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Abstract5

In single-period portfolio optimization settings, Mean-Variance (MV) optimization can result6

in notoriously unstable asset allocations due to small changes in the underlying asset parameters.7

This has resulted in the widespread questioning of whether and how MV optimization should be8

implemented in practice, and has also resulted in a number of alternatives being proposed to the9

MV objective for asset allocation purposes. In contrast, in dynamic or multi-period MV portfo-10

lio optimization settings, preliminary numerical results show that MV investment outcomes can11

be remarkably robust to model misspecification errors, which arise when the investor derives an12

optimal investment strategy based on some chosen model for the underlying asset dynamics (the13

investor model), but implements this strategy in a market driven by potentially completely dif-14

ferent dynamics (the true model). In this paper, we systematically investigate the causes of this15

surprising robustness of dynamic MV portfolio optimization to model misspecification errors under16

both the pre-commitment MV (PCMV) and time-consistent MV (TCMV) approaches. We identify17

particular combinations of parameters that play a key role in explaining the observed model mis-18

specification errors. We investigate the impact of the chosen dynamic MV approach, underlying19

model formulation, portfolio rebalancing frequency and the application of multiple realistic invest-20

ment constraints on the robustness of investment outcomes, as well as the implications for model21

calibration.22
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1 Introduction25

Mean-variance (MV) portfolio optimization, originating with Markowitz (1952), has become the foun-26

dation of modern portfolio theory (Elton et al. (2014)). MV investment strategies are appealing due27

to their intuitive nature, since they clearly illustrate the trade-off between reward (expected return)28

and risk (variance of returns).29

In single-period settings, MV optimization can provide notoriously unstable asset allocations aris-30

ing from small changes in the underlying asset parameters (Michaud and Michaud (2008)). This issue31

has become especially pressing in recent machine learning applications (see for example Sato (2019)),32

where the use of “robo-advisors” for automatic portfolio allocation may in fact require significant33

human intervention to compensate for this sensitivity of MV portfolio allocations (Bourgeron et al.34

(2018); Perrin and Roncalli (2019)).35

In order to increase the robustness of single-period MV asset allocations to changes in the under-36

lying parameters, two fundamental approaches can be distinguished in the literature: (i) adjusting37
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the MV objective by incorporating for example a penalty function that regularizes the asset alloca-38

tion weights (see Bailey and Lopez de Prado (2012); Bourgeron et al. (2018); Brodie et al. (2009);39

Bruder et al. (2013); Carrasco and Noumon (2010); De Jong (2018); DeMiguel et al. (2009); Lopez40

de Prado (2016); Perrin and Roncalli (2019), among many others), or (ii) abandoning the MV ob-41

jective altogether in favor of other objective functions. This includes the adoption of variants of the42

so-called “smart beta” portfolios, such as equal risk contribution or “risk parity” portfolios (Bruder43

et al. (2016); Lee (2011); Maillard et al. (2010); Qian (2005)), risk budgeting portfolios (Richard and44

Roncalli (2015); Roncalli (2013, 2015); Scherer (2007)) or “most diversified” portfolios (Choueifaty45

and Coignard (2008)), among other approaches.46

In contrast, in the case of multi-period or dynamic MV optimization (Zhou and Li (2000)), the47

issue of robustness (or lack thereof) of MV investment outcomes to the underlying stochastic process48

parameters has to our knowledge not been systematically studied (an overview of the available liter-49

ature is provided below). However, preliminary numerical results appear to suggest that in the case50

of dynamic MV optimization, the investment outcomes appear to be surprisingly stable in spite of51

changes in the underlying process specification and parameters (Dang and Forsyth (2016); Forsyth and52

Vetzal (2017a)). If true, this has potentially far-reaching consequences for practical asset allocation53

problems. For example, machine learning applications based on dynamic MV optimization (Li and54

Forsyth (2019); Wang and Zhou (2019)) might be able to achieve stable asset allocations in practical55

applications without requiring the adjustments described above that are often necessary in the context56

of single-period MV optimization problems.57

Before discussing the robustness of dynamic MV results in more precise terms, we give a brief58

overview of the necessary background information regarding dynamic MV portfolio optimization. We59

start by observing that in dynamic settings, since the variance component of the MV objective is60

not separable in the sense of dynamic programming, two main approaches to perform dynamic MV61

optimization can be identified. The first approach, referred to as pre-commitment MV (PCMV)62

optimization, usually results in time-inconsistent optimal strategies (Basak and Chabakauri (2010)).63

However, since the PCMV problem is solved using the embedding approach of Li and Ng (2000); Zhou64

and Li (2000), the resulting optimal controls are time-consistent from the perspective of the quadratic65

objective function with a fixed target used in the corresponding embedding problem (see Vigna (2014,66

2016)). This induced time-consistent objective function (see Strub et al. (2019)) is therefore feasible67

to implement as a trading strategy.68

The second approach, referred to as time-consistent MV (TCMV) optimization, is based on a game-69

theoretic approach (Bjork and Murgoci (2014)). By optimizing only over a subset of controls which are70

time-consistent from the perspective of the original MV problem, or equivalently, by imposing a time-71

consistency constraint, the resulting TCMV-optimal strategies are guaranteed to be time-consistent72

(Basak and Chabakauri (2010); Bjork and Murgoci (2014); Wang and Forsyth (2011)).73

Regardless of approach, dynamic MV optimization in a parametric setting requires the dynamics74

of the underlying assets in the market to be specified by the investor. The MV problem is then solved75

under the implicit assumption that the specified dynamics provide an accurate description of reality.76

However, given the sensitivity of single-period MV optimization results to the underlying parameters77

described above, together with the fact that inaccurate parameters can lead to substantial investment78

losses (Best and Grauer (1991); Britten-Jones (1999)), the sensitivity of dynamic MV optimization79

results to the underlying process assumptions poses a potential problem.80

To address this potential problem, a number of approaches has been proposed in the literature.81

Perhaps the most common approach consists of implicitly acknowledging the possibility of using in-82

correct model parameters, and then performing a parameter sensitivity analysis of the optimization83

results (Li et al. (2015a, 2012); Lin and Qian (2016); Sun et al. (2016); Zhang and Chen (2016)).84

Another approach is to consider the MV optimization problem under partial information, where the85

specified dynamics for the risky asset might incorporate, for example, a random drift component86

which is not observable in the market, with only the asset prices being observable (Li et al. (2015b);87

Liang and Song (2015); Zhang et al. (2016)). A third approach consists of explicitly incorporating88

concerns regarding model parameters in some way in the objective of the portfolio optimization prob-89
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lem, thereby constructing a “robust” variation of the original problem - see, for example, Cong and90

Oosterlee (2017); Garlappi et al. (2007); Gulpinar and Rustem (2007); Kim et al. (2014); Kuhn et al.91

(2009); Tütüncü and Koenig (2004). However, it appears that all of the above-mentioned approaches92

consider a scenario which could perhaps best be described as parameter misspecification, where the93

concerns are associated with the model parameters of a fixed assumed underlying model type.94

A more general, and perhaps more realistic, situation than parameter misspecification is model95

misspecification. Specifically, model misspecification describes the scenario where an optimal invest-96

ment strategy (i) is obtained by solving the MV optimization problem based on some chosen model97

for the underlying asset dynamics, hereinafter referred to as the “investor model”, but (ii) is then im-98

plemented in a market driven by potentially completely different dynamics, unknown to the investor,99

hereinafter referred to as the “true model”. The MV outcome in the model misspecification scenario is100

potentially different from the MV outcome associated with the investor model-implied optimal strat-101

egy obtained in (i). We define the difference between these two quantities as a model misspecification102

error.103

In the context of PCMV optimization, Dang and Forsyth (2016); Forsyth and Vetzal (2017a)104

numerically assess the impact of model misspecification. As observed above, preliminary findings105

show that, in the particular case of PCMV optimization with discrete rebalancing, the MV outcomes106

of terminal wealth can be surprisingly robust to such model misspecification errors. By robustness to107

model misspecification errors, we mean that these errors are surprisingly small even in cases where108

there are fundamental differences between the investor and true models.109

Motivated by the above interesting preliminary findings, the main objective of this paper is a110

systematic investigation of the robustness of dynamic MV portfolio optimization to model misspecifi-111

cation. Our main contributions are as follows.112

� We rigorously define and analyze the model misspecification problem in the context of PCMV113

and TCMV optimization, where the risky asset dynamics are allowed to follow pure-diffusion114

dynamics (e.g. GBM) or any of the standard finite-activity jump-diffusion models commonly115

encountered in financial settings.116

� Under certain assumptions, we derive analytical solutions which enable us to quantify the impact117

of the MV approach (PCMV or TCMV) and rebalancing frequency (continuous or discrete118

rebalancing) on the resulting model misspecification error in MV outcomes. This allows us119

to provide a rigorous and intuitive explanation of the robustness of dynamic MV optimization120

results.121

� Numerical tests are performed to (i) assess the practical implications of the analytical solutions122

using realistic investment data, and (ii) to compare the conclusions with numerical results for123

the case where multiple investment constraints (liquidation in the event of bankruptcy, leverage124

constraint) are applied simultaneously. To draw realistic conclusions from the numerical experi-125

ments, we consider multiple models and different calibration choices, with calibration data being126

inflation-adjusted, long-term US market data (89 years). We also discuss the implications of our127

results for model calibration choices.128

� As an additional check on robustness, we also carry out tests using bootstrap resampling of129

historical data.130

The remainder of the paper is organized as follows. Section 2 describes the underlying dynamics,131

the rebalancing of the portfolio, as well as the PCMV and TCMV optimization approaches. The132

robustness of MV optimization to model misspecification is rigorously defined in Section 3, where133

new analytical results are derived and discussed. Numerical results are presented in Section 4, while134

Section 5concludes the paper and outlines possible future work.135
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2 Formulation136

Let T > 0 denote the fixed investment time horizon or maturity. We consider portfolios consisting of137

a well-diversified stock index (the risky asset) and a risk-free asset, which allows us to focus on the138

primary investment question of the risky vs. risk-free mix of the portfolio under the different model139

specifications, instead of secondary questions such as risky asset basket compositions1. Furthermore,140

since in practical applications investors are mostly concerned with inflation-adjusted outcomes (see,141

for example, Forsyth and Vetzal (2017b)), we introduce the following assumption.142

Assumption 2.1. (Inflation-adjusted parameters) Both the risky and risk-free asset dynamics are143

assumed to model inflation-adjusted (i.e. real) asset returns, so that all parameter values (including144

the risk-free interest rate) are assumed to reflect the appropriate real values.145

As a result, we make the following assumption throughout this paper.146

Assumption 2.2. (Correct real risk-free rate) We assume that the investor correctly specifies the147

underlying real dynamics of the risk-free asset. In particular, we assume that the constant, continuously148

compounded real risk-free rate, denoted by r, used by the investor is equal to the true real risk-free rate,149

which is also assumed to be constant and continuously compounded.150

We argue that Assumption 2.2 is reasonable given (i) the long time horizon under consideration151

(for example T = 20 years), together with (ii) the mean-reverting nature of interest rates, and (iii) As-152

sumption 2.1, which typically results in an inflation-adjusted (real) risk-free rate of approximately153

zero2, as expected. Nonetheless, in Appendix A, we include numerical tests of our conclusions using154

resampled historical interest rates to validate our results.155

In contrast, we consider the realistic scenario where the investor might make an incorrect assump-156

tion regarding the underlying dynamics of the risky asset, which is formalized in Definition 2.1.157

Definition 2.1. (“investor model” and “true model”) An investor model is a model specified by the158

investor for the (inflation-adjusted) risky asset dynamics of the MV portfolio optimization problem159

which is to be solved to obtain the optimal control. The true model is the model that the (inflation-160

adjusted) risky asset dynamics follow in reality, which may or may not correspond to the investor161

model.162

Our distinction between the investor model and true model in Definition 2.1 leads to the following163

definition.164

Definition 2.2. (Model misspecification) Model misspecification is defined as the scenario where the165

investor model does not correspond to the true model, either in terms of the model parameters or in166

terms of the fundamental model types (e.g. pure diffusion vs. jump-diffusion).167

The following definition distinguishes between two different categories of model misspecification.168

Definition 2.3. (Category I and Category II model misspecification) A Category I model misspec-169

ification is defined as the scenario where the investor makes an incorrect assumption regarding the170

fundamental type of model (e.g. GBM vs the Merton jump-diffusion). A Category II model misspec-171

ification, or parameter misspecification, is defined as the scenario where the investor model and the172

true model refer to the same fundamental type of model, but the investor model’s parameters differ173

from the true model’s parameters.174

1The available analytical solutions for multi-asset PCMV and TCMV problems (see, for example, Li and Ng (2000)
and Zeng and Li (2011)) show that the overall composition of the risky asset basket remains relatively stable over
time, indicating that the overall risky asset basket vs. risk-free asset composition of the portfolio is indeed the primary
investment question.

