the estimated density.

We denote by η = [η(1), η(2), . . . , η(d)] the d-dimensional Fourier domain vector,
restricted to [−η′, η′]d, where 0 < η′ < ∞ and is sufficiently large. For ease of
exposition, we assume there are P 1/d partition points in each dimension, resulting
in P total data points for training. The same (potentially non-uniform) partition is
used across all dimensions, with partition intervals satisfying δmin = C0/P

1/d and
δmax = C1/P

1/d, where C0, C1 > 0 are finite constants independent of P and d.
Additionally, we assume

C ′ := sup
η,θ

∣∣∣∇η

(
|G(η)− Ĝ(η; θ)|2

)∣∣∣ <∞,
where ∇η(·) is the gradient with respect to η. In this case, the loss function becomes

(4.6) LossP (θ) =
1

P

P∑
p=0

∣∣∣G(ηp)− Ĝ(ηp; θ)
∣∣∣2 +RP (θ),

where RP (θ) =
1
P

∑P
p=1

(∣∣ReG(ηp)− ReĜ(ηp; θ)
∣∣+ ∣∣ImG(ηp)− ImĜ(ηp; θ)

∣∣).
Remark 3.7 also extends to the general multi-dimensional case: for a given ϵ1 > 0,

we can find [−η′, η′]d such that the error from truncating the sampling domain from

Rd to [−η′, η′]d is bounded by ϵ1. Suppose that the parameter θ̂ learned by training

LossP (θ), θ ∈ Θ̂, defined in (4.6), is such that LossP (θ̂) < ϵ2, with the regularization

term RP (θ̂) < ϵ3, where ϵ2, ϵ3 > 0. Then, we have

(4.7)

∫
Rd

∣∣g(x)− ĝ(x; θ̂)∣∣2 dx < 1

2π

(
4ϵ1 + C1(ϵ2 + ϵ3) +

C ′Cd+1
1

2P 1/d

)
.

The potential loss of nonnegativity in ĝ(·; θ̂), i.e. |min(ĝ(x; θ̂), 0)|, is bounded by

(4.8) |min(ĝ(x; θ̂), 0)| ≤ 1

2π

(
4ϵ1 + C1ϵ3 +

C ′Cd+1
1

2P 1/d

)
.

When d = 1, we recover the bounds presented in Lemma 4.1 and Remark 4.2. The
main distinction between the bounds for the one- and multi-dimensional cases arises
from the error introduced by the composite left-hand quadrature rule.

We emphasize that the explicit quantification of bounds for L2 estimation error
and the potential loss of nonnegativity in the estimated transition density, identified
and controlled through truncation, training, and sampling errors, highlights FourNet’s
significant practical advantages. The rigorous analysis of these practical bounds vali-
dates our methodology’s robustness and ensures its applicability in real-world settings.
In addition, the derived bounds reflect the impact of the dimensionality d, as seen

with the term
Cd+1

1

P 1/d in (4.7)-(4.8).
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The presented analysis offers an in-depth insight into factors influencing the qual-
ity of FourNet’s approximation for the transition density g(·). Crucially, it also draws
attention to the significance of the coefficients preceding each error component. These
coefficients act as markers for the worst-case amplification of individual error compo-
nents, either in the overall L2 estimation error or in potential loss of nonnegativity.
Consequently, they serve as signposts, guiding us towards areas where we should focus
our efforts for more efficient training and, consequently, reduced error.

Of all components, C ′ attracts special attention. This value is directly related to
the oscillatory behavior of G(·), highlighting challenges in approximation. Therefore,
curtailing C ′ is an important step toward improving FourNet approximation’s quality.
In the subsequent section, we discuss a straightforward a linear transformation on the
input domain which can effectively temper the oscillatory nature of G(·), thereby
resulting in significantly improved approximation’s quality.

5 TrainingWe now discuss FourNet’s data sampling and training algorithms.

5.1 Linear transformation As a starting point for subsequent discussions, we
consider a random variable X and denote the characteristic function of the random
variable X by GX(η) = E[eiηX ], assumed to be available in closed-form. We analyze
ReGX

(η) and ImGX
(η) under two scenarios: the Heston model [23] (X = ln(ST )) and

the Kou model [31] (X = ln(ST /S0)), where St represents the underlying asset price
at time t ∈ [0, T ]. Given that ImGX

(η) exhibits similar behaviors across both models,
our detailed analysis will focus on ReGX

(η).
Figures 5.1-(a) and (b) display ReGX

(η) for these cases, with data from Tables 6.6
and 6.18. The Heston model exhibits rapid oscillations within a small domain (about
[−10, 10]), whereas the Kou model, with a simple oscillation pattern, presents a very
large domain (approximately [−1000, 1000]). Both situations pose significant chal-
lenges during neural network training: rapid oscillations can lead to numerous local
minima and erratic gradients, while large domains can compromise training efficiency.

Motivated by these challenges, we propose a linear transformation Y = aX + c
as a mechanism for adjusting oscillations and controlling domain sizes, resulting in
GY (η) = eiηcGX(aη). To maintain positive direction and scale in the transformation,
a is constrained to be greater than zero. It modulates oscillation frequency and domain
size: a < 1 reduces frequency and expands the domain, while a > 1 compresses it. The
parameter c, a small real number, adjusts the phase of GX(aη): positive c shifts the
phase forward, negative c backward. We recommend a c range from [−1, 1], allowing
for significant yet manageable phase shifts across typical η values [44].

Since the overall effectiveness of the transformation heavily depends on the in-
teraction between a and c and the properties of GX(η)–which are highly model-
dependent–empirical testing is essential to determine suitable parameter settings.

To illustrate, for the Heston model, a = 0.15 and c = −0.6 reduce oscillation
frequency, making ReGY

(·) more amenable to NN learning despite a slightly expanded
domain [−60, 60] (Figure 5.1-(c)). In the Kou model, a = 20 (and c = 0) significantly
compresses the domain to [−50, 50], maintaining the same oscillation pattern, which
enhances training efficiency (Figure 5.1-(d)). The critical regions of ReGY

(·) for both
models are highlighted, with similar behaviors observed for ImGY

(·).
To improve training efficiency further, judicious allocation of sampling data points

in crucial areas of both the ReGY
(·) and ImGY

(·) is essential, a strategy to be elabo-
rated in the following subsection.
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(a) untransformed ReGX
(η) - Heston (b) untransformed ReGX

(η) - Kou

(c) transformed ReGY
(η) - Heston (d) transformed ReGY

(η) - Kou

Fig. 5.1: Comparisons between GX(η) and GY (η), where Y = aX + c; Heston model
- (a) and (c): a = 0.15 and c = −0.6; Kou model - (b) and (d): a = 20 and c = 0;
critical regions of ReGY

are highlighted; the behaviour of ImGX
(η) is similar (not

shown).

