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Abstract5

We develop an efficient, easy-to-implement, and strictly monotone numerical integration method for6

Mean-Variance (MV) portfolio optimization. This method proves very efficient in realistic contexts, which7

involve factors such as jump-diffusion dynamics of the underlying controlled processes, discrete rebalanc-8

ing, and the application of investment constraints, namely no-bankruptcy and leverage. Specifically, we9

assume the process of the invested amount in risky assets follows the Merton and Kou jump-diffusion10

dynamics between rebalancing times.11

A crucial element of the MV portfolio optimization formulation over each rebalancing interval is a12

convolution integral, which involves a conditional density of the logarithm of the amount invested in13

the risky asset. Using a known closed-form expression for the Fourier transform of this conditional14

density, we derive an infinite series representation for the conditional density where each term is strictly15

positive and explicitly computable. As a result, the convolution integral can be readily approximated16

through a monotone integration scheme, such as a composite quadrature rule typically available in most17

programming languages. To further enhance efficiency, we propose an implementation of this monotone18

integration scheme via Fast Fourier Transforms, exploiting the Toeplitz matrix structure.19

The proposed monotone numerical integration scheme is proven to be both ℓ∞-stable and point-20

wise consistent, and we rigorously establish its pointwise convergence to the unique solution of the MV21

portfolio optimization problem. We also intuitively demonstrate that, as the rebalancing time interval22

approaches zero, the proposed scheme converges to a continuously observed impulse control formulation23

for MV optimization expressed as a Hamilton-Jacobi-Bellman equation. Numerical results show remark-24

able agreement with benchmark solutions obtained through finite differences and Monte Carlo simulation,25

underscoring the effectiveness of our approach.26

Keywords: mean-variance, portfolio optimization, monotonicity, numerical integration method27

1 Introduction28

Long-term investors, such as holders of Defined Contribution plans, are typically motivated by asset allo-29

cation strategies which are optimal under multi-period criteria.1 As a result, multi-period portfolio opti-30

misation plays a central role in asset allocation. In particular, originating with [45], mean-variance (MV)31

portfolio optimization forms the cornerstone of asset allocation ([22]), in part due to its intuitive nature32
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1The holder of a Defined Contribution plan is effectively responsible to make investment decisions for both (i) the accumu-

lation phase (pre-retirement) of about thirty years or more, and (ii) the decumulation phase (in retirement), of perhaps twenty

years.
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which is the trade-off between risk (variance) and reward (mean). In multi-period settings, MV portfo-33

lio optimization aims to obtain an investment strategy (or control) that maximizes the expected value of34

the terminal wealth of the portfolio, for a given level of risk as measured by the associated variance of35

the terminal wealth [81]. In recent years, multi-period MV optimization has received considerable atten-36

tion in in institutional settings, including in pension fund and insurance applications - see for example37

[10, 26, 27, 30, 37, 38, 39, 46, 50, 62, 68, 70, 73, 74, 76, 77, 80, 83], among many others.38

It is important to distinguish between two categories of optimal investment strategies (optimal controls)39

for portfolio optimization. The first category, referred to as pre-commitment, typically results in time-40

inconsistent optimal strategies ([17, 18, 35, 69, 81]). The second category, namely the time-consistent or41

game theoretical approach, guarantees the time-consistency of the resulting optimal strategy by imposing42

a time-consistency constraint ([4, 5, 11, 63, 72]). The time-inconsistency of pre-commitment strategies is43

because the variance term in the MV-objective is not separable in the sense of dynamic programming (see44

[4, 69]). However, pre-commitment strategies are typically time-consistent under an alternative induced45

objective function [61], and hence implementable. The merits and demerits of time consistent and pre-46

commitment strategies are also discussed in [70]. In subsequent discussions, unless otherwise stated, both47

time consistent and pre-commitment strategies are collectively referred to strategies or controls.48

1.1 Background49

In the parametric approach, a parametric stochastic model is postulated, e.g. diffusion dynamics, and then50

is calibrated to market-observed data.2 A key concern about, and perhaps also a criticism against, MV51

portfolio optimization in a parametric setting is its potential lack of robustness to model misspecification52

error. This criticism originated from the fact that, in single-period settings, MV portfolio optimization can53

provide notoriously unstable asset allocation strategies arising from small changes in the underlying asset54

parameters ([7, 48, 52, 59]). Nonetheless, in the case of multi-period MV optimization, research findings55

indicate that, when the risky asset dynamics are allowed to follow pure-diffusion dynamics (e.g. GBM) or56

any of the standard finite-activity jump-diffusion models commonly encountered in financial settings, such57

as those considered in this work, the pre-commitment and time-consistent MV outcomes of terminal wealth58

are generally very robust to model misspecification errors [66].59

It is well-documented in the finance literature that jumps are often present in the price processes of60

risky assets (see, for example, [14, 56]). In addition, findings in previous research work on MV portfolio61

optimization (pre-commitment and time-consistency strategies) also indicate that (i) jumps in the price62

processes of risky assets, such as Merton model [47] and the Kou model [34], and (ii) realistic investment63

constraints, such as no-bankruptcy or leverage, have substantial impact on efficient frontiers and optimal64

investment strategies of MV portfolio optimization [17, 63]. Furthermore, the results of [44] show that65

the effects of stochastic volatility, with realistic mean-reverting dynamics, are not important for long-term66

investors with time horizons greater than 10 years.67

Furthermore, for multi-period MV optimization, it is documented in the literature that the composition68

of the risky asset basket remains relatively stable over time, which suggests that the primary question69

remains the overall risky asset basket vs. the risk-free asset composition of the portfolio, instead of the exact70

composition of the risky asset basket. See the available analytical solutions for multi-asset time-consistent71

MV problems (see, for example, [79]) as well as pre-commitment MV problems (see for example [35]).72

Therefore, it is reasonable to consider a well-diversified index, instead of a single stock or a basket of stocks,73

as common in the MV literature [19, 63, 64, 65, 66, 67]. This is the modeling approach adopted in this74

work, resulting in a low dimensional multi-period MV optimization problem.75

2Recently, data-driven (i.e. non-parametric) methods have been proposed for portfolio optimization under different optimality

criteria, including mean-variance [9, 37, 49]. Nonetheless, monotonicity of NN-based methods has not been established.
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In general, since solutions to stochastic optimal control problems, including that of the MV portfolio76

optimization problem, are often non-smooth, convergence issues of numerical methods, especially mono-77

tonicity considerations, are of primary importance. This is because, in the context of numerical methods78

for optimal control problems, optimal decisions are determined by comparing numerically computed value79

functions. Non-monotone schemes could produce numerical solutions that fail to converge to financially80

relevant solution, i.e. a violation of the discrete no-arbitrage principle [51, 54, 75].81

To illustrate the above point further, consider a generic time-advancement scheme from time-(m-1) to82

time-m of the form83

vmn =
∑
ℓ∈Ln

ωn,ℓ v
m−1
ℓ . (1.1)84

Here, ωn,ℓ are the weights and and Ln is an index set typically capturing the computational stencil associated85

with the n-th spatial partition point. This time-advancement scheme is monotone if, for any n-th spatial86

partition point, we have ωn,ℓ ≥ 0, ∀ℓ ∈ Ln. Optimal controls at time-m are determined typically by87

comparing candidates numerically computed from applying intervention on time-advancement results vmn .88

Therefore, these candidates need to be approximated using a monotone scheme as well. If interpolation is89

needed in this step, linear interpolation is commonly chosen, due to its monotonicity3. Loss of monotonicity90

occurring in the time-advancement may result in vmn < 0 even vm−1
ℓ ≥ 0 for all ℓ ∈ Ln.91

For stochastic optimal control problems with a small number of stochastic factors, the PDE approach92

is often a natural choice. To the best of our knowledge, finite difference (FD) methods remain the only93

pointwise convergent methods established for pre-commitment and time-consistent MV portfolio optimiza-94

tion in realistic investment scenarios. These scenarios involve the simultaneous application of various types95

of investment constraints and modeling assumptions, including jumps in the price processes of risky assets,96

as highlighted in [17, 63]. These FD methods achieve monotonicity in time-advancement through a positive97

coefficient finite difference discretization method (for the partial derivatives), which is combined with im-98

plicit time-stepping. Despite their effectiveness, finite difference methods present significant computational99

challenges in multi-period settings with long maturities. In particular, they necessitate time-stepping be-100

tween rebalancing dates, which often occur annually (i.e., control monitoring dates). This time-stepping101

requirement introduces errors and substantially increase the computational cost of FD methods.102

Fourier-based integration methods frequently rely on the presence of an analytical expression for the103

Fourier transform of the underlying transition density function, or an associated Green’s function, as high-104

lighted in various research such as [2, 24, 32, 41, 42, 43, 60]. Notably, the Fourier cosine series expansion105

method [23, 58] can achieve high-order convergence for piecewise smooth problems. However, in cases of106

optimal control problems, which are usually non-smooth, such high-order convergence should not be antic-107

ipated.108

When applicable, Fourier-based methods offer unique advantages over FD methods and Monte Carlo109

simulation. These advantages include the absence of timestepping errors between rebalancing (or control110

monitoring) dates, and the ability to handle complex underlying dynamics such as jump-diffusion, regime-111

switching, and stochastic variance in a straightforward manner. However, standard Fourier-based methods,112

much like Monte Carlo simulations, do have a significant drawback: they can potentially lose monotonicity.113

This potential loss of monotonicity in the context of variable annuities is discussed in depth in [31, 32].114

In more detail, consider g(s, s′, tm − tm−1) as the underlying (scaled) transition density, or a related115

Green’s function. For Lévy processes, which have independent and stationary increments, g(·) relies on s116

and s′ only through their difference, i.e., g(s, s′, ·) = g(s−s′, ·). Thus, the advancement of solutions between117

control monitoring dates takes the form of a convolution integral as follows118

v(s, tm−1) =

∫
R
g
(
s− s′, tm − tm−1

)
v
(
s′, tm

)
ds′. (1.2)119

3Other non-monotone interpolation schemes are discussed in, for example, [28, 57].
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In the case of Lévy processes, even though g(·) is not known analytically, the Lévy-Khintchine formula120

provides an explicit representation of the Fourier transform (or the characteristic function) of g(·), denoted121

by G(·). This permits the use of Fourier series expansion to reconstruct the entire integral (1.2), not just122

the integrand. The approach creates a numerical integration scheme of the form (1.1), with the weights ωn,ℓ123

typically available in the Fourier domain via G(·). Consequently, the algorithms boil down to the utilization124

of finite FFTs, which operate efficiently on most platforms. However, there is no assurance that the weights125

ωn,ℓ are non-negative for all n and l, which can potentially lead to a loss of monotonicity.126

As highlighted in [3], the requirement for monotonicity in a numerical scheme can be relaxed. This notion127

of weak monotonicity was initially explored in [6] and was later examined in great detail in [24, 40, 41, 42]128

for general control problems in finance, including variable annuities. More specifically, the condition for129

monotonicity, i.e. ωn,ℓ ≥ 0 for all ℓ ∈ Ln, is relaxed to
∑

ℓ ∈ Ln|min(ωn, ℓ, 0)| ≤ ϵ, with ϵ > 0 being a130

user-defined tolerance for monotonicity. By projecting the underlying transition density or an associated131

Green’s function onto linear basis functions, this approach allows for full control over potential monotonicity132

loss via the tolerance ϵ > 0: the potential monotonicity loss can be quantified and restricted to O(ϵ), thereby133

enabling (pointwise) convergence as ϵ → 0.134

1.2 Objectives135

In general, many industry practitioners find implementing monotone finite difference methods for jump-136

diffusion models to be complex and time-consuming, particularly when striving to utilize central differencing137

as much as possible, as proposed in [71]. As well-noted in the literature (e.g. [54, 57]), many seemingly138

reasonable finite difference discretization schemes can yield incorrect solutions. In addition, while the139

concept of (strict) monotonicity in numerical schemes is directly tied to the discrete no-arbitrage principle,140

making it easy to comprehend, weak monotonicity is less clear, which further hinders its application in141

practice. Moreover, the convergence analysis of weakly monotone schemes is often complex, potentially142

introducing additional obstacles to their practical application.143

This paper aims to fill the aforementioned research gap through the development of an efficient, easy-144

to-implement and monotone numerical integration method for MV portfolio optimization under a realistic145

setting. This setting involves the simultaneous application of different types of investment constraints and146

jump-diffusion dynamics for the price processes of risky assets. While the proposed method does require some147

level of tractability, we focus emphasis on the two commonly used jump-diffusion models in financial settings,148

namely the Merton and the Kou models [34, 47]. Although we focus on the pre-commitment strategy case,149

the proposed method can be extended to time-consistent MV optimization in a straightforward manner.150

The main contributions of the paper are as follows.151

(i) We present a recursive and localized formulation of the pre-commitment MV portfolio optimization152

under a realistic context that involves (i) the simultaneous application of different types of investment153

constraints and (ii) the Merton and the Kou jump-diffusion models [34, 47]. Over each rebalancing154

interval, the key component of the formulation of MV portfolio optimization is a convolution integral155

involving a conditional density of the logarithm of amount invested in the risky asset.156

(ii) Through a known closed-form expression of the Fourier transform of the underlying transition density,157

we derive an infinite series representation for this density in which all the terms of the series are158

non-negative and readily computable explicitly . Therefore, the convolution integral can be approxi-159

mated in a straightforward manner using a monotone integration scheme via a composite quadrature160

rule. Utilizing the Toeplitz matrix structure, we propose an efficient implementation of the proposed161

monotone integration scheme via FFTs.162

(iii) We mathematically demonstrate that the proposed monotone scheme is also ℓ∞-stable and pointwise163
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consistent with the convolution integral formulation. We rigourously prove the pointwise convergence164

of the scheme as the discretization parameter approach zero. As the the rebalancing time interval165

approaches zero, we intuitively demonstrate that the proposed scheme converges to a continuously166

observed impulse control formulation for MV optimization in the form of an Hamilton-Jacobi-Bellman167

equation.168

(iv) All numerical experiments are conducted using model parameters calibrated to inflation-adjusted,169

long-term US market data (89 years), enabling realistic conclusions to be drawn from the results.170

Numerical experiments demonstrate an agreement with benchmark results obtained by FD method171

and Monte Carlo simulation as in [17].172

Although we focus specifically on monotone integration methods for multi-period MV portfolio optimization,173

our comprehensive and systematic approach could serve as numerical and convergence analysis framework174

for the development of similar monotone integration methods for other multi-period or continuously observed175

control problems in finance.176

In Section 2, we describe the underlying dynamics and a multi-period rebalancing framework for MV177

portfolio optimization. A localization of the pre-commitment MV portfolio optimization in the form of an178

convolution integral together with appropriate boundary conditions are presented in Section 3. Also therein,179

we present an infinite series representation of the transition density. A simple and easy-to-implement180

monotone numerical integration method via a composite quadrature rule is described in Section 4. In181

