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Abstract5

We investigate the Mean-Quadratic Variation (MQV) portfolio optimization problem and its6

relationship to the Time-consistent Mean-Variance (TCMV) portfolio optimization problem. In7

the case of jumps in the risky asset process and no investment constraints, we derive analytical8

solutions for the TCMV and MQV problems. We study conditions under which the two problems are9

(i) identical with respect to MV trade-offs, and (ii) equivalent, i.e. same value function and optimal10

control. We provide a rigorous and intuitive explanation of the abstract equivalence result between11

the TCMV and MQV problems developed in [T. Bjork and A. Murgoci, Working paper, (2010)],12

for continuous rebalancing and no-jumps in risky asset processes. We extend this equivalence result13

to jump-diffusion processes (both discrete and continuous rebalancings).14

In order to compare the MQV and TCMV problems in a more realistic setting which involves15

investment constraints and modelling assumptions for which analytical solutions are not known to16

exist, using a impulse control approach, we develop an efficient partial integro-differential equation17

(PIDE) method for determining the optimal control for the MQV problem. We also prove conver-18

gence of the proposed numerical method to the viscosity solution of the corresponding PIDE. We19

find that MQV investor achieves essentially the same results concerning terminal wealth as TCMV20

investor, but the MQV-optimal investment process has more desirable risk characteristics from the21

perspective of long-term investors with fixed investment time horizons. As a result, we conclude22

that MQV portfolio optimization is a potentially desirable alternative to the TCMV counterpart.23
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1 Introduction26

Mean-variance (MV) portfolio optimization is popular in modern portfolio theory due to the intuitive27

nature of the resulting investment strategies (Elton et al. (2014)). Two main approaches to perform28

MV portfolio optimization can be identified. The first approach, referred to as the pre-commitment29

MV approach, typically results in time-inconsistent optimal strategies (Basak and Chabakauri (2010);30

Bjork and Murgoci (2014); Vigna (2016)). This time-inconsistency phenomenon is due to the fact31

that the MV optimization problem fails to admit the Bellman optimality principle, since the variance32

term is not separable in the sense of dynamic programming (Li and Ng (2000); Zhou and Li (2000)).33

The second approach to MV optimization, namely the Time-consistent MV (TCMV) or game34

theoretical approach, guarantees the time-consistency of the resulting optimal strategy by imposing35
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a time-consistency constraint (Basak and Chabakauri (2010); Bjork and Murgoci (2014); Cong and36

Oosterlee (2016); Wang and Forsyth (2011)).1 This means that TCMV problem can be solved using37

dynamic programming (Cong and Oosterlee (2016); Van Staden et al. (2018)).38

The TCMV problem is referred to in Bjork et al. (2017); Bjork and Murgoci (2014) as “non-39

standard” problems, in that, without imposing the time-consistency constraint, the optimal control is40

time-inconsistent. It is further shown in Bjork et al. (2017); Bjork and Murgoci (2014) that, for every41

“non-standard” problem, there exists an equivalent “standard” optimal control problem which admits42

the Bellman optimality principle, so that the resulting optimal control is time-consistent without the43

need to impose a time-consistency constraint. Here, equivalence between two control problems is to44

be understood that they both have the same value function and optimal control.45

In the case of the TCMV problem with continuous rebalancing, GBM dynamics for the risky46

asset process, and no investment constraints, Bjork and Murgoci (2010) shows that the equivalent47

standard problem to the TCMV problem, is in fact the mean-quadratic-variation (MQV) problem48

with a particular function of the quadratic variation (QV) of wealth being used as the risk measure.249

From a numerical perspective, in the same setting, but with realistic investment constraints, Wang50

and Forsyth (2012) shows that both TCMV and MQV problems result in a very similar MV trade-off51

in the optimal terminal wealth. However, the two problems have quite different optimal controls,52

and hence, are not equivalent. These theoretical and numerical results suggest that a similarly deep53

relationship between the TCMV and MQV portfolio optimization may exist in a more general setting,54

such as discrete rebalancing, jumps in the risky asset processes and realistic investment constraints.55

However, to the best of our knowledge, a systematic and rigorous study of such relationship is not56

available in the literature.57

While MQV optimization is popular in optimal trade execution (Almgren and Chriss, 2001; Forsyth58

et al., 2011; Tse et al., 2013), it is clearly not widely used in portfolio optimization settings. In59

particular, QV (or some function of QV) is not even widely used as a risk measure in portfolio60

optimization settings, and is usually not mentioned when popular risk measures are discussed (see for61

example McNeil et al. (2015), Elton et al. (2014), Rockafellar and Uryasev (2002)). This contrasts to62

the considerable popularity in the portfolio optimization literature enjoyed by the TCMV approach63

(see, for example, Alia et al. (2016); Bensoussan et al. (2014); Cui et al. (2015); Van Staden et al.64

(2018), among many other published works on TCMV). We argue that this is somewhat unfortunate,65

for reasons listed below.66

• The MQV portfolio optimization problem retains many of the intuitive aspects of MV optimiza-67

tion, including the clear trade-off between risk and return.68

• Measuring risk using the QV of the portfolio wealth over the investment period arguably offers69

the investor more control over the risk throughout the investment period, instead of just focusing70

on the risk at maturity, such as with the variance of terminal wealth. As a result, QV is of71

potential interest especially to institutional investors and portfolio managers who have to report72

regularly to stakeholders.73

• Most importantly, from the perspective of this paper, a deep connection exists between TCMV74

and MQV portfolio optimization, and it can be exploited to the MV investor’s advantage. For75

example, as shown in this paper, in a general setting with jumps in the risky asset and realistic76

investment constraints, a MQV strategy typically retains almost all of the terminal wealth77

characteristics of a TCMV strategy (the terminal wealth distributions being almost identical),78

but with a risky asset exposure profile over time that is arguably more suitable for long-term79

investors with a fixed investment time horizon.80

1The time-consistency constraint should be distinguished from investment constraints, such as leverage or solvency

constraints, which do not affect the time-consistency of the resulting optimal control.
2Quadratic variation of the (stochastic) portfolio value was first proposed as a risk measure in Brugiere (1996).
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• Last but not least, the TCMV problem typically requires the solution of an extended Hamilton-81

Jacobi-Bellman (HJB) equation which falls outside the scope of viscosity solution theory of82

Crandall et al. (1992). Therefore, existing convergence results, e.g. Barles and Souganidis (1991),83

cannot be used to prove the convergence of a proposed PDE numerical scheme. By contrast, the84

MQV portfolio optimization problem does fall within the scope of viscosity solution theory of85

Crandall et al. (1992). This is a significant advantage of MQV over TCMV portfolio optimization,86

since if convergence can be proven, this will significantly increase the investor’s confidence in the87

numerical results provided by the method88

The main objective of this paper is to investigate the MQV portfolio optimization problem and89

its relationship to TCMV in a general setting, namely jumps in the risky asset processes, realistic90

investment constraints and modelling assumptions. This relationship is examined at two different91

levels, namely (i) MV trade-offs of terminal wealth, and (ii) equivalence, i.e. same value function92

and optimal control. In this work, we will not consider a wealth dependent risk aversion parameter,93

since it is shown in Van Staden et al. (2018) that the objective function in this case performs poorly94

for accumulation problems. We will focus on the constant risk aversion parameter case. Numerical95

methods for the TCMV problem are discussed in Van Staden et al. (2018).96

The main contributions of this paper are as follows.97

• We derive analytical solutions for the TCMV and MQV problems in the case of discrete rebal-98

ancing, jumps in the risky asset processes and no investment constraints. We show that, with99

a commonly used QV risk measure and under the assumption of no market frictions, the two100

problems result in identical MV trade-offs of terminal wealth, but with quite different investment101

strategies (controls), hence, not equivalent. Typically, the MQV-optimal strategy would consis-102

tently call for a higher investment in the risky asset. We then establish that, as the length of103

rebalancing intervals approaches zero (continuous rebalancing), the TCMV and MQV problems104

are indeed equivalent.105

We construct a QV risk measure which guarantees equivalence between the TCMV and MQV106

problems for both discrete and continuous rebalancings in the case of no investment constraints.107

These mathematical findings provide a rigorous and intuitive explanation of the abstract equiv-108

alence result between the TCMV and MQV problems developed in Bjork and Murgoci (2010)109

for the case of continuous rebalancing, with no jumps in the risky asset process and no invest-110

ment constraints. Furthermore, these findings also extend the equivalence result of Bjork and111

Murgoci (2010) to the case of jumps in the risky asset process for both discrete and continuous112

rebalancings.113

• We formulate the MQV portfolio optimization problem as a two-dimensional impulse control114

problem, with linear partial integro-differential equations (PIDEs) to be solved between inter-115

vention times. This approach allows for the simultaneous application of realistic investment con-116

straints, including (i) discrete rebalancing, (ii) liquidation in the event of insolvency, (iii) leverage117

constraints, (iv) different interest rates for borrowing and lending, and (v) transaction costs. A118

convergence proof of the numerical PDE method to the viscosity solution of the associated119

quasi-integro-variational inequality is sketched. This highlights the above-mentioned theoreti-120

cal advantage of MQV optimization relative to TCMV optimization, since the convergence of121

numerical methods to solve TCMV problems typically cannot be proven.122

• We present a comprehensive comparison study of the MQV and TCMV optimization results,123

including characteristics of the resulting optimal investment strategies, terminal wealth distri-124

butions, mean-variance outcomes, and the effect of the simultaneous application of investment125

constraints. All numerical experiments are conducted using model parameters calibrated to126
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inflation-adjusted, long-term US market data (89 years), enabling realistic conclusions to be127

drawn from the results.128

We observe that in a setting involving realistic investment constraints and non-zero transaction129

costs, (i) the MQV-optimal strategy often results in a better mean-variance trade-off for termi-130

nal wealth than the TCMV-optimal strategy, (ii) the MQV-optimal strategy achieves a terminal131

wealth distribution outperforming the corresponding result for the TCMV-optimal strategy not132

only in terms of the downside outcomes (e.g. 5th and 10th percentiles), but also for the three133

quartiles (25th,50th and 75th percentiles) of the distribution, and (iii) the MQV-optimal invest-134

ment strategy calls for a significantly larger reduction in risky asset exposure as the investment135

maturity is approached. This provides further evidence in support of considering MQV opti-136

mization as a desirable alternative to TCMV portfolio optimization, especially for long-term137

investors.138

The remainder of the paper is organized as follows. Section 2 describes the underlying processes and139

modelling approach, including a description of TCMV and MQV portfolio optimization approaches.140

The relationship between TCMV and MQV optimization is analyzed in Section 3, and new analytical141

results are presented. In Section 4, a numerical method for solving the MQV problem is presented,142

along with a convergence proof of the proposed method. Numerical results are presented and discussed143

in Section 5. Finally, Section 6 concludes the paper and outlines possible future work.144

2 Formulation145

2.1 Underlying dynamics146

Since we are concerned with investment problems with very long time horizons, we consider portfolios147

consisting of two assets only - a risky asset and a risk-free asset. For the risky asset, we consider a148

well-diversified index (see Section 5), instead of a single stock, which allows us to focus on the primary149

question of the stocks vs. bonds mix in the portfolio under different investment strategies, rather than150

secondary questions relating to risky asset basket compositions3.151

Let S (t) and B (t) denote the amounts respectively invested in the risky and risk-free asset at time152

t ∈ [0, T ], where T > 0 denotes the fixed investment time horizon/maturity. In the absence of control153

(when there is no intervention by the investor according to some control strategy), the dynamics of154

the amount B (t) is assumed to be given by155

dB (t) = R (B (t))B (t) dt, where R (B (t)) = rℓ + (rb − rℓ) I[B(t)<0], (2.1)156

where rb and rℓ denote the positive, continuously compounded rates at which the investor can respec-157

tively borrow funds or earn on cash deposits (with rb > rℓ), while I[A] denotes the indicator function158

of the event A.159

Realistic modelling of S (t) requires consideration of (i) jumps and (ii) stochastic volatility in the160

process dynamics. However, the results of Ma and Forsyth (2016) show that the effects of stochastic161

volatility, with realistic mean-reverting dynamics, are not important for long-term investors with time162

horizons greater than 10 years4. We therefore consider jump diffusion processes for the risky asset163

using a constant volatility parameter.164

3In the available analytical solutions for multi-asset TCMV problems (see, for example, Zeng and Li (2011)) as well

as pre-commitment MV problems (see for example Li and Ng (2000)), the composition of the risky asset basket remains

relatively stable over time, which suggests that the primary question remains the overall risky asset basket vs. the

risk-free asset composition of the portfolio, instead of the exact composition of the risky asset basket.
4While Ma and Forsyth (2016) considers the case of pre-commitment MV optimization, there is no reason to suspect

the findings would be materially different for either TCMV or MQV optimization.
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For any functional f , let f (t−) = limǫ→0+ f (t− ǫ). Informally, t− denotes the instant of time165

immediately before forward time t. Let ξ be a random variable denoting the jump multiplier, which166

has probability density function (pdf) p (ξ). If a jump occurs at time t, the amount in the risky asset167

jumps from S (t−) to S (t) = ξS (t−). We will consider two jump distributions of ξ. In the case of the168

Merton (1976) model, log ξ is normally distributed with mean m̃ and standard deviation γ̃, so that169

p (ξ) is the log-normal pdf170

p (ξ) =
1

ξ
√

2πγ̃2
exp

{
−(log ξ − m̃)2

2γ̃2

}
. (2.2)171

In the case of the Kou (2002) model, log ξ has an asymmetric double-exponential distribution, so that172

p (ξ) is of the form173

p (ξ) = νζ1ξ
−ζ1−1

I[ξ≥1] (ξ) + (1− ν) ζ2ξ
ζ2−1

I[0≤ξ<1] (ξ) , υ ∈ [0, 1] and ζ1 > 1, ζ2 > 0, (2.3)174

where ν denotes the probability of an upward jump (given that a jump occurs). For subsequent175

reference, we define κ = E [ξ − 1] and κ2 = E

[
(ξ − 1)2

]
. In the absence of control, the dynamics of176

the amount S (t) is assumed to be given by177

dS (t)

