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Abstract5

We develop an efficient pricing approach for guaranteed minimum withdrawal benefits (GMWBs) with6

continuous withdrawals under a realistic modeling setting with jump-diffusions and stochastic interest7

rate. Utilizing an impulse stochastic control framework, we formulate the no-arbitrage GMWB pricing8

problem as a time-dependent Hamilton-Jacobi-Bellman (HJB) Quasi-Variational Inequality (QVI)9

having three spatial dimensions with cross derivative terms. Through a novel numerical approach10

built upon a combination of a semi-Lagrangian method and the Green’s function of an associated11

linear partial integro-differential equation, we develop an ϵ-monotone Fourier pricing method, where12

ϵ > 0 is a monotonicity tolerance. Together with a provable strong comparison result for the HJB-QVI,13

we mathematically demonstrate convergence of the proposed scheme to the viscosity solution of the14

HJB-QVI as ϵ → 0. We present a comprehensive study of the impact of simultaneously considering15

jumps in the sub-account process and stochastic interest rate on the no-arbitrage prices and fair16

insurance fees of GMWBs, as well as on the holder’s optimal withdrawal behaviors.17
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1 Introduction21

Variable annuities are a class of insurance products that provide the holder with particular guaranteed22

stream of income without requiring him/her to sacrifice full control over the funds invested, and hence,23

allowing the holder to enjoy potentially favorable market conditions. Therefore, these products are24

particularly popular among investors who need to manage their own spending plans, especially among25

retirees, considering the on-going rapid word-wide trend of replacing defined benefit pension plans by26

defined contribution ones. The current era of increased market volatility and growing inflation has27

significantly boosted annuity sales. In some countries, such as the US, annuity sales are at highest levels28

since the 2007-2008 Global Financial Crisis. Specifically, the US annuity market in 2021 was valued at29

US$231.63 billion, and the market is expected to grow at a compound annual growth rate of 4.7% during30

the forecast period of 2022-2026, reaching US$298.70 billion by 2026 [71].31

To attract investors, variable annuities are often incorporated with additional features, among which32

Guaranteed Minimum Withdrawal Benefits (GMWBs) are popular. Since first introduced in the early33

2000’s, GBMWs have captured great attention from both industry and academia alike, as evidenced by34

a substantial and growing body of literature; see [61, 17, 19, 22, 6, 42, 44, 45, 29, 37, 40, 62, 4, 83, 1, 65,35

43, 57], among many other publications.36
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In its simplest form, a GMWB is a long-dated contract, with maturity of 10 years or more, between37

the policy holder (e.g. a retiree) and the insurer (e.g. an insurance company), according to which the38

holder makes an up-front payment, i.e. the premium, into a (personal) sub-account for investment in39

risky assets. In return, by means of a guarantee account, the insurer is stipulated to provide the40

holder with a stream of guaranteed cash withdrawals whose amounts (and possibly timing) are to be41

determined by the holder, all of which cumulatively sum up to at least the premium, regardless of the42

performance of the risky investment. The holder may also withdraw more than the specified amount,43

subject to certain penalties and conditions. Upon contract expiry, the holder can convert the remaining44

investment in the risky assets to cash, and withdraw this amount. For protection from the downside in a45

GMWB, the insurer typically charges the holder an insurance fee by deducting an ongoing fraction of the46

risky investment as opposed to an up-front one-off fee. Underpricing typically results in undercalculated47

insurance fee, which adversely affects the insurer’s risk management, potentially impacting the long-term48

sustainability of the market. The reader is referred to, for example, [20, 61, 19, 22, 12], for discussions49

in relation to GMWB underpricing in practice and its potential consequences.50

Guaranteed Minimum Withdrawal Benefits are studied under two withdrawal scenarios, namely51

discrete and continuous. It is reported in the literature that no-arbitrage prices and fair insurance52

fees of GMWBs, as well as the holder’s optimal withdrawal behaviors are highly sensitive to modeling53

assumptions and parameters, in particular, jumps in the sub-account’s balance process [19, 14, 52, 57].54

Under a discrete withdrawal scenario, fair prices and insurance fees are found to be remarkably sensitive55

to interest rates, in particular, in the case of (instantaneous) short rate dynamics, such as the Vasicek56

model [66, 74], the Hull-White [37, 30, 38, 55], and the the Cox-Ingersoll-Ross model [7, 40]. Substantial57

impact of short rate dynamics on the holder’s optimal withdrawal behavior is recently reported in [62].58

We highlight that the combined effects of jumps and stochastic interest rate in the context of GMWBs59

have not been previously studied in the literature.60

Numerical methods for GMWBs in a continuous withdrawal scenario is studied through a stochastic61

optimal control framework. In this withdrawal scenario, the pricing problem can be formulated using62

either impulse control or singular control. This typically results in a Hamilton-Jacobi-Bellman Quasi-63

Variational Inequality (HJB-QVI) of at least two spatial dimensions, namely the balances of the sub- and64

guarantee accounts, which must be solved numerically. Convergence to viscosity solutions forms the main65

challenge in the development of numerical methods for HJB equations. This is typically built upon the66

convergence framework established by Barles and Souganidis in [11]; also, see [21, 81, 50, 10, 73, 15, 9]67

for relevant discussions. Specifically, provided that a strong comparison result holds, convergence to68

viscosity solution is ensured if numerical methods are (i) monotone (in the viscosity sense), (ii) stable,69

and (iii) consistent. When a finite difference method is used, monotonicity is ensured by a positive70

coefficient discretization method [69, 82, 59, 34]. The reader is referred to [22, 44, 43, 42, 61, 12]71

and [17, 19, 4, 57] for an analysis of singular control and impulse control formulations, respectively. For72

GMWB contracts, impulse control is more convenient than singular control in handling complex contract73

features, such as is the reset provision[22, 61, 65, 1, 40, 83].174

In contrast to continuous withdrawals, a discrete withdrawal scenario is relatively much simpler to75

tackle. Specifically, between fixed withdrawal (intervention) times, the pricing of GMWB contracts76

typically involves solving an either (i) associated linear Partial (Integro)-Differential Equation (P(I)DE)77

using finite differences [17, 22, 57], or (ii) an expectation problem using numerical integration [58, 75,78

12, 1, 48, 47] or regression-type Monte Carlo [7, 46]. Across withdrawal times, an optimization problem79

needs to be solved to determine the optimal withdrawal amount, by which the balance of the guarantee80

account is then adjusted accordingly. We note that existing numerical integration or regression-type81

Monte Carlo are typically not suitable to tackle continuous withdrawals.82

1Generally speaking, the impulse control approach is suitable for many complex situations in stochastic optimal control

[64, 76, 77, 78, 79, 53, 39, 5, 32, 2, 13, 24].
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In light of the current era of wildly fluctuating interest rates and economic turbulence, it is of83

enormous importance to apply realistic modelling for popular pension-related products. In addition,84

it is also equally important to develop mathematically reliable numerical methods for those products,85

enabling realistic and useful conclusions to be drawn from the numerical results. For GMWBs, it is highly86

desirable to simultaneously incorporate jumps (in the sub-account balance) and stochastic interest rate87

dynamics. Although in practice, only discrete withdrawals are possible, through no-arbitrage arguments,88

it is arguable that the prices and insurance fees in the associated continuous withdrawal scenario can89

serve as worst-case bounds for the respective values in a discrete withdrawal one, which are important90

for risk-management purposes.91

Nonetheless, the continuous withdrawal scenario brings about significant mathematical challenges. As92

noted earlier, for GMWBs under a low-dimensional model, existing numerical integration and regression-93

type Monte Carlo methods are computationally expensive. With respect to the PIDE approach, due94

to the short rate factor, the no-arbitrage pricing of GMWBs gives rise to a HJB-QVI of three spatial95

dimensions with cross derivative terms, which is very challenging to solve efficiently numerically. In96

particular, while finite difference methods can be used to solve this HJB-QVI, due to cross derivative97

terms, to ensure monotonicity through a positive coefficient discretization method, a wide-stencil method98

based on a local coordinate rotation is needed. However, this is very computationally expensive [59, 26].99

In general, Fourier-based methods, if applicable, offer several important advantages over finite differ-100

ences, such as no timestepping error between intervention times, and the capability of straightforward101

handling of realistic underlying dynamics, such as jump diffusion and regime-switching. In particular,102

the well-known Fourier cosine series expansion method [33, 72] can achieve high order convergence for103

piecewise smooth problems. However, optimal control problems are often non-smooth, and hence high104

order convergence cannot be expected. Convergence issues, especially montonicity considerations are105

of primary importance. A novel Fourier-based method is introduced in our paper [57] for an impulse106

control formulation of the GMWB pricing problem in which the sub-account’s balance process follows107

jump-diffusion dynamics with a constant interest rate. Central to the method is a combination of (i)108

the Green’s function of an associated multi-dimensional PIDE and (ii) an ϵ-monotone Fourier method109

to approximate a pricing convolution integral through a known closed-form expression of the Fourier110

transform of the Green function. Here, the monotonicity of the method is achieved within an ϵ toler-111

ance, where ϵ > 0, as opposed to strictly monotone. In this work, a Barles-Souganidis-type analysis in112

[11] is utilized to rigorously prove the convergence of the scheme the unique viscosity solution of the113

HJB-QVI as the discretization parameter and the monotonicity tolerance ϵ approach zero. Nonetheless,114

for the case of jump-diffusion dynamics having a non-trivial correlation with the short rate, a closed-form115

expression of the Fourier transform of the Green function is not know to exist. Therefore, the approach116

in [57], while promising, is not directly applicable. This mathematical and computational challenge of117

continuous withdrawals forms another motivation for our work.118

The objective of the paper is (i) to develop a provably convergent and computationally efficient119

PDE method for the no-arbitrage GMWB pricing problem with continuous withdrawals under realistic120

modeling assumptions, namely jumps and stochastic interest rate, and (ii) to study the combined impacts121

of these modelling assumptions on the no-arbitrage prices and fair insurance fees of GMWBs, as well122

as the holder’s optimal withdrawal behaviors. For clarity of presentation, we focus on the GMWB123

pricing problem with basic contract features. We emphasize that we do not to advocate for a specific124

jump-diffusion and/or stochastic interest rate model, but rather, we aim to study the impact of realistic125

modeling on GWMB. In particular, to model stochastic interest rate, we use the Vasicek short rate126

dynamics [80]. Due to a Gaussian nature, the Vasicek short rate dynamics are often criticized for allowing127

negative interest rates, which is considered a highly undesirable, and perhaps, also highly improbable,128

scenario for any economy. However, in recent times, it has become evident that negative interest rates129

are employed as a monetary policy tool by central banks, such as the European Central Bank, against130

extreme financial crises. For example, see [51, 27, 56] and references therein.131
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The main contribution of the paper are as follows.132

� We propose a comprehensive and systematic impulse control formulation and pricing approach for133

GMWBs when the sub-account process follows a jump-diffusion process [60, 54] with the Vasicek134

short rate dynamics [80].135

– We derive and define the pricing problem in a form of an HJB-QVI with three spatial dimen-136

sions posed on an infinite definition domain with appropriate boundary conditions. Through137

a novel approach built upon a combination of a semi-Lagrangian method and the Green’s138

function of an associated PIDE, we obtain a properly truncated computational domain for139

which loss of information in the boundary is controllably negligible.140

– Starting from a discrete withdrawal scenario, we develop a semi-Lagrangian ϵ-monotone141

Fourier method to solve an associated two-dimensional PIDE on a finite computation do-142

main, together with an efficient padding technique to control wrap-around errors.143

– With a provable strong comparison result, we rigorously prove the convergence of our scheme144

the unique viscosity solution of the HJB-QVI as the discretization parameter and the mono-145

tonicity tolerance ϵ approach zero. That is, our proposed method can be used for discrete146

withdrawals, and can also be shown to converge to the viscosity solution of the HJB-QVI147

arising in the continuous withdrawal setting.148

� With a provably convergent numerical method, which allows realistic and useful conclusions to be149

drawn from the numerical results, we carry out a comprehensive study of the impact of considering150

jumps and stochastic short rate. Our numerical results suggest that, compared to stochastic interest151

rate dynamics, using a constant interest rate results in underpricing of fair insurance fees for152

GMWBs. Furthermore, the simultaneous application of jumps and stochastic interest rates results153

in (i) a much lower fair insurance fee, and (ii) significantly different optimal withdrawal behaviors154

than those obtained from a comparable pure-diffusion model with a comparable constant interest155

rate. These findings underscore the importance of realistic modelling and mathematically reliable156

numerical methods in reducing potential underpricing and overpricing of GMWBs, contributing to157

the long-term sustainability of the financial markets.158

The remainder of the paper is organized as follows. Section 2 describes the impulse control framework and159

the underlying processes. We present in Section 3 an impulse control formulation of the GMWB pricing160

problem in the form of a three-dimensional HJB-QVI. Also therein, we also prove a strong comparison161

result. A numerical method for solving the HJB-QVI is discussed in Section 4. The convergence of the162

proposed numerical method is demonstrated in Section 5. In Section 6, we present and discuss extensive163

numerical results of GMWBs and the combined impact of jumps and stochastic interest rates on the164

prices, insurance fees, and the holder’s optimal withdrawal behaviors. Section 7 concludes the paper and165

outlines possible future work.166

2 Modeling167

We consider a complete probability space (S,F,F0≤t≤T ,Q), with sample space S, sigma-algebra F,168

filtration F0≤t≤T , where T > 0 is a fixed investment maturity, and a risk-neutral measure Q defined on169

F. We discuss the underlying dynamics with an impulse control formulation framework in mind [64, 53].170

Broadly speaking, using an impulse control argument [17], the holder’s optimal withdrawal strategy171

involves choosing either (i) withdraw continuously at a rate determined by the holder, but no greater172

than a cap on the maximum allowed continuous withdrawal rate, hereinafter denoted by Cr; or (ii)173

withdraw finite amounts at specific times, both determined by the holder, subject to a penalty charge174

which is proportional to the withdrawal amount and is calculated at the rate µ, where 0 < µ < 1, as175

well as a strictly positive fixed cost c. Due to the associated penalty charge, (ii) is only optimal at some176
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stopping times. To this end, let {tι}ι≤ιmax, ιmax ≤ ∞, is any sequence of stopping times with respect to177

the filtration F0≤t≤T satisfying 0 ≤ t ≤ t1 ≤ t2 < · · · < tιmax ≤ T .178

We denote by (i) γ̂(t), γ̂(t) ∈ [0, Cr], a continuous control representing continuous withdrawal rate179

at time t, and by (ii) an impulse control {(tι, γι)}ι≤ιmax, representing withdrawal/intervention times180

{tι}ι≤ιmax and associated impulses {γι}ι≤ιmax, where γι is a Ftι-measurable random variable. Here,181

each tι corresponds to a time at which the holder instantaneously withdraws a finite amount, and γι,182

γι ∈ [0, A(t−ι )], corresponds to the withdrawal amount at that time. The net revenue cash flow provided183

to the holder at time tι is (1− µ)γι − c.184

We respectively denote by Z(t), A(t), and R(t), t ∈ [0, T ], the time-t balance of the sub-account, the185

guarantee account, and the instantaneous short-rate. Due to continuous withdrawals and withdrawing186

finite amounts, the dynamics of A(t) are given by187

dA(t) = −γ̂(t)1{A(t)>0}dt, for t ̸= tι, ι = 1, 2, . . . , ιmax,188

A(t) = A(t−)− γι, for t = tι, ι = 1, 2, . . . , ιmax. (2.1)189

Let the dynamics of Z(t) and R(t) be given by190 

dZ (t)

Z (t)
= (R(t)− β − λκ) dt+ σZρdWZ(t) + σZ

√
1− ρ2dWR(t) + dJ(t)

− γ̂(t)1{Z(t),A(t)>0}dt, for t ̸= tk, ι = 1, 2, . . . , ιmax,

Z(t) = max
(
Z(t−)− γι, 0

)
, for t = tι, ι = 1, 2, . . . , ιmax,

dR(t) = δ (θ −R(t)) dt+ σRdWR(t).

(2.2a)

(2.2b)

(2.2c)

191

We work under the following assumptions for model (2.1)-(2.2).192

� Processes {WZ(t)}0≤t≤T and {WR(t)}0≤t≤T are two independent standard Wiener processes.193

� The process {J(t)}0≤t≤T , where J(t) =
∑π(t)

k=1(Yk−1), is a compound Poisson process. Specifically,194

{π(t)}0≤t≤T is a Poisson process with a constant finite jump intensity λ ≥ 0; and, with Y being a195

positive random variable representing the jump multiplier, {Yk}∞k=1 are independent and identically196

distributed (i.i.d.) random variables having the same same distribution as Y . In the dynamics197

(2.2a), κ = E [Y − 1] represents the expected percentage change in the sub-account balance, due198

to jumps. Here, E[·] is the expectation operator taken under the risk-neutral measure Q.199

� The Poisson process {π(t)}0≤t≤T , and the sequence of random variables {Yk}∞k=1 are mutually200

independent, as well as independent of the Wiener processes {WZ(t)}0≤t≤T and {WR(t)}0≤t≤T .201

In (2.2a), σZ > 0 is the instantaneous volatility of Z(t) and β > 0 is the proportional annual insurance202

rate paid by the policy holder. The constant ρ, where |ρ| < 1, is a correlation coefficient between Z(t)203

and R(t).2 In (2.2c), σR > 0 is the instantaneous volatility of the short rate, δ > 0 is the speed of mean-204

reversion, θ is the long-term mean level. For simplicity, model parameters are assumed to be constant205

in time; however, the results of this paper can be generalized to the case of time-dependent parameters.206

As a specific example, we consider two distribution for the jump multiplier Y , namely the log-normal207

distribution [60], and the log-double-exponential distribution [54]. Specifically, we denote by b(y) the208

density function of the random variable ln(Y ). In the former case, ln(Y ) is normally distributed with209

mean ν and standard deviation ς, and210

b (y) =
1

ς
√
2π

exp

{
−(y − ν)2

2ς2

}
. (2.3)211

In the latter case, lnY has an asymmetric double-exponential distribution with212

b (y) = puη1e
−η1y1{y≥0} + (1− pu) η2e

η2y1{y<0}. (2.4)213

Here, pu ∈ [0, 1], η1 > 1 and η2 > 0. Given that a jump occurs, pu is the probability of an upward jump,214

and (1− pu) is the probability of a downward jump.215

2Through a Cholesky factorization, the correlation coefficient between WR(t) and ρWZ(t) +
√

1− ρ2WR(t) is |ρ| < 1.
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3 Impulse control formulation216

For the controlled underlying process (Z(t), R(t), A(t)), t ∈ [0, T ], let (z, r, a) be the state of the system.217

Let τ = T − t, for z > 0, we apply the change of variable w = ln(z) ∈ (−∞,∞). With x = (w, r, a, τ),218

we denote by v(x) ≡ v(w, r, a, τ) the time-τ no-arbitrage price of a GMWB when Z(t) = ew, R(t) = r219

and A(t) = a. Using dynamic programming, we can show that, under dynamics (2.1)-(2.2), v(w, r, a, τ)220

satisfy the impulse control formulation [57, 17]221

min

{
vτ − Lv − J v − sup

γ̂∈[0,Cr]
γ̂
(
1− e−wvw − va

)
1{a>0},222

v − sup
γ∈[0,a]

[v (ln (max (ew − γ, ew-∞)) , a− γ, τ) + (1− µ) γ − c]

}
= 0, (3.1)223

where (w, r, a, τ) ∈ Ω∞ ≡ (−∞,∞)× (−∞,∞)× [amin, amax]× [0, T ), with amin = 0 and amax = z0, and224

Lv (x) =
σ2Z
2
vww + ρσZσRvwr +

σ2R
2
vrr +

(
r − σ2Z

2
− β − λκ

)
vw + δ (θ − r) vr − (r + λ)v,225

J v (x) = λ

∫ ∞

−∞
v(w + y, r, a, τ) b(y) dy. (3.2)226

Here, in (3.1), w-∞ ≪ 0 is a constant to avoid the indeterminate case of of ln(0), due to condition227

(2.2b); the constant positive fixed cost c is introduced as a technical tool to ensure uniqueness of the228

impulse formulation, as commonly done in the impulse control literature [64, 67, 81]; in (3.2), b (·) is the229

probability density function of lnY .230

3.1 Localization231

The GMWB impulse control formulation (3.1) is posed on the infinite domain Ω∞. For problem statement232

and convergence analysis of numerical schemes, we define a localized GMWB impulse formulation. To233

this end, with wmin < 0 < wmax, rmin < 0 < rmax, and |wmin|, wmax, |rmin|, rmax sufficiently large, we234

define the following sub-domains:235

Ωin = (wmin, wmax)× (rmin, rmax)× (amin, amax]× (0, T ],

Ω∞
τ0 = (−∞,∞)× (−∞,∞)× [amin, amax]× {0},

Ω∞
wmax

= [wmax,∞)× (rmin, rmax)× [amin, amax]× (0, T ],

Ω∞
wmin

= (−∞, wmin]× (rmin, rmax)× (amin, amax]× (0, T ],

(3.3)

Ωamin = (wmin, wmax)× (rmin, rmax)× {amin} × (0, T ],

Ω∞
wamin

= (−∞, wmin]× (rmin, rmax)× {amin} × (0, T ],

Ω∞
c = Ω∞ \ Ωin \ Ω∞

τ0 \ Ω
∞
wmax

\ Ω∞
wmin

\ Ωamin \ Ω∞
wamin

.