Section 5, we mathematically establish pointwise convergence the proposed integration method. Section 6182

explore possible convergence between the proposed scheme and a Hamilton-Jacobi-Bellman equation arising183

from continuously observed impulse control formulation for MV optimization. Numerical results are given184

in Section 4. Section 8 concludes the paper and outlines possible future work.185

2 Modelling186

We consider portfolios consisting of a risk-free asset and a well-diversified stock index (the risky asset). With187

respect to the risk-free asset, we consider different lending and borrowing rates. Specifically, we denote by188

rb and rι the positive, continuously compounded rates at which the investor can respectively borrow funds189

or earn on cash deposits (with rb > rι). We make the standard assumption that the real world drift rate µ190

of the risky asset is strictly greater than rι. Since there is only one risky asset, with a constant risk-aversion191

parameter, it is never MV-optimal to short stock. Therefore, the amount invest in the risky-asset is non-192

negative for all t ∈ [0, T ], where T > 0 denotes the fixed investment time horizon or maturity. In contrast,193

we do allow short positions in the risk-free asset, i.e. it is possible that the amount invested in the risk-free194

asset is negative. With this in mind, we denote by Bt ≡ B(t) the time-t amount invested in the risk-free195

asset and by St ≡ S(t) the natural logarithm of the time-t amount invested in the risky (so that eSt is the196

amount).197

For defining the jump-diffusion model dynamics, let ξ be a random variable denoting the jump size. For198

any functional f , we let ft− := limϵ→0+ ft−ϵ and ft+ := limϵ→0+ ft+ϵ. Informally, t− (resp. t+) denotes the199

instant of time immediately before (resp. after) the forward time t ∈ [0, T ]. When a jump occurs, we have200

St = St− + ξ.201

2.1 Discrete portfolio rebalancing202

Define TM as the set of M predetermined, equally spaced rebalancing times in [0, T ],203

TM = { tm| tm = m∆t, m = 0, . . . ,M − 1} , ∆t = T/M. (2.1)204

We adopt the convention that tM = T and the portfolio is not rebalanced at the end of the investment205

horizon tM = T . The evolution of the portfolio over a rebalancing interval [tm−1, tm], tm−1 ∈ TM , can206
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be viewed as consisting of three steps as follows. Over [tm−1, t
+
m−1], (St, Bt), change according to some207

rebalancing strategy (i.e. an impulse control). Over the time period [t+m−1, t
−
m], there is no intervention by208

the investor according to some control (investment strategy), and therefore (St, Bt) are uncontrolled, and are209

assumed to follow some dynamics for all t ∈ [t+m−1, t
−
m]. Over [t−m, tm], the settlement (payment or receipt) of210

interest due for the time period [tm−1, tm]. In the following, we first discuss stochastic modeling for (St, Bt)211

over [t+m−1, t
−
m], then describe settlement of interest and modelling of rebalancing strategies using impulse212

controls.213

Over the time period [t+m−1, t
−
m], in the absence of control (investor’s intervention according to some214

control strategy), the amounts in the risk-free and risky assets are assumed to have the following dynamics:215

dBt = R (Bt)Bt dt, where R (Bt) = rι + (rb − rι)I{Bt<0}, (2.2)216

dSt =

(
µ− λκ− σ2

2

)
dt+ σ dWt + d

(
πt∑
ℓ=1

ξℓ

)
, t ∈ [t+m−1, t

−
m].217

Here, as noted earlier, rb and rι denote the positive, continuously compounded rates at which the investor218

can respectively borrow funds or earn on cash deposits (with rb > rι), while I[A] denotes the indicator219

function of the event A; {Wt}t∈[0,T ] is a standard Wiener process, and µ and σ are the real world drift220

rate and the instantaneous volatility, respectively. The jump term
∑π(t)

ℓ=1 ξℓ is a compound Poisson process.221

Specifically, {π(t)}0≤t≤T is a Poisson process with a constant finite jump intensity λ ≥ 0; and, with ξ222

being a random variable representing the jump size, {ξℓ}∞ℓ=1 are independent and identically distributed223

(i.i.d.) random variables having the same same distribution as the random variable ξ. In the dynamics224

(2.2), κ = E
[
eξ − 1

]
. Here, E[·] is the expectation operator taken under a suitable measure. The Poisson225

process {π(t)}0≤t≤T , the sequence of random variables {ξℓ}∞ℓ=1, and the Wiener process and {Wt}0≤t≤T are226

mutually independent.227

We consider two distributions for the random variable ξ, namely the normal distribution [47] and the228

double-exponential distribution [34]. To this end, let p(y) be the probability density function (pdf) of ξ. In229

the former case, ξ ∼ Normal
(
µ̃, σ̃2

)
, so that its pdf is given by230

p(y) =
1√
2πσ̃2

exp

{
−(y − µ̃)2

2σ̃2

}
. (2.3)231

Also, in this case, E[eξ] = exp(µ̃ + σ̃2/2), and hence κ = E
[
eξ − 1

]
can be computed accordingly. In232

the latter case, we consider an asymmetric double-exponential distribution for ξ. Specifically, we consider233

ξ ∼ Asym-Double-Exponential(q1, η1, η2), (q1 ∈ (0, 1), η1 > 1, η2 > 0) so that its pdf is given by234

p(y) = q1η1e
−η1yI[y≥0]+q2η2e

η2yI[y<0], q1 + q2 = 1. (2.4)235

Here q1 and q2 = 1− q1 respectively are the probabilities of upward and downward jump sizes. In this case,236

E[eξ] = q1η1
η1−1 + q2η2

η2+1 , so κ = E
[
eξ − 1

]
can be computed accordingly.237

2.2 Impulse controls238

Discrete portfolio rebalancing is modelled using the discrete impulse control formulation as discussed in239

for example [17, 63, 64], which we now briefly summarize below. Let cm denote the impulse applied at240

rebalancing time tm ∈ TM , which corresponds to the amount invested in the risk-free asset according to the241

investor’s intervention at time tm, and let Z denote the set of admissible impulse values, i.e. cm ∈ Z for all242

tm ∈ TM .243

Let Xt = (St, Bt) , t ∈ [0, T ] be the multi-dimensional underlying process, and x = (s, b) denote the state244

of the system. Suppose that at time-tm, the state of the system is x = (s, b) = (S (tm) , B (tm)) for some245

tm ∈ TM . We denote by (St+m
, Bt+m

) ≡ (s+(s, b, cm), b+(s, b, cm)) the state of the system immediately after246

the application of the impulse cm at time tm, where247

St+m
≡ s+(s, b, cm) = ln (max(es + b− cm − δ, es-∞)) , Bt+m

≡ b+(s, b, cm) = cm, tm ∈ TM . (2.5)248
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Here, δ ≥ 0 is a fixed cost4; since log(·) is undefined if es + b − cm − δ ≤ 0, the amount St+m
becomes249

ln (max(es + b− cm − δ, es-∞)) for a finite s-∞ ≪ 0.250

Associated with the fixed set of rebalancing times TM , defined in (2.1), an impulse control C will be251

written as the set of impulse values252

C = {cm | cm ∈ Z, m = 0, . . . ,M − 1} , (2.6)253

and we define Cm to be the subset of the control C applicable to the set of times {tm, . . . , tM−1},254

Cm = {cl | cl ∈ Z, l = m, . . . ,M − 1} ⊂ C0 ≡ C. (2.7)255

In a discrete setting, the amount invested in the risk-free asset changes only at rebalancing date. Specifically,256

over each time interval [tm−1, tm] , m = 1, . . . ,M , we suppose the amount invested in the risk-free asset at257

time t+m−1 after rebalancing being Bt+m
= b. For test function f(St, Bt, t) with both St and Bt varying, we258

model the change in f(St, Bt, t) with (St, Bt = b) for t ∈ [t+m−1, t
−
m]. Then, the amount in the risk-free asset259

would jump to beR(b)∆t at time tm, reflecting the settlement (payment or receipt) of interest due for the time260

interval [tm−1, tm], m = 1, . . . ,M . Here, we note that, although there is no rebalancing at time tM = T ,261

there is still settlement of interest for the interval [tM−1, tM ].262

2.3 Investment constraints263

With the time-t state of the system being (s, b), to include transaction cost, we define the liquidation value264

Wliq(t) ≡ Wliq(s, b) to be265

Wliq(t) ≡ Wliq(s, b) = es + b− δ, t ∈ [0, T ]. (2.8)266

We strictly enforce two realistic investment constraints on the joint values of S and B, namely a solvency267

condition and a maximum leverage condition. The solvency condition takes the following form: when268

Wliq(s, b) ≤ 0, we require that the position in the risky asset be liquidated, the total remaining wealth be269

placed in the risk-free asset, and the ceasing of all subsequent trading activities. Specifically, assume that270

the system is in the state x = (s, b) ∈ Ω∞ at time tm, where tm ∈ TM and271

Ω∞ = (−∞,∞)× (−∞,∞) . (2.9)272

We define a solvency region N and an insolvency or bankruptcy region B as follows273

N = {(s, b) ∈ Ω∞ : Wliq(s, b) > 0} , B = {(s, b) ∈ Ω∞ : Wliq(s, b) ≤ 0} , Wliq(s, b) defined in (2.8). (2.10)274

The solvency constraint can then be stated as275

If (s, b) ∈ B at tm ⇒

we require
(
St+m

= s-∞, Bt+m
= W (s, b)

)
and St remains so ∀t ∈ [t+m, T ] ,

(2.11)276

where, as noted above, s-∞ ≪ 0 and is finite. This effectively means that the investment in the risky asset has277

to be liquidated, the total wealth is to be placed in the risk-free asset, and all subsequent trading activities278

much cease.279

The maximum leverage constraint specifies that the leverage ratio after rebalancing at tm, where tm ∈280

TM , is stipulated by (2.5) must satisfy281

exp(St+m
)

exp(St+m
) +Bt+m

≤ qmax, (2.12)282

4It is straightforward to include a proportional cost into (2.5) as in [17]. However, to focus on the main advantages of the

proposed method, we do not consider a proportional cost in this work.
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for some positive constant qmax typically in the range [1.0, 2.0]. Given above the solvency constraint and the283

maximum leverage constraint, the set of admissible impulse values, namely the set Z is therefore defined as284

follows285

Z =



{
cm ≡ Bt+m

∈ R : (St+m
, Bt+m

) via (2.5)
}

no constraints,
{
cm ≡ Bt+m

∈ R : (St+m
, Bt+m

) via (2.5), s.t. St+m
≥ s-∞ and (2.12)

}
(s, b) ∈ N

{cm = Wliq(s, b)} (s, b) ∈ B

solvency & maximum leverage

286

Based on the definition (2.7), the set of admissible impulse controls is given by287

A = {Cm | Cm defined in (2.7), m = 0, . . . ,M − 1} . (2.13)288

3 Formulation289

Let Ex,tm
Cm [Wliq(T )] and V arx,tmCm [Wliq(T )] respectively denote the mean and variance of the terminal liqui-290

dation wealth, given the system state x = (s, b) at time tm for some tm ∈ TM following the control Cm ∈ A291

over [tm, T ], assuming the underlying dynamics (2.2). The standard scalarization method for multi-criteria292

optimization problem in [78] gives the mean-variance (MV) objective as293

sup
Cm∈A

{
Ex,tm

Cm [Wliq(T )]− ρ · V arx,tmCm [Wliq(T )]
}
, (3.1)294

where the scalarization parameter ρ > 0 reflects the investor’s risk aversion level.295

3.1 Value function296

Dynamic programming cannot be applied directly to (3.1), since no smoothing property of conditional297

expectation for variance. The technique of [36, 82] embeds (3.1) in a new optimisation problem, often298

referred to as the embedding problem, which is amenable to dynamic programming techniques. We follow299

the example of [12, 20] in defining the PCMV optimization problem as the associated embedding MV300

problem5. Specifically, with γ ∈ R being the embedding parameter, we define the value function v (s, b, tm),301

m = M − 1, . . . , 0 as follows302

(PCMV∆t(tm; γ)) : v (s, b, tm) = inf
Cm∈A

Ex,tm
Cm

[(
Wliq(T )−

γ

2

)2]
, γ ∈ R, m = 0, . . . ,M − 1, (3.2)303

where WT is given in (2.8), subject to dynamics (2.2) between rebalancing times. We denote by C∗
m the304

optimal control for the problem PCMV∆t(tm; γ), where305

C∗
m =

{
c∗m, . . . , c∗M−1

}
, m = 0, . . . ,M − 1. (3.3)306

For an impulse value c ∈ Z, we define the intervention operator M(·) applied at tm ∈ TM as follows307

M(c) v(s, b, t+m) = v
(
s+(s, b, c), b+(s, b, c), t+m

)
, s+(s, b, c) and b+(s, b, c) are given in (2.5). (3.4)308

By dynamic programming arguments [53, 55], for a fixed embedding parameter γ ∈ R, and (s, b) ∈ Ω∞, the309

recursive relationship for the value function v(s, b, tm) in (3.2) is given by310 

v (s, b, tm) =
(
Wliq(s, b)−

γ

2

)2
, m = M,

v (s, b, tm) = min

{
v
(
s, b, t+m

)
, inf
c∈Z

M(c) v
(
s, b, t+m

)}
, m = M − 1, . . . , 0,

v
(
s, b, t−m

)
= v

(
s, beR(b)∆t, tm

)
, m = M, . . . , 1,

v(s, b, t+m−1) =

∫ ∞

−∞
v
(
s′, b, t−m

)
g(s, s′; ∆t) ds′, m = M, . . . , 1.