2See Section 4 for a concrete example using US T-bill rates, where the risk-free rate of r = 0.00623 is obtained.
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It is implicitly assumed in Definition 2.2 and Definition 2.3 that the investor does not update175

the investor model (either the model type or the calibrated parameters) over [0, T ]. Not only is this176

assumption justified given our aim of quantifying the impact of model misspecification, but it can also177

be argued that it is a reasonable assumption if the model and parameter choice is based on a very long178

historical time series of data together with a significantly shorter (though still comparatively large)179

maturity T - see, for example, Section 4.180

We also distinguish between discrete and continuous (portfolio) rebalancing. Discrete rebalancing181

refers to the case where the investor adjusts the wealth allocation between the risky and risk-free assets182

(portfolio rebalancing) only at fixed, pre-specified, discrete time intervals separated by a time interval183

of length ∆t > 0. In contrast, in the case of continuous rebalancing the relative portfolio wealth184

allocations are adjusted continuously. In the limit as ∆t ↓ 0, discrete rebalancing and continuous185

rebalancing results should agree, as we will show subsequently.186

For simplicity and clarity, we introduce the following notational conventions. Quantities applicable187

to discrete rebalancing are identified by the subscript ∆t to distinguish them from their continuous188

rebalancing counterparts. Additionally, a subscript j ∈ {iv, tr} is used to distinguish the investor189

model, denoted by the case of j = iv, from the true model where j = tr.190

We will occasionally use the term “investor model-implied” to identify quantities associated with191

the investor model. For example, an “investor model implied optimal control” is an optimal control192

obtained by solving an MV optimization problem under the investor model j = iv.193

In analyzing the model misspecification error, the subscript (iv→ tr) is reserved for quantities194

related to the case where the investor model-implied optimal control (i.e. using j = iv) is implemented195

in a market evolving according to the true model (i.e. j = tr).196

Finally, a superscript “p” is used to identify quantities related to PCMV optimization, while197

quantities related to TCMV optimization will be denoted using a superscript “c”.198

We now describe the model and portfolio rebalancing assumptions in more detail, starting with199

the case of discrete rebalancing.200

2.1 Discrete rebalancing201

Let Sj (t) and B (t) denote the amounts invested in the risky and risk-free asset3, respectively, at202

time t ∈ [0, T ], where j ∈ {iv, tr}. Let Xj (t) = (Sj (t) , B (t)) , t ∈ [0, T ] denote the multi-dimensional203

controlled underlying process, and x = (s, b) the state of the system. The controlled portfolio wealth204

Wj,∆t (t) in the case of discrete rebalancing is simply given by205

Wj,∆t (t) = W (Sj (t) , B (t)) = Sj (t) +B (t) , t ∈ [0, T ] , j ∈ {iv, tr} . (2.1)206

We define Tm as the set of m discrete, predetermined, equally spaced rebalancing times in [0, T ],207

Tm = { tn| tn = (n− 1) ∆t, n = 1, . . . ,m} , ∆t = T/m. (2.2)208

For any functional f , let f (t−) := limε→0+ f (t− ε) and f (t+) := limε→0+ f (t+ ε). Informally, t−209

(resp. t+) denotes the instant of time immediately before (resp. after) the forward time t ∈ [0, T ].210

Fix two consecutive rebalancing times tn, tn+1 ∈ Tm. Since there is no rebalancing by the investor211

according to some control strategy over
[
t+n , t

−
n+1

]
, the dynamics of the amount B (t) in the absence212

of control is assumed to be given by213

dB (t) = rB (t) dt, t ∈
[
t+n , t

−
n+1

]
, (2.3)214

with r > 0 denoting the real risk-free rate. Observe that we do not make use of a stochastic interest rate215

model, partly due to the inflation-adjusted risk-free rates being approximately zero (see Assumptions216

2.1 and 2.2). However, we include a bootstrap resampling test using historical real interest rates to217

3As observed in Dang et al. (2017), in the case of the discrete rebalancing of the portfolio, it is simpler to model the
dollar amounts invested in the risky and risk-free asset directly.
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validate our results (see Appendix A), confirming that explicitly modelling stochastic interest rates218

are not particularly important in this setting.219

For the purposes of modelling the amount invested in the risky asset, it is reasonable to consider220

incorporating (i) jumps and (ii) stochastic volatility in the process dynamics. However, the results221

from Ma and Forsyth (2016) show that the effects of stochastic volatility, with realistic mean-reverting222

dynamics, are not important for long-term MV investors with time horizons greater than 10 years. As223

a result, we incorporate jump-diffusion and pure diffusion models for the risky asset in our analysis, as224

highlighted in the following assumption, leaving alternative model specifications for our future work.225

Assumption 2.3. (Types of models for the risky asset) We assume that any risky asset model under226

consideration, whether the investor model or the true model, can be classified into one of the following227

two fundamental model types: (i) pure diffusion (geometric Brownian motion / GBM), or (ii) any228

of the finite-activity jump-diffusion models commonly encountered in financial settings (such as the229

Merton (1976) and Kou (2002) models).230

For defining the jump-diffusion model dynamics, let ξj be a random variable denoting the jump231

multiplier with probability density function (pdf) pj (ξ), where j ∈ {iv, tr}. For subsequent reference,232

we define κj,1 = E [ξj − 1] and κj,2 = E
[
(ξj − 1)2

]
. Between any two consecutive rebalancing times233

tn, tn+1 ∈ Tm, we assume the following dynamics for the amount Sj in the absence of control,234

dSj (t)

Sj (t−)
= (µj − λjκj,1) dt+ σjdZj + d

πj(t)∑
i=1

(
ξij − 1

) , t ∈
[
t+n , t

−
n+1

]
, j ∈ {iv, tr} , (2.4)235

where µj and σj are drift and volatility respectively, Zj denotes a standard Brownian motion, πj (t) is a

Poisson process with intensity λj ≥ 0, and ξij are i.i.d. random variables with the same distribution as

ξj . It is futhermore assumed that ξij , πj (t) and Zj for j ∈ {iv, tr} are all mutually independent. Note

that pure diffusion (GBM) dynamics for Sj (t) can be recovered from (2.4) by setting the intensity

parameter λj to zero. For subsequent reference, we use ∆t > 0 as in (2.2) to define

αj = eµj∆t − er∆t, ψj =
[
e(2µj+σ2

j +λjκj,2)∆t − e2µj∆t
]1/2

, Aj,∆t =

(
α2
j

ψ2
j

· 1

∆t

)
, j ∈ {iv, tr} . (2.5)

Discrete portfolio rebalancing is modelled using the impulse control formulation as discussed in for236

example Dang and Forsyth (2014); Van Staden et al. (2018, 2019), which we now briefly summarize.237

Suppose that the system is in state x = (s, b) = (S (t−n ) , B (t−n )) for some tn ∈ Tm. Let u∆t (tn) denote238

the impulse value or amount invested in the risky asset after rebalancing the portfolio at time tn, and239

let Z denote the set of admissible impulse values. If (Sj (tn) , B (tn)) denotes the state of the system240

immediately after the application of the impulse u∆t (tn), we define241

Sj (tn) = u∆t (tn) , B (tn) = (s+ b)− u∆t (tn) , j ∈ {iv, tr} . (2.6)242

Let A∆t denote the set of admissible discretized impulse controls in the case of discrete rebalancing,

defined as

A∆t =
{
u∆t = {u∆t (tn)}n=1,...,m : tn ∈ Tm and u∆t (tn) ∈ Z, for n = 1, . . . ,m

}
. (2.7)

Let Ex,tnu∆t [Wj,∆t (T )] and V arx,tnu∆t [Wj,∆t (T )] denote the mean and variance of the terminal wealth

as per model j ∈ {iv, tr}, respectively, given that we are in state x = (s, b) = (S (t−n ) , B (t−n )) for some

tn ∈ Tm, and using impulse control u∆t ∈ A∆t over [tn, T ]. Using the standard scalarization method

for multi-criteria optimization problems (Yu (1971)), the MV objective using investor model dynamics

(j = iv) is given by

sup
u∆t∈A∆t

(
Ex,tnu∆t

[Wiv,∆t (T )]− ρ · V arx,tnu∆t
[Wiv,∆t (T )]

)
, (2.8)
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where the scalarization (or risk-aversion) parameter ρ > 0 reflects the investor’s level of risk aver-243

sion. Dynamic programming cannot be applied directly to (2.8), since variance does not satisfy the244

smoothing property of conditional expectation. Instead, the technique of Li and Ng (2000); Zhou and245

Li (2000) embeds (2.8) in a new optimization problem, often referred to as the embedding problem,246

which is amenable to dynamic programming techniques.247

We follow the convention in literature (see, for example, Cong and Oosterlee (2017); Dang and248

Forsyth (2014)) of defining the PCMV optimization problem as the associated embedding MV prob-249

lem4. Specifically, in the case of discrete rebalancing, PCMV∆t (tn; γ) denotes the PCMV problem at250

time tn using embedding parameter γ ∈ R under the assumption that the investor model is used,251

(PCMV∆t (tn; γ)) : V p
∆t (s, b, tn) = inf

u∆t∈A∆t

Ex,tnu∆t

[(
Wiv,∆t (T )− γ

2

)2
]
, γ ∈ R, (2.9)252

where the risk-free and risky asset dynamics between rebalancing events are respectively given by253

(2.3) and (2.4) with j = iv. The optimal control which solves (PCMV∆t (tn; γ)) will be denoted by254

up∗iv,∆t =
{
up∗iv,∆t (tk) : k = n, . . . ,m

}
.255

For any fixed value of γ ∈ R, we note that the optimal control up∗iv,∆t is a time-consistent control for256

the corresponding quadratic shortfall objective function in (2.9), and is therefore feasible to implement257

as a trading strategy (see Strub et al. (2019)).258

The TCMV formulation involves maximizing the objective (2.8) subject to a time-consistency259

constraint (see, for example, Wang and Forsyth (2011)), so that the resulting optimal control is time-260

consistent from the perspective of the original MV objective. In the case of discrete rebalancing, given261

that the portfolio is in state x = (s, b) = (S (t−n ) , B (t−n )) for some tn ∈ Tm, the TCMV problem is262

defined for ρ > 0 by263

(TCMV∆t (tn; ρ)) : V c
∆t (s, b, tn) := sup

u∆t∈A∆t

(
Ex,tnu∆t

[Wiv,∆t (T )]− ρ · V arx,tnu∆t
[Wiv,∆t (T )]

)
, (2.10)264

s.t. u∆t =
{
u∆t (tn) , uc∗iv,∆t (tn+1) , . . . , uc∗iv,∆t (tm)

}
, (2.11)265

where uc∗iv,∆t =
{
uc∗iv,∆t (tk) : k = n, . . . ,m

}
is the optimal control5 for problem TCMV∆t (tn; ρ).266

Remark 2.4. (Portfolio optimization and model misspecification) The PCMV and TCMV problems,267

and associated optimal controls, have been defined using only the investor model (j = iv). While268

the formulation and analytical results presented in this section also hold for j = tr, this seemingly269

additional generality obscures the fact that by practical necessity, these problems are defined and solved270

by the investor only under the investor model dynamics (which the investor believes to be correct),271

which may of course agree with the true model dynamics in the special case where j = iv = tr.272

The following lemma gives the analytical solutions for the PCMV and TCMV problems in the case273

of discrete rebalancing with no investment constraints.274

Lemma 2.5. (Discrete rebalancing: investor model, no investment constraints) Assume the discrete275

rebalancing of the portfolio, with given state x = (s, b) = (S (t−n ) , B (t−n )) and wealth w = s+b for some276

tn ∈ Tm, n ∈ {1, . . . ,m}, investor model wealth dynamics (2.1) with j = iv, and that no investment277

4For a discussion of the elimination of spurious optimization results when using the embedding formulation, see Dang
et al. (2016). Note that it might be optimal under some conditions to withdraw cash from the portfolio (see Cui et al.
(2012); Dang and Forsyth (2016)), but in order to ensure a like-for-like comparison with the TCMV results, we do not
consider the withdrawal of cash. While this treatment potentially penalizes large gains, the robustness of the PCMV
problem incorporating free cash flow is numerically investigated in great detail in Forsyth and Vetzal (2017a), and it is
clear from their results that the fundamental conclusions of this paper are not affected by excluding the withdrawal of
cash.

5uc∗
iv,∆t satisfies the conditions of a subgame perfect Nash equilibrium control, so that the terminology “equilibrium”

control is sometimes used (see e.g. Bjork et al. (2014)). We follow for example of Basak and Chabakauri (2010); Cong
and Oosterlee (2016); Wang and Forsyth (2011) and retain the terminology “optimal” control for simplicity.
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constraints are applicable (Z = R). Solutions to problem PCMV∆t (tn; γ) in (2.9) are given by278

up∗iv,∆t (tn) =
Aiv,∆t ·∆t

(1 +Aiv,∆t ·∆t)
· e

r∆t

αiv
· e−r(T−tn)

[γ
2
− wer(T−tn)

]
, n = 1, . . . ,m, (2.12)279

Ex,tn
up∗iv,∆t

[Wiv,∆t (T )] = wer(T−tn) +

[
1−

(
1−

Aiv,∆t ·∆t
(1 +Aiv,∆t ·∆t)

)m−n+1
] [γ

2
− wer(T−tn)

]
, (2.13)280

Stdevx,tn
up∗iv,∆t

[Wiv,∆t (T )] =

(
1−

Aiv,∆t ·∆t
(1 +Aiv,∆t ·∆t)

)m−n+1
[(

1−
Aiv,∆t ·∆t

(1 +Aiv,∆t ·∆t)

)−(m−n+1)

−1

] 1
2

281

×
[γ

2
− wer(T−tn)

]
. (2.14)282

Solutions to problem TCMV∆t (tn; ρ) in (2.10)-(2.11) are given by283

uc∗iv,∆t (tn) =
1

2ρ
· (Aiv,∆t ·∆t) ·

er∆t

αiv
· e−r(T−tn), n = 1, . . . ,m, (2.15)284

Ex,tnuc∗iv,∆t
[Wiv,∆t (T )] = wer(T−tn) +

1

2ρ
Aiv,∆t (T − tn) , (2.16)285

Stdevx,tnuc∗iv,∆t
[Wiv,∆t (T )] =

1

2ρ

√
Aiv,∆t · (T − tn). (2.17)286

Proof. The PCMV results (2.12)-(2.14) can be obtained by applying the results of Li and Ng (2000)287

to our formulation, while TCMV results (2.15)-(2.17) using the impulse control formulation can be288

found in Van Staden et al. (2019).289

2.2 Continuous rebalancing290

In the case of continuous rebalancing, we specify the controlled wealth dynamics of the self-financing291

portfolio in terms of a single stochastic differential equation by (implicitly) modelling the value of a292

unit investment in each asset (see, for example, Bjork et al. (2014); Zeng et al. (2013)).293