An illustration of the sub-domains for the lo-

calized problem corresponding to a fixed a ∈
[amin, amax] is given in Figure 3.1.

Ωin

(Ωamin)

Ω∞
wmin

(Ω∞
wamin

)

Ω∞
wmax

Ω∞
c

Ω∞
c

−∞ ∞

−∞

∞

wmin wmaxrmin

rmax

Figure 3.1: Spatial computational domain

at each τ and for a fixed a ∈ [amin, amax];

at a = 0, Ωin ≡ Ωamin
and Ω∞

wmin
≡ Ω∞

wamin
.

We now present equations for sub-domains defined in (3.3).236

� For (w, r, a, τ) ∈ Ωin, we have (3.1).237

� For (w, r, a, τ) ∈ Ω∞
τ0 , we use the initial condition v(w, a, 0) = max(ew, (1 − µ)a − c) ∧ ew∞ for a238

finite w∞ ≫ wmax, where x ∧ y = min(x, y).239

� For (w, r, a, τ) ∈ Ω∞
wmax

, we follow [22, 17] to impose the Dirichelet-type boundary condition240

v = e−βτ (ew ∧ ew∞). (3.4)241
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We note that the theoretical quantity w∞ is needed to indicate that the solutions Ω∞
τ0 and Ω∞

wmax
242

are bounded as w → ∞, and it does not need to be numerically specified.243

� As w → −∞ (i.e. z = ew → 0) using the asymptotic forms of the HJB-QVI (3.1), for (w, r, a, τ) ∈244

Ω∞
wmin

, (3.1) is reduced to the boundary condition245

min

{
vτ − Ldv − sup

γ̂∈[0,Cr]
(γ̂ − γ̂va)1{a>0}, v − sup

γ∈[0,a]
[v(w, a− γ, τ) + (1− µ)γ − c]

}
= 0, (3.5)246

where the degenerated differential operator Ld is defined by247

Ldv :=
σ2R
2
vrr + δ (θ − r) vr − rv. (3.6)248

This is essentially a Dirichlet boundary condition since it can be solved without using any infor-249

mation from Ωin ∪ Ωamin .250

� For (w, r, a, τ) ∈ Ωamin , the impulse formulation (3.1) becomes the PIDE vτ − Lv − J v = 0.251

� For (w, r, a, τ) ∈ Ω∞
wamin

, (3.5) becomes vτ − Ldv = 0.252

� For (w, r, a, τ) ∈ Ω∞
c , we note in this case, significant difficulty arises in choosing a boundary253

condition based on asymptotic forms of the HJB-QVI (3.1), or the holder’s optimal withdrawal254

behaviours. Since a detailed analysis of the boundary conditions is not the focus of this paper, we255

leave it as a topic for future research. For simplicity, we follow [23, 28] to choose Dirichlet-type256

“stopped process” boundary conditions where we stop the processes (Z(t), R(t), A(t)) when R(t)257

hits the boundary. Thus, (w, r, a, τ) ∈ Ω∞
c , the value is simply the discounted payoff for the current258

values of the state variables, i.e.259

v(w, r, a, τ) = p(w, r, a, τ) = pb(r̄, τ ;T )max(ew, (1− µ)a− c) ∧ ew∞ , (3.7)260

where r̄ := min(max(r, rmin), rmax). Here, pb(r, τ ;T ) is the price at time (T − τ) of a zero coupon261

bond with maturity T given by the closed-form expression [16]262

pb(r, τ ;T ) = exp

{(
θ − σ2R

2δ2

)(
1

δ

(
1− e−δτ

)
− τ

)
− σ2R

4δ3

(
1− e−δτ

)2
− r

δ

(
1− e−δτ

)}
. (3.8)263

Note that no further information is needed along the boundary a→ amax due to the hyperbolic nature264

of the variable a in the HJB-QVI (3.1). Although the above-mentioned artificial boundary conditions may265

induce additional approximation errors in the numerical solutions, we can make these errors arbitrarily266

small by choosing sufficiently large values for |wmin|, wmax, |rmin|, and rmax.267

3.2 Definition of viscosity solution268

We now write the GMWB pricing problem in a compact form, which includes the terminal and boundary269

conditions in a single equation. We define the intervention operator270

M(γ)v(x) =

{
v(w, r, a− γ, τ) + γ(1− µ)− c x ∈ Ω∞

wmin
,

v (ln(max(ew − γ, ew-∞)), r, a− γ, τ) + γ(1− µ)− c x ∈ Ωin.

(3.9a)

(3.9b)
271

With x = (w, r, a, τ), we let Dv(x) and D2v(x) represent the first-order and second-order partial deriva-272

tives of v (x), and define273

FΩ∞ (x, v) ≡ FΩ∞
(
x, v(x), Dv(x), D2v(x),J v(x),Mv(x)

)
(3.10)274

where275

FΩ∞ (x, v) =



Fin (x, v) ≡ Fin

(
x, v(x), Dv(x), D2v(x),J v(x),Mv(x)

)
, x ∈ Ωin,

Famin (x, v) ≡ Famin

(
x, v(x), Dv(x), D2v(x),J v(x)

)
, x ∈ Ωamin ,

Fwmin (x, v) ≡ Fwmin (x, v(x), Dv(x),Mv(x)) , x ∈ Ω∞
wmin

,

Fwamin (x, v) ≡ Fwamin (x, v(x), Dv(x)) , x ∈ Ω∞
wamin

,

Fwmax (x, v) ≡ Fwmax (x, v(x)) , x ∈ Ω∞
wmax

,

Fc (x, v) ≡ Fc (x, v(x)) , x ∈ Ω∞
c ,

Fτ0 (x, v) ≡ Fτ0(x, v(x)), x ∈ Ω∞
τ0 ,

276
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with operators277

Fin (x, v) = min

[
vτ − Lv − J v − sup

γ̂∈[0,Cr]

(
γ̂ − γ̂e−wvw − γ̂va

)
1{a>0}, v − sup

γ∈[0,a]
Mv

]
, (3.11)278

Fwmin (x, v) = min

[
vτ − Ldv − sup

γ̂∈[0,Cr]
(γ̂ − γ̂va)1{a>0}, v − sup

γ∈[0,a]
Mv

]
, (3.12)279

Famin (x, v) = vτ − Lv − J v, (3.13)280

Fwamin (x, v) = vτ − Ldv, (3.14)281

Fwmax (x, v) = v − e−βτ (ew ∧ ew∞), (3.15)282

Fc (x, v) = v − p(w, r, a, τ), (3.16)283

Fτ0 (x, v) = v −max(ew, (1− µ)a− c) ∧ ew∞ . (3.17)284

Definition 3.1 (Impulse control GMWB pricing problem). The pricing problem for the GMWB under285

an impulse control formulation is defined as286

FΩ∞
(
x, v(x), Dv(x), D2v(x),J v(x),Mv(x)

)
= 0, (3.18)287

where the operator FΩ∞(·) is defined in (3.10).288

Next, we recall the notions of the upper semicontinuous (u.s.c. in short) and the lower semicontinuous289

(l.s.c. in short) envelops of a function u : X → R, where X is a closed subset of Rn. They are respectively290

denoted by u∗(·) (for the u.s.c. envelop) and u∗(·) (for the l.s.c. envelop), and are given by291

u∗(x̂) = lim sup
x→x̂

x,x̂∈X

u(x) (resp. u∗(x̂) = lim inf
x→x̂

x,x̂∈X

u(x)).292

In general, the solution to impulse control problems are non-smooth, and we seek the viscosity293

solution of equation (3.18) [25, 73, 41]. Since equation (3.18) is defined on an infinite domain, we need294

to have a suitable growth condition at infinity for the solution [10, 73]. To this end, let G(Ω∞) be the set295

of bounded functions defined by [10, 73]296

G(Ω∞) =

{
u : Ω∞ → R, sup

x∈Ω∞
|u(x)| <∞

}
. (3.19)297

Definition 3.2 (Viscosity solution of equation (3.18)). A locally bounded function v ∈ G(Ω∞) is a298

viscosity subsolution (resp. supersolution) of (3.18) in Ω∞ if for all test function ϕ ∈ G(Ω∞) ∩ C∞(Ω∞)299

and for all points x̂ ∈ Ω∞ such that v∗ − ϕ has a global maximum on Ω∞ at x̂ and v∗(x̂) = ϕ(x̂) (resp.300

v∗ − ϕ has a global minimum on Ω∞ at x̂ and v∗(x̂) = ϕ(x̂)), we have301

(FΩ∞)∗
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
≤ 0, (3.20)302 (

resp. (FΩ∞)∗
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
≥ 0,

)
303

where the operator FΩ∞(·) is defined in (3.10).304

(ii) A locally bounded function v ∈ G(Ω∞) is a viscosity solution of (3.18) in Ωin ∪ Ωamin if v is a305

viscosity subsolution and a viscosity supersolution in Ωin ∪ Ωamin.306

3.3 A strong comparison result307

In the context of numerical solutions to HJB-QVIs, convergence of numerical methods to the viscosity308

typically requires stability, consistency, monotonicity, provided that a strong comparison result [21, 81,309

50, 10, 73, 15, 11, 9]. Specifically, using stability, consistency, and monotonicity of a numerical scheme,310

the common route is to establish the candidate for u.s.c. subsolution (resp. l.s.c. supersolution) of the311

HJB-QVI using lim sup (resp. lim inf) of the numerical solutions as a discretization parameter approaches312

zero. We respectively denote by û the subsolution (resp. v̂ the supersolution) in a target convergence313

region S which is a non-empty subset of Ω∞. By construction, we have û(x) ≥ v̂(x) for all x ∈ S. If a314
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strong comparison result holds in S, it means that for subsolution û(x) and supersolution v̂(x), we have315

û(x) ≤ v̂(x) for all x ∈ S. Therefore, a unique continuous viscosity solution exists in S. We note that,316

while stability, consistency and monotonicity are required properties of numerical methods, a strong317

comparison result is problem dependent.318

In our paper [57, Lemma B.1 and Theorem B.1], we present a framework for proving a strong319

comparison result for HJB-QVIs of a form similar to (3.18) where jump-diffusion dynamics with a positive320

constant interest rate are considered. For the HJB-QVI (3.18), using the aforementioned framework, we321

are able to show a strong comparison result for Ωin∪Ωamin , where Ωamin ⊂ ∂Ωin. This result is presented322

in Theorem 3.1 below.323

Theorem 3.1. If function û (resp. v̂) is a u.s.c. viscosity subsolution (resp. l.s.c. supersolution) of the324

HJB-QVI (3.18) in Ω in the sense of Definition 3.2, then we have û ≤ v̂ in Ωin ∪ Ωamin.325

Proof of Theorem 3.1. We follow the framework presented in [57][Lemma B.1 and Theorem B.1]. With326

the target region being S = Ωin∪Ωamin , we rewrite Definition 3.2 into an equivalent definition as follows.327

(i) In the non-local terms J (·) and M(·), the smooth test function ϕ(x̂) is replaced by v∗(x̂) for328

subsolution (resp. v∗(x̂) for supersolution),329

(ii) The envelopes (FΩ∞)∗ (resp. (FΩ∞)∗) is eliminated from the definition of subsolution (resp. super-330

solution).331

We refer to this definition as Def-A, and it is the definition we use to prove a strong comparison result.3332

Unlike the setting in [57], where a positive constant interest rate is used, a Gaussian stochastic333

interest rate is considered in the present paper, which could be negative. Therefore, the framework in334

[57] is not directly applicable without an important preprocessing step (shown below).335

� Given the HJB-QVI with FΩ∞(·) = 0 in (3.18), let q > −rmin be fixed, implying r + q > 0 for all336

r ∈ (rmin, rmax), we introduce an HJB-QVI FΩ∞(·; q) = 0 which is similar to FΩ∞(·) = 0 except in337

Ωin ∪ Ωamin , where Fin(·; q) and Famin(·; q) are defined by338

Fin(x, v; q) = min

[
vτ − Lv + qv − J v − sup

γ̂∈[0,Cr]
γ̂
(
e−qτ − e−wvw − va

)
1{a>0},339

v − sup
γ∈[0,a]

[
v (ln (max (ew − γ, ew-∞)) , a− γ, τ) + ((1− µ) γ − c)e−qτ

] ]
,340

Famin (x, v; q) = vτ − Lv + qv − J v.341

� It is straightforward to show that: in the sense of Def-A, if û is a u.s.c. viscosity subsolution (resp.342

v̂ is a l.s.c. viscosity supersolution) of FΩ∞(·) = 0 in Ωin ∪ Ωamin , then e−qτ û is a u.s.c. viscosity343

subsolution (resp. e−qτ v̂ is a l.s.c. viscosity subsolution) of FΩ∞(·; q) = 0 in Ωin ∪ Ωamin .344

Finally, using the same steps as in Lemma B.1 and Theorem B.1 of [57] for the HJB-QVI FΩ∞(·; q) = 0,345

we can prove that a strong comparison results holds for Ωin ∪ Ωamin , i.e. e
−qτ û ≤ e−qτ v̂, or equivalently,346

û ≤ v̂ in Ωin ∪ Ωamin , which is the desired outcome.347

We conclude this subsection by noting that, as well-noted in the literature [81, 17, 24, 57, 42, 67],348

it is usually the case that a strong comparison result does not hold on the whole definition domain349

including boundary sub-domains, because this would imply the continuity of the value function across350

the boundary regions, which is not true for some impulse control problems, including the HJB-QVI (3.18).351

In particular, it is possible that loss of boundary data can occur over parts of Γ = ∂Ωin \ Ωamin , i.e. as352

3For the purpose of verifying consistency of a numerical scheme, it is convenient to use Definition 3.2. However, it turns

out more convenient to use the equivalent definition to prove a strong comparison result for the HJB-QVI (3.18). Similar

arguments can be also referred to [25, 73, 3].
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τ → 0, w → {wmin, wmax} and r → {rmin, rmax}, hence, we cannot hope that a strong comparison353

result holds on Γ. However, these problematic parts of Γ are trivial to handle in the sense that either354

the boundary data is used or is irrelevant. In all cases, we consider the computed solution on those parts355

of Γ as the limiting value approaching Γ from the interior.356

4 Numerical methods357

4.1 Overview358

Similar to the approach taken in our papers [57, 17], we will tackle the HJB-QVI (3.18) from a discrete359

withdrawal scenario which was first suggested in [22]. To this end, we first introduce a set of discrete360

intervention (withdrawal) times as follows. Let {τm}, m = 0, . . . ,M , be a partition of [0, T ], where for361

simplicity, an uniform spacing is used, i.e. τm = m∆τ and ∆τ = T/M . Following [22, 17], there is no362

withdrawal allowed at time t = 0, or equivalently, at τM = T ; therefore, the set of intervention times is363

{τm}, m = 0, . . . ,M − 1.364

Broadly speaking, over the time interval [τm, τm+1], m = 0, . . . ,M − 1, our numerical approach365

consists of two steps, namely intervention in [τm, τ
+
m]. and time-advancement in [τ+m, τm+1]. Central to366

our method is the time-advancement step for the target region of convergence Ωin ∪Ωamin . For this step,367

a ∈ [amin, amax] is fixed, and our starting point is a linear PIDE in (w, r) of the form368

vτ − Lv − J v = 0, w ∈ (−∞,∞), r ∈ (−∞,∞), τ ∈ (τ+m, τm+1]. (4.1)369

where the operators L and J are given in (3.2), subject to a generic initial condition at time τ+m given370

by v̂(w, r, a, τ+m) obtained from the intervention step above. Here,371

v̂(w, r, a, τ+m) =

{
v(w, r, a, τ+m) (w, r, a, τm+1) ∈ Ωin ∪ Ωamin ,

vbc(w, r, a, τm) (w, r, a, τm+1) ∈ Ω∞ \ (Ωin ∪ Ωamin) .

(4.2a)

(4.2b)
372

In (4.2a), v(w, r, a, τ+m) is the intermediate results from the intervention step, and vbc(w, r, a, τ
+
m) in (4.2b)373

is the boundary conditions at time-τm satisfying (3.5), (3.4), (3.7) in Ω∞
wmin

∪ Ω∞
wamin

∪ Ω∞
wmax

∪ Ω∞
c .374

The key challenge in solving the PIDE (4.1) is that a closed-form expression for its Green’s function375

is not known to exist, due to the vr term arising from the short rate. (Also see [49] for relevant376

discussions related to similar difficulties). To handle the above challenge, we consider a combination of377

a semi-Lagrangian (SL) method and a Green’s function approach. In particular, we consider writing378

Lv = Lgv + Lsv − rv, where379

Lgv :=
σ2Z
2
vww + ρσZσRvwr +

σ2R
2
vrr − λκvw − λv, Lsv := (r − σ2Z

2
− β)vw + δ(θ − r)vr. (4.3)380

To solve the PIDE (4.1) in Ωin∪Ωamin , we first handle the term Lsv− rv by an SL discretization method381

in Ωin ∪ Ωamin . (This is discussed in Subsection 4.5.1.). We then effectively solve the PIDE of the form382

(vSL)τ − LgvSL − J vSL = 0, w ∈ (−∞,∞), r ∈ (−∞,∞), τ ∈ (τ+m, τm+1], (4.4)383

where vSL is the unknown function, subject to a generic initial condition v̂SL(w, r, a, τm) given as follows.384

Letting x = (w, r, a, τm+1), for x ∈ Ωin ∪ Ωamin , v̂SL(x) given by an SL discretization method combined385

with v̂(w, r, a, τ+m) provided in (4.2a)-(4.2b); otherwise, v̂SL(x) is given by vbc(x) as in (4.2b).386

To numerically solve the PIDE (4.4) for vSL (w, r, a, τm+1), we start from a Green’s function ap-387

proach. It is a known fact that the Green’s function g (·) associated with the PIDE (4.4) has the388

form g(w,w′, r, r′,∆τ) ≡ g(w − w′, r − r′,∆τ) [36, 31]. Therefore, the solution vSL (w, r, a, τm+1) for389

(w, r) ∈ D ≡ (wmin, wmax) × (rmin, rmax) can be represented as the convolution integral of the Green’s390

function g (·,∆τ) and the initial condition v̂SL(w, r, a, τ
+
m) as follows [36, 31]391

vSL (w, r, ·, τm+1) =

∫∫
R2

g
(
w − w′, r − r′,∆τ

)
v̂SL(w

′, r′, ·, τ+m) dw′ dr′, (w, r) ∈ D. (4.5)392

The solution vSL (w, r, ·, τm+1) for (w, r) ̸∈ D are given by the boundary conditions (3.5), (3.4), (3.7).393
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For computational purposes, we truncate the infinite region of integration of (4.5) to394

D† ≡ [w†
min, w

†
max]× [r†min, r

†
max], (4.6)395

where, for x ∈ {w, r}, x†min ≪ xmin < 0 < xmax ≪ x†max and |x†min| and x
†
max are sufficiently large. This396

results in the approximation397

vSL (w, r, ·, τm+1) ≃
∫∫

D†
g
(
w − w′, r − r′,∆τ

)
v̂SL(w

′, r′, ·, τ+m) dw′ dr′, (w, r) ∈ D. (4.7)398

The error arising from this truncation is discussed in Section 5.399

With the above discussion in mind, we define a finite domain Ω = [w†
min, w

†
max] × [r†min, r

†
max] ×400

[amin, amax]× [0, T ], which consists of401

Ωin = defined in (3.3), Ωamin = defined in (3.3),402

Ωτ0 = [w†
min, w

†
max]× [r†min, r

†
max]× [amin, amax]× {0},403

Ωwmin = [w†
min, wmin]× (rmin, rmax)× (amin, amax]× (0, T ],404

Ωwamin = [w†
min, wmin]× (rmin, rmax)× {amin} × (0, T ],405

Ωwmax = [wmax, w
†
max]× (rmin, rmax)× [amin, amax]× (0, T ],406

Ωc = Ω \ Ωin \ Ωamin \ Ωwmax \ Ωwamin \ Ωwmin \ Ωτ0 .407

We stress that the region Ωwmin ∪ Ωwamin ∪ Ωwmax ∪ Ωc plays an important role in the proposed408

numerical method. In particular, the convolution integral (4.5) is typically approximated using effi-409

cient computation of an associated discrete convolution via Fast-Fourier Transform (FFT). It is well-410

documented that wraparound error (due to periodic extension) is an important issue for Fourier meth-411

ods, particularly in the case of control problems (see, for example, [57]). Therefore, in (4.8), the region412