S (t−)
= (µ− λκ) dt+ σdZ + d




π(t)∑

i=1

(ξi − 1)


 , (2.4)178

where µ and σ are the real world drift and volatility respectively, Z denotes a standard Brownian179

motion, π (t) is a Poisson process with intensity λ ≥ 0, and ξi are i.i.d. random variables with the180

same distribution as ξ. It is futhermore assumed that ξi, π (t) and Z are mutually independent. Note181

that GBM dynamics for S (t) can be recovered from (2.4) by setting the intensity parameter λ to zero.182

Since we consider one risky asset, which has real world drift rate µ assumed to be strictly greater183

than rℓ, together with a constant parameter of risk aversion (see Subsections 2.4 and 2.5 below), it is184

neither MV-optimal nor MQV-optimal to short stock5, so we consider only the case of S (t) ≥ 0, t ∈185

[0, T ]. We do allow for short positions in the risk-free asset, i.e. it is possible that B (t) < 0, t ∈ [0, T ].186

2.2 Portfolio rebalancing187

Let X (t) = (S (t) , B (t)), t ∈ [0, T ], denote the multi-dimensional controlled underlying process, and188

x = (s, b) the state of the system. The liquidation value of the controlled portfolio wealth, possibly189

including transaction costs, is denoted by W (t), where190

W (t) = W (s, b) = b+max [(1− c2) s− c1, 0] , t ∈ [0, T ] . (2.5)191

Here, c1 ≥ 0 and c2 ∈ [0, 1) denotes the fixed and proportional transaction costs, respectively. Let192

(Ft)t∈[0,T ] be the natural filtration associated with the wealth process {W (t) , t ∈ [0, T ]}.193

We use Ct to denote the feedback control, representing an investment strategy as a function of the194

underlying state, computed at time t ∈ [0, T ], i.e. Ct (·) : (X (t) , t) 7→ Ct = C (X (t) , t), and applicable195

over the time interval [t, T ]. An impulse control Ct is defined (Oksendal and Sulem (2005)) as the196

double, possibly finite, sequence197

Ct = (τ̂1, τ̂2, ..., τ̂n, ...; η1, η2, ..., ηn, ...)n≤M = ({τ̂n, ηn})n≤M , M ≤ ∞, (2.6)198

5For any finite time interval over which a position is held without rebalancing, the expected value of the QV of

portfolio wealth would be the same for either a short initial position or an otherwise identical long initial position in the

risky asset. A short position would therefore incur the same QV risk as an otherwise identical long position, but with

less return (since µ > rℓ), and therefore cannot be MQV optimal.
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where the intervention times (τ̂n)n≤M are any sequence of (Ft)-stopping times satisfying t ≤ τ̂1 < ... <199

τ̂M < T , associated with a corresponding sequence of random variables (ηn)n≤M denoting the impulse200

values, with each ηn being of Fτ̂n-measurable for all τ̂n. We respectively denote by Z and A the sets201

of admissible impulse values and impulse controls (defined in the next subsection).202

In our application, each intervention time τ̂n corresponds to a rebalancing time of the portfolio, and203

the associated impulse ηn corresponds to the amount invested in the risk-free asset at this time (see204

(2.10) below). While the definition (2.6) allows for τ̂n to be any (Ft)-stopping time, in practical settings205

such as when formulating a numerical algorithm (see Section 4 below) we are of course limited to a206

discretization of (2.8), in the sense of considering only a finite set of pre-specified potential intervention207

times. By this we mean that the following uniform partition of the time interval [0, T ] is considered,208

Tm = { tn| tn = (n− 1)∆t, n = 1, ...,m} , ∆t = T/m. (2.7)209

Intervention can then be considered at each time tn ∈ Tm, but the investor can still choose not to210

intervene at time tn, if it is optimal to do so.211

To simplify the subsequent discussion, we use (2.7) to introduce a discretization of an impulse212

control (2.8), by making use of the following notational convention. Associated with a fixed set of213

intervention times Tm as in (2.7), an impulse control C ∈ A will be written as the set of impulses214

C = {ηn ∈ Z : n = 1, ...,m} , (2.8)215

where the (potential) intervention times are implicitly understood to be the set Tm. Given an impulse216

control C of the form (2.8), and an intervention time tn ∈ Tm, we define Cn to be the subset of impulses217

(and, implicitly, the corresponding intervention times) of C applicable to the time interval [tn, T ]:218

Cn ≡ Ctn = {ηn, ηn+1..., ηm} ⊆ C = C1 = {η1, ..., ηm} . (2.9)219

We emphasize that the discretization of an impulse control (2.6) as (2.7)-(2.8) is not at all limiting,220

since we show (see Section 4, in particular Theorem 4.3) that the discretized controls (2.8) converges221

to the impulse controls as per the definition (2.6) as ∆t ↓ 0 in (2.7) (or equivalently, letting m → ∞).222

In the subsequent discussion, “discrete rebalancing” of the portfolio will refer to the case where223

a fixed ∆t > 0 is considered, while “continuous rebalancing” will refer to the limiting case as ∆t ↓ 0224

in (2.7). For a more in-depth discussion of how the impulse control formulation relates to portfolio225

rebalancing using the continuous-time feedback controls usually encountered in the literature, the226

reader is referred to Appendix B, where we also justify the use of the term “continuous rebalancing”227

for the limiting case as ∆t ↓ 0 in (2.7).228

For concreteness and clarity, we now focus on the case of discrete rebalancing (i.e. a given fixed229

∆t > 0 and the associated set Tm in (2.7)), but will return to continuously-observed impulse controls230

of the form (2.6) in Section 4. Suppose that the investor considers applying impulse ηn ∈ Z at231

time tn ∈ Tm, and that the system is in state x = (s, b) at time t−n . Letting (S (tn) , B (tn)) ≡232

(S+ (s, b, ηn) , B
+ (s, b, ηn)) denote the state of the system immediately after the application of the233

impulse ηn, we define234

B (tn) ≡ B+ (s, b, ηn) = ηn,235

S (tn) ≡ S+ (s, b, ηn) =

{
(s+ b)− ηn − c1 − c2 · |S+ (s, b, ηn)− s| , if ηn 6= b,

s, if ηn = b.
(2.10)236

Between any two intervention times, i.e. for t ∈ [tn, tn+1), the amounts B and S evolve according to237

the dynamics specified in (2.1) and (2.4), respectively.238
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2.3 Admissible portfolios239

Fix an arbitrary intervention time tn ∈ Tm, and assume that the system is in state x = (s, b) ∈ Ω∞ at240

time t−n , where Ω
∞ = [0,∞)× (−∞,∞) denotes the spatial domain. We consider enforcing a solvency241

constraint and a maximum leverage constraint as described below.242

We define the solvency region N and the bankruptcy region B as follows:243

N = {(s, b) ∈ Ω∞ : W (s, b) > 0} , (2.11)244

B = {(s, b) ∈ Ω∞ : W (s, b) ≤ 0} . (2.12)245

The solvency condition stipulates that if W (s, b) ≤ 0, i.e. (s, b) ∈ B, then the position in the risky246

asset has to be liquidated, the total remaining wealth has to be placed in the debt accumulating at247

the borrowing rate, and all subsequent trading activities must cease. In other words,248

If (s, b) ∈ B at t−n ⇒
{
we require (S (tn) = 0, B (tn) = W (s, b))

and remains so ∀t ∈ [tn, T ] .
(2.13)249

The maximum leverage constraint is applied at each intervention time to ensure that the leverage250

ratio S(tn)
S(tn)+B(tn)

, where (S (tn) , B (tn)) are computed by (2.10), satisfies251

S (tn)

S (tn) +B (tn)
≤ qmax, n = 1, . . . ,m. (2.14)252

Here, qmax is typically in the range qmax ∈ [1.0, 2.0].253

The set of admissible impulse values Z and admissible impulse controls A are defined as follows254

Z =





{
η ≡ B ∈ (−∞,+∞) : (S,B) via (2.10)

}
no constraints,





{
η ≡ B ∈ (−∞,+∞) : (S,B) via (2.10) s.t. 0 ≤ S, and 0 ≤ S

S+B ≤ qmax

}
(s, b) ∈ N

{η = W (s, b)} (s, b) ∈ B
solvency & maximum leverage,

255

A =
{
({ηn})1≤n≤m : ηn ∈ Z

}
. (2.15)256

2.4 TCMV optimization257

Let Ex,tn
Cn

[W (T )] and V arx,tnCn
[W (T )] denote the mean and variance of terminal wealth, respectively,

given state x = (s, b) at time t−n (with tn ∈ Tm) and using impulse control Cn ∈ A over [tn, T ]. The

TCMV problem can be formulated as follows (Basak and Chabakauri, 2010; Bjork and Murgoci, 2014;

Hu et al., 2012)

TCMVtn (ρ) :





V c (s, b, tn) := sup
Cn∈A

(
Ex,tn

Cn
[W (T )]− ρ · V arx,tnCn

[W (T )]
)
, ρ > 0,

s.t. Cn =
{
ηn, Cc∗

n+1

}
:=
{
ηn, η

c∗
n+1, . . . , η

c∗
m

}
∈ A,

where Cc∗
n+1 is optimal for problem

(
TCMV tn+1 (ρ)

)
.

(2.16)

(2.17)

The time-consistency constraint (2.17) ensures that the resulting TCMV optimal strategy Cc∗
n is, in258

fact, time-consistent, so that dynamic programming can be applied directly to (2.16)-(2.17) to compute259

the associated optimal controls. The reader is referred to Van Staden et al. (2018) for a discussion of260

numerical solutions of problem TCMVtn (ρ).261

For subsequent use in the paper, we define the auxiliary function262

U c (s, b, tn) = Ex,tn
Cc∗
n

[W (T )] , (2.18)263
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where Cc∗
n is the TCMV-optimal control for (2.16)-(2.17). Using U c(·), the TCMVtn (ρ) problem

defined in (2.16)-(2.17) can be written more compactly as

TCMVtn (ρ) :





V c (s, b, tn) := sup
ηn∈Z

Jc (ηn; s, b, tn) , ρ > 0, where

Jc (ηn; s, b, tn) = Ex,tn
ηn [V c (Xn+1, tn+1)]− ρ · V arx,tnηn [U c (Xn+1, tn+1)] .

(2.19)

(2.20)

Here, Xn+1 :=
(
S
(
t−n+1

)
, B
(
t−n+1

))
, while the notation Ex,tn

ηn [·] and V arx,tnηn [·] refer to the expectation264

and variance, respectively, using an arbitrary impulse ηn ∈ Z at time tn together with the implied265

application of the optimal impulse control Cc∗
n+1 over the time interval [tn+1, T ].266

Given that the system is in state x0 = (s0, b0) at time t = 0, which corresponds to the first267

rebalancing time t1 ∈ Tm (see (2.7)), for an arbitrary risk aversion parameter ρ > 0, we denote by268

YTCMV(ρ) the corresponding MV “efficient” portfolio. This set is defined by269

YTCMV(ρ) =

{(√
V arx0,t=0

Cc∗ [W (T )], Ex0,t1=0
Cc∗ [W (T )]

)}
, (2.21)270

where Cc∗ = Cc∗
1 solves the problem (TCMVt1

(ρ)).271

Definition 2.1. (TCMV efficient frontier) The TCMV efficient frontier, denoted by YTCMV, is defined272

as YTCMV =
⋃

ρ>0 YTCMV(ρ), where YTCMV(ρ) is defined in (2.21).273

2.5 MQV optimization274

For given state x = (s, b) at time t−n (with tn ∈ Tm) and an admissible impulse control Cn ∈ A, we275

denote by Θx,tn
Cn

the QV risk measure applicable to the time interval [tn, T ]. It is defined as follows276

(Tse et al. (2013); Wang and Forsyth (2012))277

Θx,tn
Cn

=
m∑

k=n

∫ t−
k+1

tk

e2R(B(t))·(T−t) · d 〈W 〉t , (2.22)278

with d 〈W 〉t = σ2S2
(
t−
)
dt+

∫ ∞

0
S2
(
t−
)
(ξ − 1)2N (dt, dξ) , (2.23)279

where 〈W 〉 denotes the QV of the controlled wealth process using impulse control Cn, N (dt, dξ)280

denotes the Poisson random measure associated with the S-dynamics (Applebaum (2004)), and the281

function R (B (t)) is as defined in (2.1). Observe that definition (2.22) excludes the QV contributed by282

transaction costs at rebalancing times6, otherwise the QV risk measure would inappropriately penalize283

an investment strategy for any trading, regardless of whether risky asset holdings are increased or284

decreased.285

Given state x = (s, b) at time t−n , we define the MQV value function problem as

MQVtn (ρ) :





V q (s, b, tn) := sup
Cn∈A

(
Ex,tn

Cn

[
W (T )− ρ ·Θx,tn

Cn

])
, ρ > 0,

where Θx,tn
Cn

defined by (2.22).