Let Wj (t) also denote the controlled wealth process in the case of continuous rebalancing, where294

we again distinguish the dynamics of the investor model and true model using j ∈ {iv, tr}. Let u :295

(Wj (t) , t) 7→ u (t) = u (Wj (t) , t) , t ∈ [0, T ] be the adapted feedback control representing the amount296

invested in the risky asset at time t given wealthWj (t), and letA = {u (t) = u (w, t)|u : R× [0, T ]→ U}297

denote the set of admissible controls in the case of continuous rebalancing, where U ⊆ R is the admis-298

sible control space.299

If the unit value of the risky asset has the same dynamics as (2.4), then the dynamics of Wj (t),300

for j ∈ {iv, tr}, is given by301

dWj (t) = [rWj (t) + (µj − λjκj,1 − r)u (t)] dt+ σju (t) dZj + u (t) d

πj(t)∑
i=1

(
ξij − 1

) . (2.18)302

For subsequent reference, we define the following combination of parameters associated with (2.18),303

Aj =
(µj − r)2

σ2
j + λjκj,2

, j ∈ {iv, tr} . (2.19)304

Given state x = (s, b) at time t ∈ [0, T ] and w = s + b, we denote the mean and variance of305

terminal wealth Wj (T ) under control u, respectively, by Ew,tu [Wj (T )] and V arw,tu [Wj (T )]. In the306

case of continuous rebalancing, the PCMV optimization problem PCMV (t; γ) is given by307

(PCMV (t; γ)) : V p (w, t) = inf
u∈A

Ew,tu

[(
Wiv (T )− γ

2

)2
]
, γ ∈ R, (2.20)308
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where the controlled wealth Wiv has dynamics given by (2.18) with j = iv. We denote by up∗iv the309

optimal control which solves (PCMV (t; γ)) using the investor model dynamics.310

We follow Wang and Forsyth (2011) in defining the TCMV problem in the case of continuous311

rebalancing, TCMV (t; ρ), as312

(TCMV (t; ρ)) : V c (w, t) := sup
u∈A

(
Ew,tu [Wiv (T )]− ρ · V arw,tu [Wiv (T )]

)
, ρ > 0, (2.21)313

s.t. uc∗iv (t; y, v) = uc∗iv
(
t′; y, v

)
, for v ≥ t′, t′ ∈ [t, T ] , (2.22)314

where uc∗iv (t; y, v) denotes the optimal control for problem TCMV (t; ρ) calculated at time t and to be315

applied at some future time v ≥ t′ ≥ t given future state Wiv (v) = y, while uc∗iv (t′; v, y) denotes the316

optimal control calculated at some future time t′ ∈ [t, T ] for problem TCMV (t′; ρ), also to be applied317

at the same later time v ≥ t′ given the same future state Wiv (v) = y. To lighten notation, we will318

simply use the notation uc∗iv (t) to denote the optimal control for problem (2.21)-(2.22).319

We have the following analytical solutions for the PCMV and TCMV problems in the case of320

continuous rebalancing with no investment constraints.321

Lemma 2.6. (Continuous rebalancing: investor model, no investment constraints) Assume the con-322

tinuous rebalancing of the portfolio, with wealth w at time t ∈ [0, T ], investor model wealth dynamics323

(2.18) with j = iv, and that no investment constraints are applicable (U = R). Solutions to problem324

PCMV (t; γ) in (2.20) are given by325

up∗iv (t) =
Aiv

(µiv − r)
e−r(T−t)

[γ
2
− wer(T−t)

]
, (2.23)326

Ew,t
up∗iv

[Wiv (T )] = wer(T−t) +
(

1− e−Aiv(T−t)
) [γ

2
− wer(T−t)

]
, (2.24)327

Stdevw,t
up∗iv

[Wiv (T )] = e−Aiv(T−t)
[
eAiv(T−t) − 1

] 1
2
[γ

2
− wer(T−t)

]
. (2.25)328

Solutions to problem TCMV (t; ρ) in (2.21)-(2.22) are given by329

uc∗iv (t) =
1

2ρ
· Aiv

(µiv − r)
e−r(T−t), (2.26)330

Ew,tuc∗iv
[Wiv (T )] = wer(T−t) +

1

2ρ
Aiv (T − t) , (2.27)331

Stdevw,tuc∗iv
[Wiv (T )] =

1

2ρ

√
Aiv (T − t). (2.28)332

Furthermore, taking the limit as ∆t ↓ 0 in the discrete rebalancing results (2.12)-(2.14) and (2.15)-333

(2.17) recovers the continuous rebalancing results (2.23)-(2.25) and (2.26)-(2.28), respectively.334

Proof. The PCMV results (2.23)-(2.25) can be found in Zhou and Li (2000); Zweng and Li (2011),

while the TCMV results (2.26)-(2.28) are given in Basak and Chabakauri (2010); Zeng et al. (2013).

The convergence results as ∆t ↓ 0 using our impulse control formulation can be found in Van Staden

et al. (2019). Here we simply observe that (2.2) implies (m− n+ 1) ∆t = T − tn, and we note the

following limits which are useful for proving subsequent results: lim∆t↓0Aiv,∆t = Aiv and

lim
∆t↓0

Aiv,∆t ·∆t
αiv (1 +Aiv,∆t ·∆t)

= lim
∆t↓0

Aiv,∆t ·∆t
αiv

=
Aiv

(µiv − r)
, lim

∆t↓0

(
1−

Aiv,∆t ·∆t
(1 +Aiv,∆t ·∆t)

)1/∆t

= e−Aiv .

(2.29)

335
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2.3 MV efficient points under the investor model336

The following definition of MV efficient point and MV efficient frontier is standard in the literature337

(see, for example, Dang et al. (2016)).338

Definition 2.7. (MV efficient point, MV efficient frontier) Assume a given initial state x0 = (s0, b0)339

with initial wealth w0 = s0 + b0 > 0, at time t0 ≡ t1 = 0, and investor model wealth dynamics (2.1)340

with j = iv. For a fixed value of the scalarization parameter ρ > 0 and the embedding parameter341

γ ∈ R, an MV efficient point in R2 is defined as follows:342

(S, E) =



(S, E)pγ :=
(
Stdevw0,t0

up∗iv
[Wiv (T )] , Ew0,t0

up∗iv
[Wiv (T )]

)
, for PCMV (t0; γ) ,

(S, E)cρ :=
(
Stdevw0,t0

uc∗iv
[Wiv (T )] , Ew0,t0

uc∗iv
[Wiv (T )]

)
, for TCMV (t0; ρ) ,

(S, E)pγ,∆t :=

(
Stdevx0,t0

up∗iv,∆t
[Wiv,∆t (T )] , Ex0,t0

up∗iv,∆t
[Wiv,∆t (T )]

)
, for PCMV∆t (t0; γ) ,

(S, E)cρ,∆t :=
(
Stdevx0,t0

uc∗iv,∆t
[Wiv,∆t (T )] , Ex0,t0

uc∗iv,∆t
[Wiv,∆t (T )]

)
, for TCMV∆t (t0; ρ) .

(2.30)343

The MV efficient frontiers traced out in R2 using (2.30) are respectively given by Yp =
⋃
γ∈R

(S, E)pγ ,344

Yc =
⋃
ρ>0

(S, E)cρ, Y
p
∆t =

⋃
γ∈R

(S, E)pγ,∆t, and Yc∆t =
⋃
ρ>0

(S, E)cρ,∆t.345

It is well-known that the coordinates of the MV efficient point in Definition 2.7 exhibit a linear346

relationship if no investment constraints are applicable. This is given by the following lemma.347

Lemma 2.8. (MV efficient point linear relationship, no investment constraints) If no investment348

constraints are applicable, the relationship between the coordinates (S, E) of an MV efficient point in349

Definition 2.7 is given by350

E = w0e
rT + Γiv · S, (2.31)351

where Γiv, the slope of the associated efficient frontier, is given by352

Γiv =


Γpiv =

(
eAivT − 1

) 1
2 , for PCMV (t0; γ) ,

Γciv =
√
AivT , for TCMV (t0; ρ) ,

Γpiv,∆t = [(1 +Aiv,∆t ·∆t)m − 1]
1
2 , for PCMV∆t (t0; γ) ,

Γciv,∆t =
√
Aiv,∆tT , for TCMV∆t (t0; ρ) .

(2.32)353

Here, Aiv,∆t and Aiv are respectively defined in (2.5) and (2.19).354

Proof. Follows from rearranging the results of Lemmas 2.5 and 2.6.355

2.4 Investor efficient point356

After considering the MV efficient frontier (Definition 2.30), by necessity, the investor has to choose a357

particular reference MV efficient point according to their risk appetite/preferences. We make the prac-358

tical assumption that the investor chooses some target value of the investor model-implied standard359

deviation of terminal wealth, Siv, with the intention of implementing the corresponding optimal strat-360

egy over [0, T ]. Associated with the fixed target Siv is a particular expected value of terminal wealth361

Wiv (T ), denoted by Eiv, for which the pair (Siv, Eiv) is an MV efficient point as per Definition 2.7. In362

subsequent discussion, we refer to the point (Siv, Eiv) as an investor efficient point.363

Naturally, in this case, fixing the target Siv > 0 is equivalent to fixing particular values of the364

parameter ρ ∈ {ρiv, ρiv,∆t} and γ ∈ {γiv, γiv,∆t}. That is, with these fixed values, the optimal controls365

of PCMV (t0; γiv), TCMV (t0; ρiv), PCMV∆t (t0; γiv,∆t) and TCMV∆t (t0; ρiv,∆t) all achieve a standard366

deviation of terminal wealth Wiv (T ) equal to Siv. These values can be obtained by (numerically)367
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solving for ρ ∈ {ρiv, ρiv,∆t} and γ ∈ {γiv, γiv,∆t} in the (non-linear) equations368

Siv =
{

(S)cρ, (S)cρ,∆t
}

and Siv =
{

(S)pγ , (S)pγ,∆t

}
, (2.33)369

where (S)cρ, (S)cρ,∆t, (S)pγ , and (S)pγ,∆t are defined in Definition 2.7. When investment constraints are370

not applicable, the values of γiv, ρiv, γiv,∆t, and ρiv,∆t can be obtained in closed-form as follows:371

γiv = 2w0e
rT + 2Siv · eAivT

[
eAivT − 1

]− 1
2 , (2.34)372

ρiv =
√
AivT/ (2 · Siv) , (2.35)373

γiv,∆t = 2w0e
rT +2Siv ·

(
1−

Aiv,∆t ·∆t
(1 +Aiv,∆t ·∆t)

)−m[(
1−

Aiv,∆t ·∆t
(1 +Aiv,∆t ·∆t)

)−m
− 1

]− 1
2

,(2.36)374

ρiv,∆t =
√
Aiv,∆tT/ (2 · Siv) , (2.37)375

with Aiv,∆t and Aiv respectively given in (2.5) and (2.19). We now formally define an investor efficient376

point.377

Definition 2.9. (Investor efficient point) For a fixed target Siv > 0 for the investor model-implied378

standard deviation of terminal wealth, an investor efficient point, denoted by (Siv, Eiv), is defined as379

(Siv, Eiv) :=



(
Stdevw0,t0

up∗iv
[Wiv (T )] , Ew0,t0

up∗iv
[Wiv (T )]

)
for PCMV (t0; γiv) ,(

Stdevw0,t0
uc∗iv

[Wiv (T )] , Ew0,t0
uc∗iv

[Wiv (T )]
)

for TCMV (t0; ρiv) ,(
Stdevx0,t0

up∗iv,∆t
[Wiv,∆t (T )] , Ex0,t0

up∗iv,∆t
[Wiv,∆t (T )]

)
for PCMV∆t (t0; γiv,∆t) ,(

Stdevx0,t0
uc∗iv,∆t

[Wiv,∆t (T )] , Ex0,t0
uc∗iv,∆t

[Wiv,∆t (T )]
)

for TCMV∆t (t0; ρiv,∆t) .

(2.38)380

Here, γiv, ρiv, γiv,∆t and ρiv,∆t are obtained by solving (2.33). When investment constraints are not381

applicable, these values are given in (2.34)-(2.37), respectively.382

We conclude by noting that, without investment constraints, (Siv, Eiv) also satisfies Lemma 2.8.383

3 Analysis of robustness384

3.1 True efficient points and efficient point errors385

We take the perspective of an investor who believes that the investor model provides a sufficiently386

accurate representation of reality. The investor has fixed an investor efficient point (Siv, Eiv) (Defi-387

nition 2.9). Associated with this efficient point is an investor model-implied optimal control u∗iv ∈388 {
up∗iv,∆t, u

c∗
iv,∆t, u

p∗
iv , u

c∗
iv

}
. This control is obtained by solving the respective MV optimization problem389

under the investor model with γ ∈ {γiv, γiv,∆t} or ρ ∈ {ρiv, ρiv,∆t} being solution to (2.33). When390

no investment constraints are applicable, these γ and ρ values are given by (2.34)-(2.37), and the391

closed-form of u∗iv are given in Lemma 2.5 or Lemma 2.6.392

The optimal control u∗iv is then implemented under the true model (Definition 2.1) over the in-393

vestment time horizon [0, T ] in a market where the risky asset evolves according to the dynamics394

(2.4) given by the true model j = tr. The resulting mean and standard deviation of the true terminal395

wealth under the control u∗iv are respectively denoted by Ex,tn
uq∗iv,∆t

[Wtr,∆t (T )] and Stdevx,tn
uq∗iv,∆t

[Wtr,∆t (T )]396

in the case of discrete rebalancing, where q ∈ {p, c} (pre-commitment or time-consistency). Similarly,397

for the case of continuous rebalancing, we have the notation Ew,t
uq∗iv

[Wtr (T )] and Stdevw,t
uq∗iv

[Wtr (T )].398

These MV outcomes are collectively referred to as the “true efficient point”, and are denoted by399 (
S(iv→tr), E(iv→tr)

)
. We formally define the true efficient point

(
S(iv→tr), E(iv→tr)

)
in Definition 3.1.400
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Definition 3.1. (True efficient point) Associated with each investor efficient point (Siv, Eiv) defined401

in Definition 2.9 is the true efficient point
(
S(iv→tr), E(iv→tr)

)
, defined by402

(
S(iv→tr), E(iv→tr)

)
=



(
Stdevw0,t0

up∗iv
[Wtr (T )] , Ew0,t0

up∗iv
[Wtr (T )]

)
a.w. PCMV (t0; γiv) ,(

Stdevw0,t0
uc∗iv

[Wtr (T )] , Ew0,t0
uc∗iv

[Wtr (T )]
)

a.w. TCMV (t0; ρiv) ,(
Stdevx0,t0

up∗iv,∆t
[Wtr,∆t (T )] , Ex0,t0

up∗iv,∆t
[Wtr,∆t (T )]

)
a.w. PCMV∆t (t0; γiv,∆t) ,(

Stdevx0,t0
uc∗iv,∆t

[Wtr,∆t (T )] , Ex0,t0
uc∗iv,∆t

[Wtr,∆t (T )]
)

a.w. TCMV∆t (t0; ρiv,∆t) .