Ωwmin ∪ Ωwamin ∪ Ωwmax ∪ Ωc is also set up to serve as padding areas for nodes in Ωin ∪ Ωamin . For this413

purpose, we assume that |wmin|, wmax, |rmin| and rmax are chosen sufficiently large so that414

w†
min = wmin −

wmax − wmin

2
and w†

max = wmax +
wmax − wmin

2
,415

r†min = rmin −
rmax − rmin

2
and r†max = rmax +

rmax − rmin

2
. (4.8)416

As elaborated in [57], this padding technique is efficient in controlling wraparound error (also Re-417

mark 4.3).418

Due to withdrawals, the non-local impulse operatorM(·) for Ωin, defined in (3.9b), requires evaluating419

a candidate value at point having w = ln(max(ew−γ, ew-∞)) which could be smaller than w†
min, i.e. outside420

the finite computational domain, if w-∞ < w†
min. Therefore, with w†

min (and w†
max) selected sufficiently421

large as above, we set w-∞ = w†
min. That is, M(·) in (3.9b) becomes422

Mv(x) ≡ M(γ)v(x) = v
(
ln(max(ew − γ, ew

†
min)), r, a− γ, τ

)
+ γ(1− µ)− c, x ∈ Ωin. (4.9)423

This is the intervention operator we use in Fin for computation and convergence analysis.424

Finally, for a semi-Lagrangian discretization in the setting of HJB equations, common computational425

difficulties lie in the boundary areas, which typically require a special treatment of computational grids426

and boundary conditions [70, 68]. In our case, a semi-Lagrangian discretization is only applied in the427

sub-domain Ωin ∪ Ωamin . It may require information from boundary sub-domains, such as Ωwmin and428

Ωwmax , which is readily available from the numerical solutions in these boundary sub-domains. With429

|r†min|, r
†
max, |w†

min| and w
†
max chosen large enough, we can ensure that a semi-Lagrangian discretization430

never requires information outside the computational domain Ω.431

4.2 Discretization432

The computational grid is constructed as follows. We denote by N (resp. N †) the number of points of433

an uniform partition of [wmin, wmax] (resp. [w
†
min, w

†
max]). For convenience, we typically choose N † = 2N434
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so that only one set of w-coordinates is needed. Also let P = wmax − wmin, and P
† = w†

max − w†
min. We435

define ∆w = P
N = P †

N† . We use an equally spaced partition in the w-direction, denoted by {wn}, where436

wn = ŵ0 + n∆w; n = −N †/2, . . . , N †/2, where (4.10)437

∆w = P/N = P †/N †, and ŵ0 = (wmin + wmax)/2 = (w†
min + w†

max)/2.438

Similarly, for the r-dimension, with K† = 2K, Q = rmax − rmin, and Q† = r†max − r†min, we denote by439

{rk}, an equally spaced partition in the r-direction, such that440

rk = r̂0 + k∆r; k = −K†/2, . . . ,K†/2, where (4.11)441

∆r = Q/K = Q†/K†, and r̂0 = (rmin + rmax)/2 = (r†min + r†max)/2.442

We use an unequally spaced partition in the a-direction, denoted by {aj}, j = 0, . . . , J , with a0 = amin,443

and aJ = amax. We set444

∆amax = max
0≤j≤J−1

(aj+1 − aj) , ∆amin = min
0≤j≤J−1

(aj+1 − aj) . (4.12)445

We use the same previously defined equally spaced partition in the τ -dimension with ∆τ = T/M and446

τm = m∆τ , denoted by {τm}, m = 0, . . . ,M . 4
447

At each time τm, m = 1, . . . ,M , we denote by vmn,k,j an approximation to the exact solution448

v(wn, rk, aj , τm) at the reference node (wn, rk, aj , τm) obtained by our numerical method. At time τ+m,449

unless otherwise stated, vm+
n,k,j refers to an intermediate value, and not an approximation to the exact450

solution at time τ+m.451

For subsequent use, we define the following index sets for the spatial and temporal variables:452

N = {−N/2 + 1, . . . , N/2− 1}, N† =
{
−N †/2, . . . , N †/2− 1

}
, K = {−K/2 + 1, . . . ,K/2− 1},453

K† =
{
−K†/2, . . . ,K†/2− 1

}
, J = {0, . . . , J} and M = {0, . . . ,M − 1}, Nc

min =
{
−N †/2, . . . ,−N/2

}
,454

Nc
max =

{
N/2, . . . , N †/2− 1

}
, Nc = N† \ N, and Kc = K† \ K. For fixed j ∈ J and m ∈ M, nodes xm+1

n,j455

having (i) n ∈ Nc
min and k ∈ K are in Ωwmin ∪Ωwamin , (ii) n ∈ N and k ∈ K are in Ωin∪Ωamin , (iii) n ∈ Nc

max456

and k ∈ K are in Ωwmax , and (iv) n ∈ N† and k ∈ Kc are in Ωc.457

In subsequent discussion, we denote by γmn,k,j ∈ [0, aj ] the control representing the withdrawal amount458

at node (wn, rk, aj , τm), n ∈ Nc
min ∪ N, k ∈ K, j ∈ J, m ∈ M. We also define459

w̃n = ln(max(ewn − γmn,j,k, e
w†

min)), ãj = aj − γmn,k,j , γmn,k,j ∈ [0, aj ]. (4.13)460

For a given withdrawal amount γ, let f (γ) be the cash amount received by the holder defined as follows461

f (γ) =

{
γ if 0 ≤ γ ≤ Cr∆τ,

γ(1− µ) + µCr∆τ − c if Cr∆τ < γ.
(4.14)462

Remark 4.1 (Interpolation). Optimal controls are typically decided by comparing candidates obtained463

via interpolation using on available relevant discrete values in Ω, i.e. including discrete values are in464

boundary sub-domains. In this work, we use linear interpolation. To this end, let s ∈ (0, T ] be fixed. We465

denote by I {us} (w, r, a) a generic three-dimensional linear interpolation operator acting on the time-s466

discrete values
{(

(wl, rd, aq) , u
s
l,d,q

)}
, l ∈ N†, d ∈ K†, q ∈ J. Here, unless otherwise stated, values usl,d,q467

corresponding to points xsl,d,q in the boundary sub-domains Ωwmin, Ωwamin, Ωwmax or Ωc are given by the468

respective time-s boundary values.469

In its primary usage, the above interpolation operator degenerates to a two- or one-dimensional470

operator respectively when one or two of the following equalities hold: w = wn, r = rk, and a = aj,471

for some n ∈ N†, k ∈ K, and j ∈ J. Nonetheless, in these cases, to simplify notation, we still use the472

notation I {us} (w, r, a), with these degenerations being implicitly understood.473

It is straightforward to show that, due to linear interpolation, for any constant ξ, we have474

I {φs + ξ} (w, r, a) = I {φs} (w, r, a) + ξ. (4.15)475

4While it is straightforward to generalized the numerical method to non-uniform partitioning of the τ -dimension, for the

purposes of proving convergence, uniform partitioning suffices.
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Furthermore, for a smooth test function φ ∈ C∞(Ω∞), we have476

I {φs} (w, r, a) = φ(w, r, a) +O
(
(∆w +∆r)2

)
. (4.16)477

Finally, we note that linear interpolation is monotone in the viscosity sense.478

For double summations, we use the short-hand notation:

q∈Q∑∗

d∈D
(·) :=

∑
d∈D

∑
q∈Q

(·), unless otherwise noted.479

We are now ready to present the complete numerical schemes to solve the HJB-QVI (3.18). For any480

point (wn, rk, aj , τm+1) in Ω, unless otherwise stated, we let j ∈ J and m ∈ M be fixed, and focus on the481

index sets of n and k in subsequent discussion.482

4.3 Ωτ0, Ωwmax, and Ωc483

For (wn, rk, aj , τ0) ∈ Ωτ0 , we impose the initial condition (3.17).484

v0n,k,j = max(ewn , (1− µ)aj − c), n ∈ N†, k ∈ K†. (4.17)485

For (wn, rk, aj , τm+1) in Ωwmax and Ωc, we respectively apply the Dirichlet boundary condition (3.4) and486

(3.7) as follows487

vm+1
n,k,j = e−βτm+1ewn , n ∈ Nc

max, k ∈ K, (4.18)488

vm+1
n,k,j = p(wn, rk, aj , τm+1), n ∈ N†, k ∈ Kc, (4.19)489

where p(wn, rk, aj , τm+1) is given in (3.7).490

4.4 Ωwmin
∪ Ωwamin

491

For (wn, rk, aj , τm+1) in Ωwmin ∪ Ωwamin , we let ṽmn,k,j be an approximation to v(wn, rk, aj − γmn,j , τm)492

computed by linear interpolation as follows493

ṽmn,k,j = I {vm}
(
wn, rk, aj − γmn,k,j

)
, n ∈ Nc

min, k ∈ K. (4.20)494

We compute intermediate results vm+
n,k,j by solving the optimization problem495

vm+
n,k,j = sup

γmn,k,j∈[0,aj ]

(
ṽmn,k,j + f

(
γmn,k,j

))
, n ∈ Nc

min, k ∈ K. (4.21)496

where ṽmn,k,j is given in (4.20) and f (·) is defined in (4.14). To advance to time τm+1, we solve the497

PDE vτ − Ldv = 0 with the time-τm+ initial condition given by vm+
n,k,j in (4.21). This step is achieved498

by applying finite difference methods built upon a fully implicit timestepping scheme together with a499

positive coefficient discretization as follows [17, 18, 43, 24, 34]500

vm+1
n,k,j = vm+

n,k,j +∆τ(Lhd v)m+1
n,k,j , where (4.22)501

(Lhd v)m+1
n,k,j = αkv

m+1
n,k−1,j + βkv

m+1
n,k+1,j − (αk + βk + rk) v

m+1
n,k,j , n ∈ Nc

min, k ∈ K,502

with αk ≥ 0, βk ≥ 0, k ∈ K. (4.23)503

4.5 Ωin ∪ Ωamin
504

For (wn, rk, aj , τm+1) in Ωin∪Ωamin and γ
m
n,k,j ∈ [0, aj ], we let ṽ

m
n,k,j be an approximation to v(w̃n, rk, ãj , τm),505

where w̃n and ãj are defined in (4.13), computed by linear interpolation given by506

ṽmn,k,j = I {vm} (w̃n, rk, ãj) , γmn,k,j ∈ [0, aj ], n ∈ N, k ∈ K. (4.24)507

We recall the control formulation (3.1), where the admissible control set is [0, a]. We observe that the

min{·} operator of (3.1) contains two terms, with the continuous control γ̂ in the first term having a local

nature (γ̂ ∈ [0, Cr]), while the impulse control γ in the second term having a non-local nature (γ ∈ [0, a]).

Motivated by this observation, as in [57, 17], with the convention that (Cr∆τ, aj ] = ∅ if aj ≤ Cr∆τ ,

we partition [0, aj ] into [0, aj ∧ Cr∆τ ] and (Cr∆τ, aj ], where x ∧ y = min(x, y). We compute respective

intermediate results (v(1))m+
n,k,j and (v(2))m+

n,k,j , n ∈ N, k ∈ K, by solving the optimization problems

(v(1))m+
n,k,j = sup

γmn,k,j∈[0,aj∧Cr∆τ ]
(ṽmn,k,j + f(γmn,k,j)), (v(2))m+

n,k,j = sup
γmn,k,j∈(Cr∆τ,aj ]

(ṽmn,k,j + f(γmn,k,j)), (4.25)

where ṽmn,k,j is given in (4.24) and f(·) is defined in (4.14).508
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Remark 4.2 (Attainability of supremum). It is straightforward to show that, due to boundedness of509

nodal values used in I {vm} (·) (see Lemma 5.1 on stability), the interpolated value ṽmn,k,j in (4.24) is510

uniformly continuous in γmn,k,j. As a result, the supremum in the discrete equations for (v(1))m+
n,k,j and511

(v(2))m+
n,k,j in (4.25) can be achieved by a control in [0,min(aj , Cr∆τ)] and (Cr∆τ, aj ], respectively, with512

the latter case being made possible due to c > 0 [17].513

The next step in the numerical scheme for Ωin ∪ Ωamin is time advancement from τ+m to τm+1. As514

briefly discussed previously, the time advancement step involves (i) an SL discretization for the term515

Lsv−rv of the PIDE (4.1) in Ωin∪Ωamin , (ii) an ϵ-monotone Fourier method based on the Green function516

associated with the PIDE (4.4). We now discuss these steps in detail below.517

4.5.1 Intuition of semi-Lagrangian discretization518

We start by providing an intuition of an SL discretization method and the Green’s function approach519

utilized for Ωin ∪ Ωamin . The main idea employed to construct an SL discretization of the PIDE of the520

form (4.1) is to integrate the PIDE along an SL trajectory, which is to be defined subsequently. Recall521

from (4.3) that the differential operator L in the PIDE (4.1) can be written as L = Lg+Ls− rv, where522

the operator Ls = (r− σ2
Z

2 −β)vw+ δ(θ− r)vr. In subsequent discussion, we let a ∈ [amin, amax] be fixed,523

and also let x := (w, r) be arbitrary in [wmin, wmax]× [rmin, rmax]. For any s ∈ [τ+m, τm+1], and τ ≤ s, we524

consider an SL trajectory, denoted by χ(τ ; s, x) = (χ1(τ ; s, x), χ2(τ ; s, x)), which satisfies the ordinary525

differential equations526  ∂χ1(τ ; s, x)

∂τ
= −(r − σ2Z

2
− β), τ < s,

χ1(s; s, x) = w, τ = s,
and


∂χ2(τ ; s, x)

∂τ
= −δ(θ − r), τ < s,

χ2(s; s, x) = r, τ = s.
(4.26)527

Using (4.26), we have Dv
Dτ = vτ + Lsv, and therefore, the PIDE (4.1) can be written as528

Dv

Dτ
+ rv − Lgv − J v = 0, τ ∈ (τ+m, τm+1], (4.27)529

subject to a generic initial condition of the form (4.2). We let (w̆(s), r̆(s)) be the (w, r)-departure point530

at time-τm for the trajectory χ(τ ; s, x), i.e. (w̆(s), r̆(s)) = (χ1(τ = τm; s, x), χ2(τ = τm; s, x)), and hence,531

they can be computed by solving (4.26) from τ = τm to τ = s, i.e.532

w̆(s) = w + r(es−τm − 1)−
(
σ2Z
2

+ β

)
(es−τm − 1), r̆(s) = re−δ(s−τm) − θ

(
e−δ(s−τm) − 1

)
. (4.28)533

We then integrate both sides of the equation (4.27) along the trajectory χ(τ ; s, x) from τ = τm to τ = s534

with a being fixed. This gives535 ∫ s

τm

(
Dv

Dτ
(χ(τ ; s, x), a, τ) + rv (w, r, a, τ)− (Lg + J ) v (w, r, a, τ)

)
dτ = 0. (4.29)536

In (4.29), using the identity537 ∫ s

τm

Dv

Dτ
(χ(τ ; s, x), a, τ) dτ = v (w, r, a, s)− v (w̆(s), r̆(s), a, τm) ,538

together with a simple left-hand-side rule for
∫ s
τm
rv (w, r, a, τ) dτ ≃ r(s − τm)v (w, r, a, τm), and rear-539

ranging, (4.29) becomes540

v (w, r, a, s)−
∫ s

τm

(Lg + J ) v (w, r, a, τ) dτ = v (w̆(s), r̆(s), a, τm)− r(s− τm)v (w, r, a, τm) . (4.30)541

Here, v (w, r, a, s), τm ≤ s ≤ τm+1, is the unknown function at time-s. In particular, we are interested542

in finding v (w, r, a, τm+1). To this end, we approximate v (w, r, a, τm+1) by vSL (w, r, a, τm+1) where the543

function vSL (w, r, a, s), τm ≤ s ≤ τm+1, satisfies a variation of equation (4.30) obtained by fixing its544

right-hand-side at s = τm+1. More specifically, with (w̆, r̆) ≡ (w̆(τ+m), r̆(τ+m), vSL (w, r, a, s) satisfies545

vSL (w, r, a, s)−
∫ s

τm

(Lg + J ) vSL (w, r, a, τ) dτ = v (w̆, r̆, a, τm)− r∆τv (w, r, a, τm) , (4.31)546
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where, on the rhs, v (·, ·, a, τm) is given by a known generic initial condition at time τm. We high-547

light that equation (4.30) agrees with equation (4.31) only when s = τm+1, at which time we have548

vSL (w, r, a, τm+1) = v (w, r, a, τm+1), as wanted.549

The form of equation (4.31) suggests that vSL (w, r, a, s) satisfies the PIDE of the form (4.4), i.e.550

(vSL)τ − LgvSL − J vSL = 0, w ∈ (−∞,∞), r ∈ (−∞,∞), τ ∈ (τ+m, τm+1], (4.32)551

subject to the initial condition552

v̂SL(w, r, a, τ
+
mo) =

v
(
w, r, a, τ+m

)
=
v (w̆, r̆, a, τ+m)

1 + ∆τr
(w, r, a, τm) ∈ Ωin ∪ Ωamin ,

vbc(w, r, a, τ
+
m) (w, r, a, τm) ∈ Ω \ (Ωin ∪ Ωamin) ,

(4.33a)

(4.33b)

553

where, in (4.33a), (w̆, r̆) ≡ (w̆(τm+1), r̆(τm+1)) given by (4.28). From here, as previously discussed in554

Subsection 4.1, the solution vSL (w, r, ·, τm+1) is approximated by the convolution integral (4.7).555

For subsequent discussions, we investigate equation (4.31) and the initial condition (4.33) from a556

standpoint that involves discrete grid points. Specifically, for a Lagrangian trajectory which ends at557

(wn, rk) at time τm+1, the departure point (w̆n, r̆k) at time-τ+m, computed by (4.28) with w = wn,558

r = rk, and s = τm+1, does not necessarily coincide with a grid point. Therefore, to approximate (4.33a)559

corresponding to (wn, rk, aj), i.e.
v(w̆n,r̆k,aj ,τ

+
m)

1+∆τr , linear interpolation can be used. Specifically, we denote560

by (vSL)
m+
n,k,j the interpolation result given by561

(vSL)
m+
n,k,j =

I {vm+} (w̆n, r̆k, aj)
1 + ∆τrk

, n ∈ N, k ∈ K, (4.34)562

where w̆n = wn + rk
(
e∆τ − 1

)
−

(
σ2Z
2

+ β

)(
e∆τ − 1

)
, r̆k = rke

−δ∆τ − θ
(
e−δ∆τ − 1

)
.563

Here, I {·} is the discrete interpolation operator defined in (4.1). If the departure point (w̆n, r̆k, aj)564

falls outside Ωin ∪ Ωamin , discrete solutions in the boundary sub-domains are used for interpolation. We565

emphasize the SL discretization is not applied to grid points outside Ωin ∪ Ωamin .566

4.5.2 Time advancement scheme: τ ∈ [τ+
m, τm+1]567

To prepare for time advancement, we combine the time-τm boundary values in Ωwmin , Ωwamin , Ωwmax , and568

Ωc with the time-τ+m intermediate results obtained by the SL discretization discussed above and results569

from (4.25). With a slight abuse of notation, for (i) ∈ {(1), (2)}, this is done as follows570

(
v(i)SL

)m+

l,d,j
=


I
{
(v(i))m+

}
(w̆l, r̆d, aj)

1 + ∆τrd
w̆l and r̆d defined in (4.34) l ∈ N and d ∈ K,

vml,d,j in (4.18), (4.19), and (4.22), otherwise.
(4.35)571

For τ ∈ [τ+m, τm+1], our timestepping method for solving the PIDE (4.32) is built upon the convolution572

integral (4.5), with the initial condition v̂(i)SL (w, r, ·, τ+m), (i) ∈ {(1), (2)}, approximated by a projec-573

tion of discrete values in (4.35). onto linear basis functions for the w- and r-dimensions. Specifically,574

v̂(i)SL (w, r, ·, τ+m), (i) ∈ {(1), (2)}, is approximated by the projection575

v̂(i)SL

(
w, r, ·, τ+m

)
≃

d∈K†∑∗

l∈N†

φl(w) ψd(r)
(
v(i)SL

)m+

l,d,j
, (w, r) ∈ D ≡ (wmin, wmax)× (rmin, rmax), (4.36)576

where {φl(w)}l∈N† and {ψd(r)}d∈K† are piecewise linear basis functions defined by577

φl(w) =


(wl+1 − w)/∆w, wl ≤ w ≤ wl+1,

(w − wl−1)/∆w, wl−1 ≤ w ≤ wl,

0, otherwise,

ψd(r) =


(rd+1 − r)/∆r, rd ≤ r ≤ rd+1,

(r − rd−1)/∆r, rd−1 ≤ r ≤ rd,

0, otherwise.