(2.24)

We denote by Cq∗
n the optimal impulse control of problemMQVtn (ρ), and define the following auxiliary286

functions:287

U q (s, b, tn) = Ex,tn
C
q∗
n

[W (T )] , Qq (s, b, tn) = Ex,tn
C
q∗
n

[
W 2 (T )

]
. (2.25)288

The functions U q and Qq can be used to calculate the variance of terminal wealth under Cq∗
n as289

V arx,tn
C
q∗
n

[W (T )] = Qq (s, b, tn)− (U q (s, b, tn))
2 , (2.26)290

6If transaction costs are zero (c1 = c2 = 0 in (2.10)), the wealth of a self-financing portfolio remains unchanged

through a rebalancing event.
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which is useful for comparing the results from implementing MQV and TCMV investment strategies291

(see Definition 2.2 below). Furthermore, we follow Wang and Forsyth (2012) in defining292

Qstdx,tn
C
q∗
n

[W (T )] =

√
Ex,tn

C
q∗
n

[
Θx,tn

C
q∗
n

]
=

√
1

ρ
[U q (s, b, tn)− V q (s, b, tn)], (2.27)293

which can be compared to the standard deviation of terminal wealth in certain situations (see for294

example Table 5.3 below).295

Using an arbitrary impulse ηn ∈ Z at time tn, followed by an application of the MQV-optimal296

impulse control Cq∗
n+1 over the time interval [tn+1, T ], we define the following function,297

Jq (ηn; s, b, tn) = Ex,tn
ηn [V q (Xn+1, tn+1)]− ρ · Ex,tn

ηn

[∫ t−n+1

tn

e2R(B(t))·(T−t) · d 〈W 〉t

]
. (2.28)298

Note that the function Jq corresponds to the objective function of the problem MQVtn (ρ) in the299

particular case where controls of the form Cn =
{
ηn ∪ Cq∗

n+1

}
are used in (2.24).300

Given that the system is in state x0 = (s0, b0) at time t = 0, which corresponds to the first301

rebalancing time t1 ∈ Tm (see (2.7)), for an arbitrary risk aversion parameter ρ > 0, we denote by302

YMQV(ρ) the following set303

YMQV(ρ) =

{(√
V arx0,t=0

Cq∗ [W (T )], Ex0,t1=0
Cq∗ [W (T )]

)}
, (2.29)304

where V arx0,t=0
Cq∗ [W (T )] is defined in (2.26), and Cq∗ = Cq∗

1 solves the problem (2.24). We have the305

following definition.306

Definition 2.2. (MQV frontier) The MQV frontier YMQV is defined as follows YMQV =
⋃

ρ>0 YMQV(ρ),307

where YMQV(ρ) is defined in (2.29).308

We note that, while the definition of the MQV frontier YMQV enables the like-for-like comparison309

with the TCMV efficient frontier YTCMV (Definition 2.1), MQV-optimal portfolios are not designed to310

be “MV efficient”, since the variance of terminal wealth does not form part of the objective function311

of the MQV problem. In this paper, we therefore use the term MV efficient frontier exclusively for312

YTCMV, and refer to YMQV as simply the MQV frontier, without reference to MV efficiency.313

3 Relationship between problems TCMVtn (ρ) and MQVtn (ρ)314

In this section, theoretical aspects of the relationship between the TCMV and MQV problems are315

investigated in detail. In order to solve the problems analytically, all results in this section are derived316

under the assumption of no market frictions, formalized in Assumption 3.1. Note that this assumption317

is relaxed in Sections 4 and 5. In particular, in Section 5 we investigate the relationship between the318

TCMV and MQV problems using numerical examples, since analytical solutions are not known to319

exist in the case where we apply multiple realistic investment constraints simultaneously, including320

different borrowing and lending rates and nonzero transaction costs.321

Assumption 3.1. (No market frictions) Lending and borrowing rates are equal to the risk-free rate322

(rℓ = rb = r), and transaction costs are zero (c1 = c2 = 0). Trading continues in the event of323

insolvency, and no leverage constraint is applicable, i.e. Z is given by (2.15).324

For subsequent reference, we introduce the following definitions.325

Definition 3.1. (Identical frontiers) The TCMV and MQV problems are defined to have identical326

frontiers if YTCMV = YMQV, where YTCMV and YMQV are respectively defined in Definition 2.1 and327

Definition 2.2. That is, ∀(V, E) ∈ YTCMV, ∃ρ′

> 0 such that (V, E) = YMQV(ρ′), and vice versa.328
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We note that identical frontiers would imply that the two problems result in an identical MV329

trade-off in the optimal terminal wealth.330

Definition 3.2. (Equivalence) Problems TCMVtn (ρ) defined in (2.16) - (2.17) and MQVtn (ρ) defined331

in (2.24) are equivalent if, for any fixed value of ρ > 0, they result in (i) the same optimal investment332

strategy or control, i.e. Cq∗
n = Cc∗

n , and (ii) the same value function, i.e. V q (s, b, tn) = V c (s, b, tn), for333

all n = 1, . . . ,m and all x = (s, b).334

Remark 3.3. (Equivalence and identical frontiers) If the TCMV and MQV problems are equivalent335

according to Definition 3.2, then, necessarily, they also have identical frontiers (Definition 3.1). Con-336

versely, if the frontiers are not identical, then the problems cannot be equivalent. However, identical337

frontiers do not necessarily imply equivalence of the underlying problems, only that the same rela-338

tionship holds between the mean and variance of the terminal wealth under the respective optimal339

strategies.340

We first investigate the two problems in the case of discrete rebalancing. We assume a fixed, given341

set Tm of equally spaced rebalancing times as in (2.7), where ∆t can remain non-infinitesimal. The342

analytical solution of problems TCMVtn (ρ) and MQVtn (ρ) in the case of discrete rebalancing of the343

portfolio are given by the following lemmas.344

Lemma 3.4. (Analytical solution: TCMV problem with discrete rebalancing). If the system is in state345

x = (s, b) at time t−n , where tn ∈ Tm, n ∈ {1, . . . ,m}, then in the case of discrete rebalancing under346

Assumption 3.1, the value function of problem TCMVtn (ρ) in (2.16) is given by347

V c (s, b, tn) = U c (s, b, tn)− ρ (T − tn)

(
1

2ρ
Kc

)2

· 1

∆t

(
e(2µ+σ2+λκ2)∆t − e2µ∆t

)
, (3.1)348

where constant Kc, auxiliary function U c (see (2.18)), and TCMV optimal impulse are respectively349

given by350

Kc =

(
eµ∆t − er∆t

)
(
e(2µ+σ2+λκ2)∆t − e2µ∆t

) , (3.2)351

U c (s, b, tn) = (s+ b) er(T−tn) + (T − tn)

(
1

2ρ
Kc

)
1

∆t

(
eµ∆t − er∆t

)
, (3.3)352

ηc∗n = s+ b−
(

1

2ρ
Kc

)
e−r(T−tn)er∆t. (3.4)353

Proof. See Appendix A.354

Lemma 3.5. (Analytical solution: MQV problem with discrete rebalancing). If the system is in state355

x = (s, b) at time t−n , where tn ∈ Tm, n ∈ {1, . . . ,m}, then in the case of discrete rebalancing under356

Assumption 3.1, the value function of problem MQVtn (ρ) in (2.24) is given by357

V q (s, b, tn) = (s+ b) er(T−tn) +
1

2
(T − tn)

(
1

2ρ
Kq

)(
eµ∆t − er∆t

) 1

∆t
e−2r∆t, (3.5)358

where the constant Kq, auxiliary functions U q and Qq (see (2.25)), and the MQV-optimal impulse are359

respectively given by360

Kq =

(
2µ − 2r + σ2 + λκ2

)

(σ2 + λκ2)

(
eµ∆t − er∆t

)
(
e(2µ−2r+σ2+λκ2)∆t − 1

) , (3.6)361

U q (s, b, tn) = (s+ b) er(T−tn) + (T − tn)

(
1

2ρ
Kq

)(
eµ∆t − er∆t

) 1

∆t
e−2r∆t, (3.7)362

Qq (s, b, tn) = (U q (s, b, tn))
2 + (T − tn)

(
1

2ρ
Kq

)2 (
e(2µ+σ2+λκ2)∆t − e2µ∆t

) 1

∆t
e−4r∆t, (3.8)363

ηq∗n = s+ b−
(

1

2ρ
Kq

)
e−r(T−tn)e−r∆t. (3.9)364

Proof. See Appendix A.365
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3.1 Identical frontiers (YTCMV = YMQV)366

The results from Lemma 3.4 and Lemma 3.5 are used to derive an important relationship between the367

TCMV and MQV problems, given in the next theorem.368

Theorem 3.6. ( YTCMV = YMQV). In the case of discrete rebalancing under Assumption 3.1, we have369

YTCMV = YMQV (Definition 3.1). Specifically, given x0 = (s0, b0) at time t = t1 = 0, with initial wealth370

w0 = s0 + b0, both YTCMV and YMQV coincide with a line with intercept w0e
rT and slope Mf , where371

Mf =

(
eµ∆t − er∆t

)
√(

e(2µ+σ2+λκ2)∆t − e2µ∆t
) ·
√

T

∆t
. (3.10)372

Proof. Combining (3.1) and (3.3) (resp. combining (3.7) and (3.8) with (2.26)), the TCMV-optimal373

(resp. MQV-optimal) standard deviation of terminal wealth is given by374

Stdevx0,t=0
Cc∗ [W (T )] =

(
1

2ρ
Kc

)
·
√

T

∆t

(
e(2µ+σ2+λκ2)∆t − e2µ∆t

)
, (3.11)375

Stdevx0,t=0
Cq∗ [W (T )] =

(
1

2ρ
Kq

)
e−2r∆t

√
T

∆t

(
e(2µ+σ2+λκ2)∆t − e2µ∆t

)
. (3.12)376

Evaluating (3.3) at (s, b, tn) = (s0, b0, t = 0), substituting (3.11) and rearranging the result gives377

YTCMV. The same steps with (3.12) and (3.7) results in YMQV. In both cases, using C∗ to denote either378

the TCMV optimal control or the MQV optimal control, we obtain379

Et=0
C∗ [W (T )] = w0e

rT +Mf ·
(
Stdevt=0

C∗ [W (T )]
)
. (3.13)380

381

The results of Theorem 3.6 show that, in a realistic setting of jumps in the risky asset process382

and discrete portfolio rebalancing, an MV investor who is only concerned with the MV trade-off of383

optimal terminal wealth would therefore be indifferent as to whether TCMV or MQV optimization384

is performed. However, as discussed in Remark 3.3, Theorem 3.6 does not imply the equivalence of385

problems TCMVtn (ρ) and MQVtn (ρ) in the sense of Definition 3.2.386

As an illustration, in Figure 3.1, we plot, for different ρ values, the expected values and standard387

deviations of optimal terminal wealth for the TCMV and MQV problems obtained with a particular388

set of parameters. It is clear that for any fixed value of ρ, the MQV strategy achieves both a higher389

expected value and a higher standard deviation of terminal wealth compared to the corresponding390

TCMV strategy. That is, Ex,t1
Cc∗
1

[W (T )] < Ex,t1
C
q∗
1

[W (T )] and V arx,t1Cc∗
1

[W (T )] < V arx,t1
C
q∗
1

[W (T )].391

Since the resulting optimal strategies/controls depend on the parameterization of the underlying392

process dynamics, we cannot make completely general conclusions as to how the TCMV-optimal and393

MQV-optimal controls are related. However, in typical applications where the risky asset represents a394

well-diversified stock index, and the risk-free rate is based on inflation-adjusted US government bond395

data (see for example the parameters in Dang and Forsyth (2016); Forsyth and Vetzal (2017) as well396

as Table 5.1 below), the conditions of the following theorem are satisfied, explaining that the results397

observed in Figure 3.1 are to be expected.398

Theorem 3.7. (Comparison of the TCMV and MQV optimal controls) Consider the case of discrete399

rebalancing under Assumption 3.1, with a fixed rebalancing time interval ∆t > 0, with ∆t ∼ O (1).400

Suppose that the parameters of the underlying asset dynamics (2.1)-(2.4) satisfy 0 < r ≪ µ ≪ 1 and401 (
σ2 + λκ2

)
≪ 1. Then, for any fixed ρ > 0, we have that ηc∗n > ηq∗n , n = 1, . . . ,m, where ηc∗n and ηq∗n402

respectively are optimal impulse control for TCMVt=0 (ρ) and MQVt=0 (ρ) at intervention time tn.403
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Figure 3.1: Expected value and standard deviation of optimal terminal wealth as a function of the

scalarization parameter ρ. Discrete rebalancing (∆t = 1 year) under the conditions of Assumption

3.1, T = 20 years, and Kou model with parameters in Table 5.1.

Proof. The difference between the TCMV-optimal investment (3.4) and the MQV-optimal investment404

(3.9) in the risk-free asset at an arbitrary rebalancing time tn ∈ Tm is given by405

ηc∗n − ηq∗n =
1

2ρ
e−r(T−tn)er∆t ·

(
Kqe−2r∆t −Kc

)
. (3.14)406

Define the function ϕ (∆t) =
(
e2µ∆t − e2r∆t

)
/
(
e(2µ+σ2+λκ2)∆t − e2µ∆t

)
. Re-arranging (3.14), it is407

the case that
(
ηc∗n − ηq∗n

)
> 0 if408

ϕ (∆t) <
2 (µ− r)

(σ2 + λκ2)
, for all ∆t > 0. (3.15)409

Under the stated conditions on the parameters of the underlying dynamics, the derivative of ϕ (∆t) is410

negative, so that the limit lim∆t↓0 ϕ (∆t) = 2 (µ− r) /
(
σ2 + λκ2

)
is approached from below as ∆t ↓ 0.411

As a result, (3.15) holds, and the conclusion of the theorem follows.412

We argue that the conclusion of Theorem 3.7 is not necessarily a concern for MV investors. This413

is because, in practice, instead of making an abstract choice for a particular value of ρ, a MV investor414

is much more likely to make a concrete choice, such as a target expectation or variance of terminal415

wealth. In this case, the investor would be indifferent as to whether TCMV or MQV objective is used.416

The notion of equivalence has been defined (Definition 3.2) in terms of a fixed value of ρ, in order to417

align to the definition of equivalent standard problems in for example Bjork et al. (2017), and to extend418

the known results regarding the equivalence between the TCMV and MQV problems in Subsection 3.2419

below. However, since the TCMV and MQV problems make use of different risk measures, it might420

be considered unnecessarily restrictive to require identical values of ρ to be used when comparing421

these problems. To this end, Lemma 3.8 establishes a weaker form of equivalence, namely that under422

Assumption 3.1, a TCMV-optimal strategy associated with some ρ > 0 is simultaneously also MQV-423

optimal for the MQV problem associated with a risk aversion parameter ρ′ > ρ satisfying (3.16).424

Lemma 3.8. (Relationship between risk aversion parameters) Consider the case of discrete rebalancing425

under Assumption 3.1, with a fixed rebalancing time interval ∆t > 0. Given any scalarization or risk426

aversion parameter ρ > 0, we can define another risk aversion parameter ρ′ > 0 as427

ρ′ =

[(
1 +

2 (µ− r)

(σ2 + λκ2)