Remark 5.1. Unless otherwise stated, throughout our discussion, the character-
istic function G(·) employed for the loss function LossP (θ) (as defined in (3.11))
corresponds to potentially linearly transformed characteristic function. Specifically,
G(·) = GY (·), where Y = aX + c, where a and c are known real constants. Let

ĝY (y; θ̂) =
∑N

n=1 β̂nϕ
(
ŵny + b̂n

)
, where ϕ = e−x2

, be a Fourier-trained FFNN tran-

sition density. We can recover the estimated transition density for the random variable
X by simply using ĝX(x; θ̂) = ĝY (ax+ c; θ̂)

∣∣ d
dx (ax+ c)

∣∣ = |a| ĝY (ax+ c; θ̂).

5.2 Sampling data and MAE regularization Given our prior knowledge of the
(potentially linearly transformed) characteristic function G(η) in its closed-form, we
strategically concentrate spatial sampling points {ηp}Pp=1 towards critical regions of
G(η). To identify critical regions, we use symbolic computation to derive the first
and second partial derivatives, as well as Hessians for multi-dimensional scenarios, of
both the real and imaginary parts of G(η). Critical points and inflection points are
determined through these derivatives, with numerical methods applied when closed-
form solutions are infeasible.3 For visualization, refer to Fig. 5.1 (c) and (d), which
highlight critical regions (in circles) for the Heston and Kou models. This method-
ology allows us to strategically focus our sampling on areas of convexity change,
peaks, and other significant features of ReG(η) and ImG(η). Such partitioning of the
truncated sampling domain [−η′, η′] is achieved through a mapping function, such
as the sinh(·)-based function, which transforms uniform grids into non-uniform ones

3For overly complex forms of G(η), we utilize Python to approximate its real/imaginary parts
and visually verify the locations of critical regions.
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with a concentration of points in these critical regions. It is noteworthy that similar
methodologies for point construction have found successful applications as evidenced
in [53, 8, 10]. A partitioning scheme that addresses such scenarios with multiple con-
centration points is presented in Appendix A. We emphasize that a randomly sampled
dataset of {ηp}Pp=1 might inadequately cover these crucial regions, often requiring a
significantly larger dataset for the same precision.

With our strategically defined set {ηp}Pp=1 in place, we emphasize the role of the
MAE regularization RP (θ) in our optimization process. It allows the optimization to
focus on concentrating efforts to reduce discrepancies specifically in critical regions
while potentially allowing for some discrepancies in less essential areas. Through
this, we aim to strike a balance between precision and generalization, thereby curbing
potential over-fitting. Our comprehensive numerical tests, presented in Section 6,
suggest that this combined approach - strategic sampling based on G(·) characteristics
and employing MAE regularization (3.12) - is efficient and robust.

5.3 Training considerationsWe briefly describe key considerations in FourNet’s

training the LossP (·) to obtain the empirical minimizer θ̂∗. The training of FFNNs is
divided into two main stages: the rapid exploration phase and the refinement phase.
The initial phase seeks to find a good set of initial weights for the FFNN and fine-tune
the baseline learning rate, as these initial weights significantly impact the convergence
and accuracy of the training. The refinement phase focuses on further perfecting these
weights, often necessitating reduced learning rates to achieve meticulous updates.
Due to different focuses of the two stages, choosing the right optimizer for each phase
is essential. The Adaptive Moment Estimation (Adam) [29] and AMSGrad with a
Modified Stochastic Gradient [54] are standout candidates.

Fig. 5.2: Comparisons among AMS-
grad+Adam, Adam, and AMSgrad for
the loss function LossP (·) corresponding
to Figures 5.1 (c) and (d).

Figure 5.2 presents a visual compara-
tive analysis of the performance of these
optimizers is compared in terms of reduc-
ing the empirical loss function LossP (·)
over a series of training epochs for the
case of the Heston model. As illustrated
therein, AMSGrad achieves a smoother
and steeper reduction in the LossP (·) com-
pared to Adam, especially at higher ini-
tial learning rates. However, as the epochs
progress, Adam tends to surpass AMS-
Grad. Our proposed methodology suggests
employing AMSGrad during the rapid ex-
ploration phase and switching to Adam
during the refinement phase.

Putting everything together, a single-layer FFNN algorithm for estimating the
transition density by learning its Fourier transform is given in Algorithm 5.1.

The computational complexity of Algorithm 5.1 is primarily determined by the
training of the single-layer FFNN, involving both forward and backward passes. Dur-
ing the forward pass, the NN computes outputs using operations like matrix-vector
multiplications and activation function evaluations, with complexity proportional to
N(d+3) (flops), assuming a fixed batch size. The backward pass, crucial for gradient
computation and parameter updates using AMSGrad and Adam optimizers, mirrors
this complexity. Thus, for P data points and H epochs in both the forward and back-
ward passes, the total complexity is O

(
2PHN(d+ 3)

)
(flops) or O(PHNd) (flops).
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Algorithm 5.1 Algorithm for approximating the transition density function g(·)
using an FFNN trained in the Fourier domain, given a closed-form expression of the
Fourier transform G(·)
1: using a closed-form expression of G(·) and numerical integration to find sufficiently

large η′ as per (3.14);
2: initialize N (number of neurons), P (number of samples); generate {ηp}Pp=1 on

[−η′, η′] using a non-uniform partitioning algorithm (see Algorithm A.1);
3: use AMSgrad optimizer in first training stage to find a good set of initial weights

and fine-tune the baseline learning rate;
4: use Adam optimizer in the second training stage
5: construct ĝ(·, θ̂) with θ̂ ∈ argmin

θ∈Θ̂
LossN (θ), where LossN (θ) is defined in (3.11);

6 Numerical experiments In this section, we demonstrate FourNet’s accuracy
and versatility through extensive examples. To measure the accuracy of FourNet, we
define several (empirical) metrics. Specifically, the closeness of two elements f1 and
f2 of Lp (R), p ∈ {1, 2}, is measured by Lp(f1, f1) =

∫
[−A,A]

|(f1(x)− f2(x))|p dx, for
A > 0 sufficiently large. In addition, the Maximum Pointwise Error (MPE) is defined
by MPE(f1, f2) = max1≤k≤K |f1(xk)−f2(xh)|, where {xk}Kk=1 is the set of evaluation
points. Among these, L2-error stands out as the principal metric, underscored by the
L2 error analysis presented in Section 4.

In our experiments, unless otherwise stated, all integrals, including those appear
in pricing an option, are computed using adaptive Gauss quadrature rule (based on
QUADPACK library in Fortran 77 library, quad function in Python).

1-D 2-D
(d = 1) (d = 2)

N 45 45
P 106 106

# epochs1 5 6
# epochs2 100 40
l1 0.0015 0.04
l2 0.0012 0.00025
batchsize 1024 1024
time (mins) 3.2 22.5

Table 6.1: Hyperparameters for NN train-
ing with typical training times.