(3.5a)

(3.5b)

(3.5c)

(3.5d)

311

5For a discussion of the elimination of spurious optimization results when using the embedding formulation, see [21].
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Here, in (3.5b), the intervention operator M(·) is given by (3.4), with the min{·, ·} operator reflecting the312

optimal choice between no-rebalancing and rebalancing (which is subject to a fixed cost δ ); (3.5c) reflects the313

settlement (payment or receipt) of interest due for the time interval [tm−1, tm], m = 1, . . . ,M . In the integral314

(3.5d) the functions g(s, s′; ∆t) denotes the probability density of s, the log of the amount invested in the315

risky asset at a future time (t−m), and the information s′ at the current time (t+m−1), given ∆t = tm − tm−1.316

Also, we note that the fact that amount invested in the risk-free asset does not change in the in the interval317

[t+m−1, t
−
m] is reflected in (3.5d) since this amount is kept constant (= b) on both sides of (3.5d).318

It can be shown that g(s, s′; ∆t) has the form g(s − s′; ∆t), and therefore, in (3.5d), the integral takes319

the form of the convolution of g(·) and v(·, t−m). That is, (3.5d) becomes320

v(s, b, t+m−1) =

∫ ∞

−∞
v
(
s′, b, t−m

)
g(s− s′; ∆t) ds′, m = M, . . . , 1. (3.6)321

Although a closed-form expression for g(s; ∆t) is not known to exist, its Fourier transform, denoted by322

G(·; ∆t), is known in closed-form. Specifically, we recall the Fourier transform pair323

F[g(s; ·)] = G(η; ·) =
∫ ∞

−∞
e−iηsg(s; ·) ds, F−1[G(η; ·)] = g(s; ·) = 1

2π

∫ ∞

−∞
eiηsG(η; ·) dη. (3.7)324

A closed-form expression for G (η; ∆t) is given by325

G (η; ∆t) = exp (Ψ (η)∆t) , with Ψ(η) =

(
−σ2η2

2
+

(
µ− λκ− σ2

2

)
(iη)− λ+ λΓ (η)

)
. (3.8)326

Here, Γ (η) =
∫∞
−∞ p(y) eiηy dy, where p(y) is the probability density function of ln (ξ) with ξ being the327

random variable representing the jump multiplier.328

3.2 An infinite series representation of g (·)329

The proposed monotone integration method depends on an infinite series representation of the probability330

density function g(·), which is presented in Lemma 3.1.331

Lemma 3.1. Let g(s; ∆t) and G(η; ∆t) be a Fourier transform pair defined in (3.7) and G(η; ∆t) is given332

in (3.8). Then g(s; ∆t) ≡ g (s; ∆t,∞) can be written as333

g (s; ∆t,∞) =
1√
4πα

∞∑
k=0

(λ∆t)k

k!

∫ ∞

−∞
. . .

∫ ∞

−∞
exp

(
θ − (β + s+ Yk)

2

4α

)(
k∏

ℓ=1

p(yℓ)

)
dy1 . . . dyk,334

where α =
σ2

2
∆t, β =

(
µ− λκ− σ2

2

)
∆t, θ = −λ∆t, Yk =

k∑
ℓ=1

yℓ, Y0 = 0, (3.9)335

and p(y) is the PDF of the random variable ξ. When k = 0, we have g (s; ∆t, 0) = 1√
4πα

exp
(
θ − (β+s+)2

4α

)
.336

A proof of of Lemma 3.1 is given in Appendix A.337

The infinite series representation in Lemma 3.1 can not be employed directly for computation since the338

k-th term of the series is a multiple integral involving
(∏k

ℓ=1 p(yℓ)
)
, where p(y) is the probability density339

of ξ. We now show that, when the random variable ξ follow a normal distribution [47] or an asymmetric340

double-exponential distribution [34], it is possible to obtain an analytic expression for the respective multiple341

integrals.342

Corollary 3.1. For the case ξ ∼ Normal
(
µ̃, σ̃2

)
whose PDF is given by (2.3), the infinite series represen-343

tation of the conditional density g(s; ∆t,∞) given in Lemma 3.1 is evaluated to344

g(s; ∆t,∞) = g(s; ∆t, 0) +
∞∑
k=1

∆gk(s; ∆t), (3.10)345

where g(s; ∆t, 0) =
exp

(
θ − (β+s+)2

4α

)
√
4πα

, and ∆gk(s; ∆t) =
(λ∆t)k

k!

exp
(
θ − (β+s+kµ̃)2

4α+2kσ̃2

)
√
4πα+ 2πkσ̃2

,346
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with α, β and θ are given in (3.9).347

For the case ξ ∼ Asym-Double-Exponential(q1, η1, η2), (q1 ∈ (0, 1), η1 > 1, η2 > 0) whose PDF given by348

(2.4), the infinite series representation of the conditional density g(s; ∆t,∞) given in Lemma 3.1 is evaluated349

to g(s; ∆t,∞) = g(s; ∆t, 0) +
∞∑
k=1

∆gk(s; ∆t), where g(s; ∆t, 0) =
exp

(
θ− (β+s)2

4α

)
√
4πα

, and350

∆gk(s; ∆t) =
eθ√
4πα

(λ∆t)k

k!

[
k∑

ℓ=1

Qk,ℓ
1

(
η1

√
2α
)ℓ

eη1 (β+s−s′)+η21αHhℓ−1

(
η1
√
2α+

β + s− s′√
2α

)
351

+

k∑
ℓ=1

Qk,ℓ
2

(
η2

√
2α
)ℓ

e−η2 (β+s−s′)+η22αHhℓ−1

(
η2
√
2α− β + s− s′√

2α

)]
. (3.11)352

353

Here, α, β and θ are given in (3.9); Qk,ℓ
1 , Qk,ℓ

2 and Hhℓ are defined as follows354

Qk,ℓ
1 =

k−1∑
i=ℓ

(
k − ℓ− 1

i− ℓ

)(
k

i

)(
η1

η1 + η2

)i−ℓ( η2
η1 + η2

)k−i

qi1q
k−i
2 , 1 ≤ ℓ ≤ k − 1,355

Qk,ℓ
2 =

k−1∑
i=ℓ

(
k − ℓ− 1

i− ℓ

)(
k

i

)(
η1

η1 + η2

)k−i( η2
η1 + η2

)i−ℓ

qk−i
1 qi2, 1 ≤ ℓ ≤ k − 1, (3.12)356

357

where q1 + q2 = 1, Qk,k
1 = qk1 and Qk,k

2 = qk2 , and358

Hhℓ(x) =
1

ℓ!

∫ ∞

x
(y − x)ℓ e−

1
2
y2dy, with Hh−1(x) = e−x2/2, and Hh0(x) =

√
2πNorCDF(−x). (3.13)359

360

Here, NorCDF denotes CDF of standard normal distribution N (0, 1). For brevity, we obmit a straight-361

forward proof for the log-normal case (3.10) using Equation (A.3). A proof for the log-double exponential362

case (3.11) is given in Appendix B. For this case, we note that function Hhℓ(·) can be evaluated very363

efficiently using the standard normal density function and standard normal distribution function via the364

three-term recursion [1]365

ℓHhℓ(x) = Hhℓ−2(x)− xHhℓ−1(x), ℓ ≥ 1.366

Unless otherwise state, we only consider the log-normal case (3.10) and the log-double-exponential case367

(3.11). In the subsequent section, we present a definition of the localized problem to be solved numerically.368

3.3 Localization and problem statement369

The MV formulation (3.5) is posed on an infinite domain. For the problem statement and convergence370

analysis of numerical schemes, we define a localized MV portfolio optimsation formulation. To this end,371

with s†min < smin < 0 < smax < s†max, −bmax < 0 < bmax, where |s†min|, |smin|, smax, s
†
max, and bmax are372

sufficiently large, we define the following spatial sub-domains:373

Ω = [s†min, s
†
max]× [−bmax, bmax] , ΩB = {(s, b) ∈ Ω \Ωsmax \Ωsmin : Wliq (s, b) ≤ 0} ,374

Ωsmax =
[
smax, s

†
max

]
× [−bmax, bmax] , Ωbmax = (smin, smax)×

[
−bmaxe

rbT ,−bmax

)
∪
(
bmax, bmaxe

rιT
]
,375

Ωsmin =
[
s†min, smin

]
× [−bmax, bmax] , Ωin = Ω \Ωsmax \Ωsmin \ΩB. (3.14)376

We emphasize that we do not actually solve the MV optimization problem in Ωbmax . However, we may use377

an approximate value to the solution in Ωbmax , obtained by means of extrapolation of the computed solution378

in Ωin, to provide any information required by the MV optimization problem in Ωin. We also define the379

following sub-domains:380

Ω
s†max

=
[
s†max, s

‡
max

]
× [−bmax, bmax] , Ω

s†min
=
[
s‡min, s

†
min

]
× [−bmax, bmax] ,381

where s‡max = smax − s†min and s‡min = smin − s†max. (3.15)382
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The solutions within the sub-domains Ω
s†min

and Ω
s†max

are not required for our purposes. These sub-domains383

are introduced to ensure the well-defined computation of the conditional probability density function g(·)384

in (3.6) for the convolution integral (3.6) in the MV optimization problem within Ωin. To simplify our385

discussion, we will adopt a zero-padding convention going forward. This convention assumes that the value386

functions within these sub-domains are zero for all time t, and we will exclude these sub-domains from387

further discussions.388

Due to rebalancing, the intervention operator M(·) for Ωin, defined in (3.4), may require evaluating a389

candidate value at a point having s+ = ln(max(Wliq(s, b)− c, es-∞)), and s+ could be outside [s†min, s
†
max], if390

s-∞ < s†min. Therefore, with |s†min| selected sufficiently large, we assume s-∞ = s†min.391

We now present equations for spatial sub-domains defined in (3.14). We note that boundary conditions392

for s → −∞ and s → ∞ are obtained by relevant asymptotic forms es → 0 and es → ∞, respectively,393

similar to [17]. This is detailed below.394

� For (s, b, T ) ∈ Ω× {T}, we apply the terminal condition (3.5a)395

v(s, b, T ) =
(
Wliq(s, b)−

γ

2

)2
. (3.16)396

� For (s, b, tm) ∈ Ω× TM , m = M − 1, . . . , 0, the intervention result (3.5b) is given by397

v (s, b, tm) = min

{
v
(
s, b, t+m

)
, inf
c∈Z

M(c) v
(
s, b, t+m

)}
, (3.17)398

where the intervention M(·) is defined in (3.4).399

� For (s, b, t−m) ∈ Ω× {t−m}, m = M, . . . , 1, settlement of interest (3.5c) is enforced by400

v
(
s, b, t−m

)
= v

(
s, beR(b)∆t, tm

)
, m = M, . . . , 1, and v (s, ·, tm) is given in (3.17). (3.18)401

� For (s, b, t+m) ∈ Ωbmax × {t+m}, where m = M, . . . , 1, we impose the boundary condition402

v
(
s, b, t+m

)
=

(
b

bmax

)2

v
(
s, sgn(b)bmax, t

+
m

)
. (3.19)403

� For (s, b, t+m−1) ∈ Ωsmin×{t+m−1}, where tm−1 ∈ TM , from (3.16), we assume that v(s, b, t) ≈ A0(t)b
2 for404

some unknown function A0(t), which mimics asymptotic behaviour of the value function as s → −∞405

(or equivalently, ez → 0). Substituting this asymptotic form into the integral (3.5d) gives the boundary406

condition407

v(s, b, t+m−1) = A0(t
−
m)b2

∫ ∞

−∞
g(s− s′; ∆t) ds′ = v(s, b, t−m), (3.20)408

where v(s, b, t−m) is given by (3.18).409

� For (s, b, t+m−1) ∈ Ωsmax×{t+m−1}, where tm−1 ∈ TM , from (3.16), for fixed b, we assume that v(z, b, t) ≈410

A1(t)e
2s for some unknown function A1(t), which mimics asymptotic behaviour of the value function as411

s → ∞ (or equivalently, ez → ∞). We substitute this asymptotic form into the integral (3.5d), noting412

the infinite series representation of g(·; ∆t) given Lemma 3.1, and obtain the correspoding boundary413

condition:414

v
(
s, b, t+m−1

)
= v(s, b, t−m) e(σ

2+2µ+λκ2)∆t, κ2 = E
[(

eξ − 1
)2]

, (3.21)415

where v(s, b, t−m) is given by (3.18). For a proof, see Appendix B.416

� For (s, b, t+m−1) ∈ Ωin × {t+m−1}, where tm−1 ∈ TM , from the convolution integral (3.6), we have417

v
(
s, b, t+m−1

)
=

∫ s†max

s†min

v
(
s′, b, t−m

)
g(s− s′; ∆t) ds′. (3.22)418

where the terminal condition v (s′, b, t−m) is given by (3.18). The conditional density g(·; ∆t) is given419

by the infinite series in (3.9) (Lemma (3.1)), and is defined on [s‡min, s
‡
max].420
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In Definition 3.1 below, we formally define the MV portfolio optimization problem421

Definition 3.1 (Localized MV portfolio optimization problem). The MV portfolio optimization problem422

with the set of rebalancing times TM defined in (2.1), and dynamics (2.2) with the PDF p(y) given by (2.3)423

or (2.4), is defined in Ω× TM ∪ {tM} as follows.424

At each tm−1 ∈ TM , the solution to the MV portfolio optimization problem v(s, b, tm−1) given by (3.17),425

where v(s, b, t+m−1) satisfies (i) the integral (3.22) in Ωin×{t+m−1}, (ii) the boundary conditions (3.20), (3.21),426

and (3.19) in {Ωsmin ,Ωsmax ,Ωbmax} × {t+m−1}, respectively, and (iii) subject to the terminal condition (3.16)427

in Ω× {tM}, with the settlement of interest subject to (3.18) in Ω× {t−m}.428

We introduce a result on uniform continuity of the solution to the MV portfolio optimization.429

Proposition 3.1. The solution v(s, b, tm) to the MV portfolio optimization in Definition 3.1 is uniformly430

continuous within each sub-domain Ωin × {tm}, m = M, . . . , 0.431

Proof. This proposition can be proved using mathematical induction onm. For brevity, we outline key details432

below. We first note that the domain Ω is bounded and T is finite. We observe that if v(s, b, t) is a uniformly433

continuous function, then inf
c∈Z

M(c)v(s, b, t), where M(·) defined in (3.4), is also uniformly continuous [29,434

Lemma 2.2]. As such, min{v(s, b, t), infc∈Z M(c)v(s, b, t)} is also uniformly continuous since Ω is bounded.435

Therefore, it follows that if v(s, b, t+m),m = M−1, . . . , 0, is uniformly continuous then the intervention result436

v(s, b, tm) obtained in (3.17) is also uniformly continuous. Next, if v(s, b, tm), m = M, . . . , 1, is uniformly437

continuous, then the interest settlement result v(s, b, t−m) defined in (3.18) is also uniformly continuous.438

The other key step is to show that, if v(s, b, t−m), m = M, . . . , 1, is uniformly continuous, then the solution439

v(s, b, t+m−1) for (s, b) ∈ Ωin given by the convolution integral (3.22) is also uniformly continuous. Combining440

these above three steps with the fact that the initial condition v(s, b, tM ) given in (3.16) is uniformly441

continuous in (s, b) ∈ Ω, with Ω a bounded domain, gives the desired result.442

We conclude this section by emphasizing that the value function may not be continuous across smin and443

smax. The interior domain Ωin × {tm}, m = M − 1, . . . , 0, is the target region where provable pointwise444

convergence of the proposed numerical method is investigated, which relies on Proposition 3.1.445

4 Numerical methods446

Given the closed-form expressions of g (s− s′; ∆t), the convolution integral (3.22) is approximated by a447

discrete convolution which can be efficiently computed via FFTs. For our scheme, the intervals [s†min, smin]448

and [smax, s
†
max] also serve as padding areas for nodes in Ωin. Without loss of generality, for convenience, we449

assume that |smin| and smax are chosen sufficiently large with450

s†min = smin −
smax − smin

2
, and s†max = smax +

smax − smin

2
. (4.1)451

With this in mind, s‡min and s‡max, defined in (3.15), are given by452

s‡min = s†min − smax = −3

2
(smax − smin) , and s‡max = s†max − smin =

3

2
(smax − smin) .453

4.1 Discretization454

We discretize MV portfolio optimization problem defined in Defn. 3.1 on the localized domain Ω as follows.455