)
· e

(2µ+σ2+λκ2)∆t − e2µ∆t

e(2µ+σ2+λκ2)∆t − e2r∆t

]
· ρ. (3.16)428
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Then problem TCMVt=0 (ρ) and problem MQVt=0 (ρ
′) have the same value function and optimal429

control, implying that YTCMV (ρ) = YMQV (ρ′). Furthermore, under the conditions on the underlying430

parameters as in Theorem 3.7 that are typically satisfied in practical applications, we have ρ′ > ρ.431

Proof. The optimal control of problem TCMVt=0 (ρ) is given by ηc∗n as per equation (3.4). Re-432

arranging (3.16), we can substitute ρ and recognize the resulting expression as ηq∗n given by equation433

(3.9) using the scalarization parameter ρ′, which is the optimal control for problem MQVt=0 (ρ
′). The434

conclusion that ρ′ > ρ follows using similar arguments as in the proof of Theorem 3.7.435

We emphasize that the conclusion of Lemma 3.8, namely that ρ′ > ρ, does not imply that a higher436

level of risk aversion is required for the MQV investor compared to the TCMV investor wishing to437

achieve identical investment results. This follows since the MQV investor and the TCMV investor em-438

ploy fundamentally different risk measures, so that the risk aversion parameters ρ′ and ρ in Lemma 3.8439

are not directly comparable for the purposes of inferring relative differences in investor risk preferences.440

3.2 Equivalence between TCMVtn (ρ) and MQVtn (ρ)441

We now study the equivalence between the TCMV and MQV problems as per Definition 3.2. The442

following lemma confirms that the difference between the TCMV and MQV optimal controls vanishes443

in the limit as ∆t ↓ 0. That is, in the case of continuous rebalancing, the two problems are equivalent.444

Theorem 3.9. (Equivalence of problems TCMVtn (ρ) and MQVtn (ρ) - continuous rebalancing). Fix445

a value of the ρ > 0, and assume we are given state x = (s, b) at time t−n , and that the conditions of446

Assumption 3.1 are satisfied. In the case of continuous rebalancing (∆t ↓ 0), for both the TCMV and447

MQV problems, the optimal control at any rebalancing time tn ∈ [0, T ] is given by448

η∗n = s+ b− (µ− r)

2ρ (σ2 + λκ2)
e−r(T−tn). (3.17)449

Furthermore, the mean and standard deviation of optimal terminal wealth at time t = 0 (with initial450

wealth w0) are respectively given by451

Et=0
C∗ [W (T )] = w0e

rT +

(
µ− r√
σ2 + λκ2

)√
T ·
(
Stdevt=0

C∗
0

[W (T )]
)
, (3.18)452

Stdevt=0
C∗ [W (T )] =

1

2ρ

(
µ− r√
σ2 + λκ2

)√
T . (3.19)453

Proof. The result follows from taking limits in the results presented in Lemma 3.4, Lemma 3.5 and454

Theorem 3.6, observing that lim∆t↓0 K
q = lim∆t↓0 K

c = (µ− r) /
(
σ2 + λκ2

)
.455

We now highlight the significance of Theorem 3.9. Firstly, by setting the jump intensity λ to zero,456

this theorem provides a rigorous and intuitive explanation of the abstract equivalence result between457

the TCMV and MQV problems developed in Bjork and Murgoci (2010) in the case of continuous458

rebalancing and no jumps in the risky asset process. Furthermore, with λ > 0, Theorem 3.9 extends459

the above-mentioned equivalence result of Bjork and Murgoci (2010) to the case of jumps in the risky460

asset process (still continuous rebalancing). Finally, this theorem also recovers the known analytical461

solutions of the optimal control (3.17), expectation and standard deviation of optimal terminal wealth462

(3.18)-(3.19) for the TCMV problem developed in Basak and Chabakauri (2010); Zeng et al. (2013).463

for the case of continuous rebalancing.464

In the case of discrete rebalancing, the question of equivalence in the sense of Definition 3.2 remains.

We now show that it is possible to construct a QV risk measure which guarantees equivalence between

the TCMV problem and MQV problem using this risk measure in both discrete and continuous
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rebalancings. Given some state x = (s, b) at time t−n with tn ∈ Tm, we define the adjusted Mean-

Quadratic Variation (aMQV) problem using an adjusted QV risk measure Θ̂x,tn
Cn

as

aMQVtn (ρ) :





V̂ q (x, tn) = sup
Cn∈A

(
Ex,tn

Cn

[
W (T )− ρΘ̂x,tn

Cn

])
, ρ > 0, where

Θ̂x,tn
Cn

=

∫ T

tn

f (t) d 〈W 〉t ,

f (t) =

m∑

k=1

fk (t) I[tk ,tk+1) (t) , t ∈ [0, T ] ,

fk (t) = e2r(T−t)

(
1 +

2 (µ− r)

(σ2 + λκ2)

[
1− e−(σ

2+λκ2)(t−tk)
])

.

(3.20)

(3.21)

(3.22)

(3.23)

We observe that the adjusted QV risk measure (3.21) is a generalization of the QV risk measure465

(2.22) considered up to this point7. Figure 3.2 illustrates some key properties of the non-negative466

function of time f : [0, T ] → [0,∞), namely: (i) in the limit as ∆t ↓ 0 (i.e. continuous rebalancing) with467

zero transaction costs, the original QV risk measure (2.22) is recovered, and (ii) f (t) ≥ e2r(T−t), t ∈468

[0, T ] which implies that for any fixed ρ > 0, the QV risk calculated using the adjusted QV risk469

measure would be higher compared to the original QV risk. This should reduce the investment in the470

risky asset for problem aMQVtn (ρ) compared to problem MQVtn (ρ) for the same ρ value. This is a471

desirable outcome, given the conclusion of Theorem 3.7.472
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Figure 3.2: Function f (t) defined in (3.22)-(3.23) compared to e2r(T−t) over t ∈ [0, 2.5], with T = 20

years (Kou model, parameters as in Table 5.1). Note the same scale on the y-axis.

Theorem 3.10. (Equivalence of problems TCMVtn (ρ) and aMQVtn (ρ) - discrete rebalancing) In the473

case of discrete rebalancing under Assumption 3.1, the TCMV problem TCMVtn (ρ) and the adjusted474

MQV problem aMQVtn (ρ) defined by (3.20)-(3.23) are equivalent in the sense of Definition 3.2.475

Proof. The proof relies on backward induction, using similar arguments as in Appendix A, therefore476

only a brief summary is given below. At time tm+1 = T , the value functions of problems TCMVtm+1 (ρ)477

and aMQVtm+1 (ρ) are trivially equal. Fix a value of ρ > 0, and an arbitrary rebalancing time tn ∈ Tm,478

with a given state x = (s, b) at t−n , and assume that the value functions of problems TCMVtn+1 (ρ) and479

aMQVtn+1 (ρ) are equal. The objective functional of TCMVtn (ρ) satisfies the recursive relationship480

7In the case of rℓ = rb = r and zero transaction costs, this can be seen by rewriting the definition of the original QV

risk measure (2.22) as Θx,tn
Cn

=
∫ T

tn

(∑m

k=n
e2r(T−t)

I[tk,tk+1) (t)
)
· d 〈W 〉

t
.
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(2.20), and since Assumption 3.1 is satisfied, the auxiliary function U c is given by (3.3). If fn is given481

by (3.23), we obtain the relationship482

V arx,tnηn

[
U c
(
S
(
t−n+1

)
, B
(
t−n+1

)
, tn+1

)]
= Ex,tn

ηn

[∫ t−n+1

tn

fn (t) d 〈W 〉t

]
, n = 1, . . . ,m, (3.24)483

which implies that the objective functionals of problems TCMVtn (ρ) and aMQVtn (ρ) are equal, and484

the conclusions follow.485

The significance of Theorem 3.10 is that it extends the TCMV-MQV equivalence result of Bjork486

and Murgoci (2010) from (i) continuous rebalancing and without jumps in the risky asset process to487

(ii) discrete rebalancing and with jumps in the risky asset process. Furthermore, if a TCMV investor488

is concerned about switching to using a MQV objective, since the optimal investment strategies may489

differ for a fixed value of ρ (Theorem 3.7), switching to an adjusted MQV objective (3.20) eliminates490

this concern entirely.491

Although all the preceding results were proven under the conditions of Assumption 3.1, the results492

are also of great assistance when explaining the close correspondence between TCMV and MQV493

investment outcomes when multiple realistic investment constraints are applied (see Section 5). For494

example, we find that the resulting MV frontiers remain almost identical regardless of investment495

constraints, so that the main qualitative conclusion of Theorem 3.6 holds even when its conditions are496

violated.
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Figure 3.3: Mean and standard deviation of optimal terminal wealth as a function of ρ, subject to

more realistic investment constraints (liquidation in the event of bankruptcy, maximum leverage ratio

qmax = 1.5). Kou model, parameters as in Table 5.1, T = 20 years, annual rebalancing.

497

Of course, there is no reason to expect that problems TCMVtn (ρ) and aMQVtn (ρ) should be498

equivalent (according to Definition 3.2) when realistic investment constraints are applied, and Figure499

3.3 shows that this is indeed the case8, although the results of problem aMQVtn (ρ) seem to be slightly500

closer to problem TCMVtn (ρ), as expected. However, in experimental results we found no discernible501

difference between the MV frontiers and terminal wealth distribution characteristics obtained from the502

MQV and adjusted MQV problems in the presence of investment constraints. All subsequent results503

in this paper are therefore formulated and presented in terms of the problem MQVtn (ρ), with the504

construction of more general adjusted QV risk measures being left for our future work.505

8The MQV and adjusted MQV results in Figure 3.3 were obtained using the algorithm developed in Section 4.
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4 Numerical methods for MQV optimization506

In seeking analytical solutions to the TCMV and MQV problems (see Section 3), we are typically507

severely limited in terms of the realistic investment constraints that can be applied, especially when508

multiple constraints are to be applied simultaneously - see for example Van Staden et al. (2018) for a509

discussion regarding the TCMV problem. For the purposes of a comprehensive comparison study of510

the MQV and TCMV investment outcomes, we therefore have to solve the MQV problem numerically511

to allow for the simultaneous application of multiple realistic investment constraints, including (i) the512

discrete rebalancing of the portfolio, (ii) liquidation in the event of insolvency, (iii) leverage constraints,513

(iv) different interest rates for borrowing and lending, and (v) transaction costs.514

With this objective in mind, we develop an efficient numerical method for solving the MQV value515

function problem (2.24). We focus initially on formulating and solving the problem using impulse516

controls of the form (2.6), in other words the case of continuous rebalancing, and discuss (Remark 4.4517

below) how the case of discrete rebalancing is handled by making only a few small adjustments to the518

proposed numerical method.519

Define τ = T − t, V (s, b, τ) = V q (s, b, T − t), as well as the following operators:520

Lf (s, b, τ) = (µ− λκ) sfs +R (b) bfb +
1

2
σ2s2fss − λf, (4.1)521

Pf (s, b, τ) = (µ− λκ) sfs +
1

2
σ2s2fss − λf, (4.2)522

J f (s, b, τ) = λ

∫ ∞

0
f (ξs, b, τ) p (ξ) dξ, (4.3)523

Mf (s, b, τ) = sup
η∈Z

[
f
(
S+ (s, b, η) , B+ (s, b, η) , τ

)]
, (4.4)524

where f is an appropriate test function, and the values of S+ (·) and B+ (·) in the definition of the525

intervention operator9 (4.4) is calculated according to (2.10). Using standard arguments (see Oksendal526

and Sulem (2005)), the value function V (s, b, τ) of problem MQVτ (ρ) can be shown to satisfy the527

following quasi-integrovariational inquality in domain (s, b, τ) ∈ Ω∞ × [0, T ]:528

min
{
Vτ − LV − J V + ρ

(
σ2 + λκ2

)
e2R(b)τs2, V −MV

}
= 0, if (s, b, τ) ∈ N × (0, T ] ,529

min {Vτ −R (b) bVb, V −MV } = 0, if s = 0,530

V (s, b, τ)− V (0,W (s, b) , τ) = 0, if (s, b, τ) ∈ B × (0, T ] ,531

V (s, b, 0) −W (s, b) = 0, if τ = 0. (4.5)532

4.1 Localization533

For computational purposes, we localize the domain of (4.5), Ω∞× [0, T ] = [0,∞)× (−∞,∞)× [0, T ],534

to the set of points535

(s, b, τ) ∈ Ω× [0, T ] := [0, smax)× [−bmax, bmax]× [0, T ] , (4.6)536

where smax and bmax are sufficiently large and positive. Let s∗ < smax and rmax = max (rb, rℓ).537

Following Dang and Forsyth (2014), we introduce the following sub-computational domains:538

Ωs0 = {0} × [−bmax, bmax] , (4.7)539

Ωs∗ = (s∗, smax]× [−bmax, bmax] , (4.8)540

Ωbmax
= (0, s∗]×

[
−bmaxe

rmaxT ,−bmax

)
∪
(
bmax, bmaxe

rmaxT
]
, (4.9)541

ΩB = {(s, b) ∈ Ω \Ωs∗ \ Ωs0 : W (s, b) ≤ 0} , (4.10)542

Ωin = Ω \ Ωs∗ \Ωs0 \ΩB. (4.11)543

9The intervention operator plays a fundamental role in impulse control problems - see Oksendal and Sulem (2005).
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Observe that ΩB is the localized insolvency region, Ωin is the interior of the localized solvency region,544

while Ωs0 is the boundary where s = 0. The buffer regions Ωs∗ and Ωbmax
ensure that the risky asset545

jumps and the risk-free asset interest payments, respectively, do not take us outside the computational546

grid (see d’Halluin et al. (2005) and Dang and Forsyth (2014)). Following the guidelines in d’Halluin547

et al. (2005), s∗ and smax are chosen to minimize the effect of the localization error for the jump terms.548