(4.37)578
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In the convolution integral (4.7), we substitute v̂(i)SL (w, r, ·, τ+m), (i) ∈ {(1), (2)}, by the projection (4.36)579

and rearrange the resulting equation. We obtain the discrete convolution for
(
v(i)SL

)m+1

n,k,j
, (i) ∈ {(1), (2)},580

as follows581 (
v(i)SL

)m+1

n,k,j
= ∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d
(
v(i)SL

)m+

l,d,j
, n ∈ N, k ∈ K. (4.38)582

Here,
(
v(i)SL

)m+

l,d,j
is given by the linear interpolation in (4.34), and g̃n−l,k−d is given by583

g̃n−l,k−d ≡ g̃(wn − wl, rk − rd,∆τ)584

=
1

∆w

1

∆r

∫∫
D†

φl(w) ψd(r) g(wn − w, rk − r,∆τ) dw dr. (4.39)585

That is, in the discrete convolution (4.38), the exact weights g̃n−l,k−d, n ∈ N, k ∈ K, l ∈ N†, d ∈ K†,586

are obtained by a projection of the Green’s function g (·,∆τ) onto the piecewise linear basis functions587

{φl(w)}l∈N† and {ψd(r)}d∈K† .588

Finally, we compute the discrete solution vm+1
n,k,j by589

vm+1
n,k,j = max

((
v(1)SL

)m+1

n,k,j
,
(
v(2)SL

)m+1

n,k,j

)
n ∈ N, k ∈ K, (4.40)590

where
(
v(1)SL

)m+1

n,k,j
and

(
v(2)SL

)m+1

n,k,j
are given by (4.38).591

4.5.3 Approximation of exact weights g̃ and ϵ-monotonicity592

We need to approximate the exact weights g̃n−l,k−d defined in the convolution integral (4.39). To this593

end, we adapt steps in [35, 57] for two-dimensional Green’s functions. We let G (η, ξ,∆τ) be the Fourier594

transform of the Green’s function g(w, r,∆τ). A closed-form expression for G (η, ξ,∆τ) is given by595

G(η, ξ,∆τ) = exp (Ψ (η, ξ)∆τ) , with596

Ψ(η, ξ) = −σ
2
Z

2
(2πη)2 − ρσZσR(2πη)(2πξ)−

σ2R
2
(2πξ)2 − λκ(2πiη)− λ+ λB(η), (4.41)597

where, B(η) is the complex conjugate of the integral B(η) =
∫∞
−∞ b(y)e−2πiηy dy, noting b(y) is the598

density function of ln(Y ), where Y is the random variable representing the jump multiplier.599

The idea in approximating the integral (4.39) is to replace g(w, r,∆τ) therein by its localized, periodic600

approximation ĝ(w, r,∆τ) given by601

ĝ(w, r,∆τ) =
1

P †
1

Q†

z∈Z∑∗

s∈Z
e2πiηswe2πiξzrG(ηs, ξz,∆τ) with ηs =

s

P † , ξz =
z

Q† . (4.42)602

where we denote Z to be the set of all integers.5 Then, assuming uniform convergence of Fourier series,603

we integrate (4.39) to obtain604

g̃n−1,k−d ≡ g̃n−1,k−d(∞) =
1

P †
1

Q†

z∈Z∑∗

s∈Z
e2πiηs(n−l)∆we2πiξz(k−d)∆r tg(s, z) G(ηs, ξz,∆τ), (4.43)605

where the trigonometry term tg(s, z) is defined by6606

tg(s, z) =

(
sin2 πηs∆w

(πηs∆w)
2

)(
sin2 πξz∆r

(πξz∆r)
2

)
, s ∈ Z, z ∈ Z. (4.44)607

5We note that the coefficients G(ηs, ξz∆τ) in (4.42) are the exact coefficients corresponding to the Green’s function of

the PIDE (4.4) with suitable periodic boundary conditions; hence, ĝ(w, r,∆τ) is a valid Green’s function, and in particular

ĝ(·) ≥ 0.
6For ηs = 0 and ξz = 0, we take the limit ηs → 0 and ξz → 0.

16



For α ∈ {2, 4, 8, . . .}, (4.43) is truncated to αN † and αK† terms for the outer and the inner summations,608

respectively, resulting in an approximation609

g̃n−l,k−d (α) =
1

P †
1

Q†

z∈Kα∑∗

s∈Nα

e2πiηs(n−l)∆we2πiξz(k−d)∆r tg(s, z) G(ηs, ξz,∆τ), (4.45)610

where Nα = {−αN †/2− 1, . . . , αN †/2− 1} and Kα = {−αK†/2− 1, . . . , αK†/2− 1}.7611

As α → ∞, replacing g̃n−l,k−d by g̃n−l,k−d (α) in the discrete convolution (4.38) results in no loss of612

information. However, for any finite α, there is an error due to the use of a truncated Fourier series,613

although, as α → ∞, this error vanishes very quickly due a rapid convergence of truncated Fourier614

series. This is discussed in Subsection (5.2). Due to the above truncation error of Fourier series, strict615

monotonicity is not guaranteed for a finite α. To control this potential loss of monotonicity for a finite616

α, as in [35, 57], the selected α must satisfy617

∆w∆r

d∈K†∑∗

l∈N†

∣∣min (g̃n−l,k−d(α), 0)
∣∣ < ϵ

∆τ

T
, ∀n ∈ N, k ∈ K, (4.46)618

where 0 < ϵ ≪ 1/2 is an user-defined monotonicity tolerance. We note that the left-hand-side of the619

monotonicity test (4.46) is scaled by ∆w so that it is bounded as ∆w,∆τ → 0. In addition, ϵ is scaled620

by ∆τ
T in order to eliminate the number of timesteps from the bounds of potential loss of monotonicity.621

4.5.4 Efficient implementation via FFT and algorithms622

Note that, for a fixed α ∈ {2, 4, 8, . . .}, the sequence {g̃−N†/2,k(α), . . . , g̃N†/2−1,k(α)} for a fixed k ∈ K† is623

N †-periodic, and the sequence {g̃n,−K†/2(α), . . . , g̃n,K†/2−1(α)} for a fixed n ∈ N† is K†-periodic. With624

these in mind, we let p = n − l and q = k − d in the discrete convolution (4.45), and, for a fixed α,625

the set of approximate weights in the physical domain to be determined is g̃p,q(α), p ∈ N†, q ∈ K†.626

Using this notation, in (4.45), with p = n − l and q = k − d, we rewrite e2πiηs(n−l)∆w = e2πisαp/(αN
†),627

e2πiξz(k−d)∆r = e2πizαq/(αK
†), and obtain628

g̃p,q(α) =
1

P †
1

Q†

z∈Kα∑∗

s∈Nα

e2πisαp/(αN
†)e2πizαq/(αK

†) ys,z, p ∈ N†, q ∈ K†,

where ys,z = tg(s, z) G(ηs, ξz∆τ), s ∈ Nα, z ∈ Kα,

(4.47)629

and tg(s, z) is given in (4.44). It is observed from (4.47) that, given {ys,z}, {g̃p,q(α)} can be computed630

efficiently via a single two-dimensional FFT of size (αN †, αK†). A suitable value for α, i.e. satisfying631

the ϵ-monotonicity condition (4.46), can be determined through an iterative procedure based on formula632

(4.47). Let this value be αϵ. We also observe that, once αϵ is found, the discrete convolution (4.38) can633

also be computed efficiently using an FFT. This suggests that we only need to compute the weights in634

the Fourier domain, i.e. the DFT of {g̃p,q(αϵ)}, only once, and reuse them for all timesteps. We define635

{G̃p,q(αϵ)} to be the DFT of {g̃p,q(αϵ)} given by636

G̃(ηs, ξz,∆τ, αϵ) =
P †

N †
Q†

K†

q∈K†∑∗

p∈N†

e−2πips/N†
e−2πiqz/K†

g̃p,q(αϵ), s ∈ N†, z ∈ K†. (4.48)637

An iterative procedure for computing {G̃p,q(αϵ)} is given in Algorithm 4.1, where we also use the stopping638

criterion ∆w∆r

q∈K†∑∗

p∈N†

|g̃p,q(α)− g̃p,q(α/2)| < ϵ1, ϵ1 > 0.639

7We can use different numbers of terms in the truncation for the outer and the inner summations, i.e. α1N
† and α2K

†,

respectively. Here, we use a single α to simplify the presentation.
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Algorithm 4.1 Computation of weights G̃p,q(αϵ), p ∈ N†, q ∈ K†, in Fourier domain.

1: set α = 1 and compute g̃p,q(α), p ∈ N†, q ∈ K† using (4.47);

2: for α = 2, 4, . . . until convergence do

3: compute g̃p,q(α), p ∈ N†, q ∈ K†, using (4.47);

4: compute test1 = ∆w∆r
∑

p∈N†
∑

q∈K† min (g̃p,q(α), 0) for monotonicity test;

5: compute test2 = ∆w∆r
∑

p∈N†
∑

q∈K†

∣∣g̃p,q(α)− g̃p,q(α/2)
∣∣ for accuracy test;

6: if |test1| < ϵ(∆τ/T ) and test2 < ϵ1 then

7: αϵ = α;

break from for loop;

8: end if

9: end for

10: use (4.48) to compute and output weights G̃p,q(αϵ), p ∈ N†, q ∈ K†, in Fourier domain.

For simplicity, unless otherwise state, we adopt the notional convention g̃n−l,k−d = g̃n−l,k−d(αϵ) and

G̃(ηs, ξz,∆τ) ≡ G̃(ηs, ξz,∆τ, αϵ), where αϵ is selected by Algorithm 4.1. The discrete convolutions (4.38)

can then be implemented efficiently via an FFT as follows

(
v(i)SL

)m+1

n,k,j
≃

q∈K†∑∗

p∈N†

e2πipn/N
†
e2πiqn/K

† (
V (i)

SL

)
(ηp, ξq, aj , τ

+
m) G̃(ηp, ξq,∆τ), (4.49)

with
(
V (i)

SL

) (
ηp, ξq, aj , τ

+
m

)
=

1

N †
1

K†

d∈K†∑∗

l∈N†

e−2πipl/N†
e−2πiqd/K† (

v(i)SL

)m+

l,d,j
, p ∈ N†, q ∈ K†,

where (i) ∈ {(1), (2)} and G̃(ηp, ξq∆τ) is given by (4.48). Putting everything together, an ϵ-monotone640

Fourier numerical algorithm for the HJB-QVI (3.18) on Ω is presented in Algorithm 4.2 below.

Algorithm 4.2 An ϵ-monotone Fourier algorithm for GMWB problem defined in Definition (3.1). x◦y
is the Hadamard product of matrices x and y.

1: compute matrix G̃ =
{
G̃(ηp, ξq,∆τ)

}
p∈N†,q∈K†

, using Algorithm 4.1;

2: initialize v0n,k,j = max (ewn , (1− µ)aj − c), n ∈ N†, k ∈ K†, j ∈ J; //Ωτ0
3: for m = 0, . . . ,M − 1 do

4: solve (4.25) to obtain (v(1))m+
n,k,j and (v(2))m+

n,k,j , n ∈ N, k ∈ K, j ∈ J; //Ωin ∪ Ωamin

5: compute
(
v(1)SL

)m+

n,k,j
and

(
v(2)SL

)m+

n,k,j
, n ∈ N, k ∈ K, j ∈ J; using (4.34); //Ωin ∪ Ωamin

6: combine results in Line-5 with vmn,k,j in Ωwmin , Ωwamin , Ωwmax and Ωc, to obtain(
v(i)SL

)m+

j
=

{(
v(i)SL

)m+

n,k,j

}
n∈N†,k∈K†

, (i) ∈ {(1), (2)}, j ∈ J;

7: compute

{(
v(i)SL

)m+1

n,k,j

}
n∈N†,k∈K†

= IFFT

{
FFT

{(
v(i)SL

)m+

j

}
◦ G̃

}
, (i) ∈ {(1), (2)}, j ∈ J;

8: discard FFT values in Ωwmin , Ωwamin , Ωwmax , and Ωc, namely
(
v(1)SL

)m+1

n,k,j
and

(
v(2)SL

)m+1

n,k,j
,

n ∈ Nc, k ∈ Kc, j ∈ J;

9: set vm+1
n,k,j = max

((
v(1)SL

)m+1

n,k,j
,
(
v(2)SL

)m+1

n,k,j

)
, n ∈ N, k ∈ K, j ∈ J; //Ωin ∪ Ωamin

10: compute vm+1
n,k,j , n ∈ Nc, k ∈ Kc, j ∈ J using (4.18), (4.19) and (4.22); // Ω \ (Ωin ∪ Ωamin)

11: end for

641

Remark 4.3 (Wraparound error). The boundary sub-domains Ωwmin∪Ωwamin, Ωwmax and Ωc are also set642

up to act as padding areas to minimize the wraparound error in the computation of discrete convolutions643

(4.38) via an FFT in Line 7 of Algorithm 4.2. After an FFT is applied, all results of auxiliary padding644
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nodes in Ωwmin ∪ Ωwamin, Ωwmax and Ωc are discarded to minimize the wraparound error at nodes in645

Ωin∪Ωamin (Line 8). Using similar techniques as in [57] for the case of one-dimensional Green’s function,646

we can show that, with our choice of N † = 2N and K† = 2K, where N and K are chosen large enough,647

our handling of wraparound described above is sufficiently effective. The reader is referred to [57][Section648

4.4] for relevant details.649

4.6 Fair insurance fees650

With respect to the insurance fee β, let v(β;w, r, a, τ) be the exact solution, i.e. v(w, a, r, τ), be param-651

eterised by the insurance fee β. Then, the fair insurance fee for t = 0, or τM = T , denoted by βf , solves652

the equation v (βf ; ln(z0), r0, z0, T ) = z0. In a numerical setting, with a slight abuse of notation, let653

vMln(z0),r0,z0(β) be the numerical solution parametrized by β, then we need to solve vMln(z0),r0,z0(βf ) = z0,654

where vMln(z0),r0,z0 is obtained by Algorithm 4.2. Finally, we apply the Newton iteration to solve for βf .655

5 Convergence to the viscosity solution656

In this section, we appeal to a Barles-Souganidis-type analysis [11] to rigorously study the convergence of657

our scheme in Ωin∪Ωamin as h→ 0 by verifying three properties: ℓ∞-stability, ϵ-monotonicity (as opposed658

to strict monotonicity), and consistency. We will show that convergence of our scheme is ensured if the659

monotonicity tolerance ϵ → 0 as h → 0. We note that our proofs share some similarities with those in660

[57], but our proof techniques are more involved due to the SL discretization, especially for consistency661

of the numerical scheme. We will emphasize these key similarities and differences where suitable.662

For subsequent use, we introduce several important results related to relevant properties of the663

weights g̃n−l,k−d in the discrete convolution (4.39).664

Proposition 5.1. For any (n, k) ∈ {N×K}, we have665

∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d = 1, with g̃n−l,k−d is given by (4.45).666

A proof of Proposition 5.1 is given Appendix B. Noting g̃ = max(g̃, 0) + min(g̃, 0), Proposition 5.1 and667

the monotonicity condition (4.46) give the bound668

∆w∆r

d∈K†∑∗

l∈N†

(max (g̃n−l,k−d, 0) + |min (g̃n−l,k−d, 0)|) ≤ 1 + 2ϵ
∆τ

T
. (5.1)669

Our scheme consists of the following equations: (4.17) for Ωτ0 , (4.18) for Ωwmax , (4.19) for Ωc, (4.22) for670

Ωwmin ∪ Ωwamin , and finally (4.40) for Ωin ∪ Ωamin . We start by verifying ℓ∞-stability of our scheme.671

5.1 Stability672

Lemma 5.1 (ℓ∞-stability). Suppose that (i) the discretization parameter h satisfies (5.8), and (ii) the673

discretization (4.22) satisfies the positive coefficient condition (4.23), (iii) linear interpolation in (4.20),674

(4.34), and (4.24), and (iv) rmin < 0 satisfies the condition675

1 + ∆τrmin > 0. (5.2)676

Then scheme (4.17), (4.18), (4.19), (4.22), and (4.40) satisfies sup
h>0

∥vm∥∞ < ∞ for all m = 0, . . . ,M ,677

as the discretization parameter h→ 0. Here, ∥vm∥∞ = maxn,k,j |vmn,k,j |, where n ∈ N†, k ∈ K† and j ∈ J.678

Proof of Lemma 5.1. For fixed h > 0, we have
∥∥v0∥∥∞ < ∞, and thus, suph>0

∥∥v0∥∥∞ < ∞. Motivated679

by this observation, to demonstrate ℓ∞-stability of our scheme, we aim to demonstrate that, for a fixed680

h > 0, at any (wn, rk, aj , τm) in Ω,681

|vmn,k,j | < C ′(
∥∥v0∥∥∞ + aj), where C

′ = e2mϵ
∆τ
T eCm∆τ , with C = |rmin|(1 + ∆τrmin)

−1, (5.3)682
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where ϵ, 0 < ϵ < 1/2, is the monotonicity tolerance used in (4.46). Since m∆τ ≤ T , C ′ is bounded above.683

We now discuss the important point of how to the constant C ′ in (5.3) is determined. This choice684

is motivated by the stability bounds for Ωin ∪Ωamin , which primarily depend on the amplification factor685

of the time-advancement step. (Boundary sub-domains require smaller stability bounds as shown sub-686

sequently). In our proof techniques, through mathematical induction on m, the time-τm accumulative687

amplification factor of the time-advancement in Ωin ∪ Ωamin can be bounded by the product of the re-688

spective amplification factors of the SL discretization and of the ϵ-monotone Fourier method. For the689

SL discretization, from (4.34) and the condition (5.2), for all k ∈ K, we have690

0 < (1 + ∆τrk)
−1 ≤ (1 + ∆τrmin)

−1 = 1 +∆τC, where C = |rmin|(1 + ∆τrmin)
−1 > 0, (5.4)691

which results in the time-τm accumulative amplification factor bounded by eCm∆τ . For the ϵ-monotone692

Fourier method, the bound (5.1) suggests the time-τm amplification factor is bounded by e2mϵ
∆τ
T . Putting693

together, we obtain the constant C ′ > 0 given in (5.3).694

We address ℓ-stability for the boundary and interior sub-domains separately. For (4.17), (4.18), it695

is straightforward to show maxn,k,j |vmn,k,j | ≤
∥∥v0∥∥∞, n ∈ N ∪ Nc

max, k ∈ K, j ∈ J, and m = 0, . . . ,M .696

For (4.19), since the T -maturity zero-coupon bond price pb(rk, τm;T ) given in (3.7) is non-negative,697

the stability trivially to show. For (4.22), since the finite difference scheme is strictly monotone, the698

ℓ-stability can be demonstrated using the induction technique (on m) as in [17].699

To prove (5.3) for (4.40), it is sufficient to show that for all m ∈ {0, . . . ,M} and j ∈ J, we have700 [
vmj

]
max

≤ e2mϵ
∆τ
T eCm∆τ

(∥∥v0∥∥∞ + aj
)
, (5.5)701

−2mϵ
∆τ

T
e2mϵ

∆τ
T eCm∆τ

(∥∥v0∥∥∞ + aj
)

≤
[
vmj

]
min

. (5.6)702

where
[
vmj

]
max

= maxn,k
{
vmn,k,j

}
and

[
vmj

]
min

= minn,k
{
vmn,k,j

}
. To prove (5.5)-(5.6), motivated by the703

above reasoning regarding the choice C ′, we use mathematical induction on m = 0, . . . ,M , similar to704

the technique developed in [57][Lemma 5.1]. The details for this step are provided in Appendix C.705

5.2 Error analysis results706

In this subsection, we identify errors arising in our numerical scheme and make assumptions needed for707

subsequent proofs.708

1. Truncating the infinite region of integration in the convolution integral (4.5) to D† (defined in709

(4.6)) results in a boundary truncation error, denoted by Eb, where710

Eb =
∫∫

R2\D†
g(w − w′, r − r′,∆τ) v̂SL(w

′, r′, ·, τm) dw′ dr′, (w, r) ∈ D. (5.7)711

Similar to the discussions in [57], we can show that Eb is bounded by712

|Eb| ≤ K1∆τe
−K2(P †∧Q†), ∀(w, r) ∈ D, K1,K2 > 0 independent of ∆τ , P † and Q†,713

where P † = w†
max − w†

min and Q† = r†max − r†min. For fixed P † and Q†, (5.8) shows Eb → 0, as714

∆τ → 0. However, as typically required for showing consistency, one would need to ensure Eb
∆τ → 0715

as ∆τ → 0. Therefore, from (5.8), we need P † → ∞ and Q† → ∞ as ∆τ → 0, which can be716

achieved by letting P † = C/∆τ and Q† = C ′/∆τ , for finite C > 0 and C ′ > 0.717

