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Abstract

This paper introduces FourNet, a novel single-layer feed-forward neural network (FFNN) method

designed to approximate transition densities for which closed-form expressions of their Fourier trans-

forms, i.e. characteristic functions, are available. A unique feature of FourNet lies in its use of a

Gaussian activation function, enabling exact Fourier and inverse Fourier transformations and draw-

ing analogies with the Gaussian mixture model. We mathematically establish FourNet’s capacity

to approximate transition densities in the L2-sense arbitrarily well with finite number of neurons.

The parameters of FourNet are learned by minimizing a loss function derived from the known char-

acteristic function and the Fourier transform of the FFNN, complemented by a strategic sampling

approach to enhance training. Through a rigorous and comprehensive error analysis, we derive in-

formative bounds for the L2 estimation error and the potential (pointwise) loss of nonnegativity in

the estimated densities. FourNet’s accuracy and versatility are demonstrated through a wide range

of dynamics common in quantitative finance, including Lévy processes and the Heston stochastic

volatility models-including those augmented with the self-exciting Queue-Hawkes jump process.

Keywords: transition density, jump processes, neural networks, Fourier transform, option pricing

MSC codes: 62M45, 91-08, 60E10, 62P05

1 Introduction
The application of machine learning, especially deep learning, in quantitative finance has garnered con-

siderable interest. Recent breakthroughs in computational resources, data availability, and algorithmic

enhancements have encouraged the adoption of machine learning techniques in various quantitative

finance domains. These include, but are not limited to, portfolio optimization [33, 54], asset pricing

[56, 4], model calibration and option pricing [51, 34, 24], solution of high-dimensional partial differen-

tial equations [21, 26, 55, 49], valuation adjustments [15, 18, 19], as well as aspects of stochastic control

and arbitrage-free analysis [27, 45, 8].

Transition (probability) density functions, which are crucial in quantitative finance due to their

primary role in governing the dynamics of stochastic processes, often do not admit a closed-form ex-

pression. Consequently, the utilization of numerical methods for estimating these density functions

becomes necessary. Classical methods include kernel density estimation, as referenced in [43, 47, 17].
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Yet, surprisingly, the development of neural network (NN) methods for estimating these transition

probability density functions is significantly underdeveloped. While some existing NN strategies tackle

the associated high-dimensional Kolmogorov partial differential equations (PDEs) using deep NNs,

these are primarily black-box in nature. Such methodologies have seen applications in option pricing

([51, 50]) and general Itô diffusions ([20]). While these methods are generally effective and versatile,

they come with a major limitation: their model-dependent nature necessitates a constant reformula-

tion of the Kolmogorov PDEs for different stochastic models. In addition, the inherent complexity

associated with deploying NNs to solve PDEs might deter their practical application. Furthermore, a

notable gap in the NN literature, particularly regarding transition density function estimation, is the

limited analysis of estimation error and potential compromise of non-negativity.

In quantitative finance, many popular stochastic models have unknown transition densities; how-

ever, their Fourier transforms, i.e. characteristic functions, are often explicitly available via the Lévy-

Khintchine formula [28]. This property has been extensively utilized in option pricing through vari-

ous numerical methods. Prominent among these are the Carr-Madan approach [5], the Convolution

(CONV) technique [35], Fourier Cosine (COS) method proposed by [12], Shannon-wavelet methods

[44, 10], with the COS method being particularly noteworthy. Specifically, the COS method achieves

high-order convergence for piecewise smooth problems. However, within the broader framework of

stochastic optimal control, where problems often exhibit complex and non-smooth characteristics, this

high-order convergence is unattainable, as noted in [37, 14]. Moreover, the COS method’s dependence

on the simplicity of the payoff for the calculation of Fourier series coefficients further highlights its lim-

itations in this domain, particularly in multi-dimensional settings. In the same vein of research, recent

works on ϵ-monotone Fourier methods for control problems in finance merit attention [14, 38, 37, 36].

In response to the noted observations, this paper sets out to achieve three primary objectives.

Firstly, we present a single-layer feed-forward (FF) NN approach to approximate transition densities

with closed-form Fourier transforms, facilitating training in the Fourier domain. This approach sim-

plifies the implementation considerably when compared to deeper NN structures. Second, we conduct

a rigorous and comprehensive analysis of the L2 estimation error between the exact and the estimated

transition densities obtained through the proposed approach. This methodology, dubbed the Fourier-

trained Neural Network method or “FourNet”, showcases the benefits of using the Fourier transform in

FFNN models. Lastl0y, we validate FourNet’s accuracy and versatility across a spectrum of stochastic

financial models.

The main contributions of this paper are as follows.

� We establish two key results for FourNet: (i) transition densities can be approximated arbitrarily

well in the L2-sense using a single-layer FFNN with a Gaussian activation function and a finite

number of neurons; and (ii) the L2-error in this approximation remains invariant under the Fourier

transform map. Indeed, as shown subsequently herein, this result holds more generally for any

function in L2 (R) and a Borel measurable non-sigmoid activation function in L1 (R) ∩ L2 (R).

FourNet’s methodology underscores the potential and efficacy of shallow NN architectures for

complex approximation tasks. The inherent invariance under Fourier transformation opens op-

portunities for training and error analysis in the Fourier domain, rather than the conventional

spatial domain. This unique capability allows us to utilize the the known closed-form expression

of the characteristic function and the Fourier transform of the FFNN for an in-depth analysis of

the L2 estimation error.
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� Using FourNet, we formulate an approximation for transition densities using a single-layer FFNN

equipped with a Gaussian activation function. FourNet’s parameters are fine-tuned by minimizing

a mean-squared-error (MSE) loss, supplemented with a mean-absolute-error (MAE) regulariza-

tion. Both the loss function and regularization term stem from the known characteristic function

and the Fourier transform of the FFNN. A strategic sampling approach is proposed, maximizing

the benefits of MAE regularization.

We mathematically establish that the L2 estimation error in FourNet is bounded by various

components, namely the theoretical approximation error, the truncation error in the Fourier

domain, the error in parameter estimation, and finite sampling error. We also derive informative

bounds for the potential (pointwise) loss of nonnegativity in FourNet-estimated transition density.

This analysis provides valuable insight into the behavior and reliability of the proposed Fourier-

trained FFNN, making a case for its robust application.

� We showcase FourNet’s accuracy and versatility for a wide range of underlying dynamics common

in quantitative finance with a particular emphasis on its applications in option pricing. Specif-

ically, our analysis includes the class of exponential Lévy processes, such as the CGMY model

[6], Merton’s jump-diffusion model [42], and Kou’s asymmetric double exponential model [31],

as well as multi-dimensional processes within this class. We also consider the Heston model [23],

as well as Heston dynamics augmented with the Queue-Hawkes jump process, which has been

recently introduced in [11, 2].

This paper is the first in a series where we will present the FourNet method and its applications.

While the current paper focuses on European and Bermudan options, a subsequent paper will extend

the application of FourNet to control problems, including portfolio optimization, thereby broadening

the scope and application of this innovative method. Although the focus in this work is on the

approximation and estimation of transition densities, FourNet’s methodology and its comprehensive

error analysis are also relevant to the study of Green’s functions for parabolic integro-differential

equations [16], due to the inherent connection between them.

The remainder of the paper is organized as follows. Section 2 describes the general structure of

single-layer FFNNs with non-sigmoid activation functions and an associated universal approximation

theorem. In Section 3, we present FourNet, including the two key aforementioned mathematical results,

and the associated MSE loss function. An error analysis of FourNet is presented in Section 4, while

its training is discussed in Section 5. FourNet’s accuracy and versatility are demonstrated in Section 6

through extensive numerical experiments. Section 7 concludes the paper and outlines possible future

work.

2 Background on single-layer FFNNs

2.1 Non-sigmoid activation functions

Feed-forward neural networks can be perceived as function approximators comprising of several inputs,

hidden layers composed of neurons/nodes, an activation function, and several outputs. This study

primarily concentrates on shallow NNs characterized by a single input, a single output, and a number

of nodes within the hidden layer. We also consider only the case that the input is one dimensional.

Figure 2.1 depicts a single-layer FFNN having a total of N nodes in the hidden layer.

We now start with FFNNs with (Borel measurable) non-sigmoid activation functions, and the

associated Universal Approximation Theorem [40][Theorem 2.1]. This class of of FFNNs is defined
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Figure 2.1: Fully connected FFNN (biases not shown) with a single (hidden) layer and a one-

dimensional input x ∈ R

below.

Definition 2.1 (Σ†(φ) - activation function φ). Let Σ†(φ) be the class of single-layer FFNNs having

arbitrary Borel measurable activation functions φ defined by

Σ†(φ) =

{
ĝ : R→ R

∣∣ ĝ(x; θ) = N∑
n=1

βnφ (wnx+ bn) , βn, wn, bn ∈ R
}
. (2.1)

Here, x ∈ R is the input; for a fixed N , the parameter θ ∈ R3N is constituted by the weights wn and

βn, and the bias terms bn, n = 1, . . . , N .

For subsequent use, for 1 ≤ p <∞, we define the sets of p-integrable and p-locally-integrable functions,

respectively denoted by Lp (R) and Lp (R, loc), as follows

Lp (R) =

{
f ∈M

∣∣ ∥f∥p ≡ [∫ |f(x)|pdx]1/p <∞} ,
Lp (R, loc) =

{
f ∈M

∣∣ f I[−A,A] ∈ Lp (R) ,∀A ∈ {1, 2, 3, . . .}
}
. (2.2)

Here,M is the space of all Borel measurable functions f : R→ R.1 Closeness of two elements f1 and

f2 of Lp (R, loc) is measured by a metric ρp,loc(f1, f2) defined as follows [40]

ρp,loc (f1, f2) =
∞∑

A=0

(
2−A

)
min

(∥∥(f1 − f2) I[−A,A]

∥∥
p
, 1
)
, f1, f2 ∈ Lp (R, loc) . (2.3)

Here, IA(·) be an indicator function defined as follows: IA(x) = 1 if x ∈ A and zero otherwise. For

subsequent use, we also introduce the notion of ρp,loc-denseness for Lp (R, loc) [40].