(i) We denote by N (resp. N † and N ‡ ) the number of intervals of a uniform partition of [smin, smax]456

(resp. [s†min, s
†
max] and [s‡min, s

‡
max]). For convenience, we typically choose N † = 2N and N ‡ = 3N so457
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that only one set of s-coordinates is needed. We use an equally spaced partition in the s-direction,458

denoted by {sn}, where459

sn = ŝ0 + n∆s; s = −N ‡/2, . . . , N ‡/2, where ŝ0 =
smin + smax

2
=

s†min + s†max

2
=

s‡min + s‡max

2
,460

and ∆s =
smax − smin

N
=

s†max − s†min

N † =
s‡max − s‡min

N ‡ . (4.2)461
462

(ii) We use an unequally spaced partition in the b-direction, denoted by {bj}, where j = 0, . . . , J , with463

b0 = bmin, bJ = bmax, ∆bmax = max0≤j≤J−1 (bj+1 − bj), and ∆bmin = max0≤j≤J−1 (bj+1 − bj).464

We emphasize that no timestepping is required for the interval [t+m−1, t
−
m], tm−1 ∈ TM . As noted earlier,465

∆t = T/M is kept constant. We assume that there exists a discretization parameter h > 0 such that466

∆s = C1h, ∆bmax = C2h, ∆bmin = C ′
2h, (4.3)467

where the positive constants C1, C2, C
′
2 are independent of h. For convenience, we occasionally use xm

n,j ≡468

(sn, bj , tm) to refer to the reference gridpoint (sn, bj , tm), n = −N †/2, . . . , N †/2, j = 0, . . . , J , m = M, . . . , 0.469

Nodes xm
n,j have (i) n = −N †/2, . . . ,−N/2, in Ωsmin , (ii) n = −N/2 + 1, . . . N/2 − 1, in Ωin, (iii) n =470

N/2, . . . N †/2, in Ωsmax . and (iv) n = −N ‡/2 + 1 . . .−N †/2− 1 and n = N †/2 + 1 . . . N ‡/2− 1, in padding471

sub-domains.472

For tm ∈ TM , we denote by v(sn, bj , t) the exact solution at the reference node (sn, bj , t), where473

t = {t±m, tm}, and by vh(s, b, t) the approximate solution at an arbitrary point (s, b, t) obtained using the474

discretization parameter h. We refer to the approximate solution at the reference node (sn, bj , t), where475

t = {t±m, tm}, as vm±
n,j ≡ vh(sn, bj , t

±
m) and vmn,j ≡ vh(sn, bj , tm). In the event that we need to evaluate vh at a476

point other than a node on the computational gridpoint, linear interpolation is used. We define by Zh the477

discrete set of admissible impulse values defined as follows478

Zh = {b0, b1, . . . , bJ} ∩ Z. (4.4)479

where Z is defined in (2.13), and h is the discretization parameter. With b+ ∈ Zh being an impulse value480

(a control), applying b+ at the reference spatial node (sn, bj) results in481

s+n = s+(sn, bj , b
+) computed by (2.5), b+j = b+(sn, bj , b

+) = b+. (4.5)482

For the special case tM , as discussed earlier, we only have interest rate payment, but no rebalancing, and483

therefore, only vMn,j and vM−
n,j are used.484

4.2 Numerical schemes485

For convenience, we define N = {−N/2 + 1, . . . , N/2− 1}, N† =
{
−N †/2, . . . , N †/2

}
and J = {0, . . . , J}.486

Backwardly, over the time interval [tm−1, tm], tm−1 ∈ TM , there are three key components solving the487

MV optimisation problem, namely (i) the interest settlement over [t−m, tm] as given in (3.18); (ii) the time488

advancement from t−m to t+m−1, as captured by (3.20)-(3.22), and (iii) the intervention action over [tm−1, t
+
m−1]489

as given in (3.17). We now propose the numerical schemes for these steps.490

For (sn, bj , tM ) ∈ Ω× {T}, we impose the terminal condition (3.16) by491

vMn,j =
(
Wliq(sn, bj)−

γ

2

)2
, n ∈ N†, j ∈ J. (4.6)492

For imposing the intervention action (3.17), we solve the optimization problem493

vmn,j = min

{
vm+
n,j , min

b+∈Zh

vh(s
+
n , b

+, t+m)

}
, s+n = s+(sn, bj , b

+), n ∈ N†, j ∈ J. (4.7)494
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Here, vh(s
+
n , b

+, t+m) is the approximate solution to the exact solution v(s+n , b
+, t+m), where b+ ∈ Zh and495

s+n = s+(sn, bj , b
+) is given by (2.5). The approximation vh(s

+
n , b

+, t+m) is computed by linear interpolation496

as follows497

vh(s
+
n , b

+, t+m) = I
{
vm+

} (
s+n , b

+
)
, n ∈ N†, j ∈ J. (4.8)498

Here, I {vm+} (·) is a linear interpolation operator acting on the time-t+m discrete solutions
{
sq, bp, v

m+
q,p

}
,499

q ∈ N† and p ∈ J. We note that since b+ ∈ {b0, b1, . . . , bJ}, (4.8) boils down to a single dimensional500

interpolation along the s-dimension.501

Remark 4.1 (Attainability of local minima). We determine the infimum of the intervention operator in502

(3.5b) by a linear search over the discrete set of controls Zh in (4.4), that is, an exhaustive search through all503

admissible controls. As mentioned in [20], using this approach, we can guarantee obtain the global minimum504

as h → 0.505

For the settlement of interest (3.18), linear interpolation/extrapolation is applied to compute vm−
n,j as506

follows.507

vm−
n,j = I {vmn }

(
bje

R(bj)∆t
)
, n ∈ N†, j ∈ J (4.9)508

Here I {vmn } (·) be linear interpolation/extrapolation operator acting on the time-tm discrete solutions509 {
bq, v

m
n,q

}
, q ∈ J, where vmn,q are given by (4.6) at tm = T and by (4.7) at tm,m = M − 1, . . . , 1. Note510

that when (sn, b) ∈ Ωbmax , I {vmn } (b) becomes a linear extrapolation operator which imposes the boundary511

condition (3.19). That is,512

v(sn, b, tm) =

(
b

bJ

)2

v (sn, sgn(b)bJ , tm) , (sn, b, tm) ∈ Ωbmax × {tm} , m = M, . . . , 1. (4.10)513

For the time advancement of (sn, bj , t
+
m−1) ∈ Ωsmin ∪ Ωsin

∪ Ωsmax × {t+m−1}, tm−1 ∈ TM . The boundary514

conditions, for Ωsmin ∪ Ωsmax × {t+m−1} as (3.20) and (3.21), can be imposed by515

v
(m−1)+
n,j = vm−

n,j , n = −N †/2, . . . ,−N/2, j ∈ J, and vm−
n,j is given in (4.9), (4.11)516

v
(m−1)+
n,j = e(σ

2+2µ+λκ2)∆tvm−
n,j , n = N/2, . . . , N †/2, j ∈ J, and vm−

n,j is given in (4.9). (4.12)517

In Ωin, we tackle the convolution integral in (3.22), where j ∈ J is fixed. For simplicity, we adopt the518

following notational convention: with n ∈ N and l ∈ N†, we let gn−l(∆t,∞) = g(sn − sl; ∆t,∞), where g(·)519

is given by the infinite series (3.9). We also denote by gn−l(∆t,K) an approximation to gn−l(∆,∞) using520

the first K terms of the infinite series (3.9). Applying the composite trapezoidal rule to approximate the521

convolution integral (3.22) gives the approximation in the form of a discrete convolution as follows522

v
(m−1)+
n,j = ∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t,K) vm−
l,j , n ∈ N, j ∈ J. (4.13)523

where vm−
l,j are given in (4.9) and ωl = 1, l = −N †/2 + 1, . . . , N †/2− 1, and ω−N†/2 = ωN†/2 = 1/2.524

Remark 4.2 (Monotonicity). We highlight that the conditional density gn−l(∆t,∞) given by the infinite525

series (3.9) is defined and non-negative for all n ∈ N and l ∈ N† (or, alternatively, for all sn ∈ (smin, smax)526

and sl ∈ [s†min, s
†
max]). Therefore, scheme (4.13) is monotone.527

We highlight that for computational purposes, gn−l(∆t,∞), given by the infinite series (3.9), is truncated528

to gn−l(∆t,K). However, since each term of the series is non-negative, this truncation does not result in529

loss of monotonicity, which is a key advantage of the proposed approach.530

As K → ∞, there is no loss of information in the discrete convolution (4.13). For a finite K, how-531

ever, there is an error, namely |gn−l(∆t,∞)− gn−l(∆t,K)|, due to the use of a truncated Taylor series.532
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Specifically, this truncation error can be bounded as follows:533

|gn−l(∆t,∞)− gn−l(∆t;K)| =

∣∣∣∣∣
∞∑

k=K+1

(λ∆t)k

k!

∫ ∞

−∞
e−αη2+(β+sn−sl)(iη)+θ (Γ (η))k dη

∣∣∣∣∣534

(i)

≤ (λ∆t)K+1

(K + 1)!
gn−l(∆t,∞)

(ii)

≤ (λ∆t)K+1

(K + 1)!

1√
2πσ2∆t

. (4.14)535

536

Here, in (i),
∣∣∣(Γ (η))K+1

∣∣∣ ≤ (∫∞
−∞ p(y)

∣∣eiηy∣∣ dy
)K+1

≤ 1; in (ii), gn−l(∆t,∞) ≤ eθ√
4πα

∞∑
k=0

(λ∆t)k

k! = 1√
2πσ2∆t

.537

Therefore, from (4.14), as K → ∞, we have (λ∆t)K+1

(K+1)! → 0, resulting in no loss of information. For a given538

ϵ > 0, we can choose K such that the error |gn−l(∆t,∞)− gn−l(∆t,K)| < ϵ, for all n ∈ N and l ∈ N†. This539

can be achieved by enforcing540

(λ∆t)K+1

(K + 1)!
≤ ϵ

√
2πσ2∆t. (4.15)541

It is straightforward to see that, if ϵ = O(h), then K = O(ln(h−1)), as h → 0. For a given ϵ, we denote by542

Kϵ be the smallest K values that satisfies (4.15). We then have543

0 < gn−l(∆t,∞)− gn−l(∆t,Kϵ) < ϵ, n ∈ N, l ∈ N†. (4.16)544

This value Kϵ can be obtained through a simple iterative procedure, as illustrated in Algorithm 4.1.545

4.3 Efficient implementation and algorithms546

In this section, we discuss an efficient implementation of the scheme presented above using FFT. For con-547

venience, we define/recall sets of indices: N‡ =
{
−N ‡/2 + 1, . . . , N ‡/2− 1

}
, N† =

{
−N †/2, . . . , N †/2

}
,548

N = {−N/2 + 1, . . . , N/2− 1}, J = {0, . . . , J}, with N † = 2N and N ‡ = N + N † = 3N . For brevity, we549

adopt the notational convention: for n ∈ N and l ∈ N†, gn−l ≡ gn−l(∆t,K), where K is chosen by (4.15). To550

effectively compute the discrete convolution in (4.13) for a fixed j ∈ J, we rewrite (4.13) in a matrix-vector551

product form as follows552 

v
(m−1)+
−N/2+1,j

v
(m−1)+
−N/2+2,j

...

...

v
(m−1)+
N/2−1,j


︸ ︷︷ ︸

v
(m−1)+
j

= ∆s



gN/2+1 gN/2 . . . g−3N/2+1

gN/2+2 gN/2+1 . . . g−3N/2+2
...

...
...

...
...

...

g3N/2−1 g3N/2−2 . . . g−N/2−1


︸ ︷︷ ︸

[gn−l]n∈N, l∈N†



1
2v

m−
−N†/2,j

vm−
−N†/2+1,j

...

vm−
N†/2−1,j
1
2v

m−
N†/2,j


︸ ︷︷ ︸

vm−
j

. (4.17)553

Here, in (4.17), the vector v
(m−1)+
j ≡

[
v
(m−1)+
n,j

]
n∈N

is of size (N − 1)×1, the matrix [gn−l]n∈N, l∈N† is of554

size (N − 1)×(2N + 1), and the vector vm−
j ≡

[
vm−
n,j

]
n∈N†

is of size (2N + 1)×1. It is important to note555

that [gn−l]n∈N, l∈N† is a Toeplitz matrix [8] having constant along diagonals. To compute the matrix-vector556

product in (4.17) efficiently using FFT, we take advantage of a cicular convolution product described below.557

� We first expand the non-square matrix [gn−l]n∈N, l∈N† (of size (N−1)×(N †+1)) into a circulant matrix558

of size (3N − 1)×(3N − 1) denoted by g̃, and is defined as follows559

g̃ =

 g̃′−1,0 g̃′−1,1

[gn−l]n∈N, l∈N† g̃′0,1
g̃′1,0 g̃′1,1

 . (4.18)560
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Here, g̃′−1,0, g̃
′
1,0, g̃

′
−1,1, g̃

′
0,1 and g̃′1,1 are matrices of sizes N×(2N + 1), N×(2N + 1), N×(N − 2),561

(N − 1)×(N − 2), and N×(N − 2), respectively, and are given below562

g̃′−1,0 =


g−N/2+1 g−N/2 . . . g−3N/2+1 g3N/2−1 g3N/2−2 . . . gN/2

g−N/2+2 g−N/2+1 . . . g−3N/2+2 g−3N/2+1 g3N/2−1 . . . gN/2+1
...

...
...

...
...

...

gN/2 gN/2−1 . . . g−N/2 g−N/2−1 g−N/2−2 . . . g3N/2−1

 ,563

g̃′1,0 =


g−3N/2+1 g3N/2−1 g3N/2−2 . . . gN/2+1 gN/2 . . . g−N/2

g−3N/2+2 g−3N/2+1 g3N/2−1 . . . gN/2+2 gN/2+1 . . . g−N/2+1
...

...
...

...
...

...

g−N/2 g−N/2−1 g−N/2−2 . . . g−3N/2+1 g3N/2−1 . . . gN/2−1

 ,564

g̃′−1,1 =


gN/2−1 gN/2−2 . . . g−N/2+2

gN/2 gN/2−1 . . . g−N/2+3
...

...
...

g3N/2−2 g3N/2−3 . . . gN/2+1

 ,565

g̃′0,1 =


g3N/2−1 g3N/2−2 . . . gN/2+3 gN/2+2

g−3N/2+1 g3N/2−1 . . . gN/2+4 gN/2+3
...

...
...

...

g−N/2−2 g−N/2−3 . . . g−3N/2+2 g−3N/2+1

 ,566

g̃′1,1 =


g−N/2−1 g−N/2−2 . . . g−3N/2+2

g−N/2 g−N/2−1 . . . g−3N/2+3
...