2. The next error arises in approximating the Green’s function g(w, r,∆τ) by its localized, periodic718

approximation ĝ(w, r,∆τ) defined in (4.42). We denote this error by Eĝ. While ĝ(w, r,∆τ) ̸=719

g(w, r,∆τ) for (w, r) ∈ D. Nonetheless, if P † = C5/∆τ and Q† = C ′
5/∆τ as discussed above, then,720

as ∆τ → 0, we have721

ĝ(w, r,∆τ)
(i)
=

∫∫
R2

e2πiηwe2πiξrG(η, ξ,∆τ)dηdξ +O
(
1/

(
P † ∧Q†

)2
)

(ii)
= g(w, r,∆τ) +O(∆τ2).722

Here, (i) is due to P † → ∞ and Q† → ∞ as ∆ → 0, ensuring in an O
(
1/

(
P † ∧Q†)2) ∼ O((∆τ)2)723

error for the traperzoidal rule approximation of the integral, and (ii) is due to that G(·) is the724

Fourier transform of g(·). Therefore, Eĝ = O(∆τ2) as ∆τ → 0.725
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3. Truncating g̃n−l(∞), defined in (4.43), to to g̃n−l(α), for a finite α ∈ {2, 4, 8, . . .}, in (4.45), gives726

rise to a Fourier series truncation error, denote by Ef . As shown in Appendix A, as ∆τ , ∆w and727

∆r → 0, this error is728

Ef = O
(
e
− ∆τ

(∆w)2 /(∆w ∧∆r)2
)
+O

(
e
− ∆τ

(∆r)2 /(∆w ∧∆r)2
)
, as ∆τ, ∆w, ∆r → 0.729

4. Approximating a function in G(Ω∞) ∩ C∞(Ω∞) by its projection on the piecewise linear basis func-730

tions φl(·) and ψd(·), l ∈ N† ad d ∈ K†, as in (4.36), as well as by linear interpolation, as in731

Remark (4.1), gives rise to a projection/interpolation error, collectively denoted by Eo. Generally732

Eo = O
(
max(∆w,∆r,∆a)2

)
, as ∆w,∆r,∆a→ 0.733

Motivated by the above discussions, for convergence analysis, we make an assumption about the dis-734

cretization parameter.735

Assumption 5.1. We assume that there is a discretization parameter h such that736

∆w = C1h, ∆r = C2h, ∆amax = C3h, ∆amin = C ′
3h,737

∆τ = C4h, P † = C5/h, Q† = C ′
5/h, (5.8)738

where the positive constants C1, C2, C3, C
′
3, C4, C5 and C ′

5 are independent of h.739

Under Assumption 5.1, it is straightforward to obtain740

Eb = O(he−
1
h ), Eĝ = O(h2), Ef = O(e−

1
h /h2), Eo = O(h2). (5.9)741

It is also straightforward to ensure the theoretical requirement P †, Q† → ∞ as h → 0. For example,742

with C5 = C ′
5 = 1 in (5.8), we can quadruple N † and K† as we halve h. We emphasize that, for practical743

purposes, if P † and Q† are chosen sufficiently large, both can be kept constant for all ∆τ refinement744

levels (as we let ∆τ → 0). The effectiveness of this practical approach is demonstrated through numerical745

experiments in Section 6. Also see relevant discussions in [57].746

To show convergence of the numerical scheme to the viscosity solution, our starting point is discrete747

convolutions of the form (4.38) which typically involve a generic function φ ∈ G(Ω∞). There are two748

cases: (i) φ is not necessarily smooth, which corresponds to the SL discretization or non-local impulses,749

and (ii) φ is a test function in G(Ω∞) ∩ C∞(Ω∞), which corresponds to local impulses. In subsequent750

discussions, we present results relevant to these two cases in Lemma 5.2 below. For differential and jump751

operators, we use the notation [·]mn,k,j := [·](xmn,k,j).752

Lemma 5.2. Suppose the discretization parameter h satisfies Assumption 5.1. Let ϕ and χ be in

G(Ω∞) ∩ C∞(Ω∞) and G(Ω∞), respectively. For xmn,k,j, n ∈ N, j ∈ J, k ∈ K, m ∈ {0, . . . ,M}, we have

∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d ϕ
m
l,d,j = ϕmn,k,j +∆τ [Lgϕ+ J ϕ]mn,k,j +O(h2), (5.10)

∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d χ
m
l,d,j = χmn,k,j +O(h2) + Eχ(xmn,k,j , h), where Eχ(xmn,k,j , h) → 0 as h→ 0. (5.11)

Proof of Lemma 5.2. Lemma 5.2 can be proved using similar techniques in [57][Lemmas 5.3 and 5.4] for753

the one-dimensional Greens’ function case. For completeness, we provide the key steps below. We let754

a = aj and τ=τm be fixed, and with a slight abuse of notation, we view ϕ and χ as functions of (w, r).755

Let ξ ∈ {ϕ, χ}. Starting from the discrete convolutions on the left-hand-side of (5.10)-(5.11), we need756

to recover an associated convolution integrals of the form (4.5) which is posed on an infinite integration757

region. Since ξ ∈ {χ, ϕ} is not necessarily in L1(R2), standard mollification techniques can be used to758

obtain ξ′ ∈ L1(R2) which agrees with ξ on D†. Then, with ξ ∈ {ϕ, χ}, using error analysis, we have759

∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d ξ
m
l,d,j =

∫∫
R2

ξ′′(w, r)g(wn − w, rk − r,∆τ)dwdr + Eb + Eĝ + Ef + Eo. (5.12)760
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where ξ′′ is a projection of ξ′ onto the piecewise linear basis functions φl(·) and ψd(·), l ∈ N† ad d ∈ K†.761

By Assumption 5.1 and (5.9), Eb + Eĝ + Ef + Eo = O(h2).762

For ξ = ϕ, and since ϕ is smooth, we then apply the Fourier Transform and inverse Fourier Transform763

to
∫∫
R2 ξ

′′(w, r)g(wn − w, rk − r,∆τ)dwdr in (5.12) to recover the differential and jump operators.764

For ξ = χ which is not smooth, we write the convolution integral in (5.12) as765 ∫∫
R2

χ′′(w, r)g(wn−w, rk−r,∆τ) = χ′′(wn, rk)+

∫∫
R2

g(wn−w, rk−r,∆τ)
(
χ′′(w, r)− χ′′(wn, rk)

)
dwdr.766

Note that χ′′(wn, rk) = χml,d,j , and letting Eχ(xmn,k,j , h) =
∫∫

R2(·)dwdr gives (5.11), due to the “cancelation767

properties” of the Green’s function [36, 31]. This concludes the proof.768

We now consider a special case of the discrete convolution (4.38) that involves interpolation of769

values of a smooth test function evaluated at the departure points of the SL trajectory presented in770

Subsection 4.5.1. Specifically, given ϕ ∈ G(Ω∞) ∩ C∞(Ω∞), for xm+1
l,d,q ∈ Ω, 0 < τm+1 ≤ T , we define771

discrete values (ϕSL)
m
l,d,q as follows772

(ϕSL)
m
l,d,q =

{
I{ϕm}(w̆l, r̆d, aq)(1 + ∆τrd)

−1 xm+1
l,d,q ∈ Ωin ∪ Ωamin ,

ϕml,d,q otherwise.
(5.13)773

Here, as described in Remark 4.1, I {ϕm} (·) is the linear interpolation operator acting on discrete data774 {
(wl, rd, aq), ϕ

m
l,d,q

}
and (w̆l, r̆d) is given by (4.34), while aq is fixed.775

Lemma 5.3. Let ϕ ∈ G(Ω∞) ∩ C∞(Ω∞) and {(wl, rd, aq), (ϕSL)
m
l,d,q} be given by (5.13). For any fixed776

xmn,k,j ∈ Ωin ∪ Ωamin, i.e. n ∈ N, j ∈ J, k ∈ K, and m ∈ {1, . . . ,M}, we have777

∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d (ϕSL)
m
l,d,j = ϕmn,k,j +∆τ [Lϕ+ J ϕ]mn,k,j +O(h2) + ∆τE (xmn,k,j , h). (5.14)778

Here, g̃n−l,k−d is given by (4.45), L and J are defined in (3.2), and E (xm+1
n,k,j , h) → 0 as h→ 0..779

Proof of Lemma 5.3. We let j ∈ J be fixed in this proof. We start by investigating the interpolation780

result I {ϕm} (w̆l, r̆d, aj) for xml,d,j ∈ Ωin ∪ Ωamin in (5.13). Remark 4.1781

I {ϕm} (w̆l, r̆d, aj)
(i)
= ϕ (w̆l, r̆d, aj , τm) +O(h2)782

(ii)
= ϕml,d,j +∆τ

[
(rd −

σ2Z
2

− β)(ϕw)
m
l,d,j + δ(θ − rd)(ϕr)

m
l,d,j

]
+O(h2)783

= ϕml,d,j +∆τ [Lsϕ]ml,d,j +O(h2). (5.15)784

Here, (i) follows from Remark 4.1[equation (4.16)], noting ϕ ∈ C∞(Ω∞); in (ii), we apply a Taylor series785

to expand the term ϕ (w̆l, r̆d, aj , τm) about the point (wl, rd, aj , τm), and then use e∆τ = 1+∆τ +O(h2)786

and e−δ∆τ = 1− δ∆τ +O(h2). We note that, for xml,d,q ∈ Ωin ∪ Ωamin , we have787

(1 + ∆τrd)
−1 = 1−∆τrd +O

(
(∆τ)2

)
, rd ∈ [rmin, rmax]. (5.16)788

Using (5.16) and (5.15), we arrive at

I {ϕm} (w̆l, r̆d, aj)(1 + ∆τrd)
−1 = ϕml,d,j +∆τ [Lsϕ− rϕ]ml,d,j +O(h2), xml,d,j ∈ Ωin ∪ Ωamin . (5.17)

Next, letting x′ = (w′, a′, r′, τ ′), we define a function ψ (x′) : Ω∞ → R by789

ψ
(
x′) = {

(r′ − σ2
Z

2 − β)ϕw (x′) + δ(θ − r′)ϕr (x
′)− r′ϕ (x′) , x′ ∈ Ωin ∪ Ωamin ,

0 otherwise.
(5.18)790
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Note that ψ ∈ G(Ω∞), and that ψml,d,j = [Lsϕ − rϕ]ml,d,j for xml,d,j ∈ Ωin ∪ Ωamin . Now, we consider the791

discrete convolution on the rhs of (5.14): ∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d (ϕSL)
m
l,d,j = . . .792

. . .
(i)
= ∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d ϕ
m
l,d,j +∆τ

(
∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d ψ
m
l,d,j

)
+O(h2)793

(ii)
= ϕmn,k,j +∆τ [Lgϕ+ J ϕ]mn,k,j +∆τ [Lsϕ− rϕ]mn,k,j +∆τE (xmn,k,j , h) +O(h2)794

(iii)
= ϕmn,k,j +∆τ [Lϕ+ J ϕ]mn,k,j +O(h2) + ∆τE (xmn,k,j , h).795

Here, (i) is due to the definition of (ϕSL)
m
l,d,j given in (5.13), together with (5.17)-(5.18), and Proposi-796

tion 5.1 to get O(h2). In (ii), we use Lemma 5.2[equation (5.11)] on the discrete convolution involving797

ψml,d,j , noting its definition (5.18) and E (xmn,k,j , h) → 0 as h→ 0; and in (iii), we use Lϕ = Lgϕ+Lsϕ−rϕ.798

This concludes the proof.799

5.3 Consistency800

While equations (4.17), (4.18), (4.19), (4.22), and (4.40) are convenient for computation, they are not in801

a form amendable for analysis. For purposes of proving consistency, it is more convenient to rewrite them802

in a single equation. To this end, we recall that we partition [0, aj ] into [0, aj∧Cr∆τ ] and (Cr∆τ, aj ], with803

the convention that (Cr∆τ, aj ] = ∅ if aj ≤ Cr∆τ . Subsequently in this subsection, the aforementioned804

partition of [0, aj ] is used to write (4.17), (4.18), (4.19), (4.22), and (4.40) into an equivalent single805

equation convenient for analysis. Unless noted otherwise, in the following, let j ∈ J and m ∈ M be fixed.806

For (wn, rk, aj , τm+1) ∈ Ωwmin ∪ Ωwamin , i.e. n ∈ Nc
min and k ∈ K, we define the following operators:807

Am+1
n,k,j

(
h, vm+1

n,k,j ,
{
vml,d,p

}
p≤j

)
≡ Am+1

n,k,j (·) and Bm+1
n,k,j

(
h, vm+1

n,k,j ,
{
vml,d,p

}
p≤j

)
≡ Bm+1

n,k,j (·), where808

Am+1
n,k,j (·) =

1

∆τ

[
vm+1
n,k,j − sup

γmn,k,j∈[0,aj∧Cr∆τ ]

(
ṽmn,k,j + f

(
γmn,k,j

))
+∆τ(Lhd v)m+1

n,k,j

]
,809

Bm+1
n,k,j (·) = vm+1

n,k,j − sup
γmn,k,j∈(Cr∆τ,aj ]

(
ṽmn,k,j + f

(
γmn,k,j

))
+∆τ(Lhd v)m+1

n,k,j , (5.19)810

where ṽmn,k,j , n ∈ Nc
min and k ∈ K, is given in (4.20), and f (·) is defined in (4.14).811

For (wn, rk, aj , τm+1) ∈ Ωin ∪ Ωamin , i.e. n ∈ N and k ∈ K, we define the following operators:812

Cm+1
n,k,j

(
h, vm+1

n,k,j ,
{
vml,d,p

}
p≤j

)
≡ Cm+1

n,k,j (·) and Dm+1
n,k,j

(
h, vm+1

n,k,j ,
{
vml,d,p

}
p≤j

)
≡ Dm+1

n,k,j (·), where813

Cm+1
n,k,j (·) =

1

∆τ

vm+1
n,k,j −∆w∆r

d∈K∑∗

l∈N
g̃n−l,k−d

(
v(1)SL

)m+

l,d,j
−∆w∆r

d∈Kc∑∗

l∈Nc

g̃n−l,k−d v
m
l,d,j

 ,814

Dm+1
n,k,j (·) = vm+1

n,k,j −∆w∆r

d∈K∑∗

l∈N
g̃n−l,k−d

(
v(2)SL

)m+

l,d,j
−∆w∆r

d∈Kc∑∗

l∈Nc

g̃n−l,k−d v
m
l,d,j . (5.20)815

Here, for (i) ∈ {(1), (2)},
(
v(i)SL

)m+

l,d,j
=

I{(v(i))m+}(w̆l,r̆d,aj)

1+∆τrd
, l ∈ N and d ∈ K, are defined in (4.34), and816

I{(v(i))m+}, a linear operator discussed in Remark 4.1.817

In order to show local consistency, we split the sub-domains Ωin and Ωwmin as follows: Ωin = ΩL

in∪ΩU

in818

and Ωwmin = ΩL
wmin

∪ ΩU
wmin

, where819

ΩL

in = (wmin, wmax)× (rmin, rmax)× (amin, Cr∆τ ]× (0, T ],

ΩU

in = (wmin, wmax)× (rmin, rmax)× (Cr∆τ, amax]× (0, T ],

ΩL

wmin
= [w†

min, wmin]× (rmin, rmax)× (amin, Cr∆τ ]× (0, T ],

ΩU

wmin
= [w†

min, wmin]× (rmin, rmax)× (Cr∆τ, amax]× (0, T ].

(5.21)820
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Using Am+1
n,k,j (·), B

m+1
n,k,j (·), C

m+1
n,k,j (·) and Dm+1

n,k,j (·) defined (5.19)-(5.3), our scheme at the reference node821

x = (wn, rk, aj , τm+1) can be rewritten in an equivalent form as follows822

0 = Hm+1
n,k,j

(
h, vm+1

n,k,j ,
{
vml,d,p

}
p≤j

)
≡



Am+1
n,k,j (·) x ∈ ΩL

wmin
∪ Ωwamin ,

min
{
Am+1
n,k,j (·) ,B

m+1
n,k,j (·)

}
x ∈ ΩU

wmin
,

Cm+1
n,k,j (·) x ∈ ΩL

in ∪ Ωamin ,

min
{
Cm+1
n,k,j (·) ,D

m+1
n,k,j (·)

}
x ∈ ΩU

in,

vm+1
n,k,j − e−βτm+1ewn x ∈ Ωwmax ,

vm+1
n,k,j −max(ewn , (1− µ)aj − c) x ∈ Ωτ0 ,

vmn,k,j − p(wn, rk, aj , τm) x ∈ Ωc,

(5.22)823

where the sub-domains are defined in (3.3) and (5.21).824

To demonstrate the consistency in viscosity sense of (5.22), we need some intermediate results on825

local consistency of our scheme. To this end, motivated by the aforementioned partitioning of [0, aj ], we826

define operators Fin′ and Fw′
min

, respectively associated with Fin and Fwmin , for the case 0 ≤ aj ≤ Cr∆τ ,827

i.e. 0 ≤ a/∆τ ≤ Cr, as follows828

Fin′ (x, v) = vτ − Lv − J v − sup
γ̂∈[0,a/∆τ ]

γ̂
(
1− e−wvw − va

)
1{a>0}, 0 ≤ a/∆τ ≤ Cr,829

Fw′
min

(x, v) = vτ − Ldv − sup
γ̂∈[0,a/∆τ ]

γ̂ (1− va)1{a>0}, 0 ≤ a/∆τ ≤ Cr. (5.23)830

Below, we state the key supporting lemma related to local consistency of scheme (5.22).831

Lemma 5.4 (Local consistency). Suppose that (i) the discretization parameter h satisfies Assump-832

tion 5.1, (ii) linear interpolation in (4.20), (4.34), and (4.24) is used, and (iii) wmin satisfies833

ewmin − ew
†
min ≥ Cr∆τ. (5.24)834

Then, for any function ϕ ∈ G(Ω∞)∩ C∞(Ω∞), with ϕmn,k,j = ϕ
(
xmn,k,j

)
and x = (wn, rk, aj , τm+1), and for835

a sufficiently small h, we have836

Hm+1
n,k,j

(
h, ϕm+1

n,k,j + ξ, {ϕml,d,p + ξ}p≤j
)
=



Fin(·, ·) + c(x)ξ +O(h) + E(xmn,k,j , h) x ∈ ΩU
in;

Fin′(·, ·) + c(x)ξ +O(h) + E(xmn,k,j , h) x ∈ ΩL
in;

Famin(·, ·) + c(x)ξ +O(h) x ∈ Ωamin

Fwmin(·, ·) + c(x)ξ +O(h) x ∈ ΩU
wmin

;

Fw′
min

(·, ·) + c(x)ξ +O(h) x ∈ ΩL
wmin

;

Fwamin(·, ·)+ c(x)ξ +O(h) x ∈ Ωwamin ;

Fwmax(·, ·) + c(x)ξ x ∈ Ωwmax ;

Fτ0(·, ·) + c(x)ξ x ∈ Ωτ0 ;

Fc(·, ·) + c(x)ξ x ∈ Ωc.