(3.1)403

Here, γiv, ρiv, γiv,∆t and ρiv,∆t are obtained by solving (2.33). When investment constraints are404

not applicable, these values are given in (2.34)-(2.37), respectively. Note that “a.w.” abbreviates405

“associated with” for purposes of clarity.406

In a model misspecification scenario, the true efficient point
(
S(iv→tr), E(iv→tr)

)
does not necessarily407

coincide with the investor efficient point (Siv, Eiv). In Definition 3.2, we formally define three different408

measures of the resulting error or difference between the above-mentioned points, each measure being409

associated with certain advantages and disadvantages.410

Definition 3.2. (Efficient point error, relative efficient point error, error norm) The efficient point411

error is defined as (∆S,∆E) =
(
S(iv→tr) − Siv, E(iv→tr) − Eiv

)
. The relative efficient point error is412

defined as413

(%∆S,%∆E) =

(S(iv→tr) − Siv

Siv
,
E(iv→tr) − Eiv

Eiv

)
× 100. (3.2)414

The (relative) error norm is defined as the Euclidean norm of (%∆S,%∆E), namely415

R(iv→tr) =

√
(%∆S)2 + (%∆E)2. (3.3)416

We observe that (3.2) enables the investor to distinguish the sign and contribution of the standard417

deviation and expected value components to the error. For example, all else being equal, the investor418

is likely to prefer an outcome of (−%∆S,+%∆E) to an outcome of (+%∆S,−%∆E). In contrast,419

(3.3) reduces the relative efficient point error to a single number, so that all else being equal, a smaller420

value of R(iv→tr) would imply that the MV results for that particular choice of (iv→ tr) are more421

robust to model misspecification errors. In this sense, the relative efficient point error (3.2) and error422

norm (3.3) are complementary measures of the extent to which the MV outcomes are robust to a423

model misspecification error.424

While the investor does not have access to the true wealth dynamics, for analysis purposes, we425

assume the true model belongs to a certain class of dynamics (see Assumption 2.3). This assumption426

allows the computation of the mean and variance outcomes of the above-mentioned implementation427

of u∗iv. When investment constraints are not applied, these outcomes can be computed in closed428

form (Subsection 3.2 below), enabling the derivation of some interesting results. When investment429

constraints are applicable, the computation of u∗iv and its implementation under the true model must430

be achieved by a numerical method. More details for this case are given in Subsection 3.3.431

3.2 No investment constraints432

We introduce below ratios involving combinations of model parameters which play a key role in the

subsequent analysis.

M =
µtr − r
µiv − r

, M∆t =
αtr

αiv
, L =

σ2
tr + λtrκtr,2

σ2
iv + λivκiv,2

, L∆t =
ψ2

tr

ψ2
iv

. (3.4)
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Note that lim∆t↓0M∆t = M and lim∆t↓0 L∆t = L. The ratios (3.4) capture the degree to which the433

investor model (j = iv) and true model (j = tr) agree in terms of the expected excess returns and434

variance of returns of the risky asset6. Perfect correspondence between the investor model and true435

model obviously implies that the ratios (3.4) are equal to one, but the converse does not necessarily436

hold.437

Starting with the case of discrete rebalancing, we have the following analytical result.438

Theorem 3.3. (Discrete rebalancing - MV of true terminal wealth, no investment constraints) Assume439

the discrete rebalancing of the portfolio, a given state x = (s, b) = (S (t−n ) , B (t−n )) and wealth w =440

s + b for some tn ∈ Tm, n ∈ {1, . . . ,m}, and that no investment constraints are applicable (Z = R).441

Implementing the investor model PCMV-optimal control up∗iv,∆t given by (2.12) in the true model wealth442

dynamics (2.1) with j = tr, results in the mean and standard deviation of the true terminal wealth443

respectively given by444

Ex,tn
up∗iv,∆t

[Wtr,∆t (T )] = wer(T−tn) +

[
1−

(
1−

M∆tAiv,∆t ·∆t
1 +Aiv,∆t ·∆t

)m−n+1
] [γ

2
− wer(T−tn)

]
, (3.5)445

Stdevx,tn
up∗iv,∆t

[Wtr,∆t (T )] =

(
1−

M∆tAiv,∆t ·∆t
1 +Aiv,∆t ·∆t

)m−n+1
(1 +

L∆tAiv,∆t ·∆t
[1 + (1−M∆t)Aiv,∆t ·∆t]2

)m−n+1

− 1

1/2

446

×
[γ

2
− wer(T−tn)

]
. (3.6)447

Similarly, implementing the investor model TCMV-optimal control uc∗iv,∆t given by (2.12) in the true448

model wealth dynamics (2.1) with j = tr, gives449

Ex,tnuc∗iv,∆t
[Wtr,∆t (T )] = wer(T−tn) +

1

2ρ
·M∆tAiv,∆t (T − tn) , (3.7)450

Stdevx,tnuc∗iv,∆t
[Wtr,∆t (T )] =

1

2ρ

√
L∆tAiv,∆t (T − tn). (3.8)451

Proof. We summarize the proof of (3.5)-(3.6), since the results (3.7)-(3.8) are obtained in a simi-452

lar way. Using the auxiliary functions and recursive relations gp∆t (x, tn) := Ex,tn
up∗iv,∆t

[Wtr,∆t (T )] =453

Ex,tn
up∗iv,∆t

[
gp∆t

(
X
(
t−n+1

)
, tn+1

)]
and hp∆t (x, tn) := Ex,tn

up∗iv,∆t

[
W 2

tr,∆t (T )
]

= Ex,tn
up∗iv,∆t

[
hp∆t

(
X
(
t−n+1

)
, tn+1

)]
,454

where X
(
t−n+1

)
=
(
Str

(
t−n+1

)
, B
(
t−n+1

))
and Str has dynamics (2.4) with j = tr, we solve problem455

PCMV∆t (tn; γ) recursively backwards from n = m using terminal conditions gp∆t (x, tm+1) = (s+ b) =456

w and hp∆t (x, tm+1) = w2. Using backward induction on n, it follows that the function gp∆t satisfies457

(3.5), while the function hp∆t is given by458

hp∆t (x, tn) =

[(
1−

M∆tAiv,∆t ·∆t
1 +Aiv,∆t ·∆t

)2

+
L∆tAiv,∆t ·∆t

(1 +Aiv,∆t ·∆t)2

](m−n+1) [γ
2
− wer(T−tn)

]2
459

−2
(γ

2

)(
1−

M∆tAiv,∆t ·∆t
1 +Aiv,∆t ·∆t

)(m−n+1) [γ
2
− wer(T−tn)

]
+
(γ

2

)2
. (3.9)460

Taking the square root of hp∆t (x, tn)−
[
gp∆t (x, tn)

]2
gives (3.6).461

In the case of continuous rebalancing, the corresponding analytical results are given below.462

Theorem 3.4. (Continuous rebalancing - MV of true terminal wealth, no investment constraints)463

Assume the continuous rebalancing of the portfolio, with given wealth w at time t ∈ [0, T ], and that464

no investment constraints are applicable (U = R). Implementing the investor model PCMV-optimal465

control up∗iv given by (2.23) in the true model wealth dynamics (2.18) with j = tr, results in the mean466

6This follows since we can write, informally, E
[
dSj (t) /Sj

(
t−

)]
= µjdt and V ar

[
dSj (t) /Sj

(
t−

)]
=

(
σ2
j + λjκj,2

)
dt.
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and standard deviation of the true terminal wealth respectively given by467

Ew,t
up∗iv

[Wtr (T )] = wer(T−t) +
[
1− e−MAiv(T−t)

] [γ
2
− wer(T−t)

]
, (3.10)468

Stdevw,t
up∗iv

[Wtr (T )] = e−MAiv(T−t)
[
eLAiv(T−t) − 1

] 1
2 ·
[γ

2
− wer(T−t)

]
. (3.11)469

Implementing the investor model TCMV-optimal control uc∗iv given by (2.26) in the true model wealth470

dynamics (2.18) with j = tr, gives471

Ew,tuc∗iv
[Wtr (T )] = wer(T−t) +

1

2ρ
·MAiv (T − t) , (3.12)472

Stdevw,tuc∗iv
[Wtr (T )] =

1

2ρ

√
LAiv (T − t). (3.13)473

Proof. We summarize the proof of (3.10)-(3.11), since the proof of (3.12)-(3.13) proceeds similarly. Im-474

plementing control up∗iv (t) as per (2.23) in the true wealth dynamics ((2.18)) for the case of continuous475

rebalancing, we establish that the auxiliary function gp (τ) = gp (τ ;w, t) := Ew,t
up∗iv

[Wtr (τ)] , τ ∈ [t, T ]476

satisfies the following ODE,477

dgp (τ)

dτ
= (r −MAiv) gp (τ) +MAiv

γ

2
e−r(T−τ), τ ∈ (t, T ] ,478

gp (t) = w, (3.14)479

which is solved to obtain gp (T ) = Ew,t
up∗iv

[Wtr (T )] given by (3.10). Using Ito’s lemma to obtain480

the dynamics of the squared true wealth W 2
tr using control up∗iv (t), the auxiliary function hp (τ) =481

hp (τ ;w, t) = Ew,t
up∗iv

[
W 2

tr (τ)
]
, τ ∈ [t, T ] satisfies the ODE482

dhp (τ)

dτ
= 2 (M − L)Aiv

(γ
2

) [
we(r−MAiv)(τ−t)−r(T−τ) +

γ

2
e−2r(T−τ)

(
1− e−MAiv(τ−t)

)]
483

+ [2r + (L− 2M)Aiv]hp (τ) + LAiv

(γ
2

)2
e−2r(T−τ), τ ∈ (t, T ] ,484

hp (t) = w2, (3.15)485

which is solved to obtain hp (T ) = Ew,t
up∗iv

[
W 2

tr (T )
]
. Together with (3.10), this gives (3.11).486

Although the discrete and continuous rebalancing formulation is structurally different, Lemma 3.5487

establishes the expected convergence result in the limit as ∆t ↓ 0 in (2.2).488

Lemma 3.5. (Convergence, no investment constraints) Fix a rebalancing time tn ∈ Tm and state489

x = (s, b) = (S (t−n ) , B (t−n )). Set time t = tn and wealth w = s+ b. Taking the limit as ∆t ↓ 0 in the490

discrete rebalancing results (3.5)-(3.8), we have491

lim
∆t↓0

Ex,tn
up∗iv,∆t

[Wtr,∆t (T )] = Ew,t
up∗iv

[Wtr (T )] , lim
∆t↓0

Stdevx,tn
up∗iv,∆t

[Wtr,∆t (T )] = Stdevw,t
up∗iv

[Wtr (T )] ,(3.16)492

lim
∆t↓0

Ex,tnuc∗iv,∆t
[Wtr,∆t (T )] = Ew,tuc∗iv

[Wtr (T )] , lim
∆t↓0

Stdevx,tnuc∗iv,∆t
[Wtr,∆t (T )] = Stdevw,tuc∗iv

[Wtr (T )] . (3.17)493

Proof. This follows from the limits (2.29), as well as

lim
∆t↓0

(
1−

M∆tAiv,∆t ·∆t
1 +Aiv,∆t ·∆t

)1/∆t

= e−MAiv , lim
∆t↓0

(
1 +

L∆tAiv,∆t ·∆t
[1 + (1−M∆t)Aiv,∆t ·∆t]2

)1/∆t

= eLAiv .