Operator J (4.3) is localized as549

Jℓf (s, b, τ) = λ

∫ smax/s

0
f (ξs, b, τ) p (ξ) dξ. (4.12)550

Similar arguments as in Dang and Forsyth (2014) results in the following localized problem for V :551

min
{
Vτ − LV − JℓV + ρ

(
σ2 + λκ2

)
e2R(b)τs2, V −MV

}
= 0, (s, b, τ) ∈ Ωin × (0, T ] ,552

min
{
Vτ −

(
σ2 + 2µ + λκ2

)
V + ρ

(
σ2 + λκ2

)
e2R(b)τs2, V −MV

}
= 0, (s, b, τ) ∈ Ωs∗ × (0, T ] ,553

min {Vτ −R (b) bVb, V −MV } = 0, (s, b, τ) ∈ Ωs0 × (0, T ] ,554

V (s, b, τ) − V (0,W (s, b) , τ) = 0, (s, b, τ) ∈ ΩB × (0, T ] ,555

V (s, b, τ)− |b|
bmax

V (s, sgn (b) bmax, τ) = 0, (s, b, τ) ∈ Ωbmax
× (0, T ] ,556

V (s, b, 0)−W (s, b) = 0 (s, b) ∈ Ω. (4.13)557

We briefly highlight certain aspects of the derivation of (4.13). Firstly, the localized problem in558

Ωs∗ is obtained as follows. Since the PIDE in the solvency region N (see (4.5)) has source term of559

O
(
s2
)
, it is reasonable to assume as in Wang and Forsyth (2012) that V has the asymptotic form560

V (s → ∞, b, τ) = A1 (τ) s
2, for some function A1 (τ). Assuming that s∗ in (4.8) is chosen sufficiently561

large so that this asymptotic form provides a reasonable approximation to V in Ωs∗ , substituting562

V (s, b, τ) ≃ A1 (τ) s
2 into the equation in (4.5) that holds for (s, b, τ) ∈ N × (0, T ], leads to the563

corresponding equation that holds for Ωs∗ × (0, T ] in (4.13). Similar reasoning applies to the region564

Ωbmax
, except that the initial condition of (4.5) gives V (s, b → ∞, τ = 0) = b, which suggests the565

asymptotic form V (s, |b| > |bmax| , τ) ≃ A2 (τ, s) b to be used in Ωbmax
. Substituting b = bmax and566

b = −bmax allows for the solution in Ω to be used to approximate the solution in Ωbmax
. The details567

of this approach can be found in Dang and Forsyth (2014).568

Introducing the notation x = (s, b, τ), DV (x) = (Vs, Vb, Vτ ) and D2V (x) = Vss, the localized569

problem (4.13) for V can be written as the single equation570

FV := F
(
x, V (x) ,DV (x) ,D2V (x) ,MV (x) ,JℓV (x)

)
= 0, (4.14)571

where the operator F is defined componentwise for each sub-computational domain so that all bound-572

ary conditions are included (see Dang and Forsyth (2014)). For example, if x ∈ Ωin × (0, T ],573

FV = FinV := Fin

(
x, V (x) ,DV (x) ,D2V (x) ,MV (x) ,JℓV (x)

)
, if x ∈ Ωin × (0, T ] (4.15)574

:= min
{
Vτ − LV − JℓV + ρ

(
σ2 + λκ2

)
e2R(b)τs2, V −MV

}
,x ∈ Ωin × (0, T ] .575

We observe that F satisfies the degenerate ellipticity condition (Jakobsen (2010)).576

4.2 Discretization577

To solve the localized problem (4.13) using finite differences, we use of (2.7) as the time grid, given in578

terms of τ as {τn = T − tm+1−n : n = 0, 1, . . . ,m}, with ∆τ = T/m = K1 · h, where K1 > 0 is some579

constant independent of the discretization parameter h. We introduce nodes, which are not necessarily580

equally spaced, in the s-direction {si : i = 1, . . . , imax} and b-direction {bj : j = 1, . . . , jmax}, where581

maxi (si+1 − si) = K2h and maxj (bj+1 − bj) = K3h, with K2 and K3 positive and independent of h.582
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Using the nodes in the b-direction, we define Zh = {bj : j = 1, . . . , jmax} ∩ Z to be the discretization583

of the admissible impulse space. The approximate solution of the value function at reference node584

(si, bj , τn) is denoted by V n
i,j = Vh (si, bj , τn), where we use linear interpolation onto the computational585

grid if the spatial point required does not correspond to any grid point. We use the semi-Lagrangian586

timestepping scheme of Dang and Forsyth (2014) to handle the term R (b) bfb in Lf (s, b, τ).587

Following Forsyth and Labahn (2008); Wang and Forsyth (2008), the operator P is discretized as

Ph, ensuring that a positive coefficient discretization is obtained. The localized operator Jℓ (4.12) is

discretized as (Jℓ)h using the method described in d’Halluin et al. (2005), with quadrature weights

ŵi,j
k at each (i, j)-node satisfying 0 ≤ ŵi,j

k ≤ 1 and
∑

k ŵ
i,j
k ≤ 1. We also define the quantities Ṽ n

i,j , q
n
i,j

and ci,j , calculated at node (si, bj , τn), as

Ṽ n
i,j =

{
W (si, bj) , n = 0,

max
[
Vh

(
si, bje

R(bj)∆τ , τn
)
,maxη∈Zh

{
Vh

(
S+
(
si, bje

R(bj)∆τ , η
)
, η, τn

)}]
, n = 1, ..,m,

(4.16)

588

qni,j = ρ
(
σ2 + λκ2

)
e2R(bj)·τns2i , (4.17)589

ci,j =
ρ
(
σ2 + λκ2

)
e2R(bj)T

(σ2 + 2µ + λκ2 − 2R (bj))
·
[
1− e(σ

2+2µ+λκ2−2R(bj))∆τ
]
s2i . (4.18)590

In Algorithm 4.1, we present the numerical scheme to solve problemMQVtn (ρ), for a fixed ρ > 0, using591

fully implicit timestepping. The fixed point iteration method outlined in d’Halluin et al. (2005) is used592

to solve the discrete equations at each b-grid node and timestep, since it avoids a computationally593

expensive dense matrix solve resulting from jump terms (4.12). The derivation of the discretized594

equation (4.19) in Ωin employs similar arguments as outlined in Dang and Forsyth (2014), while595

equation (4.20) is based on an analytical solution, over one timestep, of the PDE characterizing the596

continuation region in Ωs∗ (see (4.13)). Finally, calculating Ṽ
n
i,j as per (4.16) is done using an exhaustive597

search over Zh for the maximum due to the reasons as outlined in Dang and Forsyth (2014).598

Algorithm 4.1 Numerical scheme to solve problem MQVtn (ρ) for a fixed ρ > 0.

set V 0
i,j = W (si, bj);

for n = 1, . . . ,m do

for j = 1, . . . , jmax do:

Ṽ n
i,j determined from equation (4.16).

Solve the following system of equations for
{
V n+1
i,j : i = 1, . . . , imax

}
.

V n+1
i,j − (∆τ) · PhV

n+1
i,j − (∆τ) · (Jℓ)h V

n+1
i,j + (∆τ) · qn+1

i,j − Ṽ n
i,j = 0, (si, bj) ∈ Ωin, (4.19)

V n+1
i,j − Ṽ n

i,j · e(σ
2+2µ+λκ2)∆τ − ci,j = 0, (si, bj) ∈ Ωs∗, (4.20)

V n+1
i,j − Ṽ n

i,j = 0, (si, bj) ∈ Ωs0 , (4.21)

V n+1
i,j − Vh

(
0,W

(
si, bje

R(bj)∆t
)
, τn+1

)
= 0, (si, bj) ∈ ΩB, (4.22)

V n+1
i,j − |bj | · Vh (si, sgn (bj) bmax, τn+1) /bmax = 0, (si, bj) ∈ Ωbmax

. (4.23)

end for

end for

Remark 4.1. (Solution of auxiliary problems) The optimal control Cq∗
n obtained from Algorithm 4.1599

is used to solve two PIDEs (Oksendal and Sulem (2005)) for the two auxiliary functions U q (s, b, tn)600

and Qq (s, b, tn) required in constructing the MQV frontier (Definition 2.2). This is computationally601

inexpensive since the optimal control is known - see for example Wang and Forsyth (2012).602
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Remark 4.2. (Complexity) Using the same reasoning as in Dang and Forsyth (2014), it can be shown603

that the total complexity of constructing the entire MQV frontier using Algorithm 4.1 is O
(
1/h5

)
,604

which is the same as the complexity of constructing the entire TCMV efficient frontier (Van Staden605

et al. (2018)).606

4.3 Convergence to the viscosity solution607

In general, since the solution of problems involving quasi-integrovariational inequalities such as (4.14)608

cannot be expected to be sufficiently smooth to admit a solution in the classical sense (Oksendal and609

Sulem (2005)), we seek a viscosity solution to (4.14). The convergence of the numerical solution of610

the numerical scheme (4.19)-(4.23) to the viscosity solution of (4.14) is established in the following611

theorem.612

Theorem 4.3. (Convergence) Assume that (4.14) satisfies a strong comparison property (see Dang613

and Forsyth (2014)) in Ωin ∪ Γ, where Γ ⊆ ∂Ωin, with ∂Ωin denoting the boundary of Ωin. The nu-614

merical scheme (4.19)-(4.23) is consistent, monotone and ℓ∞-stable. The numerical solution therefore615

converges to the unique, continuous viscosity solution of (4.14) in Ωin ∪ Γ.616

Proof. If the consistency, monotonicity and ℓ∞-stability of the numerical scheme (4.19)-(4.23) can617

be established, the conclusion follows from the results in Barles and Souganidis (1991). The local618

consistency of the scheme can be established as in Dang and Forsyth (2014), and this result is combined619

with the same steps as in Huang and Forsyth (2012) to conclude that the scheme (4.19)-(4.23) is620

consistent in the viscosity sense with equation (4.14). Proving the monotonicity and ℓ∞-stability621

of the scheme can be done using the same steps as in Forsyth and Labahn (2008), which rely on622

the following properties of the proposed scheme: (i) fully implicit timestepping, together with (ii)623

the positive coefficient condition in the discretization of P, (iii) the conditions on the quadrature624

weights in the discretization of Jℓ, and (iv) the use of linear interpolation if necessary to obtain Vh (·).625

Finally, for a detailed discussion regarding the strong comparison assumption, see Dang and Forsyth626

(2014).627

Remark 4.4. (Discrete rebalancing) Up to this point, this section has only been concerned with re-628

balancing the portfolio at every timestep, providing an approximation of the case of continuous re-629

balancing. Algorithm 4.1 can be modified easily to handle discrete rebalancing. Specifically, multiple630

timesteps are introduced between any two rebalancing times τn and τn+1, where the discretized equa-631

tions (4.19)-(4.23) are still solved, but at these additional timesteps only interest payments on the632

risk-free asset are made. This reduces the complexity of the algorithm (Remark 4.2) to O
(
1/h4 |log h|

)
633

for the construction of the MQV frontier.634

5 Numerical results635

5.1 Empirical data and calibration636

In order to parameterize the underlying asset dynamics, the same calibration data and techniques637

are used as detailed in Dang and Forsyth (2016); Forsyth and Vetzal (2017). We briefly summarize638

the empirical data sources. The risky asset data is based on daily total return data (including div-639

idends and other distributions) for the period 1926-2014 from the CRSP’s VWD index10, which is640

a capitalization-weighted index of all domestic stocks on major US exchanges. The risk-free rate is641

10Calculations were based on data from the Historical Indexes 2015©, Center for Research in Security Prices (CRSP),

The University of Chicago Booth School of Business. Wharton Research Data Services was used in preparing this article.

This service and the data available thereon constitute valuable intellectual property and trade secrets of WRDS and/or

its third party suppliers.

19



based on 3-month US T-bill rates11 over the period 1934-2014, and has been augmented with the642

NBER’s short-term government bond yield data12 for 1926-1933 to incorporate the impact of the 1929643

stock market crash. Prior to calculations, all time series were inflation-adjusted using data from the644

US Bureau of Labor Statistics13.645

In terms of calibration techniques, the calibration of the jump models is based on the thresholding646

technique of Cont and Mancini (2011); Cont and Tankov (2004) using the approach of Dang and647

Forsyth (2016); Forsyth and Vetzal (2017) which, in contrast to maximum likelihood estimation of648

jump model parameters, avoids problems such as ill-posedness and multiple local maxima14. In the649

case of GBM, standard maximum likelihood techniques are used. The calibrated parameters are650

provided in Table 5.1.

Table 5.1: Calibrated risky and risk-free asset process parameters

Models

Parameters GBM Merton Kou

µ (drift) 0.0816 0.0817 0.0874

σ (diffusive volatility) 0.1863 0.1453 0.1452

λ (jump intensity) n/a 0.3483 0.3483

m̃ (log jump multiplier mean) n/a -0.0700 n/a

γ̃ (log jump multiplier stdev) n/a 0.1924 n/a

ν (probability of up-jump) n/a n/a 0.2903

ζ1 (exponential parameter up-jump) n/a n/a 4.7941

ζ2 (exponential parameter down-jump) n/a n/a 5.4349

r (risk-free rate) 0.00623 0.00623 0.00623

651

5.2 Convergence analysis and validation652

The convergence of the Algorithm 4.2 to the viscosity solution of the HJB quasi-integrovariational653

inequality (4.5) has been established in Theorem 4.3. The objective of this subsection is two-fold:654

(i) in the case of continuous rebalancing with no constraints, we confirm that the numerical solution655

converges to the analytical solution, and establish the rate of convergence, and (ii) use Monte Carlo656

simulation to verify the numerical results in cases where no analytical solutions are available.657

5.2.1 Analytical solutions658

Table 5.2 provides the timestep and grid information15 for testing convergence of the numerical solution659

to the analytical solution (3.18)-(3.19). Table 5.3 summarizes the numerical convergence analysis for a660

scalarization parameter ρ = 0.0026, initial wealth w0 = 100, maturity T = 2 years. While the results661

are only shown for the Merton model, qualitatively similar results are obtained in the case of the Kou662

and GBM models. The “Error” column gives the difference between the analytical solution16 obtained663

11Data has been obtained from See http://research.stlouisfed.org/fred2/series/TB3MS.
12Obtained from the National Bureau of Economic Research (NBER) website,

http://www.nber.org/databases/macrohistory/contents/chapter13.html.
13The annual average CPI-U index, which is based on inflation data for urban consumers, were used - see

http://www.bls.gov.cpi .
14If ∆X̂i denotes the ith inflation-adjusted, detrended log return in the historical risky asset index time series, a jump

is identified in period i if
∣∣∣∆X̂i

∣∣∣ > ασ̂
√
∆t, where σ̂ is an estimate of the diffusive volatility, ∆t is the time period over

which the log return has been calculated, and α is a threshold parameter used to identify a jump. For both the Merton

and Kou models, the parameters in Table 5.1 is based on a value of α = 3 , which means that a jump is only identified

in the historical time series if the absolute value of the inflation-adjusted, detrended log return in that period exceeds 3

standard deviations of the “geometric Brownian motion change”, definitely a highly unlikely event.
15Equal timesteps are used, while the grids in the s- and b-direction are not uniform.
16Due to the equivalence between the TCMV and MQV problems in the case of continuous rebalancing and no

investment constraints, the analytical solution of Qstd
x0,t=0
Cq∗ [W (T )], calculated according to (2.27), is also given by
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Table 5.2: Grid and timestep refinement levels for convergence analysis to analytical solution

Refinement level Timesteps s-grid nodes b-grid nodes

0 30 70 140

1 60 140 280

2 120 280 560

3 240 560 1120

4 480 1120 2240

using (3.18)-(3.19) and the numerical solution provided in the “PDE” column, while the “Ratio”664

column shows the ratio of successive errors with each increase in the refinement level. As expected, we665

observe first-order (or slightly faster) convergence of the numerical solution to the analytical solution666

as the mesh is refined.