(5.25)837

Here, ξ is a constant and c(·) is a bounded function satisfying |c(x)| ≤ max(|rmin|, rmax, 1) for all x ∈ Ω,838

and E(xmn,k,j , h) → 0 as h → 0. The operators Fin (·, ·), Famin (·, ·), Fwmin (·, ·), Fwamin (·, ·), Fwmax (·, ·)839

Fτ0 (·, ·), Fc (·, ·), defined in (3.11)-(3.16), as well as Fin′ and Fw′
min

defined in (5.23), are function of840

(x, ϕ (x)).841

Proof of Lemma 5.4. Since ϕ ∈ C∞(Ω∞) and the computational domain Ω is bounded, ϕ has continuous842

and bounded derivatives of up to second-order in Ω. Given the smooth test function ϕ, with j ∈ J and843

m ∈ M being fixed and (i) ∈ {(1), (2)}, we define discrete values (ϕ(i))m+
l,d,j , l ∈ N† and d ∈ K†, as follows844

l ∈ N and d ∈ K : (ϕ(1))m+
l,d,j = sup

γml,d,j∈[0,Cr∆τ ]
ϕ̃ml,d,j + f(γml,d,j), (ϕ

(2))m+
l,d,j = sup

γml,d,j∈(Cr∆τ,aj ]
ϕ̃ml,d,j + f(γml,d,j),845

l ∈ Nc or d ∈ Kc : (ϕ(1))m+
l,d,j = (ϕ(2))m+

l,d,j = ϕml,d,j + ξ, (5.26)846
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where ϕ̃ml,d,j is given by847

ϕ̃ml,d,j = I{ϕm + ξ}(w̃l, rd, ãj), w̃l = ln(max(ewl − γml,d,j , e
w†

min)), ãj = aj − γml,d,j . (5.27)848

Given the discrete data
{(

(wl, rd, aj) , (ϕ
(i))m+

l,d,j

)}
, (i) ∈ {(1), (2)}, where (ϕ(i))m+

l,d,j , is given in (5.26)-849

(5.27), we define associated discrete values (ϕ(i)
SL )

m
l,d,j as follows850

(ϕ(i)
SL )

m+
l,d,j =

{
I
{
(ϕ(i))m+

}
(w̆l, r̆d, aj)(1 + ∆τrd)

−1 l ∈ N and d ∈ K
ϕml,d,j + ξ otherwise,

(5.28a)

(5.28b)
851

where the departure point (w̆l, r̆d) of an SL trajectory are defined in (4.34).852

We now show that the first equation of (5.25) holds, that is, for x = (wn, rk, aj , τm+1),853

Hm+1
n,k,j(·) = min

{
Cm+1
n,k,j (·) ,D

m+1
n,k,j (·)

}
= Fin (x, ϕ (x)) + c (x) ξ +O(h) + E(xmn,k,j , h)854

if wmin < wn < wmax, rmin < rk < rmax, Cr∆τ < aj ≤ aJ , 0 < τm+1 ≤ T,855

where operators Cm+1
n,k,j (·) and Dm+1

n,k,j(·) are defined in (5.3). First, we consider operator Cm+1
n,k,j (·) which856

can be written as857

Cm+1
n,k,j (·) =

1

∆τ

[
ϕm+1
n,k,j + ξ −∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d (ϕ(1)
SL )

m+
l,d,j

]
, (5.29)858

where the discrete values (ϕ(1)
SL )

m+
l,d,j are defined in (5.28) with (i) = (1).859

The key challenge in (5.29) is the discrete convolution
∑∗

g̃ (ϕ(1)
SL )

m+
l,d,j . Our approach is to decompose860

it into the sum of two simpler discrete convolutions of the forms
∑∗

g̃ (ϕSL)
m
l,d,j and

∑∗
g̃ (φSL)

m
l,d,j for861

which Lemmas 5.3 and 5.2 are respectively applicable. Here, (ϕSL)
m
l,d,j is given in (5.13) and (φSL)

m
l,d,j is862

to be defined subsequently. To this end, we will start with the interpolated values ϕ̃ml,d,j in (5.27).863

For operator Cm+1
n,k,j (·), the admissible control set is γml,d,j ∈ [0, Cr∆τ ]. In this case, condition (5.24)864

implies that, for wl ∈ (wmin, wmax), e
wl − γml,d,j > ew

†
min for all γml,d,j ∈ [0, Cr∆τ ]. Therefore, we can865

eliminate the max(·) operator in the linear interpolation operator in (5.27) when γml,d,j ∈ [0, Cr∆τ ].866

Consequently, when γml,d,j ∈ [0, Cr∆τ ], using (5.26) and recalling the cash flow function f(·) defined in867

(4.14), we have868

ϕ̃ml,d,j + f
(
γml,d,j

) (i)
= ϕ

(
ln
(
ewl − γml,d,j

)
, aj − γml,d,j , τm

)
+ ξ +O

(
h2

)
+ γml,d,j869

(ii)
= ϕml,d,j + ξ + γml,d,j

(
1− e−wl(ϕw)

m
l,d,j − (ϕa)

m
l,d,j

)
+O

(
h2

)
. (5.30)870

Here, (i) follows from Remark 4.1[eqns (4.15) and (4.16)], and f
(
γml,d,j

)
= γml,d,j as defined in (4.14); and871

in (ii), we apply a Taylor series to expand ϕ
(
ln
(
ewl − γml,d,j

)
, rd, aj − γml,d,j , τm

)
about (wl, rd, aj , τm),872

noting γml,d,j = O(∆τ). Therefore, using (5.30), supγml,d,j∈[0,Cr∆τ ] ϕ̃
m
l,d,j + f(γml,d,j) = . . .873

. . . = ϕml,d,j + ξ +O
(
h2

)
+ sup
γml,d,j∈[0,Cr∆τ ]

γml,d,j(1− e−wl(ϕw)
m
l,d,j − (ϕa)

m
l,d,j)874

(i)
= ϕml,d,j + ξ +O(h2) + ∆τ sup

γ̂ml,d,j∈[0,Cr]
γ̂ml,d,j(1− e−wl(ϕw)

m
l,d,j − (ϕa)

m
l,d,j). (5.31)875

Here, in (i) of (5.31), since the control γml,d,j can be factored out completely from the objective function876

γml,d,j(1−e−wl(ϕw)
m
l,d,j− (ϕa)

m
l,d,j), we define a new control variable γ̂ml,d,j = γml,d,j/∆τ where γ̂ml,d,j ∈ [0, Cr].877

We also note that, as a result of this change of control variable, there is a factor of ∆τ in front of the878

term supγ̂ml,d,j∈[0,Cr](·) in (i) of (5.31).879
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For subsequent use, letting x′ = (w′, r′, a′, τ ′) ∈ Ω∞, we define a function φ (x′) as follows880

φ
(
x′) =


sup

γ̂∈[0,Cr]
φ′(γ̂,x′), wmin < w′ < wmax, rmin < r′ < rmax,

where φ′(γ̂,x′) = γ̂(1− e−wϕw(x
′)− ϕa(x

′)) Cr∆τ < a′ ≤ aJ , 0 ≤ τ ′ < T,

0 otherwise.

(5.32)881

Using (5.31)-(5.32), and recalling from (5.26) that (ϕ(1))m+
l,d,j = supγml,d,j∈[0,Cr∆τ ] ϕ̃

m
l,d,j + f(γml,d,j), we have882

(ϕ(1))m+
l,d,j = ϕml,d,j + ξ +∆τφml,d,j +O

(
h2

)
, l ∈ N, d ∈ K. (5.33)883

The decomposition formula (5.33) allows us to write (ϕ(1)
SL )

m+
l,d,j , defined in (5.28), as follows884

(ϕ(1)
SL )

m+
l,d,j = (ϕSL)

m
l,d,j + (φSL)

m
l,d,j +O

(
h2

)
, l ∈ N†, d ∈ K†, (5.34)885

where (ϕSL)
m
l,d,q is given in (5.13) and (φSL)

m
l,d,q is given by886

(φSL)
m
l,d,q =

{
(ξ +∆τI{φm}(w̆l, r̆d, aj))(1 + ∆τrd)

−1 l ∈ N and d ∈ K,
ξ otherwise,

(5.35a)

(5.35b)
887

where φ is defined in (5.32). Using (5.34)-(5.35), we rewrite operator Cm+1
n,k,j (·), previously given in (5.29),888

into a convenient form below889

Cm+1
n,k,j (·) =

1

∆τ

[
ϕm+1
n,k,j + ξ −∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d
(
(ϕSL)

m
l,d,j + (φSL)

m
l,d,j +O

(
h2

)) ]
. (5.36)890

From here, respectively applying Lemma 5.3 and Lemma 5.2[equation (5.11)] on discrete convolutions891

involving (ϕSL)
m
l,d,j and (φSL)

m
l,d,j gives892

∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d (ϕSL)
m
l,d,j = ϕmn,k,j +∆τ [Lϕ+ J ϕ]mn,k,j +O(h2) + ∆τEϕ(xmn,k,j , h), (5.37)893

∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d (φSL)
m
l,d,j = (φSL)

m
n,k,j +O(h2) + ∆τEφ(xmn,k,j , h), (5.38)894

where Eϕ(xmn,k,j , h), Eφ(x
m
n,k,j , h) → 0 as h→ 0.895

We now investigate the rhs of (5.38). By the definition of (φSL)
m
n,k,j in (5.35), and since linear interpolation896

is used, together with (5.16), we can further write the term (φSL)
m
n,k,j for the case (5.35a) as897

(ξ +∆τI{φm}(w̆n, r̆k, aj))(1 + ∆τrk)
−1 = (ξ +∆τI{φm}(w̆n, r̆k, aj))(1−∆τrk) +O(h2)898

= ξ +∆τI{φm}(w̆n, r̆k, aj)−∆τξrk +O(h2). (5.39)899

Suppose that wn′ ≤ w̆n ≤ wn′+1 and rk′ ≤ r̆k ≤ rk′+1. Then, I{φm}(w̆n, r̆k, aj) can be written into900

I {φm} (w̆n, r̆k, aj)
(i)
= xr(xwφ

m
n′,k′,j + (1− xw)φ

m
n′+1,k′,j) + (1− xr)(xwφ

m
n′,k′+1,j + (1− xw)φ

m
n′+1,k′+1,j),901

(ii)
=

[
sup

γ̂∈[0,Cr]
γ̂(1− e−wϕw − ϕa)

]m
n,k,j

+O(h). (5.40)902

Here, in (i), 0 ≤ xr ≤ 1 and 0 ≤ xw ≤ 1 are linear interpolation weights. For (ii), we replace903

{φmn′,k′,j , . . . , φ
m
n′+1,k′+1,j} by φmn,k,j , resulting in an overall error of size O(h). Specifically, as an ex-904

ample, replacing φmn′,k′,j by φ
m
n,k,j gives rise to an error bounded as follows905

|φmn,k,j − φmn′,k′,j | ≤ sup
γ̂∈[0,Cr]

γ̂|e−wn(ϕw)
m
n,k,j − e−wn′ (ϕw)

m
n′,k′,j + (ϕa)

m
n′,k′,j)− (ϕa)

m
n,k,j | = O(h), (5.41)906

due to smooth test function ϕ and boundedness of γ̂ ∈ [0, Cr], independently of h.907
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Substituting (5.37)-(5.38) and (5.40) into (5.36), and simplifying gives Cmn,k,j(·) = . . .908

. . . =
ϕm+1
n,k,j − ϕmn,k,j

∆τ
−

[
Lϕ+ J ϕ+ sup

γ̂∈[0,Cr]
γ̂(1− e−wϕw − ϕa)

]m
n,k,j

+ ξrk + E (xmn,k,j , h) +O(h)909

(i)
=

[
ϕτ − Lϕ− J ϕ− sup

γ̂∈[0,Cr]
γ̂
(
1− e−wϕw − ϕa

)]m+1

n,k,j

+ ξrk + E (xmn,k,j , h) +O(h). (5.42)910

Here, in (i), E (xmn,k,j , h) → 0 as h→ 0, and we use911

(ϕτ )
m
n,k,j = (ϕτ )

m+1
n,k,j +O (h) , (ϕw)

m
n,k,j = (ϕw)

m+1
n,k,j +O (h) , (ϕa)

m
n,k,j = (ϕa)

m+1
n,k,j +O (h) .912

This step results in an O (h) term inside supγ̂ (·), which can be moved out of the supγ̂ (·), because it913

has the form C(γ̂)h, where C(γ̂) is bounded independently of h, due to boundedness of γ̂ ∈ [0, Cr]914

independently of h.915

We now consider operator Dm+1
n,k,j(·) which can be written as916

Dm+1
n,k,j (·) = ϕm+1

n,k,j + ξ −∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d (ϕ(2)
SL )

m+
l,d,j , (5.43)917

where the discrete values (ϕ(2)
SL )

m+
l,d,j are defined in (5.28) with (i) = (2). Adopting a similar approach918

as the one utilized for Cm+1
n,k,j (·), we aim to decompose

∑∗
g̃ (ϕ(2)

SL )
m+
l,d,j into

∑∗
g̃ (ψSL)

m
l,d,j for which919

Lemma 5.3 is applicable. Here, (ψSL)
m
l,d,j is to be defined subsequently.920

We first start from the interpolated value ϕ̃ml,d,j in (5.26). In this case, since γml,d,j ∈ (Cr∆τ, aj ], we921

cannot eliminate the max(·) operator in w̃l of the linear interpolation in (5.26). Therefore, as noted in922

Remark 4.1[(4.15)-(4.16)], for γ ∈ (Cr∆τ, aj ], we have supγml,d,j∈(Cr∆τ,aj ] ϕ̃
m
l,d,j + f(γml,d,j) = . . .923

. . . = sup
γml,d,j∈(Cr∆τ,aj ]

(ϕ(w̃l, rd, ãj , τm) + γml,d,j(1− µ)) + ξ + µCr∆τ − c+O(h2). (5.44)

Here, (w̃l, ãj) is given in (5.26), and f(γ) is replaced by γ(1 − µ) + µCr∆τ − c, as per (4.14) for924

γ ∈ (Cr∆τ, aj ].925

Recalling operator M(·) defined in (3.9b), we define a function ψ (x′) as follows926

ψ (x′) =


sup

γ∈[0,a′]
ψ′(γ,x′) wmin < w′ < wmax, rmin < r′ < rmax,

where ψ′(γ,x′) = M(γ)ϕ(x′) + µCr∆τ Cr∆τ < a′ ≤ aJ , 0 ≤ τ ′ < T,

ϕ(x′) otherwise.

(5.45a)

(5.45b)

927

We note that in (5.45a), the admissible control set is γ ∈ [0, a′]. It is straightforward to show that, for a928

fixed x′ ∈ Ω satisfies (5.45a), function ψ′ (γ;x′) defined in (5.45a) is (uniformly) continuous in γ ∈ [0, a′].929

Hence, for the case (5.45a)930

sup
γ∈(Cr∆τ,a′]

ψ′ (γ,x′)− sup
γ∈(0,a′]

ψ′ (γ,x′) = max
γ∈[Cr∆τ,a′]

ψ′ (γ,x′)− max
γ∈[0,a′]

ψ′ (γ,x′) = O (h) , (5.46)931

since the difference of the optimal values of γ for the two max(·) expressions is bounded by Cr∆τ = O(h).932

Using (5.45a) and (5.46), and recalling from (5.26) that (ϕ(2))m+
l,d,j = supγml,d,j∈(Cr∆τ,aj ] ϕ̃

m
l,d,j + f(γ

m
l,d,j),933

we have934

(ϕ(2))m+
l,d,j = ξ + (ψ)ml,d,j +O(h), l ∈ N, d ∈ K, (5.47)935

where ψ is given in (5.45a). Equation (5.47) allows us to write (ϕ(2)
SL )

m+
l,d,j , defined in (5.28), as follows936

(ϕ(2)
SL )

m+
l,d,j = (ψSL)

m
l,d,j +O (h) , l ∈ N† and d ∈ K†, (5.48)937
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where938

(ψSL)
m
l,d,q =

{
(ξ + I{(ψ)m}(w̆l, r̆d, aq))(1 + ∆τrd)

−1 l ∈ N and d ∈ K,
ϕml,d,q + ξ otherwise,

(5.49)939

where ψ is defined in (5.45). Using (5.48), we rewrite operator Dm+1
n,k,j(·), previously given in (5.43), into940

a convenient form below941

Dm+1
n,k,j(·) = ϕm+1

n,k,j + ξ −∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d(ψSL)
m
l,d,j +O (h) . (5.50)942

Then, for the above discrete convolution, applying Lemma 5.2[eqn (5.11)], noting (5.16), gives943

∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d (ψSL)
m
l,d,j = (ψSL)

m
n,d,j + Eψ(xmn,k,j , h) +O(h),944

= ξ + I{(ψ)m}(w̆n, r̆k, aj) + Eψ(xmn,k,j , h) +O(h), (5.51)945

where we used the definition of (ψSL)
m
n,k,j in (5.49), and Eψ(xmn,k,j , h) → 0 as h→ 0.946

For the term I{(ψ)m}(w̆n, r̆k, aj) in (5.51), following the same arguments as those for (5.40)-(5.41),947

noting the definition of ψ in (5.45), we obtain948

I{(ψ)m}(w̆n, r̆k, aj) = sup
γ∈[0,aj ]

M(γ)ϕ(xmn,k,j) + µCr∆τ +O(h) + Eψ(xmn,k,j , h)949

= sup
γ∈[0,aj ]

M(γ)ϕ(xm+1
n,k,j) +O(h) + Eψ(xmn,k,j , h). (5.52)950

Here, M(γ)ϕ
(
xmn,k,j

)
= M(γ)ϕ

(
xm+1
n,k,j

)
+O (h), which is combined with µCr∆τ = O (h). Substituting951

(5.51) and (5.52) into (5.50) gives952

Dm+1
n,j (·) = ϕm+1

n,k,j − sup
γ∈[0,a]

M(γ)ϕ
(
xm+1
n,k,j

)
+O(h) + E (xmn,k,j , h). (5.53)953

Overall, recalling x = xm+1
n,k,j , we have954

Hm+1
n,k,j

(
h, ϕm+1

n,k,j + ξ,
{
ϕml,d,p + ξ

}
p≤j

)
− Fin

(
x, ϕ (x) , Dϕ (x) , D2ϕ (x) ,J ϕ (x) ,Mϕ (x)

)
955

= c (x) ξ +O(h) + E(xmn,k,j , h), if x ∈ ΩU

in,956

where c(x) is a bounded function satisfying rmin ≤ c(x) ≤ rmax and E(xmn,k,j , h) → 0 as h → 0. This957

proves the first equation in (5.25). The remaining equations in (5.25) can be proved using similar958

arguments with the first equation.959

Remark 5.1. We impose the condition (5.24) to ease the presentation of the proof, that is, we make960

sure the term max(ewl − γml,d,j , e
w†

min) in the operator Cm+1
n,k,j (·) will never be triggered. However, we can961

avoid this condition by the similar procedures presented in [57].962

Lemma 5.5 (Consistency). Assuming all the conditions in Lemma 5.4 are satisfied, then the scheme963

(5.22) is consistent in the viscosity sense to the impulse control problem (3.1) in Ω∞. That is, for964

all x̂ = (ŵ, r̂, â, τ̂) ∈ Ω∞, and for any ϕ ∈ G(Ω∞) ∩ C∞(Ω∞) with ϕm+1
n,k,j = ϕ (wn, rk, aj , τm+1) and965

x = (wn, rk, aj , τm+1), we have both of the following966

lim sup
h→0, x→x̂

ξ→0

Hm+1
n,k,j

(
h, ϕm+1

n,k,j+ξ,
{
ϕml,d,p+ξ

}
p≤j

)
≤ (FΩ∞)∗

(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
, (5.54)967

lim inf
h→0, x→x̂

ξ→0

Hm+1
n,k,j

(
h, ϕm+1

n,k,j+ξ,
{
ϕml,d,p+ξ

}
p≤j

)
≥ (FΩ∞)∗

(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
.(5.55)968
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Proof of Lemma 5.5. Lemma 5.5 can be proved using similar steps in Lemma 5.5 in [57]. For brevity, we969

outline key steps to prove (5.54) for Ωin and Ωamin ; other sub-domains can be treated similarly. We note970

the continuity in their parameters of operators defined in (3.17)-(3.11), which is needed for this proof.971

Consider x̂ ∈ Ωin. There exist sequences of discretization parameter {hi}i → 0, constants {ξi}i → 0,972

and gridpoints {(wni , rki , aji , τmi+1)}i ≡ xi → x̂, as i → ∞. For sufficiently small {∆τi}i, we assume973

aji ∈ (Cr∆τi, amax] for each i, and hence, the sequence {xi}i is contained in ΩU

in, defined in (5.21).974

Therefore, lhs of (5.54) = lim supi→∞Hmi+1
ni,ki,ji

(hi, ϕ
mi+1
ni,ki,ji

+ξi, {ϕmi
li,di,pi

+ξi}pi≤ji) . . .975

. . . ≤
(i)

lim sup
i→∞

Fin(xi, ϕ(xi)) + lim sup
i→∞

[c(xi)ξi +O(hi) + E(xmi
ni,ji

, hi)] =
(ii)

Fin(x̂, ϕ(x̂)) = rhs of (5.54),976

as wanted. Here, (i) is due to the local consistency result for ΩU

in in the first equation of (5.25)977

(Lemma 5.4), and properties of lim sup; (ii) is because of continuity of Fin.978

For x̂ ∈ Ωamin , complications arise because {x}i could converge to x̂ from two different sub-domains,979