...
...

gN/2−2 gN/2−1 . . . g−N/2+1

 .567

� For fixed j ∈ J, we construct ṽm−
j a vector of size (3N − 1)×1 by augmenting vector vm−

j , defined in568

(4.17), with zeros as follows569

ṽm−
j =

[
(vm−

j )⊤, 0, 0, . . . , 0
]⊤

=

[
1

2
vm−
−N†/2,j

, vm−
−N†/2+1,j

, . . . , vm−
N†/2−1,j

,
1

2
vm−
N†/2,j

, 0, 0, . . . , 0

]⊤
.

(4.19)

570

571

Then, (4.17) can be implemented by applying a circulant matrix-vector product to compute an inter-572

mediate vector of discrete solutions ṽ
(m−1)+
j as follows573

ṽ
(m−1)+
j = ∆s g̃ ṽm−

j , j ∈ J. (4.20)574

Here, the circulant matrix g̃ is given by (4.18), and the vector ṽm−
j is given by (4.19), and the575

intermediate result ṽ
(m−1)+
j is a vector of size (3N − 1)×1, with v

(m−1)+
j is the middle 2N − 1 (from576

the (N + 1)-th to the (2N − 1)-th) elements of ṽ
(m−1)+
j .577

� Observing that a circulant matrix-vector product is equal to a circular convolution product, (4.20)578

can further be written as a circular convolution product. More specifically, let g̃1 be the first column579

of the circulant matrix g̃ defined in (4.18), and is given by580

g̃1 =
[
g−N/2+1, g−N/2+2, . . . , g3N/2−1, g−3N/2+1, g−3N/2+2, . . . , g−N/2

]⊤
. (4.21)581

The circular convolution product z = x ∗ y is defined componentwise by582

zk′ =

N‡/2−1∑
k=−N‡/2+1

xk′−k+1 yk, k′ = −N ‡/2 + 1, . . . , N ‡/2− 1,583

16



where x and y are two sequences with the period (N ‡ − 1) (i.e. xk = xk+(N‡−1) and yk = yk+(N‡−1),584

k′ ∈ N‡). Then, (4.20) can be written as the following circular convolution product585

ṽ
(m−1)+
j = ∆s g̃ ṽm−

j = ∆s g̃1 ∗ ṽm−
j , j = 0, . . . , J. (4.22)586

� The circular convolution product in (4.22) can be computed efficiently using FFT and iFFT as follows587

ṽ
(m−1)+
j = ∆sFFT−1

{
FFT(ṽm−

j ) ◦ FFT(g̃1)
}
, j = 0, . . . , J. (4.23)588

� Once the vector of intermediate discrete solutions ṽ
(m−1)+
j ≡ ṽ

(m−1)+
n,j is computed, we then obtain the589

vector of discrete solutions
[
v
(m−1)+
n,j

]
n∈N

(of size (2N + 1)×1) for Ωin by discarding values ṽ
(m−1)+
n,j ,590

n ∈ N‡ \ N.591

The implementation (4.23) suggests that we compute the weight components of g̃1 only once, and reuse592

them for the computation over all time intervals. More specifically, for a given user-tolerance ϵ, using (4.15),593

we can compute a sufficiently large the number of terms K = Kϵ in the infinite series representation (3.9)594

for these weights. Then, using Corollary 3.1, these weights for the case ξ following a normal distribution595

[47] or a double-exponential distribution [34] can be computed only once in the Fourier space, as in (4.23),596

and reused for all time intervals. The step is described in Algorithm 4.1.597

Algorithm 4.1 Computation of weight vector g̃1(∆t,Kϵ) in the Fourier space; ϵ > 0 is an user-defined

tolerance.

1: set k = Kϵ = 0;

2: compute test = (λ∆t)k+1

(k+1)!
√
2πσ2∆t

;

compute gn−l(∆t,Kϵ) = g(sn − sl; ∆t, 0), n ∈ N, l ∈ N†, given in Corollary 3.1;

3: construct the weight vector g̃1(∆t,Kϵ) using gn−l(∆t,Kϵ) as defined in (4.21);

4: while test ≥ ϵ do

5: set k = k + 1, and Kϵ = k;

6: compute test = (λ∆t)k+1

(k+1)!
√
2πσ2∆t

;

7: compute the increments ∆gk(sn − sl; ∆t), n ∈ N, l ∈ N†, given in Corollary 3.1;

8: compute gn−l(∆t,Kϵ) = gn−l(∆t,Kϵ) + ∆gk(sn − sl; ∆t), n ∈ N, l ∈ N†;

9: construct the weight vector g̃1(∆t,Kϵ) using gn−l(∆t,Kϵ) as defined in (4.21);

10: end while

11: output weight vector FFT(g̃1);

Putting everything together, in Algorithm 4.2, we present a monotone integration algorithm for MV598

portfolio optimization.599

Remark 4.3 (Complexity). Algorithm 4.2 involves, for m = M . . . , 1, the key steps as follows.600

� Compute v
(m−1)+
n,j , n ∈ N‡, j ∈ J via FFT algorithm. The complexity of this step is O

(
JN ‡ log2N

‡) =601

O
(
1/h2 · log2(1/h)

)
, where we take into account (4.3).602

� We use exhaustive search through all admissible controls in Zh to obtain global minimum. Each603

optimization problem is solved by evaluating the objective function O(1/h) times. There are O(1/h2)604

nodes, and O(1) timesteps giving a total complexity O(1/h3). This is an order reduction compared605

to complexity of finite difference methods, which typically is O(1/h4) for discrete rebalancing (see606

[17][Section 6.1].)607
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Algorithm 4.2 A monotone numerical integration algorithm for MV portfolio optimization when ξ follows

a normal distribution [47] or a double-exponential distribution [34]; ϵ > 0 is a user-tolerance; the embedding

parameter γ ∈ R is a fixed;

1: compute weight vector g̃1 using Algorithm 4.1;

2: initialize vMn,j =
(
Wliq(sn, bj)− γ

2

)2
, n = −N †/2, . . . , N †/2, j = 0, . . . , J ;

3: for m = M, . . . , 1 do

4: enforce interest rate payment (4.9) to obtain vm−
n,j , n = −N †/2, . . . , N †/2, j = 0, . . . , J ;

5: compute vectors of intermediate values ṽ
(m−1)+
j , j = 0, . . . , J using (4.23);

6: obtain vectors of discrete solutions
[
v
(m−1)+
n,j

]
n∈N

, j = 0, . . . , J by discarding all values ṽ
(m−1)+
n,j (Line

(5)) where n ∈ N‡ \ N ; Ωin

7: compute v
(m−1)+
n,j , n = −N †/2, . . . ,−N/2, j = 0, . . . , J , using (4.11); Ωsmin

8: compute v
(m−1)+
n,j , n = N/2, . . . , N †/2, j = 0, . . . , J using (4.12); Ωsmax

9: solve the optimization problem (4.7) to obtain vm−1
n,j , n ∈ N†, j ∈ J;

save the optimal impulse value cm,∗
n,j ;

10: end for

4.4 Construction of efficient frontier608

We know discuss construction of efficient frontier. To this end, we define the auxiliary function u(s, b, tm) =609

Ex,tm
C∗
m

[WT ], where C∗
m, as defined in (3.3), is the optimal control for the problem PCMV∆t(tm; γ) obtained610

by solving the localized problem in Definition 3.1. Similar to [17, 63, 64], we now present a localized problem611

for u(xm) = u(s, b, tm), with xm = (s, b, tm) and tm ∈ TM ∪ {T}, in the sub-domains (3.14) as below612 

u
(
xM
)

= Wliq(s, b)− ε, xM ∈ Ω× {T} ,
u(xm) = M(c∗m)u

(
xm+

)
, xm ∈ Ω× TM ,

u(xm−) = u
(
s, beR(b)∆t, tm

)
, xm ∈ Ω× {tm} , m = M, . . . , 1,

u(xm) =
|b|
bmax

u (s, sgn(b)bmax, tm) , xm ∈ Ωbmax × {tm} , m = M, . . . , 1,

u(x(m−1)+) =


∫ s†max

s†min

u
(
s′, b, t−m

)
g(s− s′; ∆t) ds′, x(m−1)+ ∈ Ωin ×

{
t+m−1

}
, tm−1 ∈ TM ,

u(xm−) eµ∆t, x(m−1)+ ∈ Ωsmax
×
{
t+m−1

}
, tm−1 ∈ TM ,

u(xm−), x(m−1)+ ∈ Ωsmin
×
{
t+m−1

}
, tm−1 ∈ TM .



(4.24a)

(4.24b)

(4.24c)

(4.24d)

(4.24e)

613

Here, in (4.24b), c∗m is the optimal impulse value obtained from solving the value function problem (3.17);614

(4.24c) is due to the settlement (payment or receipt) of interest due for the time interval [tm−1, tm], m =615

M, . . . , 1; (4.24d)-(4.24e) are equations for spatial sub-domains Ωbmax , Ωin, Ωsmax and Ωsmin . The localized616

problem (4.24) can be solved numerically in a straightforward manner. In particular, at a reference gridpoint617

(sn, bj), the optimal impulse value c∗m in (4.24b) becomes cm,∗
n,j which is the optimal impulse value obtained618

from Line (9) of Algorithm 4.2. We emphasize the convention that it may be non-optimal to rebalance, in619

which case, the convention is cm,∗
n,j = bj . Furthermore, the convolution integral in (4.24e) can be approximated620

using a scheme similar to (4.13). For brevity, we only provide the proof of numerical scheme for Ωsmax in621

Appendix B, and omit details of the other schemes for (4.24).622

We assume that given the initial state x = (s, b) at time t0 and the positive discretization parameter h,623

the efficient frontier (EF), denote by Yh, can be traced out using the embedding parameter γ ∈ R as below624

Yh =
⋃
γ∈R

(√(
V arx,t0C∗

0
[WT ]

)
h
,
(
Ex,t0

C∗
0

[WT ]
)
h

)
γ

. (4.25)625
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Here, (·)h refers to a discretization approximation to the expression in the brackets. Specifically, for fixed626

γ, we let627

V0 ≡ v(s, b, t0) = Ex,t0
C∗
0

[(
WT − γ

2

)2]
and U0 ≡ u(s, b, t0) = Ex,t0

C∗
0

[WT ] . (4.26)628

Then
(
V arx,t0C∗

0
[WT ]

)
h
and

(
Ex,t0

C∗
0

[WT ]
)
h
corresponding to γ in (4.25) are computed as follows629 (

V arx,t0C∗
0

[WT ]
)
h
= V0 + γU0 −

γ2

4
− (U0)

2 and
(
Ex,t0

C∗
0

[WT ]
)
h
= U0. (4.27)630

5 Pointwise convergence631

In this section, we establish pointwise convergence of the proposed numerical integration method. We632

start by verifying three properties: ℓ∞-stability, monotonicity, and consistency (with respect to the integral633

formulation (3.22)). We recall that the infinite series gn−l(∆t,∞) is approximated by gn−l(∆t,Kϵ), where634

ϵ > 0 is an user-defined tolerance, and we have the error bound gn−l(∆t,∞)− gn−l(∆t,Kϵ) < ϵ, as noted in635

(4.16).636

It is straightforward to see that the proposed scheme is monotone since all the weights gn−l are positive.637

Therefore, we will primarily focus on ℓ∞-stability and consistency of the scheme. We will then show that638

convergence of our scheme is ensured if Kϵ → ∞ as h → 0, or equivalently, ϵ → 0 as h → 0.639

For subsequent use, we present a remark about gn−l(∆t;Kϵ), n ∈ N, l ∈ N†.640

Remark 5.1. Recalling that g(s, s′; ∆t) ≡ g(s, s′; ∆t,∞) is a (conditional) probability density function, for641

a fixed sn ∈ [smin, smax], we have

∫
R
g(sn, s; ∆t,∞) ds = 1, hence

∫ s†max

s†min

g(sn, s; ∆t,∞) ds ≤ 1. Further-642

more, applying quadrature rule to approximate

∫ s†max

s†min

g(sn, s; ∆t,∞) ds gives rise to an approximation error,643

denoted by ϵg, defined as follows644

ϵg :=

∣∣∣∣∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t,∞)−
∫ s†max

s†min

g(sn, s; ∆t,∞) ds

∣∣∣∣.645

It is straightforward to see that ϵg → 0 as N † → ∞, i.e. as h → 0. Using the above results, recalling the646

weights ωl, l ∈ N†, are positive, and the error bound (4.16), we have647

0 ≤ ∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t,Kϵ) ≤ ∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t,∞) ≤ 1 + ϵg < eϵg . (5.1)648

5.1 Stability649

Our scheme consists of the following equations: (4.6) for Ω × {T}, (4.11) for Ωsmin , (4.12) for Ωsmax , and650

finally (4.13) for Ωin. We start by verifying ℓ∞-stability of our scheme.651

Lemma 5.1 (ℓ∞-stability). Suppose the discretization parameter h satisfies (4.3). If linear interpolation652

is used for the intervention action (4.7), then the scheme (4.6), (4.11), (4.12), and (4.13) satisfies the653

bound sup
h>0

∥vm∥∞ < ∞ for all m = M, . . . , 0, as the discretization parameter h → 0. Here, we have654

∥vm∥∞ = maxn,j |vmn,j |, n ∈ N† and j ∈ J.655

Proof of Lemma 5.1. First, we note that, for any fixed h > 0, as given by (4.6), and for a finite γ, we656

have
∥∥vM∥∥∞ < ∞, since Ω is a bounded domain. Therefore, we have suph>0

∥∥vM∥∥∞ < ∞. Motivated by657

this observation, to demonstrate ℓ∞-stability of our scheme, we will show that, for a fixed h > 0, at any658

(sn, bj , tm), m = M, . . . , 0, we have659

|vmn,j | < e(M−m)(ϵg+(2rmax+σ2+2µ+λκ2)∆t) ∥∥vM∥∥∞ , (5.2)660
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where (i) ϵg is the error of the quadrature rule discussed in Remark 5.1, (ii) rmax = max {rb, rι}, and (iii)661

κ2 = E
[(
eξ − 1

)2]
. In (5.2), the term e(M−m)2rmax∆t is a result of the evaluation of vm−

n,j using (4.10) for662

nodes near ±bmax. For the rest of the proof, we will show the key inequality (5.2) when h > 0 is fixed.663