(3.18)

494
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3.2.1 Quantifying robustness495

As a first step toward quantifying the MV robustness with respect to an efficient point error, we496

show that, when no investment constraints are applicable, the efficient point error can be expressed497

elegantly in terms of Siv using the notion of error multipliers.498

Lemma 3.6. (Efficient point error in terms of error multipliers, no investment constraints) Assume499

that no investment constraints are applicable. We have500

E(iv→tr) − Eiv = Θ(iv→tr) · Γiv · Siv, (3.19)501

S(iv→tr) − Siv = Ψ(iv→tr) · Siv. (3.20)502

Here, the appropriate slope Γiv of the investor MV frontier defined in (2.32). The error multiplier503

Θ(iv→tr) associated with the expected value error (3.19) is given by504

Θ(iv→tr) =



Θp
(iv→tr) =

[(
1− e−MAivT

)
/
(
1− e−AivT

)]
− 1 a.w. PCMV (t0; γiv) ,

Θc
(iv→tr) = M − 1, a.w. TCMV (t0; ρiv) ,

Θp
(iv→tr),∆t =

[
1−(1+(1−M∆t)Aiv,∆t·∆t)

m
(1+Aiv,∆t·∆t)

−m

1−(1+Aiv,∆t·∆t)
−m

]
− 1, a.w. PCMV∆t (t0; γiv,∆t) ,

Θc
(iv→tr),∆t = M∆t − 1. a.w. TCMV∆t (t0; ρiv,∆t) ,

(3.21)505

The error multiplier Ψ(iv→tr) associated with the standard deviation error (3.20) is given by506

Ψ(iv→tr) =


Ψp

(iv→tr) = e(1−M)AivT ·
[(
eLAivT − 1

)
/
(
eAivT − 1

)] 1
2 − 1, a.w. PCMV (t0; γiv) ,

Ψc
(iv→tr) =

√
L− 1, a.w. TCMV (t0; ρiv) ,

Ψp
(iv→tr),∆t, a.w. PCMV∆t (t0; γiv,∆t) ,

Ψc
(iv→tr),∆t =

√
L∆t − 1, a.w. TCMV∆t (t0; ρiv,∆t) ,

(3.22)507

where Ψp
(iv→tr),∆t =

[1 + (1−M∆t)Aiv,∆t ·∆t]m

[(1 +Aiv,∆t ·∆t)m − 1]1/2
·

[(
1 +

L∆tAiv,∆t ·∆t
[1 + (1−M∆t)Aiv,∆t ·∆t]2

)m
− 1

] 1
2

− 1.

In the above, Aiv,∆t and Aiv are respectively defined in (2.5) and (2.19).508

Proof. The results (3.19)-(3.22) follow from combining and rearranging the results from Theorem 3.4,509

Theorem 3.3, and Lemma 2.8.510

The analytical results of Lemma 3.6 allow us to draw several interesting conclusions about MV511

robustness to model misspecification errors. Specifically, consider a fixed T , and, for discrete rebal-512

ancing, a fixed ∆t. Examination of (3.19)-(3.20) indicates that the efficient point errors depend on (i)513

the investor target Siv, (ii) the ratios M , M∆t, L, and L∆t, defined in (3.4), as well as (iii) Aiv,∆t and514

Aiv. Note that, once selected, the target Siv remains fixed. For a chosen investor model, Aiv,∆t and515

Aiv are also fixed, since they depend only on the parameters of the investor model. The ratios M ,516

M∆t, L, and L∆t, defined in (3.4), depend on certain combinations of parameters of both the investor517

and true models, not individual parameter values. These ratios play a key role in quantifying efficient518

point errors, implying that individual parameter values only play a secondary role. Specifically, the519

closer the ratios M , M∆t, L, and L∆t are to one, the smaller the model misspecification errors, hence520

the more robust MV outcomes, regardless of differences in fundamental types or individual parameter521

values between the investor and true models.522

Finally, the impact of a model misspecification error on the tradeoff between mean and variance523

of terminal wealth is worth highlighting. In particular, the slope Γiv =
(
Eiv − w0e

rT
)
/Siv (see Lemma524

2.8) can be interpreted as the price of risk (Zhou and Li (2000)) as per the investor model. All else525

being equal, the investor would prefer a larger slope, since for a fixed level of risk as measured by Siv,526
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a larger slope would imply a larger value of Eiv. However, the true efficient point
(
S(iv→tr), E(iv→tr)

)
is527

associated with a different (true) price of risk, Γ(iv→tr), which is quantified by the following lemma.528

Lemma 3.7. (True price of risk, no investment constraints). If no investment constraints are appli-529

cable, the true price of risk Γ(iv→tr) is related to the price of risk according to the investor model, Γiv,530

as follows:531

Γ(iv→tr) :=
E(iv→tr) − w0e

rT

S(iv→tr)
=

[
1 + Θ(iv→tr)

1 + Ψ(iv→tr)

]
· Γiv, (3.23)532

with the values of Θ(iv→tr), Ψ(iv→tr) and Γ(iv→tr) given by (3.21), (3.22) and (2.32) respectively, all533

consistent with the chosen investment objective and rebalancing frequency. In particular, Γ(iv→tr) is534

given by535

Γ(iv→tr) =


Γp(iv→tr) =

[
eMAivT − 1

] [
eLAivT − 1

]−1/2
, a.w. PCMV (t0; γiv) ,

Γc(iv→tr) = [MAivT ] [LAivT ]−1/2 =
√
AtrT , a.w. TCMV (t0; ρiv) ,

Γp(iv→tr),∆t, a.w. PCMV∆t (t0; γiv,∆t) ,

Γc(iv→tr),∆t = [M∆tAiv,∆tT ] [L∆tAiv,∆tT ]−1/2 =
√
Atr,∆tT , a.w. TCMV∆t (t0; ρiv,∆t) ,

(3.24)536

where Γp(iv→tr),∆t =

[(
1−

M∆tAiv,∆t ·∆t
1 +Aiv,∆t ·∆t

)−m
− 1

][(
1 +

L∆tAiv,∆t ·∆t
[1 + (1−M∆t)Aiv,∆t ·∆t]2

)m
− 1

]−1/2

.

Proof. The results follow from Lemma 2.8, Definition 3.1 and Lemma 3.6.537

Considering the definition (3.23) of the true price of risk Γ(iv→tr), the practical relevance of Lemma538

3.7 follows from the observation that Γ(iv→tr) can be viewed as an indicator of the MV-efficiency of539

the investment strategy in the presence of model misspecification. In other words, the true price of540

risk can be used as a measure of robustness that is complementary to the quantities introduced in541

Definition 3.2, since Γ(iv→tr) gives the robustness to model misspecification of the MV-tradeoff of the542

investor’s terminal wealth.543

In addition, Lemma 3.7 has some interesting theoretical consequences, which we illustrate using the

case of continuous rebalancing. According to the investor model, Lemma 2.8 implies that Γpiv/Γ
c
iv > 1;

in other words, all else being equal, the PCMV strategy should result in a better trade-off between

mean and variance of terminal wealth than the TCMV strategy as measured by the corresponding

price of risk. However, when a model misspecification error occurs, Lemma 3.7 shows that the ratio

Γp(iv→tr)/Γ
c
(iv→tr) is given by

Γp(iv→tr)

Γc(iv→tr)

=

[
LAivT

eLAivT − 1

] 1
2

︸ ︷︷ ︸
<1

·
[
eMAivT − 1

MAivT

]
︸ ︷︷ ︸

>1

. (3.25)

Given fixed values of Aiv and T , the first component of (3.25) depends on L while the second component544

depends on M . As such, it is possible that a situation might arise where Γp(iv→tr)/Γ
c
(iv→tr) < 1; in other545

words, it is possible that the TCMV strategy might outperform the PCMV strategy on the basis of the546

corresponding true price of risk7. However, as illustrated in Subsection 4.2, this particular scenario547

does not arise in the numerical results presented in Section 4.548

3.2.2 A robustness comparison between PCMV and TCMV549

We further explore and compare the robustness of PCMV and TCMV with respect to model mis-550

specification when no investment constraints are applicable. From Lemma 3.6, assuming fixed values551

7Interestingly, a similar observation is made in Cong and Oosterlee (2017), where an entirely different formulation of
the robustness problem is used.
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of Aiv and T , we observe that the expected value error (E(iv→tr) − Eiv) depends only on M (PCMV552

and TCMV, continuous rebalancing) or M∆t (PCMV and TCMV, discrete rebalancing). We have the553

following theorem.554

Theorem 3.8. (Comparison of expected value error multipliers, no investment constraints) Assume

that no investment constraints are applicable, and that µj > r and σj > 0 for j ∈ {iv,tr}. In the case

of continuous rebalancing, we have∣∣∣Θp
(iv→tr)

∣∣∣ ≤ ∣∣∣Θc
(iv→tr)

∣∣∣ , ∀M > 0, (3.26)

with strict inequality except when M = 1. In the case of discrete rebalancing, for any ∆t > 0 there

exists a unique value MΘ∆t > 1 + 2
Aiv,∆t·∆t such that∣∣∣Θp

(iv→tr),∆t

∣∣∣ ≤ ∣∣∣Θc
(iv→tr),∆t

∣∣∣ , ∀M∆t ∈ (0,MΘ∆t] ,∆t > 0, (3.27)∣∣∣Θp
(iv→tr),∆t

∣∣∣ > ∣∣∣Θc
(iv→tr),∆t

∣∣∣ , ∀M∆t > MΘ∆t,∆t > 0, (3.28)

with the inequality (3.27) strict except when M∆t = 1 or M∆t = MΘ∆t. Furthermore, comparing555

continuous and discrete rebalancing, we also have556 ∣∣∣Θc
(iv→tr)

∣∣∣ ≤ ∣∣∣Θc
(iv→tr),∆t

∣∣∣ , ∀M > 0,∆t > 0, (3.29)557

with strict inequality except when M = 1.558

Proof. The results follow from the error multiplier definitions in Lemma 3.6. The exact value of559

MΘ∆t in (3.27)-(3.28) can be determined numerically as the unique root of the function M∆t →560

fΘ,∆t (M∆t) :=
∣∣∣Θp

(iv→tr),∆t

∣∣∣ − ∣∣∣Θc
(iv→tr),∆t

∣∣∣ in the domain M∆t ∈
(

1 + 2
Aiv,∆t·∆t ,∞

)
. Note that the561

existence and uniqueness of the root MΘ∆t can be established through a detailed analysis of the562

properties of the function fΘ,∆t (M∆t) for various cases and ranges of M∆t. This proof is long and563

tedious, we will not try the reader’s patience by including the details.564

Theorem 3.8 shows that, when no constraints are applicable, the expected value error multipliers565

for PCMV is expected to be smaller than for TCMV. This is always the case for continuous rebalancing,566

but since MΘ∆t � 1 in typical applications (for example, the results of Section 4), this is also expected567

to be true for discrete rebalancing as a result of (3.27). Furthermore, (3.29) shows that the magnitude568

of Θc
(iv→tr),∆t for discrete rebalancing is always bounded below by the magnitude of Θc

(iv→tr) for569

continuous rebalancing. However, without any further reference to the particular underlying process570

parameters, such a general statement is not possible in the case of the corresponding PCMV error571

multipliers.572

Lemma 3.6 also indicates that with fixed investor model and investment parameters (i.e. fixed573

values of Aiv and T ), the standard deviation error (S(iv→tr) − Siv) depends on (i) both M and L574

(PCMV, continuous rebalancing); (ii) only L (TCMV, continuous rebalancing); (iii) both M∆t and575

L∆t (PCMV, discrete rebalancing); and (iv) only L∆t (TCMV, discrete rebalancing). As a result, the576

following theorem illustrates that comparing the standard deviation error multipliers is not as simple577

as comparing expected value error multipliers.578

Theorem 3.9. (Comparison of standard deviation error multipliers Ψp
(iv→tr) and Ψc

(iv→tr) no invest-

ment constraints) Assume that no investment constraints are applicable, and that µj > r and σj > 0

for j ∈ {iv,tr}. Define MΨ as the following quantity,

MΨ =1− 1

2AivT
log

[(
eAivT − 1

)
AivT

]
. (3.30)

17



For any fixed value of M > MΨ, define LΨ (M) > 0 as the unique root in (0,∞) of the function579

L→ gΨ (L;M), where580

gΨ (L;M) = e2(1−M)AivT
(
eLAivT − 1

)
− L

(
eAivT − 1

)
, L > 0,M > MΨ. (3.31)581

Then depending on the values of the ratios M and L, we have the following relationship between582

multipliers Ψp
(iv→tr) and Ψc

(iv→tr):583

Ψp
(iv→tr) > Ψc

(iv→tr), ∀M ≤MΨ and L > 0,584

Ψp
(iv→tr) < Ψc

(iv→tr), ∀M > MΨ and 0 < L < LΨ (M) ,585

Ψp
(iv→tr) = Ψc

(iv→tr), ∀M > MΨ and L = LΨ (M) ,586

Ψp
(iv→tr) > Ψc

(iv→tr), ∀M > MΨ and L > LΨ (M) . (3.32)587

Proof. It is straightforward to show that MΨ ∈
(

1
2 ,

3
4

)
, since AivT > 0. Fix M > 0, and consider the588

auxiliary function L→ fΨ (L;M) defined by589

fΨ (L;M) = e2(1−M)AivT ·
(
eLAivT − 1

)
(eAivT − 1)

− L, L > 0,M > 0. (3.33)590

Observe that L→ fΨ (L;M) is strictly convex, with limL↓0 fΨ (L;M) = 0. As a result, L→ fΨ (L;M)591

attains a global minimum in [0,∞) at L∗Ψ, where592

L∗Ψ =

0 if M ≤MΨ,

1
AivT

log

[
(eAivT−1)

AivT

]
− 2 (1−M) if M > MΨ.