Ωin = ΩU

in ∪ ΩL

in and Ωamin ; however, on ΩL

in, the second equation of (5.25) (Lemma 5.4) indicates980

local consistency with F ′
in(xi, ϕ(xi)), defined in (5.23) but is not part of FΩ∞ . Nonetheless, since981

supγ̂∈[0,a/∆τ ] γ̂ (1− e−wϕw − ϕa) ≥ 0, F ′
in(xi, ϕ(xi)) ≤ Famin(xi, ϕ(xi)), we can eliminate F ′

in(xi, ϕ(xi))982

when considering lim sup. Thus, lhs of (5.54) = lim supi→∞Hmi+1
ni,ki,ji

(hi, ϕ
mi+1
ni,ki,ji

+ξi, {ϕmi
li,di,pi

+ξi}pi≤ji) . . .983

. . . ≤ lim sup
i→∞

FΩ∞(xi, ϕ(xi)) + lim sup
i→∞

[c(xi)ξi + E(xmi
ni,ji

, hi)] ≤ (FΩ∞)∗ (x̂, ϕ(x̂)) = rhs of (5.54).984

985

5.4 Monotonicity986

We present a result on the monotonicity of scheme (5.22).987

Lemma 5.6 (ϵ-monotonicity). Suppose that (i) the discretization (4.22) satisfies the positive coefficient988

condition (4.23), and (ii) linear interpolation in (4.20), (4.24) and (ii) the weight g̃n−l,k−d satisfies the989

monotonicity condition (4.46); and (iii) rmin satisfies condition (5.2). Then scheme (5.22) satisfies990

Hm+1
n,k,j

(
h, vm+1

n,k,j ,
{
xml,d,p

}
p≤j

)
≤ Hm+1

n,k,j

(
h, vm+1

n,k,j ,
{
yml,d,p

}
p≤j

)
+ K ′ϵ (5.56)991

for bounded {xml,d,p} and {yml,d,p} having {xml,d,p} ≥ {yml,d,p}, where the inequality is understood in the992

component-wise sense, and K ′ is a positive constant independent of h.993

A proof of Lemma 5.6 is similar to that of Lemma 5.6 in [57], and hence omitted for brevity.994

5.5 Convergence to viscosity solution995

We have demonstrated that the scheme (5.22) satisfies the three key properties in Ω: (i) ℓ∞-stability996

(Lemma 5.1), (ii) consistency (Lemma 5.5) and (iii) ϵ-monotonicity (Lemma 5.6). With a strong com-997

parison result in Ωin ∪ Ωamin , we now present the main convergence result of the paper.998

Theorem 5.1 (Convergence in Ωin ∪ Ωamin). Suppose that all the conditions for Lemmas 5.1, 5.5 and999

5.6 are satisfied. Under the assumption that the monotonicity tolerance ϵ → 0 as h → 0, scheme (5.22)1000

converges locally uniformly in Ωin ∪Ωamin to the unique bounded viscosity solution of the GMWB pricing1001

problem in the sense of Definition 3.2.1002

Proof of Theorem 5.1. To highlight the importance of the discretization parameter h, we let xmn,k,j(h) =1003

(wn, rk, aj , τm;h), and denote by vmn,k,j(h) the numerical solution at this node. The candidate for the1004

viscosity subsolution (resp. supersolution) the GMWB pricing problem is given by the u.s.c function1005

v : Ω∞ → R (resp. the l.s.c function v : Ω∞ → R) defined as follows1006

v (x) = lim sup
h→0

xm+1
n,k,j(h)→x

vm+1
n,k,j (h) (resp. v(x) = lim inf

h→0
xm+1
n,k,j(h)→x

vm+1
n,k,j (h)) x ∈ Ω∞. (5.57)1007

Here, lim sup and lim inf are finite due to stability of our scheme in Ω established in Lemma 5.1.1008
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We appeal to a Barles-Souganidis-type analysis in [9, 11] to show that v (resp. v) is a viscosity1009

subsolution (resp. supersolution) of the HJB-QVI (3.18) in Ω∞ in the sense of Definition 3.2. In this step,1010

we use (i) ℓ∞-stability (Lemma 5.1), (ii) consistency (Lemma 5.5) and (iii) ϵ-monotonicity (Lemma 5.6)1011

of the numerical scheme, noting the requirement ϵ → 0 as h → 0. By 5.57, v ≥ v in Ω∞. By a strong1012

comparison result in Theorem 3.1, v ≤ v in Ωin ∪ Ωamin . Therefore, v(x) = v(x) = v(x) is the unique1013

viscosity solution in Ωin∪Ωamin in the sense of Definition 3.2. The fact that convergence is locally uniform1014

is automatically implied. This concludes the proof.1015

6 Numerical experiments1016

In this section, we present selected numerical results for the no-arbitrage pricing problem (3.18). In1017

addition to validation examples, we particularly focus on investigating the impact of jump-diffusion1018

dynamics and stochastic interest rates on the prices/the fair insurance fees, as well as on the holder’s1019

optimal withdrawal behaviors.1020

A set of GMWB parameters commonly used for subsequent experiments is given in Table 6.1. These1021

include expiry time T , the maximum allowed withdrawal rate Cr (for continuous withdrawals), the1022

proportional penalty rate µ (for withdrawing finite amounts), the premium z0 which is also the initial1023

balance of the guarantee account and of the personal sub-account.1024

For experiments in this section, the computational domain is constructed with wmin = ln(z0) − 10,1025

wmax = ln(z0) + 10, rmin = −0.2, rmax = 0.3, together with w†
min, w

†
max, r

†
min, and r†max computed as1026

discussed in Section 4. Unless otherwise stated, relevant details about the refinement levels are given in1027

Table 6.2. Here, the timestep M = 20 (resp. M = 40) corresponds to the case of T = 5 (resp. T = 10)1028

in Table 6.1. Based on the choices of N and K, we have N † = 2N and K† = 2K as in (4.10) and (4.11),1029

respectively. We emphasize that, increasing |wmin|, wmax, |rmin|, or rmax virtually does not change the1030

no-arbitrage prices/fair insurance fees. Therefore, for practical purposes, with P † ≡ w†
max − w†

min and1031

K† ≡ r†max − r†min chosen sufficiently large as above, they can be kept constant for all refinement levels1032

(as we let h→ 0).1033

Similar to [17, 42, 57], a sufficiently small fixed cost c = 10−8 is used all numerical tests. For user-1034

defined tolerances ϵ and ϵ1 in Algorithm 4.1, we use ϵ = ϵ1 = 10−6 for all experiments and all refinement1035

levels. We note that using smaller ϵ or ϵ1 produces virtually identical numerical results.1036

Parameter Value

Expiry time (T ) {5, 10} years

Maximum withdrawal rate (Cr) 1/T

Withdrawal penalty rate (µ) 0.10

Init. lump-sum premium (z0) 100

Init. balance of guarantee a/c (= z0) 100

Init. balance value of sub-a/c (= z0) 100

Table 6.1: GMWB parameters for numerical ex-

periments.

Refinement N K J M

level (w) (r) (a) (τ)

0 29 25 26 {20, 40}
1 210 26 51 {40, 80}
2 211 27 101 {80, 160}
3 212 28 201 {160, 320}
4 213 29 401 {320, 640}

Table 6.2: Grid and timestep refinement

levels for numerical experiments.

1037

Unless otherwise stated, representative parameters to jump-diffusion dynamics and Vasicek short rate1038

dynamics are respectively given in Tables 6.4 (taken from [57]) and 6.3 (from [58]).1039
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Parameters Merton Kou

σZ (risky asset volatility) 0.3 0.3
λ (jump intensity) 0.1 0.1
ν(log jump multiplier mean) -0.9 n/a
ς (log jump multiplier std) 0.45 n/a
pu (probability of up-jump) n/a 0.3445
ηu (exp. parameter up-jump) n/a 3.0465
ηd (exp. parameter down-jump) n/a 3.0775

Table 6.3: Parameters for the jump-diffusion dy-

namics (2.2a). Values are taken from [57].

Parameters Vasicek

r0 0.05
θ 0.05
δ 0.0349
σR 0.02

Table 6.4: Parameters for the

Vasicek short rate dynamics (2.2c).

Values are taken from [58].

1040

The correlation coefficient ρ is chosen from {−0.2, 0.2}. The value for ρ will be specified for each1041

experiment subsequently.1042

6.1 Validation through Monte Carlo simulation1043

As previously mentioned, the no-arbitrage pricing of GMWB with continuous withdrawals under a1044

jump-diffusion dynamics with with stochastic interest rate has not been previously studied in the liter-1045

ature, hence, reference prices/insurance fees are not available for the dynamics considered in this work.1046

Therefore, for validation purposes, we compare no-arbitrage prices obtained by the proposed numerical1047

method, hereafter referred to as “ϵ-mF”, with those obtained by MC simulation.

Method Level

Merton Kou

ρ = −0.2 ρ = 0.2 ρ = −0.2 ρ = 0.2

price ratio price ratio price ratio price ratio

ϵ-mF

0 115.4845 116.4466 109.1908 110.1039

1 114.2267 114.8675 109.1608 109.7832

2 113.6613 2.22 114.1549 2.22 109.1517 3.29 109.6396 2.23

3 113.3921 2.10 113.8171 2.11 109.1483 2.62 109.5719 2.12

4 113.2601 2.04 113.6524 2.05 109.1467 2.27 109.5388 2.05

MC 95%-CI [112.61, 113.47] [112.95, 113.79] [108.64, 109.48] [109.31, 110.15]

Table 6.5: Validation example with jump-diffusion and Vasicek short rate dynamics with parameters

from Tables 6.3 and 6.4; expiry time T = 5, the insurance fee β = 0.02.

1048

To carry out Monte Carlo validation, we proceed in two steps outlined below.1049

� Step 1: we solve the GMWB pricing problem using the “ϵ-mF” method on a relatively fine com-1050

putational grid (Refinement Level 2 in Table 6.2). During this step, the optimal control γml,d,q is1051

stored for each computational gridpoint xml,d,q ∈ Ωin ∪ Ωamin ∪ Ωwmin ∪ Ωawmin .1052

� Step 2: we carry out Monte Carlo simulation of dynamics (2.1), and (2.2), and (2.2c), for A(t),1053

Z(t), and R(t), respectively, following the stored PDE-computed optimal strategies {(xml,d,q, γml,d,q)}1054

obtained in Step 1.1055

Specifically, let tm′ = T −τm, m′ =M −m, m =M −1, . . . , 0, and Ẑm′ , R̂m′ and Âm′ be simulated1056

values. Across each tm′ , if necessary, linear interpolation I {γm} (ln(Ẑm′), R̂m′ , Âm′) is applied to1057

determine the optimal controls for simulated state values. (No linear interpolation across time is1058

used.) For t ∈ [tm′−1, tm′ ], a smaller timestep size than ∆τ is utilized for MC simulation. For1059

Step 2, a total of 105 paths and a timestep size ∆τ/20 is used. The antithetic variate technique is1060

also employed to reduce the variance of MC simulation.1061

In Table 6.5, we present the no-arbitrage prices (in dollars) obtained by the “ϵ-mF” method and by the1062

above-described MC simulation. These prices indicate indicate excellent agreement with those obtained1063

by MC simulation. In addition, first-order convergence is observed for “ϵ-mF”.1064
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6.2 Modeling impact1065

In this subsection, we investigate the (combined) impact of jumps and stochastic interest rate dynamics1066

on quantities of central importance to GMWBs, namely no-arbitrage prices and fair insurance fees, as well1067

as on the holder’s optimal withdrawal behaviors. In this study, we typically compare the aforementioned1068

quantities obtained from different model types: (i) pure-diffusion (GBM) dynamics with a constant1069

interest rate, (i) pure-diffusion (GBM) dynamics with Vasicek short rate, (ii) jump-diffusion dynamics1070

with a constant interest rate, and (iii) jump-diffusion dynamics with Vasicek short rate. Hereinafter,1071

these model types are respectively referred to as “GBM-C”, “GBM-V”, “JD-C” and “JD-V”. As an1072

illustrative example, we only consider the case of the Merton jump-diffusion dynamics; using the Kou1073

jump-diffusion dynamics yield qualitatively similar conclusions, and hence omitted for brevity. We note1074

that, the Merton jump parameters in Table (6.3) result in κ = −0.5501, indicating a bear stock market1075

scenario, which is typical in an elavated interest rate setting.1076

With respect to interest rates, for fair comparisons, we establish an effective constant interest rate1077

which is “comparable” to stochastic short rate dynamics. Hereinafter, this comparable rate is denoted by1078

rc. Inspired by [8], the comparable constant interest rate rc is chosen to be the T -year Yield-to-Maturity1079

(YTM) corresponding to the Vasicek dynamics (2.2c). The comparable constant rate rc is obtained1080

simply by solving e−rcT = pb(r0, T ;T ), where pb(r0, T ;T ) given by the formula (3.8). This gives1081

rc = − ln(pb(r0, T ;T ))/T, pb(r0, ·;T ) is given in (3.8). (6.1)1082

With respect to jumps, we consider an effective constant instantaneous volatility which approximates1083

the behavior of the Merton jump-diffusion dynamics by pure-diffusion dynamics [63]. It is interesting1084

to include this case as conventional wisdom asserts that over long times, jump-diffusions can be approx-1085

imated by diffusions with enhanced volatility. In our experiments, the effective (enhanced) constant1086

instantaneous volatility, denoted by σc, is computed by [63]1087

σc =
√
σ2Z + λ(ν2 + ς2). (6.2)1088

In Table 6.6, numerical values of parameters relatvant to different models are given. Regarding numerical1089

methods for different model types, we note that the propsed SL ϵ-monotone Fourier method can be1090

modified in a straightfoward manner to handle the GBM-V model. Concerning the GBM-C and JD-1091

C models, the ϵ-monotone Fourier method for jump-diffusion dynamics with a constant interes rate1092

proposed in our paper [57] is used.1093

rc
Model σc T = 5 T = 10 Merton Vasicek

GBM-C 0.437 0.0485 0.0448 n/a n/a

GBM-V 0.437 n/a n/a Table 6.4

JD-C n/a 0.0485 0.0448 Table 6.3 n/a

JD-V n/a n/a Table 6.3 Table 6.4

Table 6.6: Parametes for different models considered; rc and σc are computed using (6.1) and (6.2),

respectively.

In subsequent discussions, to compare no-arbitrage prices (v) and fair insurance fees (βf ) across1094

different model types, with x ∈ {v, βf}, we denote by %∆x(Model1,Model2) the relative change in the1095

quantity x between Model1 and Model2. It is defined by %∆x(Model1,Model2) =
|x1 − x2|

x2
, where x11096

and x2 are respecitive x-values for Model1 and Model2.1097

6.2.1 No-arbitrage prices and fair insurance fees1098

In this experiment, we compare the no-arbitrage prices and the fair insurance fees obtained from dif-1099

ferent model types described above with parameters specified in Table 6.6 and the correlation coef-1100

ficient ρ = 0.2 for the GBM-V and the JD-V models. In Table 6.7, we present selected selected1101
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results obtained from four different models. Here, the no-arbitrage prices (obtained with the insur-1102

ance fee β = 0.02), and the fair insurance fees are numerically estimated as described in Subsec-1103

tion 4.6. The numerical results in Table 6.7 suggest that jumps and stochastic short rate have sub-

Model
no-arbitrage price (v) fair insurance fee (βf )

T = 5 T = 10 T = 5 T = 10

GBM-C 116.1926 115.1230 0.1070 0.0610

GBM-V 116.2775 115.7670 0.1079 0.0647

JD-C 113.0806 111.9754 0.0801 0.0487

JD-V 114.1549 114.4837 0.0841 0.0550

Table 6.7: No-arbitrage prices and fair insurance fees obtained from different model types; parameters

specified in Table 6.6; the insurance fee β = 0.02 used for no-arbitrage prices; for GBM-V and JD-V, the

correlation is ρ = 0.2; refinement level 2.

1104

stantial combined impact on both no-arbitrage prices and fair insurance fees, with the impact being1105

more pronounced on the latter (the fees) than on the former (prices). Also, the fair insurance fees1106

under the GBM-C/V models are considerably more expensive than those obtained under JD-C/V1107

models. Specifically, with GBM-C being the reference model, when T = 5, %∆βf (·,GBM-C) ranges1108

from 0.8% (= %∆βf (GBM-V,GBM-C)) to 25.1% (= %∆βf (JD-C,GBM-C)), which is much large than1109

%∆v(·,GBM-C) ranging from 0.1% (= %∆v(GBM-V,GBM-C)) to 2.7%, which is %∆v(JD-C,GBM-C).1110

Similarly, for T = 10: %∆βf (·,GBM-C) ranges from 6.0% (= %∆βf (GBM-V,GBM-C)) to 20.1%1111

(= %∆βf (JD-C,GBM-C)), whereas, %∆v(·,GBM-C) is only from 0.6% (= %∆v(GBM-V,GBM-C))1112

to 2.7% (= %∆v(JD-C,GBM-C)).1113

We also observe that, all else being equal, the price and the fair insurance fee obtained with a1114

constant interest rate (GBM-C, JD-C) are also smaller than those obtained from the Vasicek dynamics1115

counterpart (resp. GBM-V, JD-V). For example, when T = 10, compare JD-C (0.0801) vs JD-V (0.0841),1116

and GBM-C(0.1070) vs GBM-V(0.1079). On the other hand, application of jumps, all else being equal,1117

results in a lower fair insurance fee. For example, when T = 10, compare JD-C (0.0801) vs GBM-1118

C (0.1070) and JD-V (0.0841) vs GBM-V (0.1079)). We also observe that, all else being equal, the1119

impact of jumps on the fair insurance fee (and the price) reduces as the maturity T increases, but1120

that of stochastic interest rate appears to be more pronounced over a longer investment horizon. For1121

example, regarding jumps, %∆βf (JD-C,GBM-C) is 25.1% when T = 5 (years), but reduces to 20.1%1122

when T = 10 (years); regarding interest rate, %∆βf (JD-C, JD-V) is 4.7% when T = 5 (years), but is1123

11.4% when T = 10 (years) .1124

A possible explanation for the above observation is as follows. Stochastic interest rate constitutes1125

an additional source of risk uncaught by using a constant interest rate, resulting in the fair insurance1126

fee (and the no-arbitrage price) underpriced using a constant interest rate than using stochastic interest1127

rate dynamics. Furthermore, using an effective volatility (σc) does not fully capture risk caused by1128

(substantial) downward jumps, hence resulting in the fair insurance fee underpriced. To investigate1129

further the combined impact of jumps and stochastic interes rates, in the following subsection, we study1130

the holder’s optimal withdrawal behaviors.1131

6.2.2 Optimal withdrawals1132

In this study, we use the fair insurance fees for the GBM-C, GBM-V, JD-C and JD-V models, respectively1133

denoted by βgcf , βgVf , βcf and βVf . We use T = 10 and ρ = 0.2. As reported in Table 6.7, βgcf = 0.0610,1134

βgVf = 0.0647, βcf = 0.0487 and βVf = 0.0550. In Figure 6.1, we present plots of optimal withdrawals for1135

(calendar) time t = 5 (years) obtained using different models: the GBM-C in Figure 6.1(a), the JD-C1136

model in Figure 6.1(b), the GBM-V in Figure 6.1(c), and the JD-V model in Figure 6.1(d). For the1137

GBM-V and JD-V models, the control plots correspond to the spot rate R(t = 5) = rc = 0.0448.1138
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(a) GBM-C, t = 5, σc = 0.4373, rc = 0.0448 (b) JD-C, t = 5, rc = 0.0448

(c) GBM-V, t = 5, R(t) = rc = 0.0448 (d) JD-V, t = 5, R(t) = rc = 0.0448

Figure 6.1: The holder’s optimal withdrawals at (calendar) time t = 5 (years); parameters specified in

Table 6.6; T = 10, ρ = 0.2; fair insurance fee βgc
f = 0.0610, βgV

f = 0.0647, βc
f = 0.0487, βV

f = 0.0550;

refinement level 2.