The proof follows from a straightforward maximum analysis, since Ω is a bounded domain. For brevity, we664

outline only key steps of an induction proof below.665

We use induction m, m = M − 1, . . . , 0, to show the bound (5.2) for Ωsmin ∪ Ωin ∪ Ωsmax . For the base666

case, m = M − 1 and thus (5.2) becomes667

|vM−1
n,j | < eϵg+(2rmax+σ2+2µ+λκ2)∆t

∥∥vM∥∥∞ , n ∈ N† and j ∈ J. (5.3)668
669

For the settlement of interest rate for all Ωsmin ∪ Ωin ∪ Ωsmax , as reflected by (4.9), we have |vM−
n,j | <670

e2rmax∆t|vMn,j |, n ∈ N† and j ∈ J. Since |vMn,j | ≤
∥∥vM∥∥∞, it follows that671

|vM−
n,j | < e2rmax∆t

∥∥vM∥∥∞ . (5.4)672

We now turn to ℓ∞-stability of (4.12) (for Ωsmax). From (4.12), we note that for n ∈
{
N/2, . . . , N †/2

}
and673

j ∈ J,674

|v(M−1)+
n,j | = e∆t(σ2+2µ+λκ2)|vM−

n,j |
(5.4)

≤ e∆t(2rmax+σ2+2µ+λκ2)
∥∥vM∥∥∞ ≤ eϵg+∆t(2rmax+σ2+2µ+λκ2)

∥∥vM∥∥∞
(5.5)675

noting eϵg ≥ 1. Using (5.4), it is trivial that (4.11) (for Ωsmin) satisfies676

|v(M−1)+
n,j | ≤ eϵg+∆t(2rmax+σ2+2µ+λκ2)

∥∥vM∥∥∞ , n ∈
{
−N †/2, . . . ,−N/2

}
, j ∈ J. (5.6)677

Now, we focus on the timestepping scheme (4.13) (for Ωin). For n ∈ N and j ∈ J, we have678

|v(M−1)+
n,j | ≤ ∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t,Kϵ) |vM−
l,j |

(5.4)

≤ e2rmax∆t
∥∥vM∥∥∞(∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t,Kϵ)

)
(5.7)679

(i)

≤ eϵg+(2rmax+σ2+2µ+λκ2)∆t
∥∥vM∥∥∞ . (5.8)680

681

Here, (i) is due to (5.1) and (5.5) and (5.6).682

Finally, given (5.8), we bound the intervention result |v(M−1)
n,j |, n ∈ N† and j ∈ J, obtained from (4.7).683

Since linear interpolation is used, the weights for interpolation are non-negative. In addition, due to (5.5),684

(5.6), and (5.8), the numerical solutions at nodes used for interpolation, namely |v(M−1)+
l,j |, l ∈ N†, are also685

bounded by686

|v(M−1)+
l,j | ≤ eϵg+(2rmax+σ2+2µ+λκ2)∆t

∥∥vM∥∥∞ .687

Therefore, by monotonicity of linear interpolation, which is preserved by the sup(·) operator in (4.7),688

|v(M−1)
n,j |, n ∈ N† and j ∈ J, satisfy (5.3). We have proved the base case (5.3). Similar arguments can689

be used to show the induction step. This concludes the proof.690

5.2 Consistency691

In this subsection, we mathematically demonstrate the pointwise consistency of the proposed scheme with692

respect to the MV optimization in Definition 3.1. Since it is straightforward that (4.6) is consistent with693

the terminal condition (3.16) (Ω×{T}), we primarily focus on the consistency of the scheme on Ω×{tm−1},694

m = M, . . . , 1.695

We start by introducing notational convention. We use x = (s, b) ∈ Ω and xm ≡ (s, b, tm) ∈ Ω × {tm},696

m = M, . . . , 0. In addition, for brevity, we use vm(x) instead of v(s, b, tm), m = M, . . . , 0. We now write697

the MV portfolio optimization in Definition 3.1 and the proposed scheme in forms amendable for analysis.698
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Recalling s+(s, b, c) defined in (2.5), over each time interval [tm−1, tm], where m = M, . . . , 1, we write the699

MV portfolio optimization in Definition 3.1 via an operator D(·) as follows700

vm−1(s, b) = D
(
xm−1, vm

)
:= min

{
v(s, b, t+m−1), inf

c∈Z
M(c) v(s, b, t+m−1)

}
701

= min

{
v(s, b, t+m−1), inf

c∈Z
v(s+(s, b, c), c, t+m−1)

}
. (5.9)702

703

Here, v(s+(s, b, c), c, t+m−1) is given by704

v(s+(s, b, c), c, t+m−1) =



v
(
s+(s, beR(b)∆t, c), c, tm

)
(s, b) ∈ Ωsmin ,∫ s†max

s†min

v(s+(s′, beR(b)∆t, c), c, tm) g(s− s′; ∆t) ds′ (s, b) ∈ Ωin,

e(σ
2+2µ+λκ2)∆tv

(
s+(s, beR(b)∆t, c), c, tm

)
(s, b) ∈ Ωsmax .

(5.10a)

(5.10b)

(5.10c)

705

Similarly, the term v(s, b, t+m−1) in (5.9) is defined as follows706

v(s, b, t+m−1) =



v
(
s, beR(b)∆t, tm

)
(s, b) ∈ Ωsmin ,∫ s†max

s†min

v(s′, beR(b)∆t, tm) g(s− s′; ∆t) ds′ (s, b) ∈ Ωin,

e(σ
2+2µ+λκ2)∆tv

(
s, beR(b)∆t, tm

)
(s, b) ∈ Ωsmax .

707

Next, we write the proposed scheme at (xm−1
n,j ) = (sn, bj , tm−1) ∈ Ω × tm−1, m = M, . . . , 1, in an708

equivalent form via an operator Dh(·) as follows709

vm−1
n,j = Dh

(
xm−1
n,j ,

{
vml,j
}N†/2

l=−N†/2

)
:= min

{
v
(m−1)+
n,j , min

b+∈Z
vh
(
s+(sn, bj , b

+), b+, t+m−1

)}
, (5.12)710

711

where vh
(
s+(sn, bj , b

+), b+, t+m−1

)
= Ch

(
x
(m−1)+
n,j ,

{
vml,j

}N†/2−1

l=−N†/2
; b+
)

= . . .712

=



vh

(
s+(sn, bje

R(bj)∆t, b+), b+, tm

)
n = −N †/2, . . . ,−N/2,

∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t;Kϵ) vh

(
s+(sl, bje

R(bj)∆t, b+), b+, tm

)
n = −N/2 + 1, . . . , N/2− 1,

vh

(
s+(sn, bje

R(bj)∆t, b+), b+, tm

)
e(σ

2+2µ+λκ2)∆t n = N/2, . . . , N †/2.

(5.13a)

(5.13b)

(5.13c)

713

Similarly, the term v
(m−1)+
n,j in (5.12) is given by714

v
(m−1)+
n,j =



vh

(
sn, bje

R(bj)∆t, tm

)
n = −N †/2, . . . ,−N/2,

∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t;Kϵ) vh

(
sl, bje

R(bj)∆t, tm

)
n = −N/2 + 1, . . . , N/2− 1,

e(σ
2+2µ+λκ2)∆tvh

(
sn, bje

R(bj)∆t tm

)
n = N/2, . . . , N †/2.

715

We now introduce a lemma on local consistency of the proposed scheme.716

Lemma 5.2 (Local consistency). Suppose that (i) the discretization parameter h satisfies (4.3), (ii) linear717

interpolation is used for the intervention action (4.7). For any smooth test function ϕ ∈ C∞(Ω ∪ Ωbmax ×718
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[0, T ]), with ϕm
n,j ≡ ϕ(xm

n,j) and xm−1
n,j ∈ Ωin × {tm−1}, m = M, . . . , 1, and for a sufficiently small h, χ, we719

have720

Dh

(
xm−1
n,j ,

{
ϕm
l,j + χ

}N†/2−1

l=−N†/2

)
= D

(
xm−1
n,j , ϕm

)
+ E

(
xm−1
n,j , ϵ, h

)
+O (χ+ h) . (5.15)721

Here, E(x(m−1)+
n,j , ϵ, h) → 0 as ϵ, h → 0. The operators D (·) and Dh(·) are defined in (5.9) and (5.12),722

respectively, noting that Dh(·) depends on Ch(·) given in (5.13).723

Proof of Lemma 5.2. We first consider the operator Ch (·) defined in (5.13). For the case (5.13b) of (5.13),724

Ch
(
xm−1
n,j ,

{
ϕm
l,j + χ

}N†/2

l=−N†/2
; b+
)

becomes725

Ch (·)
(i)
= ∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t;Kϵ)
(
ϕh

(
s+(sl, bje

R(bj)∆t, b+), b+, tm

)
+ χ

)
726

(ii)
= ∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t;Kϵ)
(
ϕ
(
s+(sl, bje

R(bj)∆t, b+), b+, tm

)
+O(h2) + χ

)
727

(iii)
= ∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t;∞)ϕ
(
s+(sl, bje

R(bj)∆t, b+), b+, tm

)
+ Ef +O

(
h2 + χ

)
728

(iv)
=

∫ s†max

s†min

ϕ
(
s+(s′, bje

R(bj)∆t, b+), b+, tm

)
g(sn − s′; ∆t,∞) ds′︸ ︷︷ ︸

= ϕ
(
s+(sn, bj , b

+), b+, t+m−1

)
+Ef + Ec +O

(
h2 + χ

)
(5.16)729

730

Here, (i) and (ii) are due to the facts that, for linear interpolation, the constant χ can be completely731

separated from interpolated values, and the interpolation error is of size O
(
(∆s)2 + (∆bmax)

2
)
= O(h2) for732

sufficiently small h; (iii) is due to (5.1) and χ being sufficiently small. The errors Ef and Ec in (iii) and (iv)733

are respectively described below.734

� In (iii), Ef ≡ Ef
(
xm−1
n,j , ϵ

)
is the error arising from truncating the infinite series gn−l(·,∆t,∞), defined735

in (3.9), to gn−l(·,∆t,Kϵ). Taking into account the fact that function ϕ is continuous and hence736

bounded on the closed domain Ω∪Ωbmax×[0, T ]), together with (4.16) and (5.1), we have | Ef |≤ C ′ϵeϵg ,737

where C ′ > 0 is a bounded constant independently of ϵ.738

� In (iv), Ec ≡ Ec
(
xm−1
n,j , h

)
is the error arising from the simple lhs numerical integration rule739

Ec = ∆s

N†/2∑
l=−N†/2

ωlgn−l(∆t,∞)ϕ
(
s+(sl, bje

R(bj)∆t, b+), b+, tm

)
740

−
∫ s†max

s†min

ϕ
(
s+(s′, bje

R(bj)∆t, b+), b+, tm

)
g(sn − s′; ∆t,∞) ds′. (5.17)741

742

Due to the continuity and the boundedness of the integrand, we have Ec → 0 as h → 0.743

Since c = b+, ϕ is smooth, and Z is compact, for ϕ
(
s+(sn, bj , b

+), b+, t+m−1

)
given in (5.16), we have744

inf
b+∈Zh

ϕ
(
s+(sn, bj , b

+), b+, t+m−1

)
= inf

c∈Z
ϕ
(
s+(sn, bj , c), c, t

+
m−1

)
+O(h)745

= inf
c∈Z

M(c)ϕ(sn, bj , t
+
m−1) +O(h). (5.18)746
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Next, similar to (5.13b), the term v
(m−1)+
n,j in (5.9) corresponding to n = −N/2 + 1, . . . , N/2− 1 is written747

as follows v
(m−1)+
n,j = ∆s

N†/2∑
l=−N†/2

ωl gn−l(·,∆t;Kϵ)
(
ϕh

(
sl, bje

R(bj)∆t, tm

)
+ χ

)
= . . .748

. . .
(5.16)
=

∫ s†max

s†min

ϕ(s′, bje
R(bj)∆t, tm) g(sn − s′; ∆t,∞) ds′ + Ef + Ec +O

(
h2 + χ

)
.749

= ϕ
(
sn, bj , t

+
m−1

)
+ Ef + Ec +O

(
h2 + χ

)
. (5.19)750

Therefore, using (5.16), (5.19) and (5.18), and letting E
(
xm−1
n,j , ϵ, h

)
= Ef+Ec, for n = −N/2+1, . . . , N/2−1,751

the operator Dh

(
xm−1
n,j ,

{
ϕm
l,j + χ

}N†/2

l=−N†/2

)
in (5.15) can be written as752

Dh(·) = min

{
ϕ
(
sn, bj , t

+
m−1

)
, inf
c∈Z

M(c)ϕ(sn, bj , t
+
m−1)

}
+O(h+ χ) + E

(
xm−1
n,j , ϵ, h

)
753

= D
(
xm−1
n,j ,

{
ϕm
l,j

}N†/2

l=−N†/2

)
+O(h+ χ) + E

(
xm−1
n,j , ϵ, h

)
, (5.20)754

which is (5.15) for xm−1
n,j ∈ Ωin × {tm−1}, m = M − 1, . . . , 1.755

For the cases (5.13a) and (5.13c), Ch
(
xm−1
n,j , b+,

{
ϕm
l,j + χ

}N†/2

l=−N†/2

)
can be respectively written into756 {

ϕ
(
s+(sn, bje

R(bj)∆t, b+), b+, tm

)
and e(σ

2+2µ+λκ2)∆tϕ
(
s+(sn, bje

R(bj)∆t, b+), b+, tm

)}
+O(χ+ h2),757

where arguments similar to those used for (i)-(ii) of (5.16) are used. Then using (5.18) on (5.2), following758

(5.16) and (5.20), we obtain (5.15) for xm−1
n,j ∈ (Ωsmin ∪ Ωsmax)× {tm−1}, m = M − 1, . . . , 1.759

5.3 Main convergence theorem760

Given the ℓ-stability and consistency of the proposed numerical scheme established in Lemmas 5.1 and 5.2,761

as well as together with its monotonicity, we now mathematically demonstrate the pointwise convergence762

of the scheme in Ωin × {tm−1}, m = M, . . . , 1, as h → 0. Here, as noted earlier, we assume that ϵ → 0 as763

h → 0. We first need to recall/introduce relevant notation.764

We denote by Ωh the computational grid parameterized by h, noting that Ωh → Ω as h → 0. We765

also have the respective Ωh
in. In general, a generic gridpoint in Ωh

in × {tm}, m = M, . . . , 0, is denoted by766

xm
h = (xh, tm), whereas an arbitrary point in Ωin×{tm} is denoted by xm = (x, tm). Numerical solutions at767

(xh, tm−1), m = M, . . . , 1, is denoted by vm−1
h (xh; v

m
h ), where it is emphasized that vmh , which is the time-tm768

numerical solution at gridpoints is used for the computation of vm−1
h . The exact solution at an arbitrary769

point in xm−1 = (x, tm−1) ∈ Ωin×{tm−1}, m = M, . . . , 1, is denoted by vm−1(x; vm), where it is emphasized770

that vm, which is the time-tm exact solution in Ω is used. More specifically, vm−1
h (xh; v

m
h ) and vm−1(x; vm)771

are defined via operators Dh (·) and D(·) as follows772

vm−1
h

(
xh; v

m
h

)
:= Dh

(
xm−1
h ; {vml,j}

)
, vm−1

(
x; vm

)
:= D

(
xm−1; vm

)
, m = M, . . . , 1. (5.21)773

Here, our convention is that vh
(
xM−1; vMh

)
= vh

(
xM−1; vM

)
.774

The pointwise convergence of the proposed scheme is stated in the main theorem below.775