Definition 2.2 (ρp-denseness, 1 ≤ p <∞). A subset S of Lp (R, loc) is ρp,loc-dense in Lp (R, loc)) if, for
any f1 in Lp (R, loc)) and any ε > 0, there is a f2 in S such that ρp,loc (f1, f2) < ε, where ρp,loc (f1, f2)

is defined in (2.3).

1It is straightforward to see that M contains essentially all functions relevant in practical applications.
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2.2 Universal Approximation Theorem

The Universal Approximation Theorem proposed in [25] for sigmoid activation functions play a key

theoretical foundation. However, sigmoid activation functions are not necessary for universal approx-

imation as highlighted in [40][Theorem 2.1] - therein, an identical universal approximation theorem

to the one in [25] was obtained. The key finding of [40] is that, for sufficiently complex single-layer

FFNNs with an arbitrary (Borel measurable) activation function at the hidden layer can approximate

an arbitrary function f(·) ∈ Lp(R, loc), 1 ≤ p < ∞, arbitrary well provided that the activation func-

tion, denoted by φ(x), belong to L1(R)∩Lp(R) and
∫
R φ(x)dx does not vanish. Formally, we state the

Universal Approximation Theorem for non-sigmoid activation functions below.

Theorem 2.1 (Universal Approximation Theorem [40][Theorem 2.1). ] Let φ be the (Borel measurable)

activation function that belongs to L1(R) ∩ Lp(R) for 1 ≤ p < ∞. If
∫
R φ(x) dx ̸= 0, then Σ†(φ) is

ρp,loc-dense in Lp(R, loc). Here, Σ†(φ) and ρp,loc are respectively defined in Definitions 2.1 and 2.2.

In other words, with a sufficiently large number of neurons, a single hidden layer FFNN with an

arbitrary (Borel measurable) activation function can approximate an arbitrary function f ∈ Lp(R, loc)
arbitrarily well, provided that the activation function φ belongs to L1(R) ∩ Lp(R) and

∫
R φ(x)dx ̸= 0.

3 A Fourier-trained network (FourNet)
We denote by T > 0 a finite horizon, and let t and ∆t be fixed such that 0 ≤ t < t+∆t ≤ T . For sake
of exposition, we focus estimating a time and spatially homogeneous transition density, denoted by

g(·) and is represented as g(x, t +∆t; y, t) = g(x − y; ∆t). Such transition densities are characteristic

of Lévy processes. Our proposed methodology can also be readily adapted for non-homogeneous cases

like the Heston [23] or Heston-Queue-Hawkes models [11, 2], but depending on applications, they might

require multiple FFNNs tailored to distinct combinations of initial and terminal values.

For notational simplicity, we momentarily suppress the explicit dependence of the transition density

on ∆t, denoting g(·) ≡ g(·; ∆t) : R→ R as the transition density we seek to approximate using single-

layer FFNNs. The importance of ∆t will be highlighted in our applications detailed in Section 6.

Since the transition density g(·) is almost everywhere bounded on R, together with the fact that

g ∈ L1(R), we have g ∈ L2(R). Therefore, we consider approximating a transition density g ∈
L1(R) ∩ L2(R).

3.1 A universal approximation result in L2(R)
We now present a new universal approximation result for functions in L2(R). Specifically, by invoking

Hölder’s inequality, it is straightforward to establish that L2 (R) ⊂ L2 (R, loc). A natural question

thus emerges: if the function we aim to approximate, f , belongs to L2(R) rather than L2(R, loc),
can we identify a FFNN in Σ†(ϕ) ∩ L2(R) that approximates f arbitrarily well, in the sense of the

Universal Approximation Theorem 2.1? In the forthcoming lemma, we affirmatively address this

question. Importantly, this can be achieved with only a finite number of neurons in the network.

Lemma 3.1 (ρ2,loc-denseness of Σ† (φ) ∩ L2(R), continuous φ). Let φ be a continuous activation

function that belongs to L1(R) ∩ L2(R). Assume that f(·) is in L2(R). For any ϵ > 0, there exists a

neural network f ′(·; θ′) ∈ Σ† (ϕ) ∩ L2(R) with a finite number of neurons such that ρ2,loc (f, f
′) < ϵ,

where ρ2,loc(·) is defined in Definition 2.3.

Proof of Lemma 3.1. Since φ is in L1(R) ∩L2(R), it satisfies the conditions of Theorem 2.1 for p = 2.

Therefore, it follows from Theorem 2.1 that there exists a neural network f1(·; θh) ∈ Σ† (ϕ) such that

5



ρ2,loc (f, f1) < ϵ. We also note that since φ is continuous, it follows that all neural networks in Σ† (ϕ)

are continuous in the parameters.

Next, we show that either the neural network f1 is in L2(R) or it can be approximated arbitrarily

well by a neural network f2 ∈ Σ† (ϕ) ∩ L2(R). For this part, to highlight the important role of the

number of neurons, we write f1(·; θ(N1)), where N1 is the number of neurons of the neural network f1.

If N1 <∞, then, since f1 is in L2(R, loc), and it has to be true that βn is finite for all n = 1, . . . , N1.

This observation, together with the fact that φ ∈ L2(R), confirms that f1 is also in L2(R).
If N1 =∞, then ∃N2 <∞ such that f2(·; θ(N2)) ∈ L2(R), and ρ2,loc (f1, f2) < ϵ. Setting f ′(·; θ′) to

either f1(·; θ(N1)) or f2(·; θ(N2)) completes the proof.

3.2 Gaussian activation function e−x2

For the remainder of the paper, unless specified differently, the activation function is defined as φ(x) ≡
ϕ(x) = e−x2

. It is straightforward to verify that ϕ(x) = e−x2
is in L1(R)∩L2(R), and thus satisfies the

conditions of Theorem 2.1 for p = 2. By Lemma 3.1, for any ϵ > 0, there exists ĝ(·; θ∗ϵ ) ∈ Σ† (ϕ)∩L2(R)
with a finite number of neurons (N < ∞) such that ρ2,loc (g, ĝ) < ϵ. Here, in the notation θ∗ϵ , the

subscript ϵ is to emphasize the dependence of the parameter on ϵ.

Since ĝ(·; θ∗ϵ ) ∈ L2 and N < ∞, it follows that |β∗n| < ∞, ∀n ≤ N . In addition, it must be

true that w∗
n, b

∗
n < ∞ and β∗n ̸= 0, ∀n ≤ N ; otherwise the corresponding neuron output is zero, i.e.

β∗n exp(−(w∗
nx+ b∗n)

2) = 0. Lastly, it is also the case that w∗
n ̸= 0 for all n ≤ N . Otherwise, for some

n ≤ N , 0 < |β∗n| exp(−(w∗
nx + b∗n)

2) ≤ c, where c > 0 is a finite constant, contradicting with that

ĝ(x; θ∗ϵ ) ∈ L2.

Therefore, we conclude that Θ, the space of possible parameters for this FFNN, is constrained by

some upper and lower bounds as follows

Θ =
{
θ ∈ R3N

∣∣ 0 < |βn| < βmax, 0 < wmin < |wn| < wmax, |bn| < bmax,

max
n≤N

(βn) > 0, where 0 < βmax, wmax, bmax <∞; n = 1, . . . , N <∞
}
. (3.1)

We note that, because of the boundedness of the parameter space Θ, for any ϵ > 0, there exists a

sufficiently large A > 0, such that

sup
θ∈Θ

∫
R\[−A,A]

(ĝ(x; θ))2 dx < ϵ, Θ defined in (3.1). (3.2)

We now formally define the set of single-layer FFNNs within which we seek an FFNN approximation

of the exact transition density.

Σ(ϕ) =
{
ĝ(; θ) ∈ Σ†(ϕ) defined in (2.1), ϕ(x) = e−x2∣∣θ ∈ Θ defined in (3.1)

}
. (3.3)

3.3 Existence and invariance of FourNet

We now establish a key result demonstrating the existence of ĝ(·; θ∗ϵ ) ∈ Σ (ϕ), where Σ (ϕ) is defined in

(3.3), that is capable of approximating the exact transition density g(·) arbitrarily well in the L2 sense.

We hereafter refer to ĝ(·; θ∗ϵ ) as a theoretical FFNN approximation to the true transition density g(·).
Furthermore, we also show that the associated theoretical approximation error in L2 remains invariant

under the Fourier transform map.

To this end, we recall that the transition density g(·) and the associated characteristic function

G(η) are a Fourier transform pair. They are defined as follows

F[g(·)](η) ≡ G(η) =
∫ ∞

−∞
eiηx g(x) dx, F−1[G(·)](x) ≡ g(x) = 1

2π

∫ ∞

−∞
e−iηxG(η) dη.
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For subsequent discussions, for a complex-valued function f : R→ C, we denote by Ref (·) and Imf (·)
its real and imaginary parts. We also that |f(·)|2 = f(·)f(·), where f(·) is the complex conjugate

of f(·).
We will also utilize the Plancherel Theorem, which is sometimes also referred to as the Parseval-

Plancherel identity [57, 1, 30]. For the sake of convenience, we reproduce it below. Let f : R→ R be

a function in L1(R) ∩ L2(R). The Plancherel Theorem states that its Fourier transform F[f(·)](η) is

in L2(R), and ∫
R
|f(x)|2 dx =

1

2π

∫
R
|F[f(·)](η)|2 dη. (3.4)

Theorem 3.1 (FourNet’s existence result). Given any ϵ > 0, there exists a FFNN ĝ(·; θ∗ϵ ) ∈ Σ(ϕ),

where Σ(ϕ) is defined in (3.3), that satisfies the following inequality∫
R
|g(x)− ĝ(x; θ∗ϵ )|

2 dx =
1

2π

∫
R

∣∣∣G(η)− Ĝ(η; θ∗ϵ )∣∣∣2 dη < ϵ. (3.5)

Here, Ĝ(η; θ∗ϵ ) is the Fourier transform of ĝ(·; θ∗ϵ ), i.e. Ĝ(η; θ∗ϵ ) = F [ĝ(·; θ∗ϵ )] (η).