6.1 Setup and preliminary obser-
vations Informed by Remarks 3.7 and
4.2, for all numerical experiments car-
ried out in this paper, the sampling do-
main [−η′, η′] (in the Fourier space), the
number of samples P are chosen suffi-
ciently large. Specifically, in computing
a sufficiently large η′, given a closed-form
expression for G(·), we perform numeri-
cal integration to estimate η′ such that
(3.14) corresponding to G(·) is satisfied
for a tolerance ϵ1 = 10−7. That is, with
D = R \ [−η′, η′], we have
(6.1)∫
D

|ReG(η)| dη < ϵ1,

∫
D

|ImG(η)| dη < ϵ1,

∫
D

|G(η)|2 dη < ϵ1.

This typically results in [−η′, η′] = [−60, 60] for all models considered hereafter.
The training setup utilizes a system equipped with an Intel Core i7-13705H

Processor, operating on Windows 11 with 32GB of memory and 1TB of storage.
The environment runs Python 3.10 and TensorFlow 2.8. Detailed hyperparameters
for all experiments are outlined in Table 6.1, which specifies the number of epochs
and learning rates for both the rapid exploration phase (# epochs1 and l1) and the
refinement phase (# epochs2 and l2). All datasets feature one-dimensional inputs
(d = 1), except for the two-dimensional Merton jump-diffusion process discussed in
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Section 6.3. The table also presents typical total training times for both phases,
aggregated over 30 runs.

The parameters θ̂ is learned through training, satisfying LossP (θ̂) ≤ 10−6. This
implies that the MAE regularization term RP (θ), as defined in (3.12), is less than

10−6. We observe that the measure for loss of non-negativity |min(ĝ(·; θ̂), 0)| is
about 10−7, negligible for all practical purposes. For comparison, we evaluate the

bound ε = 1
2π

(
4ϵ1 + C1ϵ3 +

C′C2
1

P

)
, as presented in Remark 4.2. We take ϵ1 = 10−7

(in accordance with (6.1)), and ϵ3 = 10−6, given that LossP (θ̂) ≤ 10−6). Considering
a uniform partition, we have δp = 120/P for all p. Consequently, C1 ≥ 120. Using a

conservative estimate, we take C1 = 120, yielding C1ϵ3 ≈ 10−4 and
C′C2

1

P ≈ C ′10−2.
Our numerical findings suggest a notable reduction in the loss of non-negativity when
the linear transformation highlighted in Subsection 5.1 is used. This transformation

diminishes C ′, suggesting that
C′C2

1

P ≈ C ′10−2 is the primary contributing term.
We now explore FourNet’s accuracy in estimating transition densities a broad

array of dynamics commonly encountered in quantitative finance. Subsequently, we
will focus on its application for pricing both European and Bermudan options.

6.2 Transition densities

6.2.1 Exponential Lévy processes We select models that are well-known
within the domain of exponential Lévy processes, where the Lévy-Khintchine formula
provides a clear representation for the characteristic function G(·) as detailed in [28].
As example, we focus on the Merton jump-diffusion model, introduced by [42], and
the CGMY model as proposed by [6]. It’s worth noting that the CGMY model can
be seen as an extension of the Variance-Gamma model, originally presented in [39].
Additionally, while we conducted tests on the Variance-Gamma model and the Kou
jump-diffusion model [31], FourNet consistently proved to be very accurate. In fact,
the outcomes from these tests align so closely with those of the highlighted models
that we have chosen not to detail them in this subsection for the sake of brevity.

In exponential Lévy processes, with {St}Tt=0 being the price process, the process
{Xt}Tt=0, where Xt = ln (St/S0), is a Lévy process. Relevant to our discussions is the
fact that the characteristic function of the random variable Xt is GX(η) = exp(tψ(η))
[28]. As in all numerical examples on transition densities presented in this section,
we take t = T which is specified below. The characteristic exponent ψ(η) for various
exponential Lévy processes considered in this paper are given subsequently.

Merton jump-diffusion dynamics [42] In this case, the characteristic exponent

ψ(η) is given by ψ(η) = i
(
µ− σ2

2

)
η − σ2η2

2 + λ
(
eiµ̃η−σ̃2η2/2 − 1

)
. In this case, a

semi-explicit formula for g(x;T ) is given by (see [59][Corollary 3.1])

(6.2) g(x;T ) =

∞∑
k=0

e−λT (λT )k

k!
gnorm

(
x;

(
µ− σ2

2
− λκ

)
T + kµ̃, σ2T + kσ̃2

)
.

Here, κ = eµ̃+σ̃2/2−1, and gnorm(x;µ
′, (σ′)2) denotes the probability density function of

a normal random variable with mean µ′ and variance (σ′)2. The semi-explicit formula
given by (6.2) serves as our reference density against which we validate the estimated
transition density produced by FourNet. Computationally, we truncate the infinite
series in (6.2) to 15 terms. The approximation error resulting from this truncation is
approximately 10−20, which is sufficiently small for all practical intents and purposes.



FOURIER NN APPROXIMATION OF TRANSITION DENSITIES 17

Parameters Values
T (maturity in years) 1
S0 (initial asset price) 100
r (risk free rate) 0.05
σ (volatility) 0.15
λ (jump intensity) 0.1
µ̃ (mean of jump size) -1.08
σ̃ (std of jump size) 0.4

Table 6.2: Parameters for the Mer-
ton jump diffusion dynamics; values are
taken from [15][Table 4].

N (# of neurons) 45

L1

(
ReG,ReĜ

)
2.4× 10−04

L2

(
ReG,ReĜ

)
1.4× 10−09

MPE
(
ReG,ReĜ

)
1.0× 10−05

L1

(
ImG, ImĜ

)
5.8× 10−04

L2

(
ImG, ImĜ

)
1.8× 10−09

MPE
(
ImG, ImĜ

)
2.4× 10−05

L2 (g, ĝ) 1.6× 10−09

Table 6.3: Estimation errors for the Mer-
ton model; parameters from Table 6.2;
linear transform in Remark 5.1 used with
(a, c) = (0.6, 0.08).

The parameters used for this test case are given in Table (6.2). The linear transform in
Remark 5.1 is used with (a, c) = (0.6, 0.08). The number of neurons (N) and Lp/MPE
estimation errors by FourNet are presented in Table 6.3, with the principal metric L2-
error highlighted. As evident, FourNet is very accurate with negligible L2 estimation
error (of order 10−9). We note that, without a linear transform, the resulting Lp/MPE
estimation errors are much larger. For example, L2

(
ReG,ReĜ

)
= 3.3× 10−7 instead

of 1.4× 10−9 and L2

(
ImG, ImĜ

)
= 1.8× 10−7 vs 1.8× 10−9.

CGMY model [6] In this case, the characteristic exponent ψ(η) is given by ψ(η) =
CG (η) + iη (r +ϖ), where CG(η) = CΓ(−Y )

[
(M − iη)Y −MY + (G+ iη)Y −GY

]
and ϖ = −CG(−i). Here, Γ(·) represents the gamma function. In the CGMY model,
the parameter should satisfy C ≥ 0, G ≥ 0, M ≥ 0 and Y < 2.