Table 5.3: Convergence to the analytical solutions (see (3.18)-(3.19))

Ref.

level

Expected value

(Analytical soln.165.08)

Standard deviation

(Analytical soln.110.00)

Qstd
x0,t=0
Cq∗ [W (T )]

(Analytical soln.110.00)

PDE

soln.

Error Ratio PDE

soln.

Error Ratio PDE

soln.

Error Ratio

0 165.47 0.39 - 110.40 0.40 - 114.49 4.49 -

1 165.24 0.16 2.43 110.15 0.15 2.69 111.60 1.60 2.81

2 165.14 0.07 2.46 110.06 0.06 2.52 110.62 0.62 2.58

3 165.10 0.03 2.57 110.03 0.03 2.28 110.25 0.25 2.43

4 165.09 0.01 2.50 110.01 0.01 2.33 110.11 0.11 2.28

667

5.2.2 Monte Carlo validation668

Analytical solutions are not available for the MQV problem in the case where the portfolio is rebalanced669

monthly and liquidated in the event of insolvency, interest is settled daily on the risk-free asset, and670

maximum leverage constraints are applicable. For illustrative purposes, we assume the Kou model671

for the risky asset, initial wealth w0 = 100, maturity T = 2 years, ρ = 0.001, and consider maximum672

leverage values of both qmax = 1.5 and qmax = 1.0. At each timestep of the numerical PDE solution,673

computed using 560 s-grid nodes, 1120 b-grid nodes, and 720 timesteps in total, we output and store the674

computed optimal strategy for each discrete state value. A total of 8 million Monte Carlo simulations675

for the portfolio are carried out from t = 0 to t = T , using the same investment parameters, with676

rebalancing occuring monthly in accordance with the stored PDE-computed optimal strategy for the677

corresponding rebalancing time17. Table 5.4 compares the results from the numerical method (“PDE”678

column) to the results calculated from the Monte Carlo simulation, illustrating that the values of the679

mean and standard deviation of terminal wealth, as well as Qstdx0,t=0
Cq∗ [W (T )], agree.

Table 5.4: Validating the numerical PDE solution using Monte Carlo simulation

Max. leverage
E

x0,t=0
Cq∗ [W (T )] Qstd

x0,t=0
Cq∗ [W (T )] Stdev

x0,t=0
Cq∗ [W (T )]

PDE Simulation PDE Simulation PDE Simulation

qmax = 1.5 129.10 129.08 57.79 57.87 65.21 65.25

qmax = 1.0 119.11 119.11 35.93 35.97 39.16 38.81

680

(3.19). This can be seen by simply re-arranging the resulting (identical) value functions.
17If required, interpolation is used to determine the optimal strategy for a given state value.
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5.3 MQV frontiers and MV efficient frontiers681

In this subsection, we assess the impact of investment constraints and other assumptions on MQV682

frontiers, and compare the results with the corresponding TCMV efficient frontiers. Table 5.5 outlines683

the assumptions underlying five experiments specifically constructed to highlight the impact of different684

investment constraints. The interest rates and transaction costs used in Experiments 4 and 5 align to685

those used in Van Staden et al. (2018), while a leverage constraint of qmax = 1.0, used for Experiments686

3 and 5, implies that leverage is not allowed (see (2.14)).

Table 5.5: Details of experiments

Experiment
Lending/ borrowing

rates
If insolvent

Leverage

constraint

Transaction costs

rℓ rb Fixed (c1) Prop.(c2)

Experiment 1 0.00623 0.00623 Continue trading None 0 0

Experiment 2 0.00623 0.00623 Liquidate qmax = 1.5 0 0

Experiment 3 0.00623 0.00623 Liquidate qmax = 1.0 0 0

Experiment 4 0.00400 0.06100 Liquidate qmax = 1.5 0.001 0.005

Experiment 5 0.00400 0.06100 Liquidate qmax = 1.0 0.001 0.005

687

All frontier results in this subsection assumes a maturity of T = 20 years, initial wealth w0 = 100,688

and the annual rebalancing of the portfolio with approximately daily interest payments (364 per year)689

on the risk-free asset. To ensure the accuracy of the results, each point on a frontier is constructed690

using a very fine grid, namely 7,280 equal timesteps, together with 1,105 b-grid and 561 s-grid nodes,691

respectively.692

In all cases where numerical TCMV results are required for comparison purposes, these results693

have been obtained using the numerical techniques outlined in Van Staden et al. (2018).694

5.3.1 Model choice695

The impact of model choice on the MQV frontier is illustrated in Figure 5.1. Since the assumption of696

daily interest payments used for the construction of frontiers in this section approximates the contin-697

uous compounding of interest with reasonable accuracy, the investment constraints of Experiment 1698

aligns closely with Assumption 3.1.699
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Figure 5.1: MQV frontiers: Effect of model choice (GBM, Merton, Kou models).

The differences in Figure 5.1 (a) can therefore be explained by referencing the slope of the frontiers700
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reported in Theorem 3.6, in conjuction with the model parameters in Table 5.1. We observe that all701

models have similar µ values. Furthermore, the combination of parameters
(
σ2 + λκ2

)
for the Merton702

model and σ2 for the GBM model are closely aligned, in other words, the higher diffusive volatility703

of the GBM model has a similar effect as incorporating jumps using the Merton model, resulting in704

roughly equal MQV frontier slope values calculated using (3.10). Since the jump multiplier has a705

significantly higher variance for the Kou model as compared to the Merton model, when calibrated706

to the same data, the resulting higher κ2 value for the Kou model18 decreases the slope (3.10) of the707

associated MQV frontier. As seen in Figure 5.1 (b), even when investment constraints are present,708

the MQV frontiers of the GBM and Merton models remain effectively indistinguishable, and above709

the frontier based on the Kou model. Qualitatively similar results also hold for the other experiments,710

and are therefore omitted.711

5.3.2 Investment constraints712

Figure 5.2 illustrates the effect of investment constraints on the MQV frontiers for the GBM and Kou713

models (qualitatively similar results are obtained for the Merton model). Regardless of model choice,714

we observe that introducing just two basic constraints, namely liquidation in the event of insolvency715

and a maximum leverage constraint (Experiment 2), has a significant impact on the MQV frontier.716

If we additionally introduce more realistic interest rates and transaction costs (Experiment 4), the717

expected terminal wealth that can be achieved is further reduced, especially for higher levels of risk.718

This follows from the observation that a higher standard deviation of terminal wealth is achieved only719

by increasing the investment in the risky asset, a strategy which is executed by borrowing to invest.720

Since the borrowing costs are substantially higher and transaction costs are not zero in Experiment721

4, the expected value of the terminal wealth is reduced compared to Experiment 2 for any given value722

of the standard deviation.723
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Figure 5.2: MQV frontiers: Relative effect of investment constraints (GBM and Kou model).

Figure 5.3 investigates the role of the maximum leverage ratio on the MQV frontiers. Recall from724

(2.14) that a value of qmax = 1.0 means leverage is not allowed, which is common in the case of725

many pension fund investments. In Figure 5.3 (a) we observe that, for any given standard deviation726

of terminal wealth, a strategy constrained by liquidation in the event of bankruptcy and qmax =727

1.5 (Experiment 2) is expected to significantly outperform a strategy subject to otherwise similar728

constraints except that no leverage is allowed (Experiment 3). However, once more realistic interest729

rates and transaction costs are introduced, Figure 5.3 (b) shows that this difference largely disappears.730

18For the Kou model, κ2 = E
[
(ξ − 1)2

]
≃ 0.084, compared to the Merton model where κ2 = 0.036.
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The reason is that in Experiments 4 and 5, the cost of borrowing to invest is substantially higher than731

in the case of Experiments 2 and 3, thereby significantly increasing the cost of any strategy relying on732

leverage. The results of Experiments 4 and 5 (Figure 5.3 (b)) are therefore much less sensitive to the733

maximum leverage ratio allowed.734
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Figure 5.3: MQV frontiers: Effect of reducing the maximum leverage ratio, qmax (Kou model).

5.3.3 Comparison of frontiers735

In this subsection, we compare MQV frontiers with TCMV and Pre-commitment MV19 efficient fron-736

tiers based on otherwise identical assumptions, parameters and investment constraints. Results are737

illustrated for the Kou model only, since other models yield qualitatively similar results.738

Figure 5.4 (a) shows that the MQV frontier and TCMV efficient frontier is indistinguishable739

in the case of Experiment 1. Based on Theorem 3.6, this is to be expected, since the details of740

Assumption 3.1 are largely the same as the assumptions of Experiment 1 in combination with the use of741

daily interest payments in the semi-Lagrangian timestepping scheme, which approximates continuous742

compounding. The Pre-commitment MV efficient frontier lies above the TCMV efficient frontier,743

since the TCMV problem, while having the same objective function, is subject to the additional744

time-consistency constraint. This remains the case even when investment constraints are introduced745

(Figure 5.4 (b)), although the difference between the efficient frontiers is substantially reduced.746

More importantly, we observe that the MQV strategy is more MV efficient than the associated747

TCMV strategy, in that the MQV frontier is either indistinguishable from, or slightly above, the748

corresponding TCMV efficient frontier. This has also been observed in the case of no jumps and749

continuous rebalancing (Wang and Forsyth (2012)). In the present setting of jumps in the risky750

asset process and discrete rebalancing, we note that this observation remains true regardless of the751

investment constraints introduced, such as if liquidation in the event of insolvency and a maximum752

leverage constraint is introduced (Figure 5.4 (b)), if leverage is not allowed (Figure 5.5 (a)), as well753

as if more realistic interest rates and transaction costs are implemented (Figure 5.5 (b)). The reasons754

for this are explored in more detail in the subsequent sections.755

Remark 5.1. (Effect of parameters on the MQV vs. TCMV outcomes) While it is clear from the756

results in this subsection that the MV investment outcomes for MQV and TCMV are very similar757

regardless of experiment, the choice of investment parameters and constraints can nevertheless have758

some impact on the comparative MV outcomes for these strategies. We highlight the effect of maturity,759

19The numerical Pre-commitment MV efficient frontier results have been obtained using the algorithm of Dang and

Forsyth (2014).
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Figure 5.4: MQV frontiers vs. TCMV and Pre-commitment MV efficient frontiers, Experiments 1 and

2 (Kou model).
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Figure 5.5: MQV frontiers vs. TCMV efficient frontiers, Experiments 3 and 4 (Kou model).

transactions costs and interest rates, as well as the risk-aversion parameter ρ. (i) Maturity: While760

the results are only shown for a maturity of T = 20 years, qualitatively similar results have been761

observed for shorter maturities. However, for maturities of less than T = 10 years, the frontiers for762

MQV and TCMV become effectively entirely indistinguishable regardless of experiment, suggesting763

that the comparatively small differences in optimal controls (see Subsection 5.5) requires a substantial764

investment term to be consequential. (ii) Transaction costs and interest rates: Comparing the frontiers765

from Experiment 2 (Figure 5.4b) and Experiment 4 (Figure 5.5b), we see that nonzero transaction766

costs combined with realistic interest rates has the effect of reducing the difference in MV outcomes of767

the two strategies. (iii) Risk-aversion parameter ρ > 0: In the limit as ρ → ∞, all wealth is invested in768

the risk-free asset regardless of investment strategy, so we would expect increasing similarity between769

the MQV and TCMV investment outcomes as ρ increases. To obtain a reasonable range of ρ-values770

for tracing out efficient frontiers as in this section, a target standard deviation of terminal wealth771

value (target x-axis value for the efficient frontier) can be obtained in the special case of no market772

frictions (Assumption 3.1) by rearranging equations (3.11)-(3.12) for the value of ρ achieving the773

targeted standard deviation. From (3.11)-(3.12), it is also clear that the particular range of ρ values774

under consideration depends not only on the desired standard deviation, but also on for example the775
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maturity T and underlying process dynamics. If Assumption 3.1 is violated, (3.11)-(3.12) nevertheless776

still provides an approximate range of reasonable ρ values for tracing out an efficient frontier.777

5.4 Comparing terminal wealth distributions778

A potential drawback from making conclusions based only on the frontiers presented above (Subsection779

5.3.3), is that such conclusions necessarily only consider the relation between the standard deviation780

and expected value of terminal wealth. From the perspective of an investor, however, the overall781

distribution of terminal wealth might be just as important.782

To compare terminal wealth distributions for the MQV and TCMV strategies, we fix the standard783

deviation of terminal wealth under the respective optimal strategies at a value of 400. This corresponds784

to fixing a value of 400 on the x-axis in Figures 5.4 and 5.5. When solving the MQV and TCMV785

problems corresponding to these points on the frontiers, at each timestep of the algorithm, we output786

and store the computed optimal strategy for each discrete state value. We then carry out 10 million787

Monte Carlo simulations for the portfolio from t = 0 to t = T using investment parameters identical to788

those used in the numerical PDE solution, and rebalance the portfolio in accordance with the stored789

PDE-computed optimal strategy at each rebalancing time. For each simulation, the resulting terminal790

wealth W (T ) value is stored.791

Figure 5.6 shows a comparison of the simulated distribution of terminal wealth W (T ) for Experi-792

ments 3 and 4 under the MQV and TCMV optimal strategies achieving a standard deviation of W (T )793

equal to 400. Note that Experiments 2 and 5 yield qualitatively similar results, so these distributions794

are not shown. In addition, Table 5.6 summarizes selected percentiles from the simulated distributions795

obtained for Experiments 2, 3, 4 and 5, while Table 5.7 provides an analysis of the same data but796

from the perspective of the simulated cumulative distribution function of W (T ) evaluated at selected797

target terminal wealth values. Based on Figure 5.6 and Tables 5.6 and 5.7, we conclude the following.
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Figure 5.6: Simulated distribution of terminal wealth W (T ) under the MQV-optimal and TCMV

optimal strategy, standard deviation equal to 400, Experiments 3 and 4 (Kou model).