Theorem 5.1 (Pointwise convergence). Suppose that all the conditions for Lemma 5.1 and 5.2 are satisfied.776

Under the assumption that the infinite series truncation tolerance ϵ → 0 as h → 0, scheme (5.12) converges777

pointwise in Ωin×{tm−1}, m ∈ {M, . . . , 1}, to the unique bounded solution of the MV portfolio optimization778

in Definition 3.1, i.e. for any m ∈ {M, . . . , 1}, we have779

vm−1 (x; vm) = lim
h→0

xh→x

vm−1
h (xh; v

m
h ) , for xh ∈ Ωh

in, x ∈ Ωin. (5.22)780
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Proof of Theorem 5.1. By Proposition 3.1, there exists (bounded) ϕ ∈ C∞(Ω × [0, T ]) such that, for any781

h > 0,782

v ≤ ϕ ≤ v + h, in Ω× {tm}, m = M, . . . , 0. (5.23)783

We then define784

vm−1
h

(
xh;ϕ

m
)
:= Dh

(
xm−1
h ; {ϕm+

l,j }
)
, vm−1

(
x;ϕm

)
:= D

(
xm−1;ϕm

)
,785

noting our convention that ϕm
l,j = ϕ(xm

l,j). To show (5.22), we will prove by mathematical induction on m786

the following result: for any m ∈ {M, . . . , 1}, and for sequence {xh}h>0 such that xh → x as h → 0,787 ∣∣vm−1
h (xh; v

m)− vm−1 (x; vm)
∣∣ ≤ χm−1

h , χm−1
h is bounded ∀h > 0 and χm−1

h → 0 as h → 0. (5.24)788

In the following proof, we let K1, K2, and K3 be generic positive constants independent of h and ϵ, which789

may take different values from line to line.790

Base case m = M : by (5.23), we can write vM ≤ ϕM ≤ vM + h. Therefore, by monotonicity of the scheme791

and (5.1), we have792

vM−1
h

(
xh; v

M
)
≤ vM−1

h

(
xh;ϕ

M
)
≤ vM−1

h

(
xh; v

M + h
)
≤ vM−1

h

(
xh; v

M
)
+K1h. (5.25)793

Using (5.25) and the triangle inequality gives794 ∣∣∣vM−1
h

(
xh; v

M
)
− vM−1

(
x; vM

)∣∣∣ (5.25)≤
∣∣∣vM−1

h

(
xh;ϕ

M
)
− vM−1(x;ϕM )

∣∣∣+K1h795

(i)

≤
∣∣∣vM−1

h

(
xh;ϕ

M
)
− vM−1

(
xh;ϕ

M
)∣∣∣+ ∣∣vM−1

(
xh;ϕ

M
)
− vM−1

(
x;ϕM

)∣∣+K1h. (5.26)796

By local consistency established in Lemma 5.2, we have797

vM−1
h

(
xh;ϕ

M
)
− vM−1

(
xh;ϕ

M
)
= E(xM−1

h , ϵ, h) +O(h). (5.27)798

Due to smoothness of ϕ(·) and regularity of g(·), we have799 ∣∣vM−1
(
xh;ϕ

M
)
− vM−1

(
x;ϕM

)∣∣ ≤ K1∥xh − x∥. (5.28)800

Therefore, using (5.26), (5.27), (5.28), we can show that801 ∣∣∣vM−1
h

(
xh; v

M
)
− vM−1

(
x; vM

)∣∣∣ ≤ χM−1
h , (5.29)802

χM−1
h = K1h+O(h) + |E(xM−1

h , ϵ, h)|+K2∥xh − x∥ −→ 0, as h → 0,803

noting xh → x as h → 0, and χM−1
h is bounded for all h > 0.804

Induction hypothesis: assume that, for some m ∈ {M, . . . , 2}, we have805 ∣∣vm−1
h (xh; v

m
h )− vm−1 (x; vm)

∣∣ ≤ χm−1
h , where χm−1

h is bounded, χm−1
h → 0 as h → 0. (5.30)806

Induction step: By the triangle inequality, we have
∣∣vm−2

h

(
xh; v

m−1
h

)
− vm−2

(
x; vm−1

)∣∣ ≤ . . .807

. . . ≤
∣∣vm−2

h

(
xh; v

m−1
h

)
− vm−2

h

(
xh; v

m−1
)∣∣+ ∣∣vm−2

h

(
xh; v

m−1
)
− vm−2

(
x; vm−1

)∣∣ . (5.31)808

Now, we examine the first term (5.31). By the induction hypothesis (5.30), |vm−1
h − vm−1| ≤ χm−1

h , where809

χm−1
h → 0 as h → 0. Therefore, the first term in (5.31) can be bounded by810 ∣∣vm−2

h

(
xh; v

m−1
h

)
− vm−2

h

(
xh; v

m−1
)∣∣ (i)≤ χ′

h = O(h+ χm−1
h ) + |E(xm−2

h , ϵ, h)| → 0 as h → 0. (5.32)811

Here, (i) follows from the local consistency of the numerical scheme established in Lemma 5.2. Next, we812

focus on the second term. Using the same arguments for the base case m = M (see (5.29), with M being813

replaced by m), the second term in (5.31) can be bounded by χ′′
h, where χ′′

h → 0 as h → 0. Here, we814

note that vm−1
h is bounded for all h > 0 by Lemma 5.1 on stability. Combining this with (5.32), we have815 ∣∣vm−2

h

(
xh; v

m−1
h

)
− vm−2

(
x; vm−1

)∣∣ ≤ χm−2
h , where χm−2

h is bounded for all h > 0, and χm−2
h → 0 as h → 0.816

This concludes the proof.817
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Remark 5.2 (Convergence on an infinite domain). It is possible to develop a numerical scheme that converge818

to the solution of the theoretical formulation (3.5), in particular to the convolution integral (3.5d) which is819

posed on an infinite domain. This can be achieved by making a requirement on the discretization parameter820

h (in addition to the assumption in (4.3)) as follows:821

smax − smin = C ′
3/h, where C ′

3 > 0 is independent of h. (5.33)822

As such, as h → 0, we have |smin|, smax → ∞ (implying |s†min|, s
†
max, |s‡min|, s

‡
max → ∞ as well. It is823

straightforward to ensure (4.3) and (5.33) simultaneously as h is being refined. For example, with C ′
3 = 1,824

we can quadruple N † and sextuple N ‡ as h is being halved. Nonetheless, with |smin| and smax chosen825

sufficiently large as in our extensive experiments, numerical solutions in the interior (Ωin) virtually do not826

get affected by the boundary conditions.827

6 Continuously observed impulse control MV portfolio optimization828

Recall that ∆t = tm+1−tm is the rebalancing time interval. In this section, we intuitively demonstrate that as829

∆t → 0, of the proposed numerical scheme converge to the viscosity solution [3, 15] of an impulse formulation830

of the continuously rebalanced MV portfolio optimization in [17]. A rigorous analysis of convergence to the831

viscosity solution of this impulse formulation is the topic of a paper in progress.832

The impulse formulation proposed in [17] takes the form of an Hamilton-Jacobi-Bellman Quasi-Variational833

Inequality (HJB-QVI) as follows (boundary conditions omitted for brevity)834

F(v) :=


max

{
−vt − Lv − J v −R(b)bvb, v − inf

c∈Z
v(s+(s, b, c), c, t)

}
= 0 (s, b, t) ∈ N × [0, T ),

v (s, b, t) =
(
Wliq(s, b)−

γ

2

)2
, t = T,

(6.1a)

(6.1b)

835

where L(·) and J (·) respectively are the differential and jump operators defined as follows836

Lv :=
σ2

2
vss +

(
µ− λκ− σ2

2

)
vs − λv, J v =

∫ ∞

−∞
v(s+ y, b, t)p(y) dy.837

A ℓ-stable and consistent finite difference numerical scheme for the HJB-QVI (6.1) is presented in [17]838

in which monotonicity is ensured via a positive coefficient method. Therefore, convergence of this finite839

different scheme to the viscosity solution of the HJB-QVI is guaranteed [3, 15].840

To intuitively see that the proposed scheme (5.12) is consistent in the viscosity sense with the im-841

pulse formulation (6.1) in Ωin × {tm−1}, m = M, . . . , 1, we write (5.12) for xm−1
n,j ∈ Ωin × {tm−1} via842

Gh

(
xm−1
n,j ,

{
vml,j

}N†/2

l=−N†/2

)
, where843

0 = Gh (·) := max


vm−1
n,j − v

(m−1)+
n,j

∆t︸ ︷︷ ︸
A1

, vm−1
n,j − min

b+∈Z
vh
(
s+(sn, bj , b

+), b+, t+m−1

)
︸ ︷︷ ︸

A2

 , (6.2)844

where v
(m−1)+
n,j and vh

(
s+(sn, bj , b

+), b+, t+m−1

)
are respectively given by845

v
(m−1)+
n,j = ∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t;Kϵ) vh

(
sl, bje

R(bj)∆t, tm

)
,846

vh
(
s+(sn, bj , b

+), b+, t+m−1

)
= ∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t;Kϵ) vh

(
s+(sl, bje

R(bj)∆t, b+), b+, tm

)
.847

848
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For a smooth test function ϕ, and a constant χ, term A1 in (6.2) of Gh

(
xm−1
n,j ,

{
ϕm
l,j + χ

}N†/2

l=−N†/2

)
are849

1

∆t

ϕm−1
n,j −∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t;Kϵ) ϕh

(
sl, bje

R(bj)∆t, tm

)
︸ ︷︷ ︸

B1

+
χ

∆t

1−∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t;Kϵ)


︸ ︷︷ ︸

B2

.

(6.3)

850

851

Now, we first examine the term B1. Noting that852

ϕh

(
sl, bje

R(bj)∆t, tm

)
= ϕm

l,j +R(bj)bj (ϕb)
m
l,j ∆t+O(h2),853

s+(sl, bje
R(bj)∆t, b+) = s+(sl, bj , b

+) +O(h),854

we have term-B1 of (6.3) =
1

∆t

ϕm−1
n,j −∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t;Kϵ) ϕh

(
sl, bje

R(bj)∆t, tm

) = . . .855

. . . =
1

∆t

ϕm−1
n,j −∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t;Kϵ)ϕ
m
l,j

−∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t;Kϵ)R(bj)bj(ϕb)
m
l,j +O(h).

(6.4)

856

Using similar techniques as in [42][Lemma 5.4], noting the it is possible to show that857

∆s

N†/2∑
l=−N†/2

ωl gn−l(∆t;Kϵ)ϕ
m
l,j = ϕm

l,j +∆t [Lϕ+ J ϕ]mn,j +O(h2) +O (ϵ). (6.5)858

By choosing ϵ = O(h2), from (6.5), noting ϕm−1
n,j − ϕm

l,j = −(ϕt)
m
l,j∆t+O

(
(∆t)2

)
, the first term of (6.4) can859

be written as860

[−ϕt − Lϕ− J ϕ]mn,j +O (h) . (6.6)861

The second term of (6.4) can be simplified as [42][Lemma 5.4]862

∆s

N†/2−1∑
l=−N†/2

ωl gn−l(∆t;Kϵ)R(bj)bj(ϕb)
m
l,j = R(bj)bj(ϕb)

m
n,j +O (h) . (6.7)863

Putting (6.6)-(6.7) into (6.4), noting that term-B2 in (6.3) has the form O(χ), we have864

term A1 in (6.2) = [−ϕt − Lϕ− J ϕ−R(b)bϕb]
m
n,j +O (h) +O (χ). (6.8)865

Term A2 in (6.2) can be handled using similar steps as in (5.16)-(5.18). Thus, (6.2) becomes866

0 = max

{[
− ϕt − Lϕ− J ϕ−R(b)bϕb

]m−1

n,j
,
[
ϕ− inf

c∈Z
M(c)ϕ

]m−1

n,j

}
+ E

(
x
(m−1)+
n,j , h

)
+O (χ+ h) .867

This show local consistency of the proposed scheme to (6.1a), that is,868

Gh

(
x
(m−1)
n,j ,

{
ϕm
l,j + χ

}N†/2−1

l=−N†/2

)
= F

[
ϕm
l,j

]
++E

(
x
(m−1)+
n,j , h

)
+O (χ+ h) . (6.9)869

Together with ℓ-stability and monotonicity of the proposed scheme, it is possible to utilize a Barles-870

Souganidis analysis [3] to show convergence to the viscosity solution of the impulse formulation (6.1) as871

h → 0. We leave this for our future work.872
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7 Numerical examples873

7.1 Empirical data and calibration874

In order to parameterize the underlying asset dynamics, the same calibration data and techniques are used as875

detailed in [18, 25]. We briefly summarize the empirical data sources. The risky asset data is based on daily876

total return data (including dividends and other distributions) for the period 1926-2014 from the CRSP’s877

VWD index6, which is a capitalization-weighted index of all domestic stocks on major US exchanges. The878

risk-free rate is based on 3-month US T-bill rates7 over the period 1934-2014, and has been augmented with879

the NBER’s short-term government bond yield data8 for 1926-1933 to incorporate the impact of the 1929880

stock market crash. Prior to calculations, all time series were inflation-adjusted using data from the US881

Bureau of Labor Statistics9.882

In terms of calibration techniques, the calibration of the jump models is based on the thresholding883

technique of [13, 14] using the approach of [18, 25] which, in contrast to maximum likelihood estimation884

of jump model parameters, avoids problems such as ill-posedness and multiple local maxima10. In the case885

of GBM, standard maximum likelihood techniques are used. The calibrated parameters are provided in886

Table 7.2 (reproduced from [63, 64][Table 5.1]).887

Ref. level s-grid (N) b-grid (J)

0 128 25

1 256 50

2 512 100

3 1024 200

4 2048 400

Table 7.1: Grid refinement levels

for convergence analysis; N† = 2N

and N‡ = 3N .

Parameters Merton Kou

µ (drift) 0.0817 0.0874

σ (diffusion volatility) 0.1453 0.1452

λ (jump intensity) 0.3483 0.3483

µ̃(log jump multiplier mean) -0.0700 n/a

σ̃(log jump multiplier stdev) 0.1924 n/a

q1 (probability of an up-jump) n/a 0.2903

η1 (exponential parameter up-jump) n/a 4.7941

η2 (exponential parameter down-jump) n/a 5.4349

rb (borrowing interest rate) 0.00623 0.00623

rι (lending interest rate) 0.00623 0.00623

Table 7.2: Calibrated risky and risk-free asset process parame-

ters. Reproduced from [63, 64][Table 5.1].