The parameters used for this test case are given in Table (6.4). The linear trans-
form in Remark 5.1 is used with (a, c) = (0.5, 0.0). The number of neurons (N) and
Lp/MPE estimation errors by FourNet are presented in Table 6.5, with the principal
metric L2-error highlighted. Again, it is clear that FourNet is very accurate, with
negligible L2 estimation error (of order 10−8).

Parameters Values
T (maturity in years) 1
S0 (initial asset price) 100
r (risk free rate) 0.1
C (overall activity) 1
G (exp. decay on right) 5
M (exp. decay on left) 5
Y (finite/infinite activity) 0.5

Table 6.4: Parameters for the CGMY dy-
namics; values taken from [13][Equation
56].

N (# of neurons) 45

L1

(
ReG,ReĜ

)
7.8× 10−4

L2

(
ReG,ReĜ

)
1.7× 10−8

MPE
(
ReG,ReĜ

)
3.1× 10−5

L1

(
ImG, ImĜ

)
2.2× 10−4

L2

(
ImG, ImĜ

)
1.3× 10−9

MPE
(
ImG, ImĜ

)
9.2× 10−6

Table 6.5: Estimation errors for the
CGMY model; parameters from Ta-
ble 6.4; linear transform in Remark 5.1
is employed with (a, c) = (0.5, 0.0).

6.2.2 Heston and Heston Queue-Hawkes Moving beyond exponential Lévy
processes, we first evaluate the applicability of FourNet to the Heston model [23], fol-
lowed by an investigation of the Heston Queue-Hawkes model, as presented in [2]. For
these models, the characteristic functions of the log-asset price, ln(St), over t ∈ [0, T ],
are available in closed-form. Despite the non-homogeneous variance features, our
focus here is on estimating the transition density of the process {ln(St)}t∈[0,T ] for Eu-
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ropean option pricing. Since these options do not require time-stepping for valuation,
we can efficiently estimate transition densities using a single FFNN training session.

Heston model [23] The log-price ln(St) and its variance Vt follow the dynamics

d ln(St) =
(
r − Vt

2

)
dt+

√
Vt dW

(1)
t , dVt = κ(V̄ − Vt) dt+ σ

√
Vt dW

(2)
t ,

with S0 > 0 and V0 > 0 given. Here, κ, V̄ > 0, and σ > 0 are constants representing
the mean-reversion rate, the long-term mean level of the variance, and the instanta-

neous volatility of the variance; {W (1)
t } and {W (2)

t } are assumed to be correlated with
correlation coefficient ρ ∈ [−1, 1]. As presented in [47][Equation 5], the characteristic
function of XT = ln(ST ) is given by

GHeston

X (η) = expirηT exp {i ln(S0)η}
(

eκT/2

cosh(dT/2) + ξ sinh(dT/2)/d

)2κV̄ /σ2

· exp
{
−V0

(
iη + η2

)
sinh(dT/2)/d

cosh(dT/2) + ξ sinh(dT/2)/d

}
,(6.3)

where d = d(η) =
√

(κ− σρiη)2 + σ2 (iη + η2) and ξ = ξ(η) = κ− σρηi.
Numerical experiments for the Heston model utilize the parameters listed in Ta-

ble 6.6 (the Feller condition is met). Estimation errors are documented in Table 6.7,
noting the linear transformation Remark 5.1. In Figure 6.1, we display plots of the
benchmark real part in (a) and the imaginary part in (b). Corresponding estimations
by FourNet are also showcased, with the transition density estimated by FourNet de-
picted in (c). We emphasize FourNet’s outstanding performance, particularly evident
in the minimal L2 estimation error.

Parameters Values
T (maturity in years) 5
S0 (initial asset price) 100
r (risk free rate) 0.15
σ (volatility of volatility) 0.3
κ (mean-reversion rate) 3
V̄ (mean of volatility) 0.09
V0 (initial volatility ) 0.2
ρ (correlation) 0.4

Table 6.6: Parameters for the Heston
model; values taken from [11][Table 1].

N (# of neurons) 45
L1

(
ReG,ReĜ

)
1.94× 10−05

L2

(
ReG,ReĜ

)
6.94× 10−12

MPE
(
ReG,ReĜ

)
1.18× 10−06

L1

(
ImG, ImĜ

)
3.91× 10−05

L2

(
ImG, ImĜ

)
5.22× 10−11

MPE
(
ImG, ImĜ

)
3.74× 10−06

Table 6.7: Estimation errors for the
Heston model; parameters from Ta-
ble 6.6; linear transform in Remark 5.1
is employed with (a, c) = (0.15,−0.6).

(a) ReG, Re
Ĝ

(b) ImG, Im
Ĝ

(c) ĝ(·;T )

Fig. 6.1: Heston model corresponding to Table 6.6 and Table 6.7.
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Heston Queue-Hawkes [12, 2] With t ∈ [0, T ], let t± = limϵ↘0(t± ϵ). Informally,
t− (t+) denotes the instant of time immediately before (after) calendar time t. The
risk-neutral Heston Queue-Hawkes dynamics of the stock price are given by [2]:

d

(
St

St−

)
= (r − µY λt−) dt+

√
VtdW

(1)
t + (exp(Yt)− 1) dπt,

dVt = κ(V̄ − Vt)dt+ σ
√
VtdW

(2)
t .

Here, {Vt} is the variance process; {W (1)
t }, {W (2)

t } are correlated standard Brownian
motions with the constant correlation ρ ∈ [−1, 1]; Yt ∼ Normal(µY , σ

2
Y ); κ > 0, V̄ > 0

and σ > 0 are the variance’s speed of mean reversion, long-term mean, and volatility of
volatility parameters, respectively. Finally, {πt} is a counting process with stochastic

intensity λt satisfying the Queue-Hawkes process: dλt = α(dπt − dπQ
t ), where πQ

t is
a counting process with intensity βQt, the constants α, and β respectively are the
clustering and expiration rates.

The characteristic function of XT = ln(ST ) is given by [2][Equation 6]:

GHQH

X (η) = GHeston

X (η) GM (η).(6.4)

Here, GHeston

X (η) is given in (6.3), and GM (η) is defined as follows

GM (η) = e
λ∗T
2α (β−α−iαµY η−f(η)) ·

(
2f(η)

f(η) + g(η) + e−Tf(η)(f(η)− g(η))

)λ∗
α

·
( (

1− e−Tf(η)
)
(2β)

f(η) + g(η) + e−Tf(η)(f(η)− g(η))

)Q0

.

Here, f(η) =

√
(β + α (1 + iηµY ))

2 − 4αβψY (η), g(η) = β + α (1 + iηµY ), ψY is the
characteristic function of normal random variable with mean µY and std σY .