Proof of Theorem 3.1. We first show
∫
R |g(x)− ĝ(x; θ

∗
ϵ )|

2 dx < ϵ, then the equality in (3.5).

Since g(·) and ĝ(·; θ∗ϵ ) are in L2(R), there exists A′ sufficiently large such that∫
R\[−A′,A′]

|g(x)|2 dx < ϵ/8,

∫
R\[−A′,A′]

|ĝ(x; θ∗ϵ )|2 dx < ϵ/8. (3.6)

By Lemma 3.1, there exists ĝ(x; θ∗ϵ ) ∈ Σ (ϕ) such that

ρ2,loc (g, ĝ (·; θ∗ϵ )) =
∞∑

A=0

2−Amin
(∥∥(g − ĝ(·; θ∗ϵ )) I[−A,A]

∥∥
2
, 1
)
<
ϵ1/2

21/2
2−A′

.

Therefore,

2−A′
min

(∥∥(g − ĝ(·; θ∗ϵ )) I[−A′,A′]

∥∥
2
, 1
)
<
ϵ1/2

21/2
2−A′

.

from which, we have ∫
[−A′,A′]

(g(x)− ĝ(x; θ∗ϵ ))
2 dx < ϵ/2. (3.7)

Using (3.6)-(3.7), we have

∫
R
(g(x)− ĝ(x; θ∗ϵ ))2 dx = . . .

. . . =

∫
[−A′,A′]

|g(x)− ĝ(x; θ∗ϵ )|
2 dx+

∫
R\[−A′,A′]

|g(x)− ĝ(x; θ∗ϵ )|
2 dx (3.8)

< ϵ/2 +

∫
R\[−A′,A′]

2
∣∣g(x)2 + ĝ(x; θ∗ϵ )

2
∣∣ dx < ϵ,

as wanted. Next, the equality in (3.5) follows directly from the Plancherel Theorem (3.4), noting L1(R)
and L2(R) are closed under addition. This completes the proof.

Remark 3.1. Theorem 3.1 presents a significant theoretical result, demonstrating that the FourNet

can approximate the exact transition density g(·) within an error of any given magnitude in the L2-

sense. Interestingly, this error is invariant under the Fourier transform, tying together FourNet’s

approximation capabilities in both spatial and Fourier domains. This invariance opens opportunities

for training and error analysis in the Fourier domain instead of the spatial domain. In particular, it

enables us to utilize the known closed-form expression of the characteristic function G(·), a process we

elaborate on in subsequent sections.
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3.4 Loss function

Recall that ĝ(x; θ) in Σ(ϕ) has the form

ĝ(x; θ) =
N∑

n=1

βnϕ (wnx+ bn) , ϕ(x) = exp(−x2), θ ∈ Θ. (3.9)

We let Ĝ(·; θ) be the Fourier transform of ĝ(·; θ), i.e. Ĝ(η; θ) = F [ĝ(·; θ)] (η). It is straightforward to

obtain

Ĝ(η; θ) = Re
Ĝ
(η; θ) + iIm

Ĝ
(η; θ), where (3.10)

Re
Ĝ
=

N∑
n=1

βn
√
π

wn
cos

(
ηbn
wn

)
exp

(
−η2

4w2
n

)
, Im

Ĝ
=

N∑
n=1

βn
√
π

wn
sin

(
−bnη
wn

)
exp

(
−η2

4w2
n

)
.

Recall that our starting point is that G(·), the Fourier transform of the transition density g(·) is known
in closed form. Therefore, motivated by Theorem 3.1, the key step of our methodology is to use the

known data {(η,ReG(η))} and {(η, ImG(η))} to train Ĝ(η; θ) using the expressions in (3.10).

To this end, we restrict the domain of η from R to a fixed finite interval [−η′, η′], where 0 < η′ <∞
and is sufficiently large. We denote the total number of training data points by P , and we consider a

deterministic, potentially non-uniform, partition {ηp}Pp=1 of the interval [−η′, η′]. With δp = ηp+1− ηp,
p = 1, . . . , P − 1, we assume

δmin = C0/P, δmax = C1/P, with δmin = min
p
δp and δmax = max

p
δp, (3.11)

where the constants C0, C1 > 0 are independent of P . Letting Θ̂ ⊆ Θ be the empirical parameter

space, we introduce an empirical loss function LossP (θ), θ ∈ Θ̂, below

LossP (θ) =
1

P

P∑
p=0

∣∣∣G(ηp)− Ĝ(ηp; θ)∣∣∣2 +RP (θ), {ηp}Pp=1 satisfying (3.11). (3.12)

Here, Ĝ(ηp; θ) is given in (3.10), and RP (θ) represents an MAE regularization term expressed as follows

RP (θ) =
1

P

P∑
p=1

(
|ReG(ηp; θ)− Re

Ĝ
(ηp; θ)|+ |ImG(ηp; θ)− Im

Ĝ
(ηp; θ)|

)
. (3.13)

By training LossP (·), we aim to find the empirical minimizer θ̂∗ ∈ Θ̂, where

θ̂∗ = argmin
θ∈Θ̂

LossP (θ). (3.14)

The incorporation of the MAE regularization term is deliberately motivated by our strategic selection

of (deterministic) partition points {ηp}Pp=1. Specifically, to take full advantage of the closed-form ex-

pression of G(·), we choose {ηp}Pp=1 to target critical regions of both the real (ReG(·)) and imaginary

(ImG(·)) parts of G(·). These regions often manifest key characteristics like areas of convexity change,

peaks, and other salient features. While the MAE regularization guides the optimization to closely

match G(·) at these strategically chosen sampling points, our primary objective remains the minimiza-

tion of L2 errors, a crucial aspect for subsequent L2-error analysis. Details pertaining to selection of

{ηp}Pp=1 are discussed in Subsection 5.1 and Appendix A.
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We conclude that, for deep NNs, the function ĝ(·; θ) is expressed as a composition of functions.

However, computing its Fourier transform can be very complex, as noted by [3]. Yet, our extensive

numerical experiments have demonstrated that a single-layer FFNN possesses remarkable estimation

capabilities.

Remark 3.2. Note that, given the boundedness of the parameter space Θ, both |Re
Ĝ
(·; θ)| and |Im

Ĝ
(·; θ)|,

θ ∈ Θ, are in L1(R). We also recall that both |ReG(·)| and |ImG(·)| ∈ L1(R). Furthermore, since both

g(·) and ĝ(·; θ) ∈ Σ(ϕ), for any θ ∈ Θ, are in L1(R) ∩ L2(R), by the Plancherel Theorem (3.4), both

|G(·)| and |Ĝ(·; θ)| are in L2(R). Therefore, for any given ϵ > 0, there exists η′ > 0 such that, with

f ∈ {ReG, ImG,ReĜ(·; θ), ImĜ
(·; θ)} and h ∈ {G(·), Ĝ(·; θ)},∫

R\[−η′,η′]
|f(η)| dη < ϵ,

∫
R\[−η′,η′]

|h(η)|2 dη < ϵ, ∀θ ∈ Θ. (3.15)

That is, the truncation error in the Fourier domain can be made arbitrarily small by choosing η′ > 0

sufficiently large. In practice, given a closed-form expression for G(·), η′ can be determined numerically,

as illustrated in Subsection 6.1.

Remark 3.3. There are two potential interpretations of the methodology outlined above. The first

interpretation sees ĝ(x; θ) in (3.9) as a FFNN approximation of the exact transition density g(·), and
its parameters are learned by minimizing the loss function LossP (θ) (defined in (3.12)). Alternatively,

ĝ(x; θ) in (3.9) can be written as

ĝ(x; θ) =
N∑

n=1

1√
2πσ2n

exp

(
−(x− µn)2

2σ2n

)
, µn = − bn

wn
, σ2n =

1

2w2
n

. (3.16)

This can be essentially viewed as a Gaussian mixture with N components [41], where the n-th Gaussian

component has mean µn = − bn
wn

and variance 1
2w2

n
. Unlike traditional Gaussian mixtures, the centers

of the component distributions are not predetermined but are also learned through training. Finally, it

is worth noting that the set of all normal mixture densities is dense in the set of all density functions

under the L1-metric (see [32]), hence a mixture of Gaussian like in (3.16) can be used to estimate any

unknown density function.

4 Error analysis
We start by defining relevant quantities for our error analysis. Let ϵ > 0 be given. By Theorem 3.1,

there exists ĝ(x; θ∗ϵ ) ∈ Σ(ϕ) such that
∫
R
∣∣g(x)− ĝ(x; θ∗ϵ )∣∣2 ds < ϵ. We will refer to this L2-error as the

theoretical approximation error, and the parameter θ∗ϵ as the theoretical optimizer. We denote by θ̂ the

parameter learned from training the loss function LossP (θ), and refer to ĝ(·; θ̂) as the corresponding

estimated transition density. We aim to derive an upper bound for the L2 estimation error
∫
R |g(x)−

ĝ(x; θ̂)|2 dx. By the Plancherel Theorem (3.4), we have
∫
R |g(x)− ĝ(x; θ̂)|

2 dx =
∫
R
∣∣G(η)−Ĝ(η; θ̂)∣∣2dη.

This underscores the unique advantages of the proposed approach: an error analysis is more suited

to the Fourier domain than the spatial domain since we can directly benefit from the loss function

LossP (θ) designed specifically for the Fourier domain.