798

The MQV and TCMV distributions of terminal wealth are generally very similar, even in the presence799

of investment constraints. However, in all experiments, for the same standard deviation of terminal800

wealth, the 25th percentile, median and 75th percentile of the wealth distribution achieved by the801

MQV strategy exceeds that of the TCMV strategy. Furthermore, in Experiments 4 and 5, where802

more realistic interest rates and transaction costs are applied in addition to leverage constraints and803

liquidation in the case of insolvency, the MQV strategy results in improved downside outcomes (5th804

and 10th percentiles in Table 5.6), while only slightly underperforming the TCMV strategy in terms of805
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Table 5.6: Experiments 2, 3, 4 and 5: Selected percentiles (rounded to nearest integer) from the

simulated distribution of the terminal wealth under the MQV-optimal and TCMV-optimal strategy.

In each case, a standard deviation of terminal wealth equal to 400 is obtained (Kou model).

Percentile
Experiment 2 Experiment 3 Experiment 4 Experiment 5

MQV TCMV MQV TCMV MQV TCMV MQV TCMV

5th 18 36 61 49 65 52 59 44

10th 58 83 97 88 106 100 95 86

25th 224 218 188 177 193 194 186 174

50th 521 480 374 350 372 368 370 340

75th 794 762 685 662 687 675 677 630

90th 1053 1049 986 991 1007 1018 980 972

95th 1226 1248 1183 1207 1216 1247 1178 1200

Table 5.7: Experiments 2, 3, 4 and 5: Selected values from the simulated cumulative distribution

function of the terminal wealth W (T ) under the MQV-optimal and TCMV optimal strategy: The

value displayed is an estimate of P [W (T ) ≤ a], where a is the value in column 1. In each case, a

standard deviation of terminal wealth equal to 400 is obtained (Kou model).

W (T ) value
Experiment 2 Experiment 3 Experiment 4 Experiment 5

MQV TCMV MQV TCMV MQV TCMV MQV TCMV

50 0.09 0.06 0.04 0.05 0.04 0.05 0.04 0.06

100 0.14 0.12 0.11 0.12 0.09 0.10 0.11 0.12

200 0.23 0.23 0.27 0.29 0.26 0.26 0.27 0.29

500 0.48 0.52 0.61 0.64 0.62 0.63 0.62 0.66

800 0.75 0.78 0.82 0.82 0.81 0.82 0.82 0.84

1000 0.88 0.88 0.90 0.90 0.90 0.89 0.91 0.91

1200 0.94 0.94 0.95 0.95 0.95 0.94 0.95 0.95

the extreme upside (95th percentile). In addition, Table 5.7 shows that for the realistic constraints of806

Experiments 4 and 5, the MQV strategy outperforms the TCMV strategy in terms of the cumulative807

terminal wealth distribution not only for the downside wealth outcomes, but also up to at least an808

eight-fold increase in the initial wealth of 100, which corresponds to approximately the 80th percentile.809

While the extreme downside outcomes using the MQV strategy are slightly worse than those associ-810

ated with the TCMV strategy in the case of Experiment 2, it should be kept in mind that Experiment811

2 does not involve the realistic lending/borrowing rates and transaction costs of Experiments 4 and 5.812

5.5 Comparison of optimal strategies813

An investor facing a choice between an MQV and TCMV strategy might reasonably observe that the814

terminal wealth outcomes are very similar, but perhaps slightly in favor of the MQV strategy. However,815

many investors, for example institutional investors such as pension funds, have a keen interest in how816

the risk exposure of an investment strategy evolves over time.817

To compare the optimal investment strategy according to the MQV and TCMV approaches, we818

perform the same Monte Carlo simulation as described in Subsection 5.4 used in the construction of819

Table 5.6. As in that case, we solve the MQV and TCMV problems corresponding to a standard820

deviation of terminal wealth equal to 400, output and store the computed optimal strategy for each821

discrete state value, and rebalance the portfolio according to the stored strategies in a Monte Carlo822

simulation of the portfolio. However, instead of limiting our attention to just the terminal wealth823

obtained from each simulation, we consider the fraction of wealth invested in the risky asset at each824

point in time in each simulation. In this way, a distribution of the fraction of wealth invested in the825

risky asset at each point in time, required by each strategy, can be constructed.826

Figure 5.7 shows the median (50th percentile), as well as the 25th and 75th percentiles, of the827
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distribution of the fraction of wealth invested in the risky asset according to the MQV-optimal strategy828

and the TCMV-optimal strategy. The results are only shown for the Kou model and Experiment 2,829

with qualitatively similar results obtained for other models and experiments, with the exception of830

Experiment 1, where the two strategies are effectively identical20.831
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Figure 5.7: MQV-optimal and TCMV-optimal fraction of wealth invested in the risky asset over time,

Experiment 2 (Kou model). Standard deviation of terminal wealth equal to 400.

Comparing Figure 5.7 (a) and Figure 5.7 (b), we observe that the MQV-optimal strategy calls for a832

significantly higher investment in the risky asset (effectively the maximum investment possible, given833

a leverage constraint of qmax = 1.5 in Experiment 2) during the early stages of the investment period.834

However, as time passes, the MQV strategy calls for a reduction in risky asset exposure, so that the835

MQV-optimal median fraction of wealth invested in the risky asset drops below, and remains below,836

the corresponding median fraction for the TCMV-optimal strategy from just after the middle of the837

investment time horizon until maturity (i.e. after about 10 years). In the case of the 10th percentile,838

this effect is even more dramatic, with the MQV-optimal fraction of wealth invested in the risky asset839

dropping below the TCMV-optimal fraction after only about 5 years.840

Intuitively, the results of Figure 5.7 can be explained as follows. The TCMV investor is only841

concerned with terminal wealth, and acts consistently with mean-variance risk preferences throughout842

the investment time horizon (see for example Cong and Oosterlee (2016)). In contrast, the MQV843

investor is concerned with the expected value of the (future-valued) QV of wealth accumulated over844

the investment time horizon. For smaller wealth values, the presence of a leverage constraint implies845

that the amount invested in the risky asset is necessarily also smaller, which reduces the expected value846

of the QV of wealth (see for example equation (A.3) in Appendix A). For a fixed level of ρ > 0, the847

MQV investor therefore places a relatively larger weight on maximizing the expected value of terminal848

wealth if current wealth levels are low, which results in a larger MQV-optimal fraction of wealth849

required to be invested in the risky asset. However, as time passes and wealth increases, maintaining850

the same fraction of wealth in the risky asset requires ever larger amounts invested in the risky asset,851

a strategy which is costly in terms of QV. The MQV-optimal strategy therefore calls for a fairly rapid852

reduction in exposure to the risky asset over time if past returns are favorable, in contrast with the853

TCMV strategy.854

A more rigorous explanation of the observed differences in optimal strategies follows from a direct855

comparison of the optimal controls used in the Monte Carlo simulation to generate Figure 5.7. To856

this end, Figure 5.8 presents the heatmaps of the MQV and TCMV optimal control (in terms of857

20Based on the results in Section 3, the similarity between strategies in the case of Experiment 1 is to be expected.
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the fraction of wealth invested in the risky asset) as a function of time and wealth. Compared to858

the TCMV strategy, the MQV strategy calls for a faster reduction in risky asset exposure as wealth859

increases, while for a given level of wealth, the MQV optimal fraction of wealth invested in the risky860

asset is fairly stable over time.861

Considering the particular case of an initial wealth of w0 = 100 used for constructing the frontiers in862

Subsection 5.3.3 and Figure 5.7, the MQV optimal strategy calls for the maximum possible investment863

in the risky asset given the leverage constraint, in contrast to the TCMV optimal strategy, which864

requires a much lower investment. If returns are favourable, so that wealth grows sufficiently over865

time, the MQV optimal control calls for significantly larger reduction in the investment in the risky866

asset compared to the TCMV optimal control. Finally, we observe that both of these strategies are867

contrarian in the sense that, all else being equal, the investment in the risky asset is increased if past868

returns have been unfavourable.

(a) MQV-optimal strategy (b) TCMV-optimal strategy

Figure 5.8: Optimal control expressed as a fraction of wealth in the risky asset, Experiment 2 (Kou

model). Standard deviation of terminal wealth equal to 400.

869

6 Conclusions870

In this paper, we investigate the relationship between the TCMV and MQV portfolio optimization871

problems and derive analytical solutions under the assumption of no market frictions for the case of872

jumps in the risky asset process and discrete rebalancing of the portfolio, which leads to the following873

conclusions. Firstly, both problems result in identical trade-offs regarding the mean and variance of874

terminal wealth, so that an MV investor would be indifferent as to which objective is used. Secondly,875

for a fixed level of risk aversion the MQV-optimal strategy would call for a larger investment in the876

risky asset compared to the TCMV-optimal strategy. Thirdly, an alternative QV risk measure can877

be constructed to ensure the exact equivalence between the problems under more general conditions878

than those currently known in literature.879

Furthermore, a numerical scheme together with a convergence proof is presented, enabling the880

solution of the MQV problem in the case where analytical solutions are not known. Under realistic881

investment constraints, the MQV and TCMV optimal terminal wealth distributions and investment882

strategies are compared and contrasted. We conclude that the MQV investor achieves essentially the883

same terminal wealth outcomes as the TCMV investor, but with an improved risk profile, since the884

MQV strategy calls for a reduction in risky asset exposure over time. The MQV approach might885

therefore be especially attractive for investors wishing to obtain TCMV outcomes, but requiring886

more certainty regarding the portfolio value as some target date is approached. MQV optimization887
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is therefore a potentially desirable alternative to TCMV optimization, particularly for long-term,888

institutional investors who may find the resulting risk profile more attractive.889

We leave further analysis of the relationship between TCMV and MQV strategies, including the890

construction of alternative QV risk measures ensuring the equivalence of these problems in even more891

general settings, for our future work.892

Appendix A: Proof of Lemma 3.4 and Lemma 3.5893

In this appendix, we assume that Assumption 3.1 (no market frictions) holds and that we are given a894

fixed set of rebalancing times Tm as in (2.7).895

First, we summarize some results that are useful for the subsequent proofs. Suppose the system896

is in state x = (s, b) at time t−n , where tn ∈ Tm. Since there is no intervention over the time interval897

(tn, tn+1), the underlying dynamics (2.1) and (2.4) imply (see for example Bjork (2009); Oksendal and898

Sulem (2005)) that899
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r∆t, V arx,tnηn

[
B
(
t−n+1

)]
= 0. (A.4)903

We first prove Lemma 3.4 using backward induction on k ∈ {1, ...,m + 1}, with tk = (k − 1)∆t.904

Since tm+1 = T corresponds to the terminal time, the claims of Lemma 3.4 regarding the expressions905

for the value function V c and auxiliary function U c are trivially true for k = m+1. Assume now that906

Lemma 3.4 holds for k = n+ 1 (at rebalancing time tn+1 ∈ Tm), we now establish the validity of the907

claims of the lemma for k = n, in other words for rebalancing time tn ∈ Tm. We assume that the system908

is in the arbitrary state x = (s, b) at time t−n , and define Xn+1 :=
(
S
(
t−n+1

)
, B
(
t−n+1

))
. Recalling the909

formulation of problem TCMVtn (ρ) as (2.19), the investor’s objective function Jc (ηn; s, b, tn) is given910

by (2.20) as911

Jc (ηn; s, b, tn) = Ex,tn
ηn [V c (Xn+1, tn+1)]− ρ · V arx,tnηn [U c (Xn+1, tn+1)] . (A.5)912

Since the results of Lemma 3.4 are assumed to hold for k = n + 1 (rebalancing time tn+1), we are913

given that914

U c (Xn+1, tn+1) =
(
S
(
t−n+1

)
+B

(
t−n+1

))
er(T−tn+1) + (T − tn+1)

(
1

2ρ
Kc

)
1

∆t

(
eµ∆t − er∆t

)
,(A.6)915

V c (Xn+1, tn+1) = U c (Xn+1, tn+1)− ρ (T − tn+1)

(
1

2ρ
Kc

)2

· 1

∆t

(
e(2µ+σ2+λκ2)∆t − e2µ∆t

)
.(A.7)916

Substituting (A.6) and (A.7) into (A.5), we use the results (A.1), (A.2) and (A.4) and simplify the917

resulting expression for Jc (ηn; s, b, tn) to obtain the following quadratic function of ηn,918

Jc (ηn; s, b, tn) = (s+ b) er(T−tn)e(µ−r)∆t − ρ
[
(s+ b)2 + η2n

] (eµ∆t − er∆t
)
e2r(T−tn)

e2r∆tKc
919

+
(
eµ∆t − er∆t

)
[(

T − tn
∆t

− 1

)(
1

4ρ
Kc

)
+ ηn

(
2ρ (s+ b) er(T−tn)

e2r∆tKc
− 1

er∆t

)
er(T−tn)