(3.34)593

Comparing fΨ with the function gΨ defined in (3.31), we see that gΨ has a unique root LΨ (M) > 0 in594

the case where M > MΨ. Furthermore, M ∈ (MΨ, 1) implies 0 < LΨ (M) < 1, while M ≥ 1 implies595

that LΨ (M) ≥ 1. The result (3.32) then follows from the properties of the function fΨ (L;M).596

Note that the results of Theorem 3.9 can be extended to compare the magnitude of the correspond-597

ing multipliers, namely
∣∣∣Ψp

(iv→tr)

∣∣∣ and
∣∣∣Ψc

(iv→tr)

∣∣∣. In addition, similar results as in Theorem 3.9 can598

also be derived for the other standard deviation error multiplier pairs. Unfortunately, the resulting599

set of comparison results relies heavily on particular choices of the underlying investor model and600

investment parameters, which makes general statements of comparable simplicity to those of Theorem601

3.8 impossible. However, in the numerical results presented in Section 4 below, we see that when a602

fairly large set of reasonably calibrated inflation-adjusted model parameters are compared, it is typical603

to observe values of M ' 1 but a much larger range is observed for the values of L.604

As a result, the following theorem presents a comparison of the standard deviation error multipliers605

for the important special case where M ≡ 1, since this turns out to be very useful for explaining and606

interpreting the numerical results in Section 4.607

Theorem 3.10. (Comparison of standard deviation error multipliers when M ≡ 1, no investment608

constraints) Assume that no investment constraints are applicable, and that µj > r and σj > 0 for609

j ∈ {iv,tr}. In the special case where M = M∆t = 1, we have the following relationships between610

standard deviation error multipliers:611 ∣∣∣Ψc
(iv→tr)

∣∣∣ ≤ ∣∣∣Ψp
(iv→tr)

∣∣∣ , ∀L > 0, ∆t > 0,M = 1, (3.35)612 ∣∣∣Ψc
(iv→tr),∆t

∣∣∣ ≤ ∣∣∣Ψp
(iv→tr),∆t

∣∣∣ , ∀L∆t > 0,∆t > 0,M∆t = 1, (3.36)613

with strict inequality in both cases except when L = 1 or L∆t = 1, respectively. Furthermore, comparing614
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discrete and continuous rebalancing, we also have615 ∣∣∣Ψc
(iv→tr)

∣∣∣ ≤ ∣∣∣Ψc
(iv→tr),∆t

∣∣∣ , ∀L > 0,∆t > 0,M = 1. (3.37)616

Proof. The proof proceeds along similar lines as the proof of Theorem 3.9, except that the analysis is617

limited to the case where M = M∆t = 1.618

Theorem 3.10 is key to providing an explanation of the numerical results presented in Section 4,619

since in this special case, the relative error norm is given by (see (3.3))620

R(iv→tr) =
√

(%∆S)2 =
∣∣Ψ(iv→tr)

∣∣ , if M = M∆t = 1. (3.38)621

Recall from the definition (3.4) that M = M∆t = 1 when µiv = µtr, in other words the drift coefficients622

of the investor and true models agree. Theorem 3.10 shows that in the special case whereM = M∆t = 1623

and no investment constraints are applicable, PCMV is expected to be less robust than TCMV to a624

model misspecification error, in the sense that the corresponding error norm R(iv→tr) for PCMV is625

larger than that of TCMV, regardless of rebalancing frequency (see (3.35)-(3.36)).626

However, despite a larger error norm R(iv→tr), the PCMV error is not necessarily worse from the627

perspective of the investor. For example, the results of Lemma 3.6, Theorem 3.9 and Theorem 3.10 can628

be combined to show that Ψp
(iv→tr) < Ψc

(iv→tr) < 0 in the particular case where M = 1 and 0 < L < 1.629

This implies that in this case, %∆S for PCMV is a larger negative value than the corresponding value630

for TCMV (i.e. the investor’s risk is much lower than anticipated for PCMV compared to TCMV).631

This illustrates the importance of considering the efficient point error (%∆S,%∆E), which gives the632

signs of the error components, in conjunction with the error norm R(iv→tr), as noted in the discussion633

following Definition 3.2.634

Furthermore, (3.37) indicates that for TCMV in this special case, discrete rebalancing results635

in a larger error compared to the case of continuous rebalancing. However, a general statement of636

comparable simplicity to (3.37) is not available in the case of the corresponding PCMV error, since in637

the case of PCMV discrete rebalancing may in fact reduce the error depending on the particular set638

of parameters under consideration - see for example the results in Section 4. Therefore, in the case of639

PCMV, Lemma 3.6 is used to calculate the error norm (3.3) directly for a chosen set of model and640

investment parameters.641

3.3 Investment constraints642

The analytical results presented up to this point assumed that no investment constraints are appli-643

cable. In order to assess the effect of realistic investment constraints on the robustness to model644

misspecification errors, we consider both a solvency constraint and a maximum leverage constraint in645

the numerical results presented in Section 4. These constraints will only be applied in the context of646

discrete rebalancing.647

Fix an arbitrary rebalancing time tn ∈ Tm, and assume that the system is in state x = (s, b) =648

(S (t−n ) , B (t−n )) ∈ Ω∞, where Ω∞ = [0,∞) × (−∞,∞) denotes the spatial domain. We define in-649

solvency or bankruptcy as the event that Wj,∆t (s, b) ≤ 0, j ∈ {iv, tr}, and define the associated650

bankruptcy region as B = {(s, b) ∈ Ω∞ : Wj,∆t (s, b) ≤ 0}. The solvency constraint is defined as the651

requirement that if (s, b) ∈ B, the investment in the risky asset has to be liquidated, the total wealth652

is to be placed in the risk-free asset, and all subsequent trading activities much cease. The maximum653

leverage constraint specifies that after rebalancing at time tn according to (2.6), the leverage ratio654

defined as Sj (tn) / [Sj (tn) +B (tn)] , j ∈ {iv, tr} should not exceed some given maximum leverage655

value qmax typically in the range [1.0, 2.0], for n = 1, . . . ,m.656

Since no analytical solutions are known for cases where these investment constraints are applied657

simultaneously, we solve the problems numerically. For details regarding the numerical algorithms for658

solving the problems to obtain a target standard deviation Siv and the associated investor efficient659
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point (2.38), as well as more detail on the application of the solvency and leverage constraints, we660

refer the reader to Dang and Forsyth (2014); Van Staden et al. (2018).661

To calculate the efficient point error as per Definition 3.2, we first solve the relevant problem662

numerically to obtain (Siv, Eiv), and store the associated investor model-implied optimal strategy for663

each discrete state value. We then carry out 10 million Monte Carlo simulations of the portfolio value664

over [0, T ] using true model parameters, starting from an initial wealth w0, while rebalancing the665

portfolio at each rebalancing time in accordance with the stored investor model-optimal strategy. For666

each simulation, the resulting true terminal wealth value is stored, which allows us to calculate the667

corresponding true efficient point, and calculate the relative efficient point error using (3.2).668

4 Numerical results669

In this section, we numerically investigate the MV efficient point errors using different model and670

calibration assumptions. We illustrate the implications of the analytical results presented in Section671

3, and make use of the distinction of Definition 2.3 in terms of Category I and Category II error. In672

addition, we investigate the impact of the investment constraints discussed in Subsection 3.3 on the673

results.674

All numerical results in this section is based on an initial wealth of w0 = 100 and maturity T = 20675

years, and the problems are viewed from the perspective of t0 ≡ t1 = 0. In the case of discrete676

rebalancing, we assume ∆t = 1 (annual rebalancing), which is not only realistic for a long-term677

investor, but also provides a clear contrast with the case of continuous rebalancing. For illustrative678

purposes, wherever a target standard deviation of terminal wealth is required, a value of Siv = 400679

is assumed, which ensures that a material investment in the risky asset is required8 at least at some680

point during [0, T ].681

4.1 Empirical data and calibration682

For concreteness, in the case of the risky asset we consider two jump-diffusion models, namely the

Kou (2002) and the Merton (1976) models, and one pure diffusion model (GBM). In the case of the

Merton model, the pdf pj (ξ) , j ∈ {iv, tr} defined in Section 2 is the lognormal density with parameters(
mj , γ

2
j

)
, while in the case of the Kou model pj (ξ) is given by the asymmetric double-exponential

density

pj (ξ) = νjζj,1ξ
−ζj,1−1I[1,∞) (ξ) + (1− νj) ζj,2ξζj,2−1I[0,1) (ξ) , νj ∈ [0, 1] and ζj,1 > 1, ζj,2 > 0, (4.1)

where I[A] denotes the indicator function of the event A.683

In order to parameterize the underlying asset dynamics, the same calibration data and techniques684

are used as in Dang and Forsyth (2016); Forsyth and Vetzal (2017a). The empirical risky asset data685

is based on daily total return data (including dividends and other distributions) for the period 1926-686

2014 from the CRSP’s VWD index9, which is a capitalization-weighted index of all domestic stocks687

on major US exchanges. The risk-free rate is based on 3-month US T-bill rates10 over the period688

1934-2014, and has been augmented with the NBER’s short-term government bond yield data11 for689

1926-1933 to incorporate the impact of the 1929 stock market crash. Prior to calculations, all time690

series (for both the risky and risk-free asset) were inflation-adjusted using data from the US Bureau691

8In Lemma 3.6, as Siv ↓ 0, the efficient point errors also vanish, since an extremely risk averse investor would simply
avoid investing in the risky asset altogther.

9Calculations were based on data from the Historical Indexes 2015©, Center for Research in Security Prices (CRSP),
The University of Chicago Booth School of Business. Wharton Research Data Services was used in preparing this article.
This service and the data available thereon constitute valuable intellectual property and trade secrets of WRDS and/or
its third party suppliers.

10Data has been obtained from See http://research.stlouisfed.org/fred2/series/TB3MS.
11Obtained from the National Bureau of Economic Research (NBER) website,

http://www.nber.org/databases/macrohistory/contents/chapter13.html.
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Table 4.1: Calibrated risky asset parameters

No jumps Jump models

Parameters Gbm0 Mer2 Mer3 Mer4 Kou2 Kou3 Kou4

µj 0.0816 0.0822 0.0817 0.0820 0.0896 0.0874 0.0866

σj 0.1863 0.0972 0.1453 0.1584 0.0970 0.1452 0.1584

λj n/a 2.3483 0.3483 0.1461 2.3483 0.3483 0.1461

mj n/a -0.0192 -0.0700 -0.0521 n/a n/a n/a

γj n/a 0.1058 0.1924 0.2659 n/a n/a n/a

νj n/a n/a n/a n/a 0.4258 0.2903 0.3846

ζj,1 n/a n/a n/a n/a 11.2321 4.7941 3.7721

ζj,2 n/a n/a n/a n/a 10.1256 5.4349 3.9943

of Labor Statistics12, resulting in a risk-free rate of r = 0.00623.692

The calibration of the jump-diffusion models is based on the thresholding technique of Cont and693

Mancini (2011); Cont and Tankov (2004) using the approach of Dang and Forsyth (2016); Forsyth and694

Vetzal (2017a) which, in contrast to maximum likelihood estimation of jump model parameters, avoids695

problems such as ill-posedness and multiple local maxima. If ∆χi denotes the ith inflation-adjusted,696

detrended log return in the historical risky asset index time series, a jump is identified in period i if697

|∆χi| > J σj
√

∆τ , where σj is an estimate of the diffusive volatility, ∆τ is the time period over which698

the log return has been calculated, and J is a threshold parameter used to identify a jump13. In the699

case of GBM, standard maximum likelihood techniques are used.700

The calibrated parameters for the risky asset dynamics are provided in Table 4.1, where we also701

introduce the convention of referring to GBM as Gbm0, and the Merton and Kou models respectively702

as MerJ and KouJ , where J ∈ {2, 3, 4} is the chosen value of the threshold parameter.703

4.2 No investment constraints704

As rigorously shown in the analysis in Section 3, when no investment constraints are applicable, the705

efficient point errors depend critically on the ratios M , M∆t, L, and L∆t defined in (3.4). The closer706

these ratios to one, the more robust the MV outcomes to model misspecification, i.e. the smaller the707

resulting error measures (Definition 3.2). Using the parameters from Table 4.1, these ratios for each708

(iv, tr) model combination are displayed in Table 4.2.709

We make the following observations regarding this set of calibrated parameters. Firstly, we observe710

that |M − 1| ' 0, which by (3.38) implies that R(iv→tr) '
∣∣Ψ(iv→tr)

∣∣, regardless of (iv, tr) model711

combination or threshold. As a result, Theorem 3.10 provides the theoretical basis for an explanation712

of the errors due to model misspecification in this data set (discussed in detail below). Secondly,713

|L− 1| ' 0 for all (iv, tr) model combinations and/or thresholds, except those based on the Kou model714

(KouJ ) and any other model of a different fundamental type, namely Gbm0 or MerJ . For example,715

(iv, tr) = (Gbm0, Mer4) gives |L− 1| = 1.02−1 = 0.02 ' 0; however, (iv, tr) = (Mer3, Kou4) results716

in |L− 1| = |1.6− 1| = 0.6� 0; or (iv, tr) = (Gbm0, Kou4) gives |L− 1| = 1.56− 1 = 0.56� 0. The717

same observation holds for M∆t (resp. L∆t), since the values of M (resp. L ) and M∆t (resp. L∆t)718

are very similar. These observations, when considered in conjunction with the results of Lemma 3.6,719

assist in explaining the Category I and Category II model misspecification errors discussed below.720

4.2.1 General MV robustness721

For this set of calibrated parameters, we now calculate the different measures of the efficient point722

error (Definition 3.2), and consider the results in conjunction with the analytical results of Lemma723

3.6 and Theorem 3.10. First, consider the definition of the relative efficient point error (%∆S,%∆E)724

12The annual average CPI-U index, which is based on inflation data for urban consumers, were used - see
http://www.bls.gov.cpi .

13This means that a jump is only identified in the historical time series if the absolute value of the inflation-adjusted,
detrended log return in that period exceeds J standard deviations of the “geometric Brownian motion change”.
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Table 4.2: Key ratios M,M∆t, L and L∆t as per (3.4) for each combination of (iv, tr) model, ∆t = 1.