In our error analysis, we require C ′ := supη,θ |∂|G(η)− Ĝ(η; θ)|2/∂η| <∞, for all η ∈ [−η′, η′] and
θ ∈ Θ. Given that Θ is bounded and thus Ĝ(η; θ) possesses a bounded first derivative, the requirement

for C ′ <∞ is that G(η) also has a bounded first derivative. This leads us to the assumption that the

random variable associated with the density g(·) is absolutely integrable. That is,
∫
R |x|g(x)dx < ∞.
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Therefore, under this assumption, C ′ <∞. We also recall C0 and C1 from (3.11). We now present an

error analysis of the FourNet method in Lemma 4.1 below.

Lemma 4.1. Assume that
∫
R |x|g(x)dx < ∞. For a given ϵ > 0, let ĝ(x; θ∗ϵ ) ∈ Σ(ϕ) be a FFNN

satisfying ∫
R
|g(x)− ĝ(x; θ∗ϵ )|

2 dx < ϵ, (4.1)

as per Theorem 3.1. Also, as per Remark 3.2, for a given ϵ1 > 0, let the truncated Fourier domain

[−η′, η′] be such that, with f ∈ {ReG, ImG,ReĜ(·; θ), ImĜ
(·; θ)} and h ∈ {G(·), Ĝ(·; θ)},∫

R\[−η′,η′]
|f(η)| dη < ϵ1,

∫
R\[−η′,η′]

|h(η)|2 dη < ϵ1, ∀θ ∈ Θ. (4.2)

Suppose that the parameters θ̂ learned by training the empirical loss function LossP (θ), θ ∈ Θ̂, defined

in (3.12), is such that∣∣∣∣ 1P
P∑

p=1

∣∣G(ηp)− Ĝ(ηp; θ̂)∣∣2 +RP (θ̂)−
1

P

P∑
p=1

∣∣G(ηp)− Ĝ(ηp; θ∗ϵ )∣∣2 −RP (θ
∗
ϵ )
∣∣ < ϵ2, (4.3)

and the regularization terms 0 < RP (θ
∗
ϵ ), RP (θ̂) < ϵ3, where ϵ2, ϵ3 > 0. Then,

2π

∫
R

∣∣g(x)− ĝ(x; θ̂)∣∣2 dx < 2πC1

C0
ϵ+ 4ϵ1 + C1(2ϵ2 + ϵ3) + C ′C2

1

C0 + C1

C0P
. (4.4)

Here, C ′ = sup
η∈[−η′,η′],θ∈Θ

|∂|G(η)− Ĝ(η; θ)|2/∂η| <∞, C0 and C1 are from (3.11).

Proof of Lemma 4.1. For the rest of the proof, we let C be generic positive bounded constant inde-

pendent of the number of samples P , which may take different values from line to line. Applying the

error bound for the composite left-hand-side quadrature rule on a non-uniform partition gives

∣∣ P∑
p=1

δp
∣∣G(ηp)− Ĝ(ηp; θ)∣∣2−∫

[−η′,η′]

∣∣G(η)− Ĝ(η; θ)∣∣2 dη∣∣ ≤ C ′P (δmax)
2 = C/P. (4.5)

noting δmax = C1/P , where C = C ′C2
1 . Therefore,∫

R

∣∣G(η) − Ĝ(η; θ̂)
∣∣2 dη (i)

=

∫
R\[−η′,η′]

∣∣G(η)− Ĝ(η; θ̂)∣∣2 dη + ∫
[−η′,η′]

∣∣G(η)− Ĝ(η; θ̂)∣∣2 dη
(ii)
< 4ϵ1 + C/P +

C1

P

P∑
p=1

∣∣∣G(ηp)− Ĝ(ηp; θ̂)∣∣∣2
(iii)
< 4ϵ1 + C/P + C1

(
2ϵ2 + ϵ3

)
+
C1

C0

P∑
p=1

δmin

∣∣∣G(ηp)− Ĝ(ηp; θ∗ϵ )∣∣∣2 )
(iv)
< 4ϵ1 + C/P + C1

(
2ϵ2 + ϵ3

)
+
C1

C0

(
C/P +

∫
[−η′,η′]

∣∣G(η)− Ĝ(η; θ∗ϵ )∣∣2dη)
(v)
< 4ϵ1 + C

(
1 +

C1

C0

)
/P + C1(2ϵ2 + ϵ3) +

2πC1

C0

∫
R
|g(x)− ĝ(x; θ∗ϵ )|

2 dx

(vi)
< 4ϵ1 + C ′C2

1

(
1 +

C1

C0

)
/P + C1(2ϵ2 + ϵ3) +

2πC1

C0
ϵ. (4.6)
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Here, from (i) to (ii), we respectively bound the first and the second terms in (i) by 4ϵ1 using (4.2) and

by C/P +
∑P

p=1 δmax

∣∣∣G(ηp)− Ĝ(ηp; θ̂)∣∣∣2, using (4.5) with θ = θ̂, noting for all p, δp ≤ δmax = C1/P ; to

get to (iii), we use (4.3) to bound the last term in (ii) by C1(2ϵ2 + ϵ3) +
C1
P

∑P
p=1

∣∣∣G(ηp)− Ĝ(ηp; θ∗ϵ )∣∣∣2,
and then replace C1

P = C1
C0
δmin; from (iii) to (iv), noting δmin ≤ δp for all p, we first bound the

summation term in (iii) by
∑P

p=1 δp
∣∣G(ηp) − Ĝ(ηp; θ

∗
ϵ )
∣∣2, which is then further bounded above by∫

[−η′,η′]

∣∣∣G(η)− Ĝ(η; θ∗ϵ )∣∣∣2 dη + C ′C2
1/P via (4.5) with θ = θ∗ϵ . To get to (v), we bound the (trun-

cated) integral in (iv) by
∫
R |G(η)− Ĝ(η; θ

∗
ϵ )|2 dη, which is the same as 2π

∫
R |g(x)− ĝ(x; θ

∗
ϵ )|

2 dx by

Lemma 3.1. By (4.1), noting C = C ′C2
1 , we obtain (vi). Finally, by the Plancherel Theorem (3.4) and

(4.6), we obtain

2π

∫
R

∣∣∣g(x)− ĝ(x; θ̂)∣∣∣2 dx <
2πC1

C0
ϵ+ 4ϵ1 + C1(2ϵ2 + ϵ3) + C ′C2

1

C0 + C1

C0P
.

This completes the proof.

Lemma 4.1[Eqn. (4.4)] decomposes the upper bound for the L2 estimation error into several error

components.

� Theoretical approximation error: assumed to be bounded by ϵ ((4.1)), contributing C1
C0
ϵ to the

overall error bound.

� Truncation error (Fourier domain): arises from truncating the sampling domain from R to

[−η′, η′]. It’s bounded by ϵ1 (see (4.2)), with a net contribution of 4ϵ1/(2π) to the derived

bound.

� Parameter estimation error: caused by the differences between the learned parameter θ̂ and

the optimal theoretical parameter θ∗ϵ . It is quantified by differences in loss functions (bounded

by ϵ2) and regularization terms (bounded by ϵ3). Its total contribution to the error bound is

C1(ϵ2 + 2ϵ3)/(2π).

� Sampling error: caused by using a finite set of P data points in training. In our analysis, this

error is captured through numerical integration error, and is represented as C ′C2
1
C0+C1
2πC0P

in (4.4).

Remark 4.1 (Nonnegativity of ĝ(·; θ̂).). We now investigate the potential loss of nonnegativity in

ĝ(·; θ̂), where θ̂ learned as per Lemma 4.1. To this end, we use |min(ĝ(x; θ̂), 0)|, for an arbitrary

x ∈ R, as a measure of this potential (pointwise) loss. Following similar steps (i)-(ii) of (4.5), noting

RP (θ̂) < ϵ3, we have∫
R

(
|ReG(η)− Re

Ĝ
(η; θ̂)|+ |ImG(η)− Im

Ĝ
(η; θ̂)|

)
dη < 4ϵ1 + C1ϵ3 + C ′C2

1/P,

Hence, |min(ĝ(x; θ̂), 0)| ≤ |g(x)− ĝ(x; θ̂)| = 1
2π

∣∣ ∫
R e

−iηx(G(η)− Ĝ(η; θ̂))dη
∣∣ = . . .

. . .≤ 1

2π

∫
R
|ReG(η)− Re

Ĝ
(η; θ̂)|+|ImG(η)− Im

Ĝ
(η; θ̂)| dη < 1

2π

(
4ϵ1 + C1ϵ3 +

C ′C2
1

P

)
.

As demonstrated above, a bound for |min(ĝ(x; θ̂), 0)| can also be decomposed into several error compo-

nents: truncation error (4ϵ1/(2π)), regularization term (C1ϵ3/(2π)), and sampling error (C ′C2
1/(2πP )).
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The presented analysis offers an in-depth insight into factors influencing the quality of FourNet’s ap-

proximation for the transition density g(·). It not only emphasizes the necessity for sufficiently large

training domains and ample sample sizes but also stresses the importance of efficient sampling tech-

niques and training algorithms. Crucially, it also draws attention to the significance of the coefficients

preceding each error component. These coefficients act as markers for the worst-case amplification of

individual error components, either in the overall L2 estimation error or in potential loss of nonneg-

ativity. Consequently, they serve as signposts, guiding us towards areas where we should focus our

efforts for more efficient training and, consequently, reduced error.

Of all component, C ′ attracts special attention. This value is directly related to the oscillatory

behavior of G(η), highlighting challenges in approximation. Therefore, curtailing C ′ is an important

step toward improving FourNet approximation’s quality. In the subsequent section, we discuss a

straightforward a linear transformation on the input domain which can effectively temper the oscillatory

nature of G(η), thereby resulting in significantly improved approximation’s quality.