From Figure 6.1, we observe several key qualitative similarities across different models. Specifically,1139

in the lower-right region, where A(t) ≪ z0 and Z(t) ≫ A(t), all optimal controls suggest the holder1140

should withdraw continuously at rate Cr; however, withdrawing a finite amount becomes optimal when1141

A(t) becomes sufficiently large (upper-right region). Also, in the lower-left region, when both A(t) and1142

Z(t) are small, optimal controls suggest to either withdrawal nothing or to withdraw continuously at1143

rate Cr; however, in the upper-left region of Figure 6.1, where A(t) ≫ Z(t), optimal controls suggest1144

withdraw a finite amount.1145

Nonetheless, significant quantitative differences are also observed, most notably in the upper-right1146

and in the lower-left regions. For example, consider the upper-right region in Figure 6.1(a)-(d). At1147

(Z(t), A(t)) = (200, 80), our numerical results in Figure 6.1(b), indicate that, when the JD-C model is1148

used, it is optimal to withdraw continuously at rate Cr = 1/T = 0.1; however, using other model, as1149

shown in Figure 6.1(a), (c) and (d), it is suggested that withdrawing a finite amount (about $60) is1150

optimal.1151

In Figure 6.2, we present control plots for at t = 5 (years) when R(t) ∈ {0.03, 0.1} ̸= rc, and1152

R(t) = −0.0125 < 0 obtained using the GBM-V and JD-V models. Comparing Figure 6.2(a), (c) and1153

(e) with Figure 6.1(c), as well as comparing Figure 6.2(b), (d) and (f) with Figure 6.1(d)), suggests1154

that the optimal withdrawal behaviours depend considerably on spot rates, and they are significantly1155

different from those obtained using a comparable rate rc, with a more conservative withdraw behaviours,1156
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(a) GBM-V, t = 5, R(t) = 0.03 (b) JD-V, t = 5, R(t) = 0.03

(c) GBM-V, t = 5, R(t) = 0.1 (d) JD-V, t = 5, R(t) = 0.1

(e) GBM-V, t = 5, R(t) = −0.0125 (f) JD-V, t = 5, R(t) = −0.0125

Figure 6.2: The holder’s optimal withdrawals at t = 5 (years) for different spot rates; parameters

are from Table 6.3[Merton] and Table 6.4; T = 10, correlation coefficient ρ = 0.2, effective volatility

σc = 0.4373, fair insurance fee βgV
f = 0.0647, βV

f = 0.0550; refinement level 2.

especially in withdrawing a finite amount, when the spot interst rate is low.1157

We now turn our attention to the lower-left region of the control plots in Figure 6.1 and Figure 6.2,1158

where A(t) dominates Z(t). In particular, with Z(t) being zero, we study the value of a across which1159

the optimal withdrawal behaviours change from withdrawing continuously at rate Cr to withdrawing1160

a finite amount. For brevity, we only discuss the GBM-C and JD-V model. For the GBM-C model,1161
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we denote by a∗c this special a-value, and it is given by a∗c = −Cr
rc

ln(1 − µ), as shown in [22]. For the1162

JD-V model, we denote by a∗V the aforementioned special value of a (this is also the same a-value for1163

the GBM-V model). A closed-form expression for a∗V is not known to exist, and therefore, we estimate1164

it using numerical results.1165

Figure 6.3: A plot of a∗V (for JD-V) and a∗c (for GBM-

C) against spot rate R(t) at (calendar) time t = 5 (years);

parameters are similar to those used for Figure 6.1;

In Figure 6.3, we plot a∗c and a∗V against dif-1166

ferent spot rate R(t) at t = 5. We note that,1167

when r < 0 and z = ew → 0, Figure 6.3 suggests1168

that never optimal to withdraw a finite amount1169

(also see Figure 6.1(c)). It is observed from Fig-1170

ure 6.3 that when R(t) ≪ rc, a
∗
V is significantly1171

larger than a∗c ; however, when R(t) ≫ rc, a
∗
V is1172

considerably smaller than a∗c . These suggest that,1173

when the balance of sub-account balance is zero,1174

the holder should be much more cautious with fi-1175

nite amount withdrawals from the guarantee ac-1176

count in a low interest rate environment than s/he1177

is in a constant interest rate; however, the holder1178

should be much more aggressive in a high interest1179

rate environment.1180

To summarize, our numerical results suggest a simultaneous application of jumps and stochastic1181

interest rate result in considerably cheaper fair fees than those obtained under a comparable pure-1182

diffusion model. In addition, under this realistic modeling setting, the holder’s optimal withdrawal1183

behaviour appears to be much more conservative (resp. aggressive) in withdrawing a finite amount when1184

the balance of the sub-account is negligible (resp. considerable) than in the optimal behaviour under a1185

pure-diffusion model would dictate. This is possibly because of combined risk due to (i) possible downsize1186

jumps, and (ii) stochastic interest rate, which drives lower fair insurance fees for GMWBs. We plan to1187

investigate these observations further in a future work.1188

7 Conclusion1189

In a continuous withdrawal scenario, using an impulse control framework, the GMWB pricing problem1190

under a jump-diffusion dynamics with stochastic short rate is formulated as HJB-QVI of three spatial1191

dimensions. The viscosity solution to this HJB-QVI is shown to satisfy a strong comparison result.1192

Utilizing a semi-Lagrangian discretization, we develop an ϵ-monotone Fourier method to solve the HJB-1193

QVI. We rigorously prove the convergence of the numerical solutions to the viscosity solution of the1194

associated HJB-QVI. Numerical experiments demonstrate an excellent agreement with reference values1195

obtained by the Monte Carlo simulation. Extensive analysis of numerical results indicate a significant1196

(combined) impact of jumps and stochastic interest rate dynamics on the fair insurance fees and on1197

the optimal withdrawal behaviors of policy holders. For future work, we plan to investigate further the1198

impact of realistic modeling with various withdrawal settings and complex contract features.1199
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Appendix A Truncation error of Fourier series1379

As α → ∞, there is no loss of information in the discrete convolution (4.45). However, for any finite α, there is1380

an error due to the use of a truncated Fourier series. Using similar arguments in [35], we have1381

|g̃n−l,k−d(α)− g̃n−l,k−d(∞)| ≤ 2
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1

Q†

z∈Z∑∗

s∈[αN†/2,∞)

(
sin2 πηs∆w

(πηs∆w)2

)(
sin2 πξz∆r

(πξz∆r)2

)
|G(ηs, ξz,∆τ)|1382

+
1

P †
2

Q†

z∈[αK†/2,∞)∑∗

s∈Z

(
sin2 πηs∆w

(πηs∆w)2

)(
sin2 πξz∆r

(πξz∆r)2

)
|G(ηs, ξz,∆τ)| . (A.1)1383

Using the closed-form expression (4.41), and noting that Re
(
B(η)

)
≤ 1, |ρ| < 1, we then have1384

Re(Ψ(η, ξ)) = −σ
2
Z

2
(2πη)2 − ρσZσR(2πη)(2πξ)−

σ2
R

2
(2πξ)2 − λ+ λRe

(
B(η)

)
1385

≤ − (1− |ρ|) σ
2
Z

2
(2πη)2 − (1− |ρ|) σ

2
R

2
(2πξ)2. (A.2)1386

Thus, from (A.2), we have1387

|G(η, ξ,∆τ)| = |exp (Ψ(η, ξ)∆τ)| ≤ exp

(
− (1− |ρ|) σ

2
Z

2
(2πη)2∆τ

)
exp

(
− (1− |ρ|) σ

2
R

2
(2πξ)2∆τ

)
. (A.3)1388

Let C6 = 2 (1− |ρ|)σ2
Z π

2∆τ/(P †)2 and C ′
6 = 2 (1− |ρ|)σ2

Rπ
2∆τ/(Q†)2. Taking (A.3) into (A.1), we can bound1389

these infinite sums as follows1390

|g̃n−l,k−d(α)− g̃n−l,k−d(∞)|1391

≤
(

2

P †
4

π2α2

∞∑
s=αN†/2

e−C6s
2

)(
1

Q†

∑
z∈Z

(
sin2 πξz∆r

(πξz∆r)2

)
e−C′

6z
2

)
1392

+

(
2

Q†
4

π2α2

∞∑
z=αN†/2

e−C′
6z

2

)(
1

P †

∑
s∈Z

(
sin2 πηs∆w

(πηs∆w)2

)
e−C6s

2

)
1393

≤ 8(K†)2(1 + e−C′
6)

P †Q†π4α2(1− e−C′
6)

exp
(
−C6N

†α2/4
)

1− e−C6N†α
+

8(N†)2(1 + e−C6)

P †Q†π4α2(1− e−C6)

exp
(
−C ′

6K
†α2/4

)
1− e−C′

6K
†α

,1394

which yields (considering fixed P † and Q† here)1395

|g̃n−l,k−d(α)− g̃n−l,k−d(∞)| ≃ O
(
e−1/h/h2

)
.1396

Appendix B A proof of Proposition 5.11397

Proof of Proposition 5.1. Letting p = n− l and q = k − d, we have1398

∆w∆r

k∈K†∑∗

l∈N†

g̃n−l,k−d
(i)
=

P †

N†
Q†

K†

q∈K†∑∗

p∈N†

g̃p,q1399

(ii)
=

P †

N†
Q†

K†

q∈K†∑∗

p∈N†

1

P †
1

Q†

z∈Kα∑∗

s∈Nα

e2πiηsp∆we2πiξzq∆r tg(s, z)G(ηs, ξz,∆τ)1400

=
1

N†
1

K†

z∈Kα∑∗

s∈Nα

tg(s, z)G(ηs, ξz,∆τ)
∑
p∈N†

exp

(
2πisp

N†

) ∑
q∈K†

exp

(
2πizq

K†

)
1401

(iii)
= G(0, 0,∆τ)

(iv)
= 1. (B.1)1402

40



Here, in (i), we use the periodicity of g̃n−l,k−d, i.e. the sequence {g̃−N†/2,k(α), . . . , g̃N†/2−1,k(α)} for a fixed k ∈ K†
1403

is N†-periodic, and similarly, the sequence {g̃n,−K†/2(α), . . . , g̃n,K†/2−1(α)} for a fixed n ∈ N† is K†-periodic; in1404

(ii), we use the definition of (4.45), noting the term tg(s, z) is given in (4.44); in (iii),we apply properties of roots1405

of unity; in (iv), we use the closed-form expression (4.41).1406

Appendix C ℓ-stability in Ωin ∪ Ωamin
1407

We now show the bounds (5.5)-(5.6) for Ωin∪Ωamin
. We note that numerical solutions at nodes in Ω\ (Ωin∪Ωamin

)1408

satisfy the bounds (5.5)-(5.6) at the same j ∈ J and m = 0, . . . ,M , that is1409

max
n∈Nc or k∈Kc

{
vmn,k,j

}
satisfies (5.5), and min

n∈Nc or k∈Kc

{
vmn,k,j

}
satisfies (5.6). (C.1)1410

Base case: when m = 0, (5.5)-(5.6) hold for all j ∈ J, which follows from the initial condition (4.17) for n ∈ N1411

Induction hypothesis: we assume that (5.5)-(5.6) hold for m = m̂, where m̂ ≤M − 1, and j ∈ J.1412

Induction: we show that (5.5)-(5.6) also hold for m = m̂+ 1 and j ∈ J. This is done in two steps. In Step 1, we1413

show, for j ∈ J,1414 [
vm̂+
j

]
max

≤ e2m̂ϵ∆τ
T eCm̂∆τ

(∥∥v0∥∥∞ + aj
)

(C.2)1415

−2m̂ϵ
∆τ

T
e2m̂ϵ∆τ

T eCm̂∆τ
(∥∥v0∥∥∞ + aj

)
≤

[
vm̂+
j

]
min

, (C.3)1416

where
[
vm̂+
j

]
max

= maxn,k
{
vm̂+
n,k,j

}
and

[
vm̂+
j

]
min

= minn,k
{
vm̂+
n,k,j

}
. In Step 2, we bound the timestepping result1417

(4.40) at m = m̂+ 1 using (C.2)-(C.3).1418

Step 1 - Bound for vm̂+
n,k,j : Since v

m̂+
n,k,j = max

(
(v(1))

m̂+
n,k,j , (v

(2))
m̂+
n,k,j

)
, using (4.25), we have1419

vm̂+
n,k,j = sup

γm̂
n,k,j∈[0,aj ]

[
I
{
vm̂

}(
max

(
ewn − γm̂n,j , e

w†
min

)
, rk, aj − γm̂n,k,j

)
+ f(γm̂n,k,j)

]
. (C.4)1420

As noted in Remark 4.2, for the case c > 0 as considered here, the supremum of (C.4) is achieved by an optimal1421

control γ∗ ∈ [0, aj ]. That is, (C.4) becomes1422

vm̂+
n,k,j = I

{
vm̂

}(
max

(
ewn − γ∗, ew

†
min

)
, rk, aj − γ∗

)
+ f(γ∗), γ∗ ∈ [0, aj ]. (C.5)1423

We assume that max
(
ewn − γ∗, ew

†
min

)
∈ [ewn′ , ewn′+1 ] and (aj − γ∗) ∈ [aj′ , aj′+1], and nodes that are used1424

for linear interpolation are (xm̂
n′,k,j′ , . . . ,x

m̂
n′+1,k,j′+1). We note that these node could be outside Ωin ∪ Ωamin

, in1425

Ωwmin
∪ Ωwamin

. However, by (C.1), the numerical solutions at these nodes satisfy the same bounds (5.5)-(5.6).1426

Computing vm̂+
n,k,j using linear interpolation results in1427

vm̂+
n,k,j = xa

(
xw vm̂n′,k,j′ + (1− xw) v

m̂
n′+1,k,j′

)
+ (1− xa)

(
xw vm̂n′,k,j′+1 + (1− xw) v

m̂
n′+1,k,j′+1

)
, (C.6)1428

where 0 ≤ xa ≤ 1 and 0 ≤ xw ≤ 1 are interpolation weights. In particular,1429

xa =
aj′+1 − (aj − γ∗)

aj′+1 − aj′
. (C.7)1430

Using (C.1) and the induction hypothesis for (5.5) gives abound for nodal values used in (C.6)1431 {
vm̂n′,k,j′ , v

m̂
n′+1,k,j′

}
≤ e2m̂ϵ∆τ

T eCm̂∆τ (∥v0∥∞ + aj′),1432 {
vm̂n′,k,j′+1, v

m̂
n′+1,k,j′+1

}
≤ e2m̂ϵ∆τ

T eCm̂∆τ (∥v0∥∞ + aj′+1). (C.8)1433

Taking into account the non-negative weights in linear interpolation, particularly (C.7), and upper bounds in1434

(C.8), the interpolated result I
{
vm̂

}
(·) in (C.5) is bounded by1435

I
{
vm̂

}(
max

(
ewn − γ∗, ew

†
min

)
, rk, aj − γ∗

)
≤ e2m̂ϵ∆τ

T eCm̂∆τ (∥v0∥∞ + (aj − γ∗)). (C.9)1436

Using (C.9) and f(γ∗) ≤ γ∗ (by definition in (4.14)), (C.5) becomes1437

vm̂+
n,k,j ≤ e2m̂ϵ∆τ

T eCm̂∆τ
(
∥v0∥∞ + aj − γ∗

)
+ γ∗ ≤ e2m̂ϵ∆τ

T eCm̂∆τ
(
∥v0∥∞ + aj

)
,1438

which proves (C.2) at m = m̂.1439
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For subsequent use, we note, since vm̂+
n,k,j = max

(
(v(1))

m̂+
n,k,j , (v

(2))
m̂+
n,k,j

)
, (C.2) results in1440

{
(v(1))

m̂+
n,k,j , (v

(2))
m̂+
n,k,j

}
≤ vm̂+

n,k,j ≤ e2m̂ϵ∆τ
T eCm̂∆τ

(
∥v0∥∞ + aj

)
. (C.10)1441

Next, we derive a lower bound for (v(1))
m̂+
n,k,j and (v(2))

m̂+
n,k,j . By the induction hypothesis for (5.6), we have vm̂n,k,j ≥1442

−2mϵ∆τ
T e2m̂ϵ∆τ

T eCm̂∆τ
(∥∥v0∥∥∞ + aj

)
. Comparing (v(1))

m̂+
n,k,j given by the supremum in (4.25) with vm̂n,k,j , which is1443

the candidate for the supremum evaluated at γm̂n,k,j = 0, yields1444

vm̂n,k,j ≥ (v(1))
m̂+
n,k,j ≥ − 2m̂ϵ

∆τ

T
e2m̂ϵ∆τ

T eCm̂∆τ
(∥∥v0∥∥∞ + aj

)
, (C.11)1445

which proves (C.3) at m = m̂.1446

For (v(2))
m̂+
n,k,j in (4.25), we consider optimal γ = γ∗, where γ∗ ∈ (Cr∆τ, aj ]. Using the induction hypothesis1447

and non-negative weights of linear interpolation, noting γ∗ ≥ 0 and assuming f(γ∗) ≥ 0, gives1448

(v(2))
m̂+
n,k,j ≥ −2m̂ϵ

∆τ

T
e2m̂ϵ∆τ

T eCm̂∆τ
(∥∥v0∥∥∞ + (aj − γ∗)

)
+ f(γ∗)1449

≥ −2m̂ϵ
∆τ

T
e2m̂ϵ∆τ

T eCm̂∆τ
(∥∥v0∥∥∞ + aj

)
. (C.12)1450

From (C.10)-(C.11) and (C.12), noting ϵ ≤ 1/2, we have1451

{
| (v(1))

m̂+
n,k,j |, | (v

(2))
m̂+
n,k,j |

}
≤ e2m̂ϵ∆τ

T eCm̂∆τ
(
∥v0∥∞ + aj

)
. (C.13)1452

Step 2 - Bound for vm̂+1
n,k,j : We will show that (5.5)-(5.6) hold at m = m̂ + 1. For all n ∈ N, k ∈ K, j ∈ J , using1453

(4.34) and (4.38), we have1454

(
v(1)SL

)m̂+1

n,k,j
= ∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d

(
v(1)SL

)m̂+

l,d,j
1455

= ∆w∆r

d∈K†∑∗

l∈N†

(
max (g̃n−l,k−d, 0) + min (g̃n−l,k−d, 0)

) (
v(1)SL

)m̂+

l,d,j
. (C.14)1456

Note that
(
v(1)SL

)m̂+

l,d,j
is computed by (4.34), where w̆l and r̆d have no dependence on aj . From (C.14), using the1457

property of linear interpolation and the upper bound (C.13), we have1458

|
(
v(1)SL

)m̂+1

n,k,j
| ≤ ∆w∆r

|1 + ∆τrd|

d∈K†∑∗

l∈N†

(
max (g̃n−l,k−d, 0) + |min (g̃n−l,k−d, 0)|

)∣∣I{ (v(1))
m̂+ }

(w̆l, r̆d, aj)
∣∣1459

(i)

≤ (1 + 2ϵ
∆τ

T
)e2ϵm̂

∆τ
T (1 + ∆τC) eCm̂∆τ

(
∥v0∥∞ + aj

)
1460

≤ e2ϵ(m̂+1)∆τ
T eC(m̂+1)∆τ

(
∥v0∥∞ + (1 + µ)aj + c

)
, (C.15)1461

where in (i), we use (5.1) and (5.4). Similarly, for n ∈ N, k ∈ K, j ∈ J, we also have1462

|
(
v(2)SL

)m̂+1

n,k,j
| ≤ e2(m̂+1)ϵ∆τ

T eC(m̂+1)∆τ (∥v0∥∞ + aj). (C.16)1463

Therefore, from (C.15)-(C.16), we conclude, for n ∈ N, k ∈ K, j ∈ J,1464

|vm̂+1
n,k,j | ≤ e2(m̂+1)ϵ∆τ

T eC(m̂+1)∆τ (∥v0∥∞ + aj).1465

This proves (5.5) at time m = m̂+ 1.1466
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To prove (5.6), similarly with (C.14), for n ∈ N, k ∈ K, j ∈ J, we have1467

(
v(1)SL

)m̂+1

n,k,j
= ∆w∆r

d∈K†∑∗

l∈N†

g̃n−l,k−d

(
v(1)SL

)m̂+

l,d,j
1468

≥ ∆w∆r

[d∈K†∑∗

l∈N†

max (g̃n−l,k−d, 0)
(
v(1)SL

)m̂+

l,d,j
−

d∈K†∑∗

l∈N†

∣∣min (g̃n−l,k−d, 0)
∣∣∣∣ (v(1)SL

)m̂+

l,d,j

∣∣]1469

(i)

≥ ∆w∆r

1 + ∆τrd

d∈K†∑∗

l∈N†

g̃n−l,k−d

[
−2ϵm̂

∆τ

T
e2ϵm̂

∆τ
T eCm̂∆τ

(∥∥v0∥∥∞ + aj
)]

(C.17)1470

− ∆w∆r

1 + ∆τrd

d∈K†∑∗

l∈N†

∣∣min (g̃n−l,k−d, 0)
∣∣ [e2ϵm̂∆τ

T eCm̂∆τ
(∥∥v0∥∥∞ + aj

)]
1471

(ii)

≥ −2ϵ(m̂+ 1)
∆τ

T
e2ϵ(m̂+1)∆τ

T eC(m̂+1)∆τ
(∥∥v0∥∥∞ + aj

)
, (C.18)1472

where, in (i), we used (C.11), (C.13), and the property of linear interpolation; in (ii), we used (4.46), (5.1) and1473

(5.4). Thus, by (C.18), we have1474

vm̂+1
n,k,j ≥

(
v(1)SL

)m̂+1

n,k,j
≥ − 2ϵ(m̂+ 1)

∆τ

T
e2ϵ(m̂+1)∆τ

T eC(m̂+1)∆τ
(∥∥v0∥∥∞ + aj

)
,1475

which proves (5.6) at m = m̂+ 1.1476
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