Parameters Values
T (maturity in years) 1
S0 (initial asset price) 9
V0 (initial volatility) 0.0625
V̄ (mean of volatility) 0.16
r (risk free rate) 0.1
σ (volatility of volatility) 0.9
Q0 (initial value of Qt) 2
α (clustering rate) 2
β (expiration rate) 3
λ∗ (baseline jump intensity) 1.1
µY (mean of jump size) -0.3
σY (std of jump size) 0.4
ρ (correlation) 0.1

Table 6.8: Parameters for the Heston
Queue-Hawkes model. values are taken
from [2][Table 1].

N (# of neurons) 45

L1

(
ReG,ReĜ

)
3.36× 10−4

L2

(
ReG,ReĜ

)
4.19× 10−9

MPE
(
ReG,ReĜ

)
2.44× 10−5

L1

(
ImG, ImĜ

)
3.38× 10−4

L2

(
ImG, ImĜ

)
4.66× 10−9

MPE
(
ImG, ImĜ

)
1.87× 10−5

Table 6.9: Estimation errors for the
Heston Queue-Hawkes model; parame-
ters from Table 6.8; linear transform in
Remark 5.1 with (a, c) = (0.18,−0.31)
is applied to GHQH

X (·) in (6.4).

We conduct numerical experiments using the parameters listed in Table 6.8, with
estimation errors detailed in Table 6.9, noting the linear transformation Remark 5.1.
Figure 6.1, we present several plots for the benchmark real/imaginary part in (a)/(b)
and respective results obtained by FourNet, as well as the estimated transition density
in (c). Impressively, FourNet demonstrates outstanding L2 estimation accuracy.
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(a) ReG, Re
Ĝ

(b) ImG, Im
Ĝ

(c) ĝ(·;T )

Fig. 6.2: Heston Queue-Hawkes model corresponding to Table 6.8 and Table 6.9.

6.3 Two-dimensional Merton jump-diffusion processWe now demonstrate
the capability of FourNet to two-dimensional Merton jump-diffusion process [49]. The
stock prices follow the risk-neutral dynamics

(6.5) dS
(ℓ)
t = (r − λκ(ℓ))S(ℓ)

t dt+ σ(ℓ)S
(ℓ)
t dW

(ℓ)
t +

(
eY

(ℓ) − 1
)
S
(ℓ)
t dPt, ℓ = 1, 2,

with S
(ℓ)
0 > 0 given. Here, r > 0 is risk free rate and σ(ℓ) > 0, ℓ = 1, 2, are

instantaneous volatility for the ℓ-underlying; {W (1)
t } and {W (2)

t } are standard Brown
motions with correlation ρ ∈ [−1, 1]; {Pt} is a Poisson process with a constant finite
jump arrival rate λ ≥ 0; [Y (1), Y (2)] are bivariate normally distributed jump sizes
with mean µ̃ = [µ̃(1), µ̃(2)] and covariance matrix for the jump components, denoted

by Σ̃, where Σ̃
(ℓ,k)

= σ̃(ℓ)σ̃(k)ρ̃(ℓ,k), ℓ, k ∈ {1, 2}, with ρ̃(1,2) = ρ̃(2,1) = ρ̃ ∈ [−1, 1];
κ(ℓ) = E[eY(ℓ) − 1], ℓ = 1, 2.

For subsequent use, we define µ = [µ(1), µ(2)], where µ(ℓ) = (r−λκ(ℓ)−(σ(ℓ))2/2)T ,
ℓ ∈ {1, 2}, and covariance matrix for the diffusion components, denoted by Σ, where

Σ(ℓ,k) = σ(ℓ)σ(k)ρ(ℓ,k), ℓ, k ∈ {1, 2}, with ρ(1,2) = ρ(2,1) = ρ ∈ [−1, 1].

Parameters Values
T (maturity in years) 1
σ1 (volatility) 0.12
σ2 0.15
r (risk free rate) 0.05
K (strike price) 100
ρ (correlation) 0.3
ρ̃ (jump correlation) -0.2
λ (jump intensity) 0.6
µ̃1 (jump size mean) -0.1
µ̃2 0.1
σ̃1 (jump size std) 0.17
σ̃2 0.13

Table 6.10: Parameters for the 2D Mer-
ton jump diffusion. Values are taken
from [49] [Parameter sets 2].

N (# of neurons) 45

L2

(
ReG,ReĜ

)
3.2× 10−8

MPE
(
ReG,ReĜ

)
8.3× 10−5

L2

(
ImG, ImĜ

)
2.2× 10−8

MPE
(
ImG, ImĜ

)
4.6× 10−5

Table 6.11: Estimation errors for the
2D Merton jump-diffusion model; pa-
rameters from Table 6.10;

The characteristic function of the random variable XT =
[
ln

(
S
(ℓ)
T /S

(ℓ)
0

)]
, ℓ = 1, 2, is

given by [49][Eqn (6.7)]

(6.6) GX(η) = exp
(
iµ′η − 1

2
η′Ση

)
exp

(
λT

(
exp

(
iµ̃′η − 1

2
η′Σ̃η

)
− 1

))
.
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In this case, it is convenient to write ĝ(x; θ) in the following form:

ĝ(x; θ) =

N∑
n=1

βn
1

(2π)|Σ̂n|1/2
exp

(
−1

2
(x− µ̂n) Σ̂

−1

n (x− µ̂n)

)
.

Here, for n ∈ N , µ̂n = [µ̂
(1)
n , µ̂

(2)
n ], Σ̂n is the covariance matrix, where Σ̂

(ℓ,k)

n =

σ̂
(ℓ)
n σ̂

(k)
n ρ̂

(ℓ,k)
n , ℓ, k ∈ {1, 2}, with ρ̂

(1,2)
n = ρ̂

(2,1)
n = ρ̂n ∈ [−1, 1]. The parameters to

be learned are: {βn, µ̂(1)
n , µ̂

(2)
n , ρ̂n}, n = 1, . . . N . The real and imaginary parts of the

Fourier transform of ĝ(x; θ) are given by

ReĜ(η)=

N∑
n=1

βn cos(η
′µ̂n) exp

(−η′Σ̂nη

2

)
, ImĜ(η)=

N∑
n=1

βn sin(η
′µ̂n) exp

(−η′Σ̂nη

2

)
.

We conduct numerical experiments using the parameters listed in Table 6.10, with
estimation errors detailed in Table 6.11. As evident from Table 6.11, FourNet demon-
strates impressive L2 estimation accuracy. Here, 103 partition points per dimension
are used, totaling 106 data points for training (P = 106, as shown in Table 6.1). Com-
paring the L2 estimation errors for the two-dimensional and one-dimensional cases
(Table 6.11 and Table 6.3), and in view of the multi-dimensional error bound (4.7),
it appears that FourNet is robust, accurate, and reliable even in higher dimensions.