5 Training
We now discuss FourNet’s data sampling and training algorithms.

5.1 Linear transformation

As a precursor for subsequent discussions, we consider a random variable X = log(ST ), where St,

t ∈ [0, T ], is the time-t underlying asset price following the well-known Heston model [23]. We denote

the characteristic function of X by GX(η) = E[eiηX ], which is known in closed-form [23, 13].

In Figures 5.1-(a) and (b), we respectively illustrate plots of the real part ReGX
(η) and the imag-

inary part ImGX
(η) as functions of η. Evidently, both the real and imaginary parts manifest rapid

oscillations, presenting significant challenges during NN training. In general, such oscillations lead to

numerous local minima and saddle points, erratic gradient behaviors, and difficulty in initialization

and learning rates, among other issues.

(a) untransformed ReGX
(b) transformed ReGY

Figure 5.1: Comparisons between GX(η) and GY (aη), where Y = aX + c, a = 0.15 and c = −0.6.
Here, X is log(ST ), where St, t ∈ [0, T ], follows the Heston model [23].

To mitigate rapid oscillations, we propose a linear transformation Y = aX + c, yielding GY (η) =

eiηcGX(aη). When the random variable is scaled by a, the oscillation frequency in its characteristic

function adjusts: oscillations are dampened for 0 < |a| < 1 and amplified for |a| > 1. The component

eiηc imparts its own oscillatory behavior, which can lead to either partial or significant cancelation of

oscillations. Therefore, oscillations in GY (η) may span larger intervals compared to those in GX(η).
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Such broader sampling intervals, however, could necessitate more sample points to accurately

capture the behaviors of ReGY
and ImGY

, elevating computational cost. The exact manifestation

of these effects depends on the synergy between a, c, the oscillations intrinsic to GX(η), and the

oscillations introduced by eiηc. Given these complexities, empirical testing becomes indispensable in

determining a suitable combination of a and c. Moreover, with a potentially expanded sampling domain

for training, to improve training efficiency, it becomes imperative to judiciously allocate sampling data

points in crucial areas of both the ReGY
and ImGY

, an approach we will elaborate on in the next

subsection.

To illustrate, we adapt the Heston model using a = 0.15 and c = −0.6 obtained through numerical

experiments. The resulting real and imaginary parts of GY (aη) are presented in Figures 5.1-(c) and (d).

Evidently, GY (η) is more amenable to NN learning compared to GX(η) in Figures 5.1-(a) and (b).

Remark 5.1. Unless otherwise state, throughout our discussion, the characteristic function G(·) em-

ployed for the loss function LossP (θ) (as defined in (3.12)) corresponds to potentially linearly trans-

formed characteristic function. Specifically, G(·) = GY (·), where Y = aX + c, where a and c are

known real constants. Let ĝY (y; θ̂) =
∑N

n=1 β̂nϕ
(
ŵny + b̂n

)
, where ϕ = e−x2

, be an Fourier-trained

FFNN transition density. We can recover the estimated transition density for the random variable X

by simply using ĝX(x; θ̂) = |a|ĝY (ax+ c; θ̂).

5.2 Sampling data and MAE regularization

Given our prior knowledge of the (potentially linearly transformed) characteristic function G(η) in its

closed-form, we strategically concentrate spatial sampling points {ηp}Pp=1 towards critical regions of

G(η). These include areas of convexity change, peaks, and other salient characteristics. Such parti-

tioning of the truncated sampling domain [−η′, η′] can be achieved via a mapping function, such as

the sinh(·)-based function, which transforms uniform grids into non-uniform ones with more points

concentrated in those peaks. It is noteworthy that similar methodologies for point construction have

found successful applications as evidenced in [52, 7, 9]. A partitioning scheme that addresses such

scenarios with multiple concentration points is presented in Appendix A. We emphasize that a ran-

domly sampled dataset of {ηp}Pp=1 might inadequately cover these crucial regions, often requiring a

significantly larger dataset for the same precision.

With our strategically defined set {ηp}Pp=1 in place, we emphasize the role of the MAE regularization

RP (θ) in our optimization process. It allows the optimization to focus on concentrating efforts to

reduce discrepancies specifically in critical regions while potentially allowing for some discrepancies in

less essential areas. Through this, we aim to strike a balance between precision and generalization,

thereby curbing potential over-fitting. Our comprehensive numerical tests, presented in Section 6,

suggest that this combined approach - strategic sampling based on G(·) characteristics and employing

MAE regularization (3.13) - is efficient and robust.

5.3 Training considerations

We briefly describe key considerations in FourNet’s training the LossP (·) to obtain the empirical

minimizer θ̂∗. The training of FFNNs is divided into two main stages: the rapid exploration phase

and the refinement phase. The initial phase seeks to find a good set of initial weights for the FFNN

and fine-tune the baseline learning rate, as these initial weights significantly impact the convergence

and accuracy of the training. The refinement phase focuses on further perfecting these weights, often

necessitating reduced learning rates to achieve meticulous updates.
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Figure 5.2: Comparisons among AMSgrad+Adam, Adam, and AMSgrad for the loss function LossP (·)
corresponding to Figures 5.1 (a) and (b).

Algorithm 5.1 Algorithm for approximating the transition density function g(·) using a FFNN trained

in the Fourier domain, given a closed-form expression of the Fourier transform G(·)
1: using a closed-form expression of G(·) and numerical integration to find sufficiently large η′ as per

(3.15);

2: initialize N (number of neurons), P (number of samples); generate {ηp}Pp=1 on [−η′, η′] using a

non-uniform partitioning algorithm (see Algorithm A.1);

3: use AMSgrad optimizer in first training stage to find a good set of initial weights and fine-tune the

baseline learning rate;

4: use Adam optimizer in the second training stage

5: construct ĝ(·, θ̂) with θ̂ ∈ argmin
θ∈Θ̂

LossN (θ), where LossN (θ) is defined in (3.12);

Due to different focuses of the two stages, choosing the right optimizer for each phase is essential.

The Adaptive Moment Estimation (Adam) [29] and AMSGrad with a Modified Stochastic Gradient

[53] are standout candidates. Figure 5.2 presents a visual comparative analysis of the performance of

these optimizers is compared in terms of reducing the empirical loss function LossP (·) of the NN over a

series of training epochs for the case of the Heston model. As illustrated therein, AMSGrad achieves a

smoother and steeper reduction in the LossP (·) compared to Adam, especially at higher initial learning

rates. However, as the epochs progress, Adam tends to surpass AMSGrad. Our proposed methodology

suggests employing AMSGrad during the rapid exploration phase and switching to Adam during the

refinement phase.

Putting everything together, a single-layer FFNN algorithm for estimating the transition density

by learning its Fourier transform is given in Algorithm (5.1).

6 Numerical experiments
In this section, we demonstrate FourNet’s accuracy and versatility through extensive examples. To

measure the accuracy of FourNet, we define several (empirical) metrics. Specifically, the closeness of

two elements f1 and f2 of Lp (R), p ∈ {1, 2}, is measured by Lp(f1, f1) =
∫
[−A,A] |(f1(x)−f2(x))|

p dx, for

A > 0 sufficiently large. In addition, the Maximum Pointwise Error (MPE) is defined by MPE(f1, f2) =

max1≤k≤K |f1(xk) − f2(xh)|, where {xk}Kk=1 is the set of evaluation points. Among these, L2-error
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stands out as the principal metric, underscored by the L2 error analysis presented in Section 4.

In our experiments, unless otherwise stated, all integrals, including those appear in pricing an

option, are computed using adaptive Gauss quadrature rule (based on QUADPACK library in Fortran

77 library, quad function in Python).

6.1 Setup and preliminary observations

Informed by Remarks 3.2 and 4.1, for all numerical experiments carried out in this paper, the sam-

pling domain [−η′, η′] (in the Fourier space), the number of samples P are chosen sufficiently large.

Specifically, in computing a sufficiently large η′, given a closed-form expression for G(·), we perform

numerical integration to estimate η′ such that (3.15) corresponding to G(·) is satisfied for a tolerance

ϵ1 = 10−7. That is, with D = R \ [−η′, η′],∫
D
|ReG(η)| dη < ϵ1,

∫
D
|ImG(η)| dη < ϵ1,

∫
D
|G(η)|2 dη < ϵ1. (6.1)

his typically results in [−η′, η′] = [−60, 60] for all models considered hereafter. The number of samples

is taken to be P = 106. The parameters θ̂ is learned through training the loss function, and it satisfies

LossP (θ̂) ≤ 10−6. This implies that the MAE regularization term RP (θ), as defined in (3.13), is less

than 10−6.

We observe that the measure for loss of non-negativity |min(ĝ(·; θ̂), 0)| is about 10−7, negligible

for all practical purposes. For comparison, we evaluate the bound ε = 1
2π

(
4ϵ1 + C1ϵ3 +

C′C2
1

P

)
, as

presented in Remark 4.1. We take ϵ1 = 10−7 (in accordance with (6.1)), and ϵ3 = 10−6, given that

LossP (θ̂) ≤ 10−6). Considering a uniform partition, we have δp = 120/P for all p. Consequently,

C1 ≥ 120. Using a conservative estimate, we take C1 = 120, yielding C1ϵ3 ≈ 10−4 and
C′C2

1
P ≈ C ′10−2.

Our numerical findings suggest a notable reduction in the loss of non-negativity when the linear

transformation highlighted in Subsection 5.1 is used. This transformation diminishes C ′, suggesting

that
C′C2

1
P ≈ C ′10−2 is the primary contributing term.

We now explore FourNet’s accuracy in estimating transition densities a broad array of dynamics

commonly encountered in quantitative finance. Subsequently, we will focus on its application for

pricing both European and Bermudan options.