True

model
Ratios

Investor model

Gbm0 Mer2 Mer3 Mer4 Kou2 Kou3 Kou4

Gbm0
M , M∆t 1.00 , 1.00 0.99 , 0.99 1.00 , 1.00 0.99 , 0.99 0.90 , 0.90 0.93 , 0.93 0.94 , 0.94

L , L∆t 1.00 , 1.00 0.97 , 0.97 1.03 , 1.03 0.98 , 0.98 0.69 , 0.67 0.69 , 0.67 0.64 , 0.63

Mer2
M , M∆t 1.01 , 1.01 1.00 , 1.00 1.01 , 1.01 1.00 , 1.00 0.91 , 0.91 0.94 , 0.93 0.95 , 0.94

L , L∆t 1.03 , 1.03 1.00 , 1.00 1.05 , 1.05 1.00 , 1.00 0.70 , 0.69 0.71 , 0.69 0.66 , 0.65

Mer3
M , M∆t 1.00 , 1.00 0.99 , 0.99 1.00 , 1.00 1.00 , 1.00 0.91 , 0.90 0.93 , 0.93 0.94 , 0.94

L , L∆t 0.97 , 0.97 0.95 , 0.95 1.00 , 1.00 0.95 , 0.95 0.67 , 0.65 0.67 , 0.66 0.63 , 0.61

Mer4
M , M∆t 1.01 , 1.01 1.00 , 1.00 1.00 , 1.00 1.00 , 1.00 0.91 , 0.91 0.93 , 0.93 0.94 , 0.94

L , L∆t 1.02 , 1.02 1.00 , 1.00 1.05 , 1.05 1.00 , 1.00 0.70 , 0.69 0.70 , 0.69 0.66 , 0.65

Kou2
M , M∆t 1.11 , 1.11 1.10 , 1.10 1.10 , 1.11 1.10 , 1.10 1.00 , 1.00 1.03 , 1.03 1.04 , 1.04

L , L∆t 1.46 , 1.49 1.42 , 1.45 1.49 , 1.53 1.43 , 1.46 1.00 , 1.00 1.00 , 1.01 0.94 , 0.94

Kou3
M , M∆t 1.08 , 1.08 1.07 , 1.07 1.08 , 1.08 1.07 , 1.07 0.97 , 0.97 1.00 , 1.00 1.01 , 1.01

L , L∆t 1.45 , 1.48 1.42 , 1.44 1.49 , 1.52 1.42 , 1.45 1.00 , 0.99 1.00 , 1.00 0.94 , 0.94

Kou4
M , M∆t 1.07 , 1.07 1.06 , 1.06 1.06 , 1.07 1.06 , 1.06 0.96 , 0.96 0.99 , 0.99 1.00 , 1.00

L , L∆t 1.56 , 1.59 1.52 , 1.54 1.60 , 1.63 1.52 , 1.55 1.07 , 1.06 1.07 , 1.07 1.00 , 1.00

defined in (3.2). As shown in Lemma 3.6, given fixed investor model and investment parameters, %∆E725

depends on M or M∆t. Since |M − 1| ' 0 and |M∆t − 1| ' 0, %∆E is fairly negligible for all (iv, tr)726

model combinations. On the other hand, %∆S depends on both (M,L) or both (M∆t, L∆t). Table727

4.2 shows that for (iv, tr) model combinations based on either Gbm0 or MerJ and KouJ , we have728

|L− 1| � 0 and |L∆t − 1| � 0. It is therefore expected that for these (iv, tr) model combinations,729

%∆S will be large (MV results less robust to model misspecification), while it is negligible for the730

rest of the (iv, tr) model combinations (more robust MV results). That is, %∆S, not %∆E , is the731

key factor in determining the robustness of the MV optimization results for this data set as measured732

by (%∆S,%∆E). Second, considering the error norm (3.3), these observations imply that we would733

indeed expect R(iv→tr) '
√

(%∆S)2 =
∣∣Ψ(iv→tr)

∣∣ for this data set, which highlights the relevance of734

Theorem 3.10 in explaining the results.735

To further illustrate this point, Table 4.3 shows (%∆S,%∆E) for the (iv, tr) model combinations736

when the true (tr) model is Mer3 and Kou3, for both discrete and continuous rebalancing. Table 4.4737

shows the corresponding results for R(iv→tr) for the same data set.738

Table 4.3: (%∆S,%∆E), defined in (3.2). T = 20, ∆t = 1, Siv = 400, w0 = 100.

True

model

Objec-

tive

Investor model

Gbm0 Mer2 Mer3 Mer4 Kou2 Kou3 Kou4

Mer3

PCMV (-5% , 0%) (-6% , 0%) (0% , 0%) (-6% , 0%) (-22%,-2%) (-26%,-1%) (-32%,-1%)

TCMV (-1% , 0%) (-3% , -1%) (0% , 0%) (-2% , 0%) (-18%,-8%) (-18%,-6%) (-21%,-5%)

PCMV∆t (-4% , 0%) (-5% , 0%) (0% , 0%) (-5% , 0%) (-21%,-3%) (-25%,-2%) (-30%,-2%)

TCMV∆t (-1% , 0%) (-3% , -1%) (0% , 0%) (-2% , 0%) (-19%,-8%) (-19%,-6%) (-22%,-5%)

Kou3

PCMV (66% , 1%) (60% , 1%) (80% , 1%) (60% , 1%) (7% , 0%) (0% , 0%) (-10%, 0%)

TCMV (21% , 7%) (19% , 6%) (22% , 7%) (19% , 6%) (0% , -2%) (0% , 0%) (-3% , 1%)

PCMV∆t (55% , 1%) (50% , 1%) (65% , 1%) (50% , 1%) (5% , -1%) (0% , 0%) (-9% , 0%)

TCMV∆t (22% , 7%) (20% , 6%) (23% , 7%) (20% , 6%) (0% , -2%) (0% , 0%) (-3% , 1%)

739

740

Based on the preceding analysis, in particular Tables 4.2, 4.3 and 4.4, we reach the following conclusions741

on the robustness of MV results for this data set.742

� MV optimization can be surprisingly robust to Category I errors, where the investor makes an743

incorrect assumption regarding the fundamental model type, since the resulting efficient point744
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Table 4.4: R(iv→tr), defined in (3.3). T = 20, ∆t = 1, Siv = 400, w0 = 100.

True

model

Objec-

tive

Investor model

Gbm0 Mer2 Mer3 Mer4 Kou2 Kou3 Kou4

Mer3

PCMV 5% 6% 0% 6% 22% 26% 32%

TCMV 1% 3% 0% 2% 20% 19% 21%

PCMV∆t 4% 5% 0% 5% 21% 25% 30%

TCMV∆t 1% 3% 0% 2% 21% 20% 22%

Kou3

PCMV 66% 60% 80% 60% 7% 0% 10%

TCMV 22% 20% 23% 20% 2% 0% 3%

PCMV∆t 55% 50% 65% 50% 5% 0% 9%

TCMV∆t 23% 21% 24% 21% 2% 0% 3%

errors (largely driven by %∆S in this case) can be very small in this case. However, the extent745

to which the error remains small when switching fundamental model types depends on certain746

particular aspects of the models involved, such as the tails of the jump distribution. This is747

discussed in more detail in Remark 4.1 below.748

� MV optimization is generally very robust to Category II errors, since, when (iv, tr) models are749

within the same fundamental type, both (M,L) or (M∆t, L∆t) are very close to one, resulting in750

very small efficient point errors regardless of chosen error measure. This is a very encouraging751

finding from a model calibration perspective, as discussed in Remark 4.2 below.752

Remark 4.1. (MV robustness and the modelling of jumps) Tables 4.3 and 4.4 illustrate a surprising753

consequence of the analytical results presented in Section 3, namely that specifying the fundamental754

jump-diffusion model type incorrectly can be just as consequential as not incorporating jumps at all.755

Intuitively, one would expect that jump-diffusion model results (MerJ , KouJ ) would be more similar756

than these results suggest, with larger differences observed if any of these models are combined with757

a pure-diffusion model. Instead, a (iv, tr) model combination of a pure-diffusion and a jump-diffusion758

model, such as (Gbm0, MerJ ) or (MerJ , Gbm0), J = {2, 3, 4}, might not have a large impact on759

the MV outcomes, in spite of the fatter tails of the return distribution arising in the case of a jump-760

diffusion model. However, a (iv, tr) model combination that involves KouJ and a model of different761

type, namely Gbm0 or MerJ , results in significantly larger efficient point errors (since |L− 1| � 0762

or |L∆t − 1| � 0), regardless of error measure.763

This is a consequence of the differences between the Merton and the Kou jump models with regards764

to the modelling of the tails of the jump distribution, and the resulting impact on the factor σ2
j +κj,2.765

Specifically, recalling that κj,2 = E
[
(ξj − 1)2

]
, with ξj be a random variable denoting the jump766

multiplier, the asymmetric double exponential density of the Kou model with its heavy tails results in767

a value of κj,2 that is significantly larger than the corresponding value for the Merton model. All else768

being equal, the value of σ2
j + κj,2 is therefore expected to be possibly significantly larger for the Kou769

model than for the Merton model. Furthermore, while the GBM model does not incorporate jumps,770

the increased value of the diffusive volatility σj parameter in this case can assist in bringing the GBM771

results more in line with the results of the Merton model (see Remark 4.2). Taken together, these772

observations have the consequence that the key difference in results in not caused by the inclusion or773

exclusion of jumps in the risky asset process, but by the particular choice of jump model.774

Finally, we observe that the modelling of jumps also has an impact on the sign of %∆S, as775

illustrated in Table 4.3. This can be explained as follows. From Definition 3.2 and Lemma 3.6, we776

observe that sign of %∆S is the same as the sign of the error multiplier Ψ(iv→tr), which (by Lemma777

3.6) depends on a combination of all the process and investment parameters. Changing investment778

and process parameters will inevitably lead to different results. However, the largest values of %∆S779

in Table 4.3 are obtained when the true model is Mer3 and the investor model is KouJ (in which780

case %∆S < 0), and when the true model is Kou3 and the investor model is MerJ (in which case781

%∆S > 0). This is again explained with reference to the modelling of the tails of the jump distribution.782

Suppose the true model is Mer3, and the investor model is KouJ . In this case, the investor calculates783
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a standard deviation of terminal wealth Siv consistent with the implications of the heavy tails of the784

asymmetric double exponential distribution, while the true standard deviation S(iv→tr) obtained under785

the (true) Merton model is much lower. This results in S(iv→tr) < Siv, so that %∆S < 0. The case of786

%∆S > 0 can be explained using similar observations.787

Closely related to this discussion, Remark 4.2 below provides a discussion of the implications of788

the MV robustness results for model calibration.789

Remark 4.2. (Implications for model calibration) The MV robustness results have some interesting790

implications for the thresholding calibration methodology used to calibrate the risky asset parameters.791

Assume that the chosen investor model type matches the true model fundamental type but with poten-792

tially different sets of parameters, for example (iv, tr) = (Mer3, Mer2), or (iv, tr) = (Mer3, Mer4).793

The results of Table 4.2 show that the thresholding calibration methodology outlined in Subsection794

4.1 is expected to give very robust MV results regardless of the jump threshold J . Specifically, using795

the analytical results derived in Section 3, the impact of the jump threshold J on the key ratios (3.4)796

is relatively straightforward. In particular, since only the combination of parameters σ2
j + λjκj,2 play797

a role in the ratio L, increasing the jump threshold J increases the diffusive volatility σj (more asset798

price moves are due to the diffusion component) and also increases the variance of the jump distri-799

bution and therefore κj,2 (the jumps that occur are larger, regardless of direction), but at the same800

time fewer jumps occur implying a smaller value of λj occur. This robustness of MV results to the801

choice of jump threshold is encouraging since the threshold can also have somewhat counterintuitive802

consequences. For example, Tables 4.3 and 4.4 show that if the true model is Mer2, then an investor803

model of Mer3 would result in M and L values indicative of larger (though still comparatively im-804

material) efficient point errors than if the investor model Mer4 was chosen, which is due precisely to805

the above-mentioned interplay between σj , λj and κj,2 in the thresholding calibration methodology.806

4.2.2 PCMV and TCMV807

Comparing the efficient point errors in this data set for PCMV and TCMV when no investment808

constraints are applicable, the analytical results in Section 3 can be used in conjunction with Tables809

4.2, 4.3 and 4.4 to reach the following conclusions.810

� PCMV is less robust to model misspecification than TCMV, regardless of rebalancing frequency811

or underlying models. This is clear from the results for R(iv→tr) reported in Table 4.4, and is812

indeed expected based on the result of Theorem 3.10, since in this data set we observe |M − 1| ' 0813

and |M∆t − 1| ' 0 (see Table 4.2).814

� The differences between PCMV and TCMV efficient point errors increases further when the815

(iv,tr) models are of different fundamental types, especially when one model is based on the Kou816

jump-diffusion model formulation. In this particular case, the observation that |L− 1| � 0 or817

|L∆t − 1| � 0, together with the results of Lemma 3.6 and Theorem 3.10 show that these results818

are expected for this data set.819

� Considering the impact of rebalancing frequency on the efficient point error, we observe that820

for TCMV, discrete rebalancing increases the value of R(iv→tr) compared to the corresponding821

values for continuous rebalancing, which is to be expected given the results of Theorem 3.10 (see822

(3.37)). However, the overall impact of rebalancing frequency on the error norm in the case of823

TCMV is actually fairly negligible. In contrast, for PCMV, discrete rebalancing decreases the824

value of R(iv→tr) compared to the corresponding values for continuous rebalancing.825

As noted in the discussion following Theorem 3.10, a simple result comparable to (3.37) cannot be826

given in the case of PCMV, so for analytical purposes these results can be explained rigorously by827

Lemma 3.6 for this particular set of investment and model parameters. However, a more intuitive828

explanation as to why the PCMV and TCMV efficient point errors react so differently to changes829

in rebalancing frequency is particularly useful when no analytical solutions are available, such830

as in the case of the results in Subsection 4.3 below.831
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From the results of Cong and Oosterlee (2016); Van Staden et al. (2018), it is known that the832

PCMV strategy requires a significantly larger investment in the risky asset in the early years833

of the investment time horizon than the TCMV strategy. Furthermore, discrete rebalancing834

reduces this large early investment in the risky asset significantly in the case of PCMV, but has835

a much smaller impact in the case of TCMV. The relatively larger standard deviation efficient836

point errors for PCMV in Tables 4.3 and 4.4 can therefore be explained intuitively by noting837

that the PCMV-optimal strategy places a much heavier reliance on the risky asset during the838

critical early years of the investment. Therefore, the model misspecification scenario is expected839

to have a comparatively larger impact on PCMV terminal wealth standard deviation outcomes,840

which is magnified further if the portfolio is rebalanced continuously.841

Table 4.5 illustrates the numerical results for the true price of risk, as defined in Lemma 3.7, in842

the case of no investment constraints. In particular, we observe that the ratio Γp(iv→tr)/Γ
c
(iv→tr) always843

exceeds one for the set of parameters considered in this section. In other words, given this set of844

model and investment parameters, the PCMV strategy outperforms the TCMV strategy on the basis845

of the corresponding true price of risk, regardless of true model and investor model combinations.846

However, as observed in (3.25) and the associated discussion, this is not necessarily guaranteed in all847

circumstances.