6.4 Option pricingWe now turn our attention to the application of estimated
transition densities produced by FourNet utilized for European and Bermudan option
pricing. Recall that 0 ≤ t < t + ∆t ≤ T , where t and ∆t are fixed. Typically, in
option pricing, we need to approximate a generic convolution integral of the form

v(x, t) = e−r∆t

∫
R
v((x′ − c)/a, t+∆t)g(x− x′; ∆t) dx′

≈ e−r∆t

∫ xmax

xmin

v((x′ − c)/a, t+∆t)ĝ(x− x′; θ̂,∆t) dx.(6.7)

Here, v(·, t+∆t) is the time-(t+∆t) condition; ĝ(x; θ̂,∆t) is the estimated transition

density obtained through FourNet. As we pointed out in Remark 5.1, ĝ(x; θ̂,∆t)
reflects a linear transformation applied to the original density. In light of this, the
time-(t+∆t) terminal condition must be adjusted correspondingly in the convolution
integral, as depicted in (6.7), through (x′ − c)/a. As noted earlier, this integral is
evaluated using adaptive Gauss quadrature rule (based on QUADPACK library in
Fortran 77 library, quad function in Python). The range [xmin, xmax] for numerical
integration will be provided for each test case subsequently.

6.4.1 European options For European options, we set t = 0 and ∆t = T ,
and v(x′, t +∆t) = v(x′, T ) as the payoff function. The strike of the option is given
by E > 0. In the context of exponential Lêvy processes examined in this study, which
include the Merton and CGMY dynamics, the European call option payoff function is

defined as v
(
(x′−c)/a, T

)
≡

(
s0e

(x′−c)/a−E
)+

, where E is strike price of the option.
For the Heston and Heston Queue-Hawkes models, the European call option payoff is

v
(
(s′ − c)/a, T

)
=

(
e(s

′−c)/a − E
)+

.
We provide numerically computed European option prices for the models dis-

cussed in the previous section. These are presented in Tables 6.12 (Merton), 6.13
(CGMY), 6.4.1 (Heston), and 6.4.1 (Heston Queue-Hawkes). Option prices are de-

rived using the FourNet-estimated transition density ĝ(s; θ̂,∆t), combined with an
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adaptive Gauss quadrature rule (the quad function in Python) to evaluate the corre-
sponding convolution integral. These results are displayed under the “FourNet-quad”
column.

Strike Ref.
[42]

FourNet Rel.

(E) quad error
96 14.83787 14.83790 2×10−6

98 13.43922 13.43925 3×10−6

100 12.10782 12.10785 3×10−6

102 10.84925 10.84928 3×10−6

104 9.66805 9.66808 3×10−6

Table 6.12: European call option prices
under the Merton model corresponding
to Tables 6.2 and 6.3; [xmin, xmax] =
[−4, 1].

Strike Ref.
[13]

FourNet Rel.

(E) (COS) quad error
96 21.78472 21.78466 3×10−6

98 20.77826 20.77819 3×10−6

100 19.81294 19.81288 3×10−6

102 18.88821 18.88815 3×10−6

104 18.00334 18.00328 3×10−6

Table 6.13: European call option
prices under CGMY dynamics corre-
sponding to data from Tables 6.4 and
6.5; [xmin, xmax] = [−4, 2].

Strike Ref.
[23]

FourNet Rel.

(E) quad error
96 57.35019 57.35014 1×10−6

98 56.61132 56.61127 1×10−6

100 55.88119 55.88114 1×10−6

102 55.15980 55.15975 1×10−6

104 54.44716 54.44711 1×10−6

Table 6.14: European call option
prices under Heston dynamics corre-
sponding to data from Tables 6.6 and
6.7; [xmin, xmax] = [−4, 1].

Strike Ref.
[13]

FourNet Rel.

(E) (COS) quad error
7 4.27369 4.27373 1×10−5

8 3.81734 3.81738 1×10−5

9 3.40704 3.40708 1×10−5

10 3.04018 3.04022 1×10−5

11 2.71399 2.71403 1×10−5

Table 6.15: European call option prices
under Heston Queue-Hawkes dynamics;
corresponding to data from Tables 6.8
and 6.9; [xmin, xmax] = [−3, 1]

.
Benchmark prices are detailed under the “Ref.” column. For the Merton and

Heston models, these benchmark prices are determined using the analytical solutions
from [42] and the method by [23], respectively. For CGMY, and Heston Queue-
Hawkes models, reference European option prices are derived from our implementation
of the Fourier Cosine (COS) method [13]. The associated relative errors of these
approximations are indicated in the “Rel. error” column. Clearly, the FourNet-quad
method proves highly accurate, showcasing a negligible error (on the order of 10−5).

6.4.2 Bermudan options We present a Bermudan put option written on the
underlying following the Merton jump-diffusion model [15]. Unlike European options
which can only be exercised at maturity, a Bermudan put option can be exercised at
any fixed dates t−m, tm ∈ T , where T ≡ {tm}Mm=1 is a discrete set of pre-determined
early exercise dates. We adopt the convention that no early exercise at time t0. In
this example, the early exercise dates are annually apart, that is, tm+1 − tm = δt = 1
(year), In addition, the underlying asset pays a fixed dividend amount D at t−m.
Importantly, given that the transition density needed for pricing is time and spatially
homogeneous, and with δt = 1 year for all intervals, we can efficiently train the FFNN
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only once, and apply it across all intervals [tm, tm+1].
Over each [tm, tm+1], the pricing algorithm for a Bermudan put option consists

of two steps. In Step 1 (time-advancement), we need to approximate the convo-

lution integral (6.7): v(x, t+m) = e−r∆t
∫
R v((x

′ − c)/a, tm+1)ĝ(x − x′; θ̂, δt) dx, for
x ∈ [xmin, xmax], where xmin < 0 < xmax, |xmin| and xmax are sufficiently large. In
Step 2 (intervention), we impose the condition

(6.8) v(x, tm) = max
(
v
(
ln(max(ex −D, exmin)), t+m

)
,max(E − ex, 0)

)
.

Here, E is the strike price, and the expression ln(max(ex−D, exmin)) in (6.8) ensures
that the no-arbitrage condition holds, i.e. the dividend paid can not be larger than
the stock price at that time, taking into account the localized grid.

Adopting annual early exercise dates, where δt = 1 year, the transition density
ĝ(·;T = 1) as obtained from FourNet (as detailed in Table 6.3 and based on parameters
from Table 6.2) is used in Step 1 (time-advancement) above. These parameters and
those pertaining to the Bermudan put are given in Table 6.16.

Letting {xq}Qq=0 be a partition of [xmin, xmax], we denote by vmq a numerical
approximation to the exact value v(xq, tm), where tm ∈ T ∪ {t0}. Intermediate value
{vm+

q }, q = 0, . . . , Q, is computed by evaluating the convolution integral in Step 1 via
an adaptive Gauss quadrature rule, specifically the quad function in Python. The time
tm+1-condition v(·, tm+1) is given by a linear combination of discrete solutions {vm+1

q }.
For condition (6.8), linear interpolation is then used on {vm+

q } to determine the option
value {vmq }. Convergence results for the FourNet-quad approach are displayed in
Table 6.17, showcasing evident agreement with an accurate benchmark option price
taken from [15][Table 5] (finest grid). Here, to estimate the convergence rate of
FourNet-quad, we calculate the “change” as the difference in values from coarser to
finer partitions (i.e. transitioning from smaller to larger values of Q) and the “ratio”
as the quotient of these changes between successive partition.