6.2 Transition densities

6.2.1 Exponential Lévy processes

We select models that are well-known within the domain of exponential Lévy processes, where the Lévy-

Khintchine formula provides a clear representation for the characteristic function G(·) as detailed in

[28]. As example, we focus on the Merton jump-diffusion model, introduced by [42], and the CGMY

model as proposed by [6]. It’s worth noting that the CGMY model can be seen as an extension of

the Variance-Gamma model, originally presented in [39]. Additionally, while we conducted tests on

the Variance-Gamma model and the Kou jump-diffusion model [31], FourNet consistently proved to

be very accurate. In fact, the outcomes from these tests align so closely with those of the highlighted

models that we have chosen not to detail them here for the sake of brevity.

In exponential Lévy processes, with {St}Tt=0 being the price process, the process {Xt}Tt=0, where

Xt = ln (St/S0) is a Lévy process. Relevant to our discussions is the fact that the characteristic

function of the random variable Xt is GX(η) = exp(tψ(η)) [28]. As in all numerical examples on

transition densities presented in this section, we take t = T which is specified below. The characteristic

exponent ψ(η) for various exponential Lévy processes considered in this paper are given subsequently.
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Merton jump-diffusion dynamics [42] In this case, the characteristic exponent ψ(η) is given by

ψ(η) = i
(
µ− σ2

2

)
η − σ2η2

2 + λ
(
eiµ̃η−σ̃2η2/2 − 1

)
. In this case, a semi-explicit formula for g(x;T ) is

given by (see [22][Corollary 3.1])

g(x;T ) =

∞∑
k=0

e−λT (λT )k

k!
gnorm

(
x;
(
µ− σ2

2
− λκ

)
T + kµ̃, σ2T + kσ̃2

)
. (6.2)

Here, κ = eµ̃+σ̃2/2 − 1, and gnorm(x;µ
′, (σ′)2) denotes the probability density function of a normal

random variable with mean µ′ and variance (σ′)2. The semi-explicit formula given by (6.2) serves as

our reference density against which we validate the estimated transition density produced by FourNet.

Computationally, we truncate the infinite series in (6.2) to 15 terms. The approximation error resulting

from this truncation is approximately 10−20, which is sufficiently small for all practical intents and

purposes.

The parameters used for this test case are given in Table (6.1). The linear transform in Remark 5.1

is used with (a, c) = (0.6, 0.08). The number of neurons (N) and Lp/MPE estimation errors by FourNet

are presented in Table 6.2, with the principal metric L2-error highlighted. As evident, FourNet is very

accurate with negligible L2 estimation error (of order 10−9). We note that, without a linear transform,

the resulting Lp/MPE estimation errors are much larger. For example, L2

(
ReG,ReĜ

)
= 3.3 × 10−7

instead of 1.4× 10−9 and L2

(
ImG, ImĜ

)
= 1.8× 10−7 vs 1.8× 10−9.

Parameters Values

T (maturity in years) 1

S0 (initial asset price) 100

r (risk free rate) 0.05

σ (volatility) 0.15

λ (jump intensity) 0.1

µ̃ (mean of jump size) -1.08

σ̃ (std of jump size) 0.4

Table 6.1: Parameters for the Merton

jump diffusion dynamics; values are taken

from [14][Table 4].

N (# of neurons) 45

L1

(
ReG,ReĜ

)
2.4× 10−04

L2

(
ReG,ReĜ

)
1.4× 10−09

MPE
(
ReG,ReĜ

)
1.0× 10−05

L1

(
ImG, ImĜ

)
5.8× 10−04

L2

(
ImG, ImĜ

)
1.8× 10−09

MPE
(
ImG, ImĜ

)
2.4× 10−05

L2 (g, ĝ) 1.6× 10−09

Table 6.2: Estimation errors for the Mer-

ton model; parameters from Table 6.1; linear

transform in Remark 5.1 used with (a, c) =

(0.6, 0.08).

CGMY model [6] In this case, the characteristic exponent ψ(η) is given by ψ(η) = CG (η) +

iη (r +ϖ), where CG(η) = CΓ(−Y )
[
(M − iη)Y −MY + (G+ iη)Y −GY

]
and ϖ = −CG(−i). Here,

Γ(·) represents the gamma function. In the CGMY model, the parameter should satisfy C ≥ 0, G ≥ 0,

M ≥ 0 and Y < 2.

The parameters used for this test case are given in Table (6.3). The linear transform in Remark 5.1

is used with (a, c) = (0.5, 0.0). The number of neurons (N) and Lp/MPE estimation errors by FourNet

are presented in Table 6.4, with the principal metric L2-error highlighted. Again, it is clear that

FourNet is very accurate. with negligible L2 estimation error (of order 10−8).
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Parameters Values

T (maturity in years) 1

S0 (initial asset price) 100

r (risk free rate) 0.1

C (overall activity) 1

G (exp. decay on right) 5

M (exp. decay on left) 5

Y (finite/infinite activity) 0.5

Table 6.3: Parameters for the CGMY

dynamics; values taken from [12][Equation

56].

N (# of neurons) 45

L1

(
ReG,ReĜ

)
7.8× 10−4

L2

(
ReG,ReĜ

)
1.7× 10−8

MPE
(
ReG,ReĜ

)
3.1× 10−5

L1

(
ImG, ImĜ

)
2.2× 10−4

L2

(
ImG, ImĜ

)
1.3× 10−9

MPE
(
ImG, ImĜ

)
9.2× 10−6

Table 6.4: Estimation errors for the

CGMY model; parameters from Table 6.3;

linear transform in Remark 5.1 is employed

with (a, c) = (0.5, 0.0).

6.2.2 Heston and Heston Queue-Hawkes

Moving beyond exponential L’evy processes, we first evaluate the applicability of FourNet to the

Heston model [23], followed by an investigation of the Heston Queue-Hawkes model, as presented in

[2]. Notably, for both models, the characteristic functions corresponding to the log-asset price, ln(St),

are provided in closed-form expressions.

Parameters Values

T (maturity in years) 5

S0 (initial asset price) 100

r (risk free rate) 0.15

σ (volatility of volatility) 0.3

κ (mean-reversion rate) 3

V̄ (mean of volatility) 0.09

V0 (initial volatility ) 0.2

ρ (correlation) 0.4

Table 6.5: Parameters for the Heston

model; values taken from [10][Table 1].

N (# of neurons) 45

L1

(
ReG,ReĜ

)
1.94× 10−05

L2

(
ReG,ReĜ

)
6.94× 10−12

MPE
(
ReG,ReĜ

)
1.18× 10−06

L1

(
ImG, ImĜ

)
3.91× 10−05

L2

(
ImG, ImĜ

)
5.22× 10−11

MPE
(
ImG, ImĜ

)
3.74× 10−06

Table 6.6: Estimation errors for the

Heston model; parameters from Table 6.5;

linear transform in Remark 5.1 is em-

ployed with (a, c) = (0.15,−0.6).

(a) ReG, Re
Ĝ

(b) ImG, Im
Ĝ

(c) ĝ(·;T )

Figure 6.1: Heston model corresponding to Table 6.5 and Table 6.6.
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Heston model [23] The log-asset price ln(St) and its instantaneous variance Vt follow the dynamics

d ln(St) =
(
r − Vt

2

)
dt+

√
Vt dW

(1)
t , dVt = κ(V̄ − Vt) dt+ σ

√
Vt dW

(2)
t ,

with S0 > 0 and V0 > 0 given. Here, κ, V̄ > 0, and σ > 0 are constants representing the mean-reversion

rate, the long-term mean level of the variance, and the instantaneous volatility of the variance; {W (1)
t }

and {W (2)
t } are assumed to be correlated with correlation coefficient ρ ∈ [−1, 1]. As presented in

[46][Equation 5], the characteristic function of XT = ln(ST ) is given by

GHeston

X (η) = expirηT exp {i ln(S0)η}

(
eκT/2

cosh(dT/2) + ξ sinh(dT/2)/d

)2κV̄ /σ2

· exp

{
−V0

(
iη + η2

)
sinh(dT/2)/d

cosh(dT/2) + ξ sinh(dT/2)/d

}
, (6.3)

where d = d(η) =
√

(κ− σρiη)2 + σ2 (iη + η2) and ξ = ξ(η) = κ− σρηi.
Numerical experiments for the Heston model utilize the parameters listed in Table 6.5 (the Feller

condition is met). Estimation errors are documented in Table 6.6, noting the linear transformation

Remark 5.1. In Figure 6.1, we display plots of the benchmark real part in (a) and the imaginary part in

(b). Corresponding estimations by FourNet are also showcased, with the transition density estimated

by FourNet depicted in (c). We emphasize FourNet’s outstanding performance, particularly evident in

the minimal L2 estimation error.

Heston Queue-Hawkes [11, 2] With t ∈ [0, T ], let t± = limϵ↘0(t± ϵ). Informally, t− (t+) denotes

the instant of time immediately before (after) calendar time t. The risk-neutral Heston Queue-Hawkes

dynamics of the stock price are given by [2]:

d

(
St
St−

)
= (r − µY λt−) dt+

√
VtdW

(1)
t + (exp(Yt)− 1) dπt,

dVt = κ(V̄ − Vt)dt+ σ
√
VtdW

(2)
t .

Here, {Vt} is the variance process; {W (1)
t }, {W

(2)
t } are correlated standard Brownian motions with the

constant correlation ρ ∈ [−1, 1]; Yt ∼ Normal(µY , σ
2
Y ); κ > 0, V̄ > 0 and σ > 0 are the variance’s

speed of mean reversion, long-term mean, and volatility of volatility parameters, respectively. Finally,

{πt} is a counting process with stochastic intensity λt satisfying the Queue-Hawkes process: dλt =

α(dπt − dπQt ), where π
Q
t is a counting process with intensity βQt, the constants α, and β respectively

are the clustering and expiration rates.