Table 4.5: True price of risk, Γ(iv→tr), defined in (3.23). T = 20, ∆t = 1, Siv = 400, w0 = 100.

True

model

Objec-

tive

Investor model

Gbm0 Mer2 Mer3 Mer4 Kou2 Kou3 Kou4

Mer3
PCMV∆t 4.05 4.04 4.05 4.04 3.74 3.71 3.60

TCMV∆t 1.81 1.80 1.83 1.80 1.66 1.62 1.55

Kou3
PCMV∆t 2.55 2.59 2.49 2.59 2.86 2.86 2.85

TCMV∆t 1.73 1.72 1.75 1.72 1.57 1.53 1.47

848

4.3 Impact of investment constraints849

Tables 4.6 and 4.7 provide (%∆S,%∆E) and R(iv→tr), respectively, when investment constraints as850

outlined in Subsection 3.3 are applied to the results of Tables 4.3 and 4.4. Specifically, in the event of851

insolvency we require the liquidation of the investment in the risky asset, and allow for a maximum852

leverage ratio of qmax = 1.5. In this case, we conclude the following.853

� Tables 4.6 and 4.7 show that the PCMV and TCMV results are very robust (i.e. relatively small854

values of (%∆S,%∆E) and R(iv→tr)) to both Category I and Category II model misspecification855

errors if investment constraints are applied. Even though for example a Gbm0 investor model856

and a KouJ ,J ∈ {2, 3, 4} true model represents significantly different perspectives on the857

underlying asset dynamics, values of for example %∆S ' 20% and %∆E ' 5% accumulated858

over an investment period of 20 years is robust indeed.859

� Considering the results in Table 4.7, we observe that in those cases where the largest errors as860

measured by R(iv→tr) occur, PCMV is associated with smaller errors than TCMV. This stands861

in contrast to the case where no constraints were applied (see Table 4.4 above). Furthermore,862

we observe that the TCMV errors are typically somewhat smaller in the case with investment863

constraints (Table 4.7) than in the case where no constraints are applied (Table 4.4). However,864

this error reduction effect following the application of investment constraints is significantly more865

pronounced in the case of PCMV. This phenomenon is discussed in more detail below.866

867

868
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Table 4.6: (%∆S,%∆E), defined in (3.2). T = 20, ∆t = 1, Siv = 400, w0 = 100, qmax = 1.5,
liquidation in the event of bankruptcy.

True

model

Objec-

tive

Investor model

Gbm0 Mer2 Mer3 Mer4 Kou2 Kou3 Kou4

Mer3
PCMV∆t (1% , 0%) (-1% , 0%) (0% , 0%) (-1% , 0%) (-12%,-2%) (-12%,-2%) (-14%,-3%)

TCMV∆t (0% , 0%) (-2% , 0%) (0% , 0%) (-2% , 0%) (-20%,-7%) (-18%,-5%) (-19%,-4%)

Kou3
PCMV∆t (14% , 2%) (13% , 2%) (13% , 2%) (13% , 2%) (1% , 0%) (0% , 0%) (0% , 0%)

TCMV∆t (20% , 6%) (18% , 5%) (21% , 6%) (19% , 6%) (-3% , -2%) (0% , 0%) (0% , 1%)

Table 4.7: R(iv→tr), defined in (3.3). T = 20, ∆t = 1, Siv = 400, w0 = 100, qmax = 1.5, liquidation in
the event of bankruptcy.

True

model

Objec-

tive

Investor model

Gbm0 Mer2 Mer3 Mer4 Kou2 Kou3 Kou4

Mer3
PCMV∆t 1% 1% 0% 1% 12% 12% 14%

TCMV∆t 0% 2% 0% 2% 21% 18% 19%

Kou3
PCMV∆t 15% 13% 14% 13% 1% 0% 0%

TCMV∆t 21% 19% 22% 20% 3% 0% 1%

The results of Van Staden et al. (2018) can again be used to provide an intuitive explanation of the869

relative robustness results for PCMV and TCMV in Tables 4.6 and 4.7.870

Specifically, when investment constraints are applied, the smaller errors as measured by R(iv→tr) in871

the case of PCMV appears to be largely a consequence of the leverage constraint having a much more872

significant impact on the PCMV results compared to the TCMV results (see Van Staden et al. (2018)873

for a discussion). Compared to the case of no investment constraints, the maximum leverage ratio874

leads to a substantial reduction of the amount invested in the risky asset in the case of PCMV during875

the early years of the investment time horizon. TCMV is of course also impacted by the leverage876

constraint, but to a significantly smaller degree, with the solvency condition serving as the primary877

driver of the lower investment in the risky asset in the early years of the investment horizon when878

constraints are applied. As a result, the error in the TCMV due to model misspecification is not879

affected to the same extent as the corresponding error for PCMV when investment constraints are880

applied.881

Figure 4.1 shows the difference in optimal controls for theMer3 andKou3 investor models obtained882

numerically as described in Subsection 3.3. Figure 4.1(a) shows that as wealth increases, the difference883

in PCMV optimal controls initially increases but then decreases again, behavior which is closely related884

to the role of the implied terminal wealth target on the PCMV-optimal strategy (see Dang and Forsyth885

(2016); Vigna (2014) for a discussion). In contrast, this is not the case with TCMV (Figure 4.1(b)),886

which shows similar behaviour to PCMV in later years as expected14, while in earlier years we see887

an increase in the difference in optimal controls as the wealth level increases, but with no associated888

decrease to the same extent as observed in the case of PCMV. This can be explained by noting that889

the TCMV investor acts consistently with MV preferences throughout the investment time horizon,890

with no implicit terminal wealth target being present.891

Figure 4.1 therefore assists in providing a numerical explanation of the results of Table 4.6. In892

particular, in the case of PCMV, the implied target-seeking behavior of the PCMV-optimal strategy893

implies a reduction in risky asset exposure if prior returns were relatively good, regardless of underlying894

model, which helps to drive the improved robustness results (smaller errors as measured by R(iv→tr))895

in the case of PCMV relative to TCMV seen in Table 4.7. In the case of TCMV, while at an individual896

rebalancing event the maximum error in the control might be smaller than in the case of PCMV (Figure897

4.1(a) vs 4.1(b)), the control error for TCMV can overwhelm the corresponding error for PCMV as898

wealth grows, thus driving the larger overall error for TCMV observed in Table 4.7.899

900

14In the extreme case of single-period problems, there is no difference between PCMV and TCMV optimization.
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(b) TCMV∆t

Figure 4.1: Difference in numerically-calculated optimal controls for the Mer3 and Kou3 models,
expressed as the difference in the MV-optimal fractions of wealth invested in the risky asset at the
first and last rebalancing events, n = 1 and n = m, respectively. Specifically, the figures show the

difference
[
uq∗Mer3,∆t/WMer3,∆t (t)

]
−
[
uq∗Kou3,∆t/WKou3,∆t (t)

]
as a function of wealth, for q ∈ {p, c}

and t = tn, n ∈ {1,m}. Siv = 400, discrete rebalancing (∆t = 1), qmax = 1.5, liquidation in the event
of bankruptcy. Note the same scale on the y-axis.

5 Conclusions901

In this paper, we investigate the robustness of dynamic MV optimization to model misspecification er-902

rors. Under certain assumptions, we derived analytical solutions to quantify the error in MV outcomes903

when the investment strategy, optimal according to some chosen investor model, is implemented in a904

market driven by a possibly different true model. The analytical solutions show that the error in MV905

outcomes is driven by certain combinations of model parameters, so that individual process parameters906

only play a secondary role, implying that fundamentally different perspectives on the underlying dy-907

namics might still result in very similar MV results for terminal wealth. In the absence of investment908

constraints, numerical tests show that PCMV results in larger MV errors than TCMV, and continuous909

rebalancing is associated with larger errors than discrete rebalancing. The analytical results presented910

show that under certain conditions, this is to be expected. However, in the more realistic scenario911

of discrete rebalancing together with the simultaneous application of multiple investment constraints,912

PCMV can be more robust to model misspecification errors than TCMV.913

We leave the extension of our results to the recently proposed dynamically optimal MV approach914

of Pedersen and Peskir (2017), as well as the impact of model misspecification on other percentiles of915

the terminal wealth distribution, for our future work.916

Appendix A: Additional numerical results917

Bootstrap resampling test - historical bond and stock returns918

To obtain the analytical and numerical results presented in this paper, we have assumed that the919

underlying asset dynamics can be described in terms of some known diffusion or jump-diffusion models920

(Assumption 2.3). In addition, we have explicitly not considered stochastic interest rates or stochastic921

volatility due to the reasons outlined in Section 2. However, as discussed in Forsyth and Vetzal922

(2017a), for purposes of risk management and validation it is useful to perform historical backtesting923

of the results using for example a moving block bootstrap resampling method15, which we perform924

using the same historical data used for calibration purposes in Subsection 4.1.925

Specifically, we assess the MV of true terminal wealth using 5 million resampled historical risky926

and risk-free asset return paths, rebalancing the portfolio at each rebalancing time according to the927

stored MV-optimal investment strategies as per the appropriate investment objective and investor928

15For more information on bootstrapped resampling tests in financial settings, see, for example, Annaert et al. (2009);
Bertrand and Prigent (2011); Cogneau and Zakalmouline (2013); Sanfilippo (2003)
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model. The resampled paths are constructed by dividing the horizon T into k̃ blocks of size b̃ years929

(i.e. T = k̃b̃), where block sizes of b̃ = 5 years and b̃ = 10 years are considered16. Each individual930

resampled path is constructed by selecting k̃ blocks at random (with replacement) from the historical931

data, with each block starting at a random quarter and with blocks being wrapped around to avoid end932

effects in the data, with selected blocks being concatenated to produce the path. In Table A.1, we use933

the resampled historical paths as the “true” model to report the relative efficient point error exactly934

as before. We observe that (i) the relative efficient point error is of similar order of magnitude using935

resampled historical data as in the case of using a model (Table 4.6), and (ii) the qualitative conclusions936

regarding the relative robustness of PCMV vs. TCMV optimization for the models considered in Table937

4.6 appear to hold.938

More generally, the results of Table A.1 validate our overall conclusions regarding the robustness of939

MV optimization to model misspecification errors, as well as Assumption 2.2 regarding interest rates.940

We leave a detailed discussion of the different performance of PCMV and TCMV-optimal controls in941

the case of resampled historical data for our future work.

Table A.1: (%∆S,%∆E) calculated using numerical results based on resampled historical data. T =
20, ∆t = 1, Siv = 400, w0 = 100, qmax = 1.5, liquidation in the event of bankruptcy.

Block

size

Objec-

tive

Investor model

Gbm0 Mer2 Mer3 Mer4 Kou2 Kou3 Kou4

5 years
PCMV∆t (6% , 1%) (5% , 1%) (5% , 1%) (5% , 1%) (-7% , -1%) (-7% , -1%) (-7% , 0%)

TCMV∆t (-2% , 0%) (-4% , -1%) (-2% , 0%) (-3% , -1%) (-11%,-1%) (-10%,-1%) (-10%,-1%)

10

years

PCMV∆t (7% , 3%) (5% , 3%) (6% , 3%) (5% , 2%) (-7% , 1%) (-7% , 1%) (-7% , -1%)

TCMV∆t (-8% , 0%) (-10%,-1%) (-9% , 0%) (-10%,-1%) (-14%, 0%) (-13%,-1%) (-12%, 0%)

942

Other attributes of the terminal wealth distribution943

The preceding results only focused on the mean and variance of terminal wealth. However, depending944

on the application, the investor may also be concerned with other aspects of the terminal wealth945

distribution, especially given the possibility of jumps in the risky asset process. For example, in946

pension fund applications (see, for example, Forsyth and Vetzal (2017a)) the probability that the947

terminal wealth Wtr,∆t (T ) falls below some minimum level (for illustrative purposes assumed here to948

be w0e
rT ) may be of interest. Other risk metrics such as the Value-at-Risk (VaR) or Conditional Value-949

at-Risk (CVaR) might also be considered important - see Rockafellar and Uryasev (2002). Table A.2950

uses the Monte Carlo simulations described above to estimate the probability P
[
Wtr,∆t (T ) ≤ w0e

rT
]
,951

as well as the 95%-VaR and 95%-CVaR17.952

In this case, concluding that MV optimization is robust to model misspecification errors depends953

not only on some (percentile-based) definition of robustness, but also on the associated implications954

of estimating some critical value incorrectly. As a result, we leave the broader implications of model955

misspecification for the terminal wealth distribution for our future work.956
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