]
. (A.8)920

Under Assumption 3.1 (no market frictions), maximizing (A.8) over ηn ∈ R gives the optimal value921

ηc∗n from the first order condition as reported in Lemma 3.4 (see (3.4)). It now remains to verify the922

30



expressions for the auxiliary function U c and value function V c at time tn reported in Lemma 3.4.923

Observing that924

U c (s, b, tn) = Ex,tn
ηc∗n

[U c (Xn+1, tn+1)] , (A.9)925

V c (s, b, tn) = Jc (ηc∗n ; s, b, tn) , (A.10)926

we can substitute ηc∗n (see (3.4)) into (A.1) and (A.4), and use the results together with (A.6) to927

obtain U c (s, b, tn) by means of (A.9), and simply subsitute ηc∗n into (A.8) to obtain V c (s, b, tn). After928

simplification, we obtain the expressions for the auxiliary function U c and value function V c at time929

tn reported in Lemma 3.4, which proves the claims of the lemma for k = n. As a result, Lemma 3.4930

holds by backward induction.931

Lemma 3.5 can be proven similarly using backward induction. The main difference is that instead932

of (A.5), the investor’s objective function at time tn satisfies the recursive relationship (see (2.28))933

Jq (ηn; s, b, tn) = Ex,tn
ηn

[
V q
(
S
(
t−n+1

)
, B
(
t−n+1

)
, tn+1

)]
934

−ρ · Ex,tn
ηn

[∫ t−n+1

tn

e2R(B(t))·(T−t) · d 〈W 〉t

]
, (A.11)935

so that (A.3) together with the expression for V q
(
S
(
t−n+1

)
, B
(
t−n+1

)
, tn+1

)
given in Lemma 3.5 (which936

is assumed to hold for k = n+1 for the backward induction argument) simplifies the objective to the937

following quadratic function of ηn,938

Jq (ηn; s, b, tn) = (s+ b) er(T−tn)e(µ−r)∆t − ρ
[
(s+ b)2 + η2n

] (eµ∆t − er∆t
)
e2r(T−tn)

Kq
939

+
(
eµ∆t − er∆t

)
[(

T − tn
∆t

− 1

)(
1

4ρ

Kq

e2r∆t

)
+ ηn

(
2ρ (s+ b) er(T−tn)

Kq
− 1

er∆t

)
er(T−tn)

]
.(A.12)940

From the first order condition, the optimal value ηq∗n maximizing (A.12) under Assumption 3.1 (no941

market frictions) is given by (3.9) as per Lemma 3.5. Using ηq∗n together with similar arguments as in942

(A.9)-(A.10), we obtain the auxiliary functions U q and Qq, as well as the value function V q at time943

tn, giving the expressions reported in Lemma 3.5. We therefore conclude that Lemma 3.5 holds by944

backward induction.945

Appendix B: Relationship to continuous rebalancing in literature946

In this appendix, we provide a brief summary of how portfolio rebalancing is typically modelled in947

literature using continuous-time feedback controls, subsequently referred to simply as “continuous948

controls”. We discuss how these continuous controls are, in the relevant practical applications, by949

necessity also the limiting case (as ∆t ↓ 0) of piecewise constant control approximations. We also950

illustrate the connection between the piecewise constant control approximations of continuous con-951

trols and our discrete impulse control formulation, which motivates our use of the term “continuous952

rebalancing” to describe the the case where ∆t ↓ 0 in this paper, a scenario which might also be953

described as “continuously-observed impulse control.”954

B.1 Rebalancing using a continuous control955

We briefly describe the modelling of portfolio rebalancing using continuous controls encountered in956

the literature. We omit most of the technical details, referring the reader instead to, for example,957

Basak and Chabakauri (2010); Bensoussan et al. (2014); Bjork et al. (2014); Zeng et al. (2013), among958

many others.959
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We again consider a portfolio consisting of two assets, a risk-free asset paying a continuously960

compounded risk-free rate r, and a risky asset. We assume that one unit of the risky asset has961

dynamics given by962

dSu (t) = (µ− λκ)Su
(
t−
)
dt+ σSu

(
t−
)
· dZ + Su

(
t−
)
· d




π(t)∑

i=1

(ξi − 1)


 , (B.13)963

where the interpretation of all terms are as in (2.4). Let u (t) = u (Su (t) , t) be the continuous-time964

feedback control (see for example Bjork et al. (2017)), denoting the amount invested in the risky asset965

at time t, with U denoting the set of admissible controls. Then using control u, the controlled wealth966

process of a self-financing portfolio has dynamics given by (see for example Bjork (2009))967

dW u (t) = [rW u (t) + (µ− λκ− r)u (t)] dt+ σu (t) dZ + u (t) d




π(t)∑

i=1

(ξi − 1)


 , (B.14)968

with W u (0) = w0 > 0 being the initial wealth.969

Using wealth dynamics (B.14), we can define a portfolio optimization problem to be solved over970

all admissible continuous-time controls u ∈ U . For example, in the case of the TCMV objective, we971

follow Wang and Forsyth (2011) in defining TCMV u
t (ρ) as972

(TCMV u
t (ρ)) : V u (w, t) := sup

u∈U

(
Ew,t

u [W u (T )]− ρ · V arw,t
u [W u (T )]

)
, ρ > 0, (B.15)973

s.t. u∗ (t; y, v) = u∗
(
t′; y, v

)
, for v ≥ t′, t′ ∈ [t, T ] , (B.16)974

where u∗ (t; y, v) denotes the optimal control for problem TCMV u
t (ρ) calculated at time t and to be975

applied at some future time v ≥ t′ ≥ t given future state W u (v) = y, while u∗ (t′; y, v) denotes the976

optimal control calculated at some future time t′ ∈ [t, T ] for problem TCMV u
t′ (ρ), also to be applied977

at the same later time v ≥ t′ given the same future state W u (v) = y. To lighten notation, we will978

simply use the notation u∗ (t) to denote the optimal control for problem (B.15)-(B.16).979

In the case of no market frictions (Assumption 3.1), and if trading continues in the event of980

insolvency, the solution to problem TCMV u
t (ρ) is given by Basak and Chabakauri (2010); Zeng et al.981

(2013), and corresponds to the limiting result reported in Theorem 3.9.982

B.2 Piecewise-constant control approximation983

From a practical perspective, there are two significant challenges with the continuous-control formula-984

tion (B.14)-(B.16). Firstly, the introduction of realistic investment constraints requires the numerical985

solution, and therefore discretization, of the problem, including the control u. Secondly, since trad-986

ing does not occur continuously in practice even if we ignore any market frictions, a continuous-time987

investment strategy, even if it can be obtained analytically, presents a practical implementation chal-988

lenge.989

A natural solution to these challenges is to use a piecewise-constant approximation to the con-990

tinuous control u (see Krylov (1999), where convergence is also discussed), of which we give two991

examples.992

Making use of a finite partition Tm (see (2.7)) of [0, T ], with ∆t = tn+1 − tn, n = 1, ...,m, we can

for example approximate control u by

u (t) ≃ up (t) :=

m∑

n=1

upn · I[tn,tn+1) (t) , t ∈ [0, T ] , (B.17)
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where upn, n = 1, ...,m are constants. This results in an approximation to the controlled wealth process993

(B.14) on sub-interval [tn, tn+1) of994

dW pu (t) = [rW pu (t) + (µ− λκ− r) upn] dt+ σupn · dZ + upn · d




π(t)∑

i=1

(ξi − 1)


 , (B.18)995

with W pu (tn) = w. Portfolio optimization problems can then be formulated and numerically solved996

using the approximations (B.17)-(B.18). For MV optimization problems, see Wang and Forsyth (2010,997

2011), and for the MQV problem, see Wang and Forsyth (2012) for the case where there are no jumps998

in the risky asset process.999

We can solve problem TCMV u
t (ρ) in (B.15)-(B.16) using the approximation (B.17)-(B.18) analyt-1000

ically in the case of no market frictions (Assumption 3.1), and contrast the resulting solution reported1001

in Lemma B.1 with the solution reported in Lemma 3.4 using the impulse control formulation.1002

Lemma B.1. (Analytical solution: TCMV problem with piecewise constant approximation (B.17) to1003

the continuous control) Suppose we are given wealth w at time t−n , where tn ∈ Tm, n ∈ {1, ...,m},1004

and that Assumption 3.1 is applicable. The piecewise constant approximation (B.17) using wealth1005

dynamics (B.18) to the optimal control of problem TCMV u
tn (ρ) in (B.15)-(B.16) is given by1006

u∗ (t) ≃ up∗ (t) :=

m∑

n=1

up∗n · I[tn,tn+1) (t) , t ∈ [0, T ] , (B.19)1007

where up∗n =

(
1

2ρ
Kp

)
e−r(T−tn)er∆t, and Kp =

(µ− r)

(σ2 + λκ2)

2

(er∆t + 1)
. (B.20)1008

The optimal amount invested in the risk-free asset at time tn is therefore1009

ηp∗n = w −
(

1

2ρ
Kp

)
e−r(T−tn)er∆t. (B.21)1010

Proof. Similar to the strategy used to prove Lemma 3.4, and therefore omitted.1011

Observe that while Lemma B.1 gives an approximate solution to problem TCMV u
tn (ρ), it also1012

corresponds to the exact solution for finite ∆t > 0 of the problem where (i) the investor chooses1013

the amount un in the risky asset at time tn, and (ii) continuously rebalances to the amount un over1014

the interval [tn, tn+1). As a result, this approximation represents another implementation challenge1015

due to the implied continuous rebalancing requirement. Finally, observe that since lim∆t↓0 K
p =1016

lim∆t↓0 K
c = (µ− r) /

(
σ2 + λκ2

)
, the results from Lemma B.1 correspond with the results using the1017

impulse control formulation reported in Lemma 3.4 in the limit as ∆t ↓ 0 (see Theorem 3.9).1018

Alternatively, we can write the continuous control as u (t) = q (t)Su (t), where q (t) is the number

of units invested in the risky asset at time t. Instead of fixing the amount invested in the risky asset

u (t) = un over [tn, tn+1) as in (B.17), we can fix the number of units q (t) = qn of the risky asset

invested at time tn over [tn, tn+1). In other words, we have another piecewise constant approximation

to control u, given by

u (t) = q (t)Su (t) ≃
(

m∑

n=1

qn · I[tn,tn+1) (t)

)
Su (t) , t ∈ [0, T ] , (B.22)

so that the controlled wealth process (B.14) on sub-interval [tn, tn+1) is approximated by1019

dW qu (t) = [rW qu (t) + (µ− λκ− r) qnS
u (t)] dt+ σqnS

u (t) dZ + qnS
u
(
t−
)
d




π(t)∑

i=1

(ξi − 1)


(B.23)1020

with W qu (tn) = w and Su (tn) = sn. Solving problem TCMV u
t (ρ) in (B.15)-(B.16) using the approx-1021

imation (B.22)-(B.23) analytically in the case of no market frictions (Assumption 3.1), we have the1022

following result.1023
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Lemma B.2. (Analytical solution: TCMV problem with piecewise constant approximation (B.22) to1024

the continuous control) Suppose we are given wealth w and unit risky asset value sn at time t−n , where1025

tn ∈ Tm, n ∈ {1, ...,m}, and that Assumption 3.1 is applicable. The piecewise constant approximation1026

(B.22) using wealth dynamics (B.23) to the optimal control of problem TCMV u
tn (ρ) in (B.15)-(B.16)1027

is given by1028

u∗ (t) ≃ uq∗ (t) :=

(
m∑

n=1

q∗n · I[tn,tn+1) (t)

)
Su (t) , t ∈ [0, T ] , (B.24)1029

where q∗n =
1

sn
·
(

1

2ρ
Kc

)
e−r(T−tn)er∆t, (B.25)1030

with Kc as in (3.2). The optimal amount invested in the risk-free asset at time tn is therefore equal to1031

the result for ηc∗n obtained in Lemma 3.4 using the discrete impulse control formulation, and is given1032

by1033

ηc∗n = w − snq
∗
n = w −

(
1

2ρ
Kc

)
e−r(T−tn)er∆t. (B.26)1034

In addition, the value function of problem TCMV u
tn (ρ) in (B.15)-(B.16) subject to the piecewise1035

constant control approximation (B.22) corresponds to the value function of the TCMV problem using1036

the discrete impulse control formulation given by (3.1) in Lemma 3.4.1037

Proof. The amount invested in the risk-free asset ηn at time tn is ηn = w − qnsn, so choosing qn =1038

(w − ηn) /sn is equivalent to choosing ηn. Since qn remains fixed over [tn, tn+1), the dynamics (B.13)1039

of Su implies that the amount invested in the risky asset at the end of the time interval has mean and1040

variance, respectively, given by1041

Ew,tn
ηn

[
qnS

u
(
t−n+1

)]
=

(w − ηn)

sn
Ew,tn

ηn

[
Su
(
t−n+1

)]
= (w − ηn) e

µ∆t, (B.27)1042

V arw,tn
ηn

[
qnS

u
(
t−n+1

)]
=

(w − ηn)
2

s2n
V arw,tn

ηn

[
Su
(
t−n+1

)]
= (w − ηn)

2
(
e(2µ+σ2+λκ2)∆t − e2µ∆t

)
,(B.28)1043

which we observe to be identical to the results using our discrete impulse control formulation21 - see1044

Appendix A, equations (A.1) and (A.2). The rest of the proof follows the same strategy used to prove1045

Lemma 3.4 in Appendix A.1046

Lemma B.2, together with a similar set of results for the MQV problem, implies that all the1047

analytical results of Section 3 would hold if we formulated the portfolio optimization problems using1048

continuous controls in the wealth process (B.14), but modelled discrete rebalancing using the piecewise1049

constant approximation (B.22) to the continuous control. Of course, this also implies that as ∆t ↓ 0,1050

the known analytical solutions will be recovered (as per Theorem 3.9) using the approximation (B.22).1051

Taken together, these considerations motivate our use of the terminology “continuous rebalancing”1052

to apply to the limiting case as ∆t ↓ 0 in our discrete impulse control formulation.1053
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