The characteristic function of XT = ln(ST ) is given by [2][Equation 6]:

GHQH

X (η) = GHeston

X (η) GM (η). (6.4)

Here, GHeston

X (η) is given in (6.3), and GM (η) is defined as follows

GM (η) = e
λ∗T
2α

(β−α−iαµY η−f(η)) ·
(

2f(η)

f(η) + g(η) + e−Tf(η)(f(η)− g(η))

)λ∗
α

·
( (

1− e−Tf(η)
)
(2β)

f(η) + g(η) + e−Tf(η)(f(η)− g(η))

)Q0

.
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Here, f(η) =
√

(β + α (1 + iηµY ))
2 − 4αβψY (η), g(η) = β + α (1 + iηµY ), ψY is the characteristic

function of normal random variable with mean µY and std σY .

We conduct numerical experiments using the parameters listed in Table 6.7, with estimation errors

detailed in Table 6.8, noting the linear transformation Remark 5.1. Figure 6.1, we present several

plots for the benchmark real/imaginary part in (a)/(b) and respective results obtained by FourNet,

as well as the estimated transition density in (c). Impressively, FourNet demonstrates outstanding L2

estimation accuracy.

Parameters Values

T (maturity in years) 1

S0 (initial asset price) 9

V0 (initial volatility) 0.0625

V̄ (mean of volatility) 0.16

r (risk free rate) 0.1

σ (volatility of volatility) 0.9

Q0 (initial value of Qt) 2

α (clustering rate) 2

β (expiration rate) 3

λ∗ (baseline jump intensity) 1.1

µY (mean of jump size) -0.3

σY (std of jump size) 0.4

ρ (correlation) 0.1

Table 6.7: Parameters for the Heston

Queue-Hawkes model. values are taken from

[2][Table 1].

N (# of neurons) 45

L1

(
ReG,ReĜ

)
3.36× 10−4

L2

(
ReG,ReĜ

)
4.19× 10−9

MPE
(
ReG,ReĜ

)
2.44× 10−5

L1

(
ImG, ImĜ

)
3.38× 10−4

L2

(
ImG, ImĜ

)
4.66× 10−9

MPE
(
ImG, ImĜ

)
1.87× 10−5

Table 6.8: Estimation errors for the

Heston Queue-Hawkes model; parameters

from Table 6.7; linear transform in Re-

mark 5.1 with (a, c) = (0.18,−0.31) is ap-
plied to GHQH

X (·) in (6.4).

(a) ReG, Re
Ĝ

(b) ImG, Im
Ĝ

(c) ĝ(·;T )

Figure 6.2: Heston Queue-Hawkes model corresponding to Table 6.7 and Table 6.8.

6.3 Two-dimensional Merton jump-diffusion process

We now demonstrate the capability of FourNet to two-dimensional Merton jump-diffusion process [48].

The stock prices follow the risk-neutral dynamics

dS
(ℓ)
t = (r − λκ(ℓ))S(ℓ)

t dt+ σ(ℓ)S
(ℓ)
t dW

(ℓ)
t +

(
eY

(ℓ) − 1
)
S
(ℓ)
t dPt, ℓ = 1, 2, (6.5)

with S
(ℓ)
0 > 0 given. Here, r > 0 is risk free rate and σ(ℓ) > 0, ℓ = 1, 2, are instantaneous volatility for

the ℓ-underlying; {W (1)
t } and {W

(2)
t } are standard Brown motions with correlation ρ ∈ [−1, 1]; {Pt}
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is a Poisson process with a constant finite jump arrival rate λ ≥ 0; [Y (1), Y (2)] are bivariate normally

distributed jump sizes with mean µ̃ = [µ̃(1), µ̃(2)] and covariance matrix for the jump components,

denoted by Σ̃, where Σ̃
(ℓ,k)

= σ̃(ℓ)σ̃(k)ρ̃(ℓ,k), ℓ, k ∈ {1, 2}, with ρ̃(1,2) = ρ̃(2,1) = ρ̃ ∈ [−1, 1]; κ(ℓ) =

E[eY(ℓ) − 1], ℓ = 1, 2.

For subsequent use, we define µ = [µ(1), µ(2)], where µ(ℓ) = (r − λκ(ℓ) − (σ(ℓ))2/2)T , ℓ ∈ {1, 2},
and covariance matrix for the diffusion components, denoted by Σ, where Σ(ℓ,k) = σ(ℓ)σ(k)ρ(ℓ,k),

ℓ, k ∈ {1, 2}, with ρ(1,2) = ρ(2,1) = ρ ∈ [−1, 1].

Parameters Values

T (maturity in years) 1

σ1 (volatility) 0.12

σ2 0.15

r (risk free rate) 0.05

K (strike price) 100

ρ (correlation) 0.3

ρ̃ (jump correlation) -0.2

λ (jump intensity) 0.6

µ̃1 (jump size mean) -0.1

µ̃2 0.1

σ̃1 (jump size std) 0.17

σ̃2 0.13

Table 6.9: Parameters for the 2D Merton

jump diffusion. Values are taken from [48]

[Parameter sets 2].

N (# of neurons) 45

L2

(
ReG,ReĜ

)
3.15× 10−8

MPE
(
ReG,ReĜ

)
8.33× 10−5

L2

(
ImG, ImĜ

)
2.24× 10−8

MPE
(
ImG, ImĜ

)
4.62× 10−5

Table 6.10: Estimation errors for the

2D Merton jump diffusion; parameters

from Table 6.9;

The characteristic function of the random variable XT =
[
ln
(
S
(ℓ)
T /S

(ℓ)
0

)]
, ℓ = 1, 2, is given by

[48][Eqn (6.7)]

GX(η) = exp
(
iµ′η − 1

2
η′Ση

)
exp

(
λT

(
exp

(
iµ̃′η − 1

2
η′Σ̃η

)
− 1

))
. (6.6)

In this case, it is convenient to write ĝ(x; θ) in the following form:

ĝ(x; θ) =

N∑
n=1

βn
1

(2π)|Σ̂n|1/2
exp

(
−1

2
(x− µ̂n) Σ̂

−1
n (x− µ̂n)

)
.

Here, for n ∈ N , µ̂n = [µ̂
(1)
n , µ̂

(2)
n ], Σ̂n is the covariance matrix, where Σ̂

(ℓ,k)

n = σ̂
(ℓ)
n σ̂

(k)
n ρ̂

(ℓ,k)
n , ℓ, k ∈

{1, 2}, with ρ̂
(1,2)
n = ρ̂

(2,1)
n = ρ̂n ∈ [−1, 1]. The parameters to be learned are: {βn, µ̂(1)n , µ̂

(2)
n , ρ̂n},

n = 1, . . . N . The real and imaginary parts of the Fourier transform of ĝ(x; θ) are given by

Re
Ĝ
(η)=

N∑
n=1

βn cos(η
′µ̂n) exp

(
−η′Σ̂nη

2

)
, Im

Ĝ
(η)=

N∑
n=1

βn sin(η
′µ̂n) exp

(
−η′Σ̂nη

2

)
.

We conduct numerical experiments using the parameters listed in Table 6.9, with estimation errors

detailed in Table 6.10. As evident from Table 6.10, FourNet demonstrates impressive L2 estimation

accuracy.
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6.4 Option pricing

We now turn our attention to the application of estimated transition densities produced by FourNet

utilized for European and Bermudan option pricing. Recall that 0 ≤ t < t+∆t ≤ T , where t and ∆t

are fixed. Typically, in option pricing, we need to approximate a generic convolution integral of the

form

v(x, t) = e−r∆t

∫
R
v((x′ − c)/a, t+∆t)g(x− x′; ∆t) dx′

≈ e−r∆t

∫ xmax

xmin

v((x′ − c)/a, t+∆t)ĝ(x− x′; θ̂,∆t) dx. (6.7)

Here, v(·, t+∆t) is the time-(t+∆t) condition; ĝ(x; θ̂,∆t) is the estimated transition density obtained

through FourNet. As we pointed out in Remark 5.1, ĝ(x; θ̂,∆t) reflects a linear transformation applied

to the original density. In light of this, the time-(t +∆t) terminal condition must be adjusted corre-

spondingly in the convolution integral, as depicted in (6.7), through (x′ − c)/a. As noted earlier, this

integral is evaluated using adaptive Gauss quadrature rule (based on QUADPACK library in Fortran

77 library, quad function in Python). The range [xmin, xmax] for numerical integration will be provided

for each test case subsequently.

Strike Ref. [42] FourNet Rel.

(E) quad error

96 14.83787 14.83790 2× 10−6

98 13.43922 13.43925 3× 10−6

100 12.10782 12.10785 3× 10−6

102 10.84925 10.84928 3× 10−6

104 9.66805 9.66808 3× 10−6

Table 6.11: European call option prices

under the Merton model corresponding to

Tables 6.1 and 6.2; [xmin, xmax] = [−4, 1].

Strike Ref. [12] FourNet Rel.

(E) (COS) quad error

96 21.78472 21.78466 3× 10−6

98 20.77826 20.77819 3× 10−6

100 19.81294 19.81288 3× 10−6

102 18.88821 18.88815 3× 10−6

104 18.00334 18.00328 3× 10−6

Table 6.12: European call option prices

under CGMY dynamics corresponding to

data from Tables 6.3 and 6.4; [xmin, xmax] =

[−4, 2].

Strike Ref. [23] FourNet Rel.

(E) quad error

96 57.35019 57.35014 1× 10−6

98 56.61132 56.61127 1× 10−6

100 55.88119 55.88114 1× 10−6

102 55.15980 55.15975 1× 10−6

104 54.44716 54.44711 1× 10−6

Table 6.13: European call option prices

under Heston dynamics corresponding to

data from Tables 6.5 and 6.6; [xmin, xmax] =

[−4, 1].

Strike Ref. [12] FourNet Rel.