Parameters Values
S0 (initial asset price) 100
r (risk free rate) 0.05
σ (volatility) 0.15
λ (jump intensity) 0.1
µ̃ (mean of jump size) -1.08
σ̃ (std of jump size) 0.4
T (maturity in years) 10
δt (frequency in years) 1
E (strike) 100
D (dividend) 1

Table 6.16: Parameters for the Bermu-
dan put option; values taken from
[15][Table 4].

Q FourNet-
quad change

ratio

200 24.8323
400 24.7903 4.2× 10−2

800 24.7838 6.5× 10−3 6.7
1600 24.7812 2.6× 10−3 2.5
3200 24.7806 6.0× 10−4 4.3

Table 6.17: Bermudan put option;
parameters from Table 6.16; bench-
mark price: 24.7807, taken from
[15][Table 5, finest grid]; xmin =
ln(S0)− 10, xmax = ln(S0) + 10.

6.5 Robustness tests This section evaluates FourNet’s robustness against the COS
method [13] in challenging scenarios, particularly when the transition density ap-
proaches a Dirac’s delta function as T → 0. Fourier-based methods often struggle in
such cases, requiring a very large number of terms to accurately estimate the transi-
tion density. To further assess robustness, we introduce an asymmetric heavy-tailed
distribution. We test with a very short maturity T = 0.001 years, or about 0.26 busi-
ness days, using the Kou jump-diffusion model [31], known for effectively modeling
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the leptokurtic nature of market returns.

Parameters Values
T (maturity in years) 0.001
S0 (initial asset price) 100
q1 (jump-up probability) 0.3445
r (risk free rate) 0.05
σ (volatility) 0.15
λ (jump intensity) 0.1
ξ1 (jump-up param.) 3.0465
ξ2 (jump-down param.) 3.0775
E (strike price) 100

Table 6.18: Parameters for the Kou
jump diffusion dynamics; values are
taken from [15][Table 1].

N (# of neurons) 45

L1

(
ReG,ReĜ

)
1.06× 10−03

L2

(
ReG,ReĜ

)
1.86× 10−08

MPE
(
ReG,ReĜ

)
7.00× 10−05

L1

(
ImG, ImĜ

)
1.10× 10−03

L2

(
ImG, ImĜ

)
2.11× 10−08

MPE
(
ImG, ImĜ

)
3.16× 10−05

Table 6.19: Estimation errors for
the Kou model; parameters from Ta-
ble 6.18; linear transform in Re-
mark 5.1 is employed with (a, c) =
(20, 0).

For this model, the characteristic function of the random variable Xt = ln (St/S0)

is GX(η) = exp(tψ(η)), where ψ(η) = i
(
µ− σ2

2

)
η − σ2η2

2 + λ
(

q1
1−iηξ1

+ q2
1+iηξ2

− 1
)
,

with q1 ∈ (0, 1) and q1 + q2 = 1, ξ1 > 1 and ξ2 > 0.
The parameters for this experiment are detailed in Table 6.18, with the parameters

for the linear transformation set to (a, c) = (20, 0.0). FourNet’s training results, shown
in Table 6.19, reveal an L2-estimation error around 10−8, demonstrating significant
accuracy in this challenging scenario.

In comparison, the COS method, using 800 and 1200 terms (COS-800 and COS-
1200) as implemented per [13], exhibited significant oscillations and losses of non-
negativity in estimated transition densities, especially near x = 0, with these issues
being particularly pronounced in the right tail (Figure 6.3(a)). Similar issues were
noted in the left tail but are not shown. Figure 6.3(b) further illustrates how these
oscillations and non-negativity issues in the COS method can lead to highly fluctu-
ating and sometimes negative European call option prices, violating the no-arbitrage
principle. In contrast, FourNet displayed minimal non-negativity loss, demonstrating
its robustness and precision for financial applications. Notably, compared to Euro-
pean option prices calculated using an analytical formula from [31], FourNet achieved
maximum relative errors in option prices of about 10−3, showcasing superior accuracy.

(a) Estimated transition density (b) Option prices

Fig. 6.3: Comparison between FourNet and COS-800/COS-1200, corresponding to
parameters/data from Table 6.18 and Table 6.19.
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7 Conclusion and future work This paper has introduced and rigorously ana-
lyzed FourNet, a novel single-layer FFNN developed to approximate transition den-
sities with known closed-form Fourier transforms. Leveraging the unique Gaussian
activation function, FourNet not only facilitates exact Fourier and inverse Fourier
operations, which is crucial for training, but also draws parallels with the Gaussian
mixture model, demonstrating its power in approximating sufficiently well a vast ar-
ray of transition density functions. The hybrid loss function, integrating MSE with
MAE regularization, coupled with a strategic sampling approach, has significantly
enhanced the training process.

Through a comprehensive mathematical analysis, we demonstrate FourNet’s ca-
pability to approximate transition densities in the L2-sense arbitrarily well. We derive
practical bounds for the L2 estimation error and the potential (pointwise) loss of non-
negativity in the estimated densities for the general case of d-dimensions (d ≥ 1), un-
derscoring the robustness and applicability of our methodology in practical settings.
We illustrate FourNet’s accuracy and versatility through a broad range of models in
quantitative finance, including (multi-dimensional) exponential Lévy processes and
the Heston stochastic volatility models-even those augmented with the self-exciting
Queue-Hawkes jump process. European and Bermudan option prices computed using
estimated transition densities obtained through FourNet exhibit impressive accuracy.

In future work, we aim to extend FourNet to tackle more complex stochas-
tic control problems, potentially involving higher dimensionality and model non-
homogeneity. This expansion is expected to broaden FourNet’s applicability and
enhance its utility in sophisticated financial modeling. We plan to explore various
approaches to improve its performance in high-dimensional settings, assessing a range
of enhancements to optimize its architecture and training processes. In addition,
FourNet’s simplicity and ease of implementation position it well for realistic models
previously deemed challenging within existing frameworks. One particular area of in-
terest includes investigating the impact of self-exciting jumps on optimal investment
decisions in Defined Contribution superannuation–a topic of heightened relevance in
a climate marked by rising inflation and economic volatility.
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for pricing early-exercise options under Lévy processes, SIAM Journal on Scientific Com-
puting, 30 (2008), pp. 1678–1705.

[36] Y. Lu and D. Dang, A pointwise convergent numerical integration method for Guaranteed Life-
long Withdrawal Benefits under stochastic volatility. https://people.smp.uq.edu.au/Duy-
MinhDang/papers/epsilon GLWB.pdf, 1 2023. Submitted.