(E) (COS) quad error

7 4.27369 4.27373 1× 10−5

8 3.81734 3.81738 1× 10−5

9 3.40704 3.40708 1× 10−5

10 3.04018 3.04022 1× 10−5

11 2.71399 2.71403 1× 10−5

Table 6.14: European call option prices

under Heston Queue-Hawkes dynamics; cor-

responding to data from Tables 6.7 and 6.8;

[xmin, xmax] = [−3, 1]
.
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6.4.1 European options

For European options, we set t = 0 and ∆t = T , and v(x′, t + ∆t) = v(x′, T ) as the payoff function.

The strike of the option is given by E > 0. In the context of exponential Lêvy processes examined in

this study, which include the Merton and CGMY dynamics, the European call option payoff function is

defined as v
(
(x′−c)/a, T

)
≡
(
s0e

(x′−c)/a−E
)+

, where E is strike price of the option. For the Heston and

Heston Queue-Hawkes models, the European call option payoff is v
(
(s′ − c)/a, T

)
=
(
e(s

′−c)/a − E
)+

.

We provide numerically computed European option prices for the models discussed in the previous

section. These are presented in Tables 6.11 (Merton), 6.12 (CGMY), 6.4 (Heston), and 6.4 (Heston

Queue-Hawkes). Option prices are derived using the FourNet-estimated transition density ĝ(s; θ̂,∆t),

combined with an adaptive Gauss quadrature rule (the quad function in Python) to evaluate the

corresponding convolution integral. These results are displayed under the “FourNet-quad” column.

Benchmark prices are detailed under the “Ref.” column. For the Merton and Heston models,

these benchmark prices are determined using the analytical solutions from [42] and the method by

[23], respectively. For CGMY, and Heston Queue-Hawkes models, reference European option prices

are derived from our implementation of the Fourier Cosine (COS) method [12]. The associated relative

errors of these approximations are indicated in the “Rel. error” column. Clearly, the FourNet-quad

method proves highly accurate, showcasing a negligible error (on the order of 10−5).

6.4.2 Bermudan options

We present a Bermudan put option written on the underlying following the Merton jump-diffusion

model [14]. Unlike European options which can only be exercised at maturity, a Bermudan put option

can be exercised at any fixed dates t−m, tm ∈ T , where T ≡ {tm}Mm=1 is a discrete set of pre-determined

early exercise dates. We adopt the convention that no early exercise at time t0. In this example, the

early exercise dates are annually apart, that is, tm+1− tm = δt = 1 (year), In addition, the underlying

asset pays a fixed dividend amount D at t−m.

Over each [tm, tm+1], the pricing algorithm for a Bermudan put option consists of two steps.

In Step 1 (time-advancement), we need to approximate the convolution integral (6.7): v(x, t+m) =

e−r∆t
∫
R v((x

′ − c)/a, tm+1)ĝ(x − x′; θ̂, δt) dx, for x ∈ [xmin, xmax], where xmin < 0 < xmax, |xmin| and
xmax are sufficiently large. In Step 2 (intervention), we impose the condition

v(x, tm) = max
(
v
(
ln(max(ex −D, exmin)), t+m

)
,max(E − ex, 0)

)
. (6.8)

Here, E is the strike price, and the expression ln(max(ex − D, exmin)) in (6.8) ensures that the no-

arbitrage condition holds, i.e. the dividend paid can not be larger than the stock price at that time,

taking into account the localized grid.

In this numerical study, the transition density g(·; δt) remains the same across all intervals [tm, tm+1].

Adopting annual early exercise dates, where δt = 1 year, the transition density ĝ(·;T = 1) as obtained

from FourNet (as detailed in Table 6.2 and based on parameters from Table 6.1) is used in Step 1

above. These parameters and those pertaining to the Bermudan put are given in Table 6.15.

Letting {xq}Qq=0 be a partition of [xmin, xmax], we denote by vmq a numerical approximation to the

exact value v(xq, tm), where tm ∈ T ∪ {t0}. Intermediate value {vm+
q }, q = 0, . . . , Q, is computed

by evaluating the convolution integral in Step 1 via an adaptive Gauss quadrature rule, specifically

the quad function in Python. The time tm+1-condition v(·, tm+1) is given by a linear combination of

discrete solutions {vm+1
q }. For condition (6.8), linear interpolation is then used on {vm+

q } to determine

the option value {vmq }. Convergence results for the FourNet-quad approach are displayed in Table 6.16,
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showcasing evident agreement with an accurate benchmark option price taken from [14][Table 5] (finest

grid).

Parameters Values

S0 (initial asset price) 100

r (risk free rate) 0.05

σ (volatility) 0.15

λ (jump intensity) 0.1

µ̃ (mean of jump size) -1.08

σ̃ (std of jump size) 0.4

T (maturity in years) 10

δt (frequency in years) 1

E (strike) 100

D (dividend) 1

Table 6.15: Parameters for the Bermudan

put option; values taken from [14][Table 4].

Q FourNet-quad ratio

200 24.8323

400 24.7903

800 24.7838 6.7

1600 24.7812 2.5

3200 24.7806 4.3

Table 6.16: Bermudan put option; pa-

rameters from Table 6.15; benchmark price:

24.7807, taken from [14][Table 5, finest

grid]; xmin = ln(S0) − 10, xmax = ln(S0) +

10.

7 Conclusion and future work
This paper has introduced and rigorously analyzed FourNet, a novel single-layer FFNN developed to

approximate transition densities with known closed-form Fourier transforms. Leveraging the unique

Gaussian activation function, FourNet not only facilitates exact Fourier and inverse Fourier operations,

which is crucial for training, but also draws parallels with the Gaussian mixture model, demonstrating

its power in approximating sufficiently well a vast array of transition density functions. The hybrid

loss function, integrating MSE with MAE regularization, coupled with a strategic sampling approach,

has significantly enhanced the training process.

Through a comprehensive mathematical analysis, we demonstrated FourNet’s capability to approx-

imate transition densities in the L2-sense arbitrarily well with a finite number of neurons. We derive

informative bounds for the L2 estimation error and the potential (pointwise) loss of nonnegativity in

FourNet-estimated transition densities. We illustrated FourNet’s accuracy and versatility through a

broad range of models in quantitative finance, including (multi-dimensional) exponential Lévy pro-

cesses and the Heston stochastic volatility models-including those augmented with the self-exciting

Queue-Hawkes jump process. European and Bermudan option prices computed using estimated tran-

sition densities obtained through FourNet exhibit impressive accuracy.

Relative to existing methods that leverage the Fourier transform, FourNet distinguishes itself with

its straightforward training process and broad applicability. Its effectiveness does not hinge on the

simplicity of the value function used to formulate Fourier coefficients, and it adeptly manages multi-

dimensional settings. In a subsequent paper, we will extend the application of FourNet to control

problems thereby broadening the scope and application of this innovative method. FourNet’s simplicity

and ease of implementation offer the flexibility to delve into realistic models, previously deemed highly

challenging with current frameworks. This includes an investigation of the impact of self-exciting

jumps on optimal investment decision in the context of portfolio optimization for Defined Contribution

superannuation. This topic is especially relevant in the current climate, marked by rising inflation and

economic volatility.
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Appendices

A Constructing non-uniform partitions with multiple peaks
In Algorithm A.1, we provide a detailed procedure for constructing non-uniform, yet fixed, partitions of the

interval [ηl, ηu], comprised of M sub-intervals. These partitions feature denser points around a specifically

chosen point, ηc ∈ [ηl, ηu]. The parameters dl and du determine the point densities in the intervals [ηl, ηc] and

[ηc, ηu], respectively, represented as 1
dl

and 1
du

.

Algorithm A.1 Algorithm for constructing a non-uniform partition of an interval [ηl, ηu] into M

sub-intervals, having a single concentration point, ηc, which is the m-partition point, m ∈ {0, . . . ,M},
is fixed.
PartitionOne(ηl, ηu, ηc,M,m, dl, du)

1: compute αl = sinh−1
(ηl − ηc

dl

)
and αu = sinh−1

(ηu − ηc
du

)
;

2: compute η0 = ηl; ηj = ηc + dl sinh(αl(1− kj)), where kj =
j

m
, j = 1, . . . ,m;

3: compute ηj = ηc + du sinh(αukj), where kj =
j

M −m
, j = 1, . . . , (M −m);

4: return Q ≡ {ηj}mj=0 ∪ {ηj}M−m
j=1 ;

Algorithm A.2 Algorithm for constructing a non-uniform partition of an interval with multiple

concentration points.

PartitionMulti(ηmin, ηmax, {ηj}Jj=1, {Pj}vj=1, {qj}Jj=1, {η
j
l }

J
j=1, {η

j
u}Jj=1)

1: Q1 ← PartitionOne
(
ηmin,

η1 + η2
2

, η1, P1, q1, η
1
l , η

1
u

)
;

2: Qj ← PartitionOne(
ηj−1 + ηj

2
,
ηj + ηj+1

2
, ηj , Pj , qj , η

j
l , η

j
u), j = 2, . . . , J − 1;

3: QJ ← PartitionOne(
ηJ−1 + ηJ

2
, ηmax, ηJ , PJ , qJ , η

J
l , η

J
u );

4: return Q ≡ ∪Jj=1Qj ;

We use Algorithm A.1 in Algorithm A.2 to generate a non-uniform partition having P sub-intervals for the

region [ηmin, ηmax] ≡ [−η′, η′] with concentration points ηj , j = 1, . . . , J , satisfying ηmin ≤ η1 < η2 < . . . <

ηJ ≤ ηmax. Here, Pj is the number of sub-intervals for the j-th sub-region containing ηj , j = 1, . . . , J , with∑J
j=1 Pj = P ; qj is the local index of the gridpoint in the j-th sub-region that is equal to ηj ; η

j
l and ηju are the

upper and lower density parameters, respectively, associated with the j-th sub-region containing ηj .
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