[37] Y. Lu, D. Dang, P. Forsyth, and G. Labahn, An ϵ-monotone Fourier method for Guar-



FOURIER NN APPROXIMATION OF TRANSITION DENSITIES 27

anteed Minimum Withdrawal Benefit (GMWB) as a continuous impulse control problem.
https://people.smp.uq.edu.au/Duy-MinhDang/papers/epsilon GMWB.pdf, 06 2022. Sub-
mitted.

[38] Y. Lu and D.-M. Dang, A semi-Lagrangian ε ε-monotone Fourier method for continuous
withdrawal GMWBs under jump-diffusion with stochastic interest rate, Numerical Methods
for Partial Differential Equations, 40 (2024), p. e23075.

[39] D. B. Madan and E. Seneta, The variance gamma (VG) model for share market returns,
Journal of business, (1990), pp. 511–524.

[40] S. Maxwell and W. Halbert, Universal approximation using feedforward networks with non-
sigmoid hidden layer activation functions, in International Joint Conference on Neural
Networks, vol. 1, 1989, pp. 613–617, https://doi.org/10.1109/IJCNN.1989.118640.

[41] G. J. McLachlan, S. X. Lee, and S. I. Rathnayake, Finite mixture models, Annual review
of statistics and its application, 6 (2019), pp. 355–378.

[42] R. C. Merton, Option pricing when underlying stock returns are discontinuous, Journal of
financial economics, 3 (1976), pp. 125–144.

[43] G. N. Milstein, J. G. Schoenmakers, and V. Spokoiny, Transition density estimation for
stochastic differential equations via forward-reverse representations, Bernoulli, 10 (2004),
pp. 281–312.

[44] A. V. Oppenheim and G. C. Verghese, Signals, systems & inference, Pearson London, 2017.
[45] L. Ortiz-Gracia and C. W. Oosterlee, A highly efficient Shannon wavelet inverse Fourier

technique for pricing European options, SIAM Journal on Scientific Computing, 38 (2016),
pp. B118–B143.

[46] C. Reisinger and Y. Zhang, Rectified deep neural networks overcome the curse of dimension-
ality for nonsmooth value functions in zero-sum games of nonlinear stiff systems, Analysis
and Applications, 18 (2020), pp. 951–999.

[47] S. d. B. Rollin, A. Ferreiro-Castilla, and F. Utzet, A new look at the Heston character-
istic function, arXiv preprint arXiv:0902.2154, (2009).

[48] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, The annals
of mathematical statistics, (1956), pp. 832–837.

[49] M. J. Ruijter and C. W. Oosterlee, Two-dimensional fourier cosine series expansion method
for pricing financial options, SIAM Journal on Scientific Computing, 34 (2012), pp. B642–
B671.

[50] J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for solving partial dif-
ferential equations, Journal of computational physics, 375 (2018), pp. 1339–1364.

[51] H. Su and D. P. Newton, Widening the range of underlyings for derivatives pricing with quad
by using finite difference to calculate transition densities-demonstrated for the no-arbitrage
SABR model, The Journal of Derivatives, 28 (2020), pp. 22–46.

[52] H. Su, M. V. Tretyakov, and D. P. Newton, Option valuation through deep learning of
transition probability density, arXiv preprint arXiv:2105.10467, (2021).

[53] D. Tavella and C. Randall, Pricing financial instruments: The finite difference method,
vol. 13, John Wiley & Sons, 2000.

[54] P. T. Tran et al., On the convergence proof of AMSGrad and a new version, IEEE Access,
7 (2019), pp. 61706–61716.

[55] P. M. van Staden, P. A. Forsyth, and Y. Li, A parsimonious neural network approach to
solve portfolio optimization problems without using dynamic programming, arXiv preprint
arXiv:2303.08968, (2023).

[56] E. Weinan, J. Han, and A. Jentzen, Algorithms for solving high dimensional PDEs: from
nonlinear Monte Carlo to machine learning, Nonlinearity, 35 (2021), p. 278.

[57] H. Yan and H. Ouyang, Financial time series prediction based on deep learning, Wireless
Personal Communications, 102 (2018), pp. 683–700.

[58] K. Yosida, Functional analysis, xii+ 465, 1968.
[59] H. Zhang and D.-M. Dang, A monotone numerical integration method for mean–variance

portfolio optimization under jump-diffusion models, Mathematics and Computers in Sim-
ulation, 219 (2024), pp. 112–140.

Appendices Appendix A. Constructing non-uniform partitions with multi-
ple peaks. Algorithm A.1 provides a detailed procedure for constructing non-uniform, yet
fixed, partitions of the interval [ηl, ηu], comprised of M sub-intervals. These partitions fea-
ture denser points around a chosen point, ηc ∈ [ηl, ηu]. The parameters dl and du determine
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the point densities in [ηl, ηc] and [ηc, ηu], respectively, represented as 1
dl

and 1
du

.

Algorithm A.1 Algorithm for constructing a non-uniform partition of an interval
[ηl, ηu] into M sub-intervals, having a single concentration point, ηc, which is the
m-partition point, m ∈ {0, . . . ,M}, is fixed.
PartitionOne(ηl, ηu, ηc,M,m, dl, du)

1: compute αl = sinh−1
(ηl − ηc

dl

)
and αu = sinh−1

(ηu − ηc
du

)
;

2: compute η0 = ηl; ηj = ηc + dl sinh(αl(1− kj)), where kj =
j

m
, j = 1, . . . ,m;

3: compute ηj = ηc + du sinh(αukj), where kj =
j

M −m , j = 1, . . . , (M −m);

4: return Q ≡ {ηj}mj=0 ∪ {ηj}M−m
j=1 ;

Algorithm A.2 Algorithm for constructing a non-uniform partition of an interval
with multiple concentration points.

PartitionMulti(ηmin, ηmax, {ηj}Jj=1, {Pj}vj=1, {qj}Jj=1, {ηjl }Jj=1, {ηju}Jj=1)

1: Q1 ← PartitionOne
(
ηmin,

η1 + η2
2

, η1, P1, q1, η
1
l , η

1
u

)
;

2: Qj ← PartitionOne(
ηj−1 + ηj

2
,
ηj + ηj+1

2
, ηj , Pj , qj , η

j
l , η

j
u), j = 2, . . . , J − 1;

3: QJ ← PartitionOne(
ηJ−1 + ηJ

2
, ηmax, ηJ , PJ , qJ , η

J
l , η

J
u );

4: return Q ≡ ∪Jj=1Qj ;

We use Algorithm A.1 in Algorithm A.2 to generate a non-uniform partition having P
sub-intervals for the region [ηmin, ηmax] ≡ [−η′, η′] with concentration points ηj , j = 1, . . . , J ,
satisfying ηmin ≤ η1 < η2 < . . . < ηJ ≤ ηmax. Here, Pj is the number of sub-intervals for
the j-th sub-region containing ηj , j = 1, . . . , J , with

∑J
j=1 Pj = P ; qj is the local index of

the gridpoint in the j-th sub-region that is equal to ηj ; η
j
l and ηj

u are the upper and lower
density parameters, respectively, associated with the j-th sub-region containing ηj .
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