888

For all experiments, unless otherwise noted, we use bmax = 1000, and with the initial wealth being w0 = 10.889

We set smin = −10 + ln(w0), smax = 5 + ln(w0), s−∞ = s†min = −17.5 + ln(w0), and s†max = 12.5 + ln(w0),890

so that s‡min = −22.5 and s‡max = 22.5.891

6Calculations were based on data from the Historical Indexes 2015©, Center for Research in Security Prices (CRSP), The

University of Chicago Booth School of Business. Wharton Research Data Services was used in preparing this article. This

service and the data available thereon constitute valuable intellectual property and trade secrets of WRDS and/or its third

party suppliers.
7Data has been obtained from See http://research.stlouisfed.org/fred2/series/TB3MS.
8Obtained from the National Bureau of Economic Research (NBER) website,

http://www.nber.org/databases/macrohistory/contents/chapter13.html.
9The annual average CPI-U index, which is based on inflation data for urban consumers, were used - see

http://www.bls.gov.cpi .
10If ∆X̂i denotes the ith inflation-adjusted, detrended log return in the historical risky asset index time series, a jump is

identified in period i if
∣∣∣∆X̂i

∣∣∣ > ασ̂
√
∆t, where σ̂ is an estimate of the diffusive volatility, ∆t is the time period over which the

log return has been calculated, and α is a threshold parameter used to identify a jump. For both the Merton and Kou models,

the parameters in Table 7.2 is based on a value of α = 3 , which means that a jump is only identified in the historical time

series if the absolute value of the inflation-adjusted, detrended log return in that period exceeds 3 standard deviations of the

“geometric Brownian motion change”, definitely a highly unlikely event.
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For the user-defined tolerance ϵ used for the truncation of the infinite series representation of g(·) in892

(4.15), we use ϵ = 10−20, which can be satisfied in discretely rebalancing examples when Kϵ = 15 (i.e. the893

number terms in the truncated series of g(·) is 15).894

7.2 Validation examples895

Since for PCMV portfolio optimization under a solvency condition (no bankruptcy allowed) and a maximum896

leverage condition does not admit known analytical solution, we rely on existing numerical methods, namely897

(i) finite difference [17, 19] and (ii) Monte Carlo (MC) simulation to verify results. For brevity, we will refer898

to the proposed monotone integration method as the “MI” method, and to the finite difference method of899

[17, 19] as the “FD” method.900

As noted earlier, to the best of our knowledge, the FD methods proposed in [17, 19] are the only901

existing FD methods for MV optimization under jump-diffusion dynamics with investment constraints. In902

discrete rebalancing setting, FD methods typically involve solving, between two consecutive rebalancing903

times, a Partial Integro Differential Equation (PIDE), where the amount invested in the risky asset z = es904

is the independent variable. These FD methods achieve monotonicity in time-advancement through a905

positive coefficient finite difference discretization method (for the partial derivatives), which is combined906

with implicit timestepping. Optimal strategies are obtained by solving an optimization problem across907

rebalancing times. Despite their effectiveness, finite difference methods present significant computational908

challenges in multi-period settings with very long maturities, as encountered in DC plans. In particular,909

they necessitate time-stepping between rebalancing dates (i.e., control monitoring dates), which often occur910

annually. This time-stepping requirement introduces errors and substantially increase the computational911

cost of FD methods (as noted earlier in Remark 4.3. In the numerical experiments, the FD results are912

obtained on the same computational domain as those obtained by the MI method with the number of913

partition points in the z- and b-grids being 512 and 200, respectively.914

Validation against MC simulation is proceeded in two steps. In Step 1, we solve the PCMV problem915

using the MI method on a relatively fine computational grid: the number of partition points in the s- and916

b-grids are N = 1024 and J = 200, respectively. During this step, the optimal controls are stored for each917

discrete state value and rebalancing time tm ∈ TM . In Step 2, we carry out Monte Carlo simulations with918

106 paths from t = 0 to t = T following these stored numerical optimal strategies for asset allocation across919

each tm ∈ TM , using linear interpolation, if necessary, to determine the controls for a given state value. For920

Step 2, an Euler’s timestepping method is used for timestepping between consecutive rebalancing times and921

we use a total of 180 timesteps.922

7.2.1 Discrete rebalancing923

For discretely rebalancing experiments, we use T = {20, 30} (years), with ∆t = 1 year (yearly rebalancing).924

The the details of the mesh size/timestep refinement level used are given in Table 7.1.925

Table 7.3 presents the numerically computed Ex0,t0
C0 [WT ] and Stdx,t0C0 [WT ] under the Kou model obtained926

for different refinement levels with γ = 100 and T = 20 and T = 30 (years). To provide an estimate of the927

convergence rate of the proposed MI method, we compute the “Change” as the difference in values from928

the coarser grid and the “Ratio” as the ratio of changes between successive grids. For validation purposes,929

Ex0,t0
C0 [WT ] and Stdx,t0C0 [WT ] obtained by FD method, as well as those obtained by MC methods, together930

with 95% confidence intervals (CIs), are also provided. As evident from Table 7.3, means and standard931

deviations obtained by the MI method exhibit excellent agreement with those obtained by the FD method932

and MC simulation.933

Results obtained by MC simulation agree with those obtained by our numerical method. Results for the934

Merton jump case when T = 20 and T = 30 (years) are presented in Table 7.4 and similar observations can935
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be made.

Table 7.3: PCMV under the Kou model with parameters in the Table 7.2; γ = 100; solvency constraint

applied; maximum leverage constraint applied with qmax = 1.5; T = {20, 30} years.

T Method Ref. level Ex0,t0
C0 [WT ] Change Ratio Stdx,t0C0 [WT ] Change Ratio

0 35.7768 16.2451

1 35.9828 0.2060 15.7801 0.4650

MI 2 36.1051 0.1223 1.7 15.6192 0.1609 2.9

3 36.1893 0.0842 1.5 15.5995 0.0197 8.2

20 4 36.2182 0.0289 2.9 15.5942 0.0053 3.7

(years) MC 36.1994 15.5965

95% CI [36.1688, 36.2299]

FD 36.2218 15.5938

0 41.9856 14.1207

1 42.1626 0.1770 13.2359 0.8848

MI 2 42.2776 0.1150 1.5 12.9544 0.2815 3.1

3 42.3462 0.0686 1.7 12.8772 0.0772 3.6

30 4 42.3834 0.0372 1.8 12.8569 0.0203 3.8

(years) MC 42.3827 12.8512

95% CI [42.3575, 42.4079]

FD 42.3850 12.8520

936

In Figure 7.1 presents we present efficient frontiers for the Merton model (Figure 7.1 (a)) and for the937

Kou model (Figure 7.1 (b)) obtained by the MI’s methods with refinement level (N = 1024 and J = 200).938

We observe that efficient frontiers produced by the MI’s method agree well with those obtained by the FD939

method.

(a) Merton, T = 20, ∆t = 1 (b) Kou, T = 20, ∆t = 1

Figure 7.1: Efficient frontier; parameters in the Table 7.2; T = 20; ∆t = 1; solvency constraint applied;

maximum leverage constraint applied with qmax = 1.5; refinement level 3.

940
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Table 7.4: PCMV under the Merton model with parameters in the Table 7.2; γ = 250; liquidate risky asset

when insolvency; qmax = 3.0; T = {20, 30} years.

Method Ref. level Ex0,t0
C0 [WT ] Change Ratio Stdx,t0C0 [WT ] Change Ratio

0 72.0225 46.6043

1 73.2063 1.1838 46.4594 0.1449

MI 2 73.7386 0.5323 2.2 46.5059 0.0465 3.1

3 73.9277 0.1891 2.8 46.5172 0.0113 4.1

20 4 73.9916 0.0639 3.0 46.5247 0.0075 1.5

(years) MC 73.9041 46.5249

95% CI [73.8129, 73.9953]

FD 73.9518 46.5288

0 91.7970 42.3493

1 92.9707 1.1737 41.9321 0.4172

MI 2 93.4524 0.4817 2.4 41.7774 0.1547 2.7

3 93.6167 0.1643 2.9 41.7263 0.0511 3.0

30 4 93.6844 0.0677 2.4 41.7197 0.0066 7.7

(years) MC 93.6696 41.7753

95% CI [93.5877, 93.7515]

FD 93.6812 41.7168

7.2.2 Continuous rebalancing941

While continuous rebalancing is not the primary focus of this paper, we believe it is valuable to include942

numerical results for the continuous rebalancing setting in order to validate the method. For experiments943

in the continuous rebalancing setting, we use T = 10 (years), with ∆t = T/M year. The details of the mesh944

size/timestep refinement level used are given in Table 7.5. The model parameters, according to [17], are945

given in Table 7.6.946

In these experiments, we also consider the scenario where the dynamics of the risky asset follow a947

Geometric Brownian Motion (GBM) model. In cases where pure diffusion is desired, such as in a GBM948

model, the occurrence of jumps can be eliminated by setting λ = 0. Table 7.7 displays the numerical results949

for Ex0,t0
C0 [WT ] (expected value) and Stdx,t0C0 [WT ] (standard deviation) obtained at various refinement levels.950

These results correspond to the case where γ = 80 and T = 10 years, assuming a GBM model. For951

validation purposes, we also include the expected values and standard deviations obtained using the FD952

method proposed by [17]. The results are presented alongside the values obtained through the proposed953

MI method in Table 7.7. Notably, it is evident from the table that the FD and MI results show excellent954

agreement.955
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Ref. level Timesteps M s-grid N b-grid J

0 10 128 25

1 20 256 50

2 40 512 100

3 80 1024 200

4 160 2048 400

Table 7.5: Grid and timestep refinement levels

for convergence analysis; N† = 2N and N‡ = 3N .

Parameters GBM Merton

µ (drift) 0.15 0.0795487

σ (diffusion volatility) 0.15 0.1765

λ (jump intensity) n/a 0.0585046

µ̃(log jump multiplier mean) n/a -0.788325

σ̃(log jump multiplier stdev) n/a 0.450500

rb (borrowing interest rate) 0.04 0.0445

rι (lending interest rate) 0.04 0.0445

Table 7.6: Calibrated risky and risk-free asset

process parameters. Reproduced from Table 7.2 in

[20].
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Table 7.7: PCMV under the GBM model (no jumps) with parameters in Table 7.6; γ = 80; liquidate risky

asset when insolvency; qmax = ∞; T = 10 years.

Method Ref. level Ex0,t0
C0 [WT ] Change Ratio Stdx,t0C0 [WT ] Change Ratio

0 37.4438 6.2582

1 38.3201 0.8763 5.4393 0.8189

MI 2 38.4084 0.0883 9.9 5.1285 0.3108 2.6

3 38.4689 0.0605 1.5 5.0394 0.0891 3.5

4 38.4820 0.0131 4.6 4.9999 0.0395 2.3

FD 38.4789 5.0888

Table 7.8: PCMV under the Merton model with parameters in the Table 7.6; γ = 200; liquidate risky asset

when insolvency; qmax = 2.0; T = 10 years.

Method Ref. level Ex0,t0
C0 [WT ] Change Ratio Stdx,t0C0 [WT ] Change Ratio

0 24.1538 21.5101

1 24.4528 0.2990 22.0738 0.5637

MI 2 24.5468 0.0940 3.2 22.1659 0.0921 6.1

3 24.5855 0.0387 2.4 22.1907 0.0248 3.7

4 24.6042 0.0187 2.1 22.2005 0.0098 2.5

FD 24.6032 22.2024

8 Conclusion957

In this study, we present a highly efficient, straightforward-to-implement, and monotone numerical inte-958

gration method for MV portfolio optimization. The model considered in this paper addresses a practical959

context that includes a variety of investment constraints, as well as jump-diffusion dynamics that govern960

the price processes of risky assets. Our method employs an infinite series representation of the transition961

density, wherein all series terms are strictly positive and explicitly computable. This approach enables us to962

approximate the convolution integral for time-advancement over each rebalancing interval via a monotone963

integration scheme. The scheme uses a composite quadrature rule, simplifying the computation significantly.964

Furthermore, we introduce an efficient implementation of the proposed monotone integration scheme us-965
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ing FFTs, exploiting the structure of Toeplitz matrices. The pointwise convergence of this scheme, as the966

discretization parameter approaches zero, is rigorously established. Numerical experiments affirm the accu-967

racy of our approach, aligning with benchmark results obtained through the FD method and Monte Carlo968

simulation, as demonstrated in [17]. Notably, our proposed method offers superior efficiency compared to969

existing FD methods, owing to its computational complexity being an order of magnitude lower.970

Further work includes investigation of self-exciting jumps for MV optimization, possibly together with a971

convergence analysis as ∆t → 0 to a continuously observed impulse control formulation for MV optimization972

taking the form of a HJB equation.973
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Appendices1139

A Proof of Lemma 3.11140

Recalling the inverse Fourier transform F−1[·] in (3.7) and the closed-form expression for G(η; ∆t) in (3.8), we have1141

g(s; ∆t) =
1

2π

∫ ∞

−∞
e−αη2+(β+s)(iη)+θ eλΓ(η)∆t dη, (A.1)1142

where α, β and θ are given in (3.9), and Γ (η) =
∫∞
−∞ p(y) eiηy dy. Following the approach developed in [16] , we1143

expand the term eλΓ(η)∆t in (A.1) in a Taylor series, noting that1144

(Γ(η))
k

=

(∫ ∞

−∞
p(y) exp(iηy)dy

)k

=

∫ ∞

−∞
. . .

∫ ∞

−∞

k∏
ℓ=1

p(yℓ) exp (iηYk) dy1dy2 . . . dyk (A.2)1145

where p(y) is the probability density of ξ, and Yk =
∑k

ℓ=1 yℓ, with Y0 = 0, and for k = 0, (Γ(η))
0
= 1. Then, we have1146

g(s; ∆t) =
1

2π

∞∑
k=0

(λ∆t)
k

k!

∫ ∞

−∞
e−αη2+(β+s)(iη)+θ (Γ (η))

k
dη, (A.3)1147

(i)
=

1√
4πα

∞∑
k=0

(λ∆t)
k

k!

∫ ∞

−∞
. . .

∫ ∞

−∞
exp

(
θ − (β + s+ Yk)

2

4α

)(
k∏

ℓ=1

p(yℓ)

)
dy1 . . . dyk, (A.4)1148

where the first term of the series corresponds to k = 0 and is equal to 1√
4πα

exp
(
θ − (β+s)2

4α

)
. Here, in (i), we use the1149

Fubini’s theorem and the well known result
∫∞
−∞ e−aϕ2−bϕdϕ =

√
π
a e

b2/4a.1150

B Ωsmax
: boundary expressions1151

Recalling the sub-domain definitions in (3.14), we observe that Ωsmax is the boundary where s → ∞. For fixed b,1152

noting the terminal condition (3.16), we assume that v(s → ∞, b, t) ≈ A1(t)e
2s for some unknown function A1(t).1153

Using the infinite series representation of g(s−s′; ∆t) given Lemma 3.1 (proof in Appendix A) and the integral (3.5d),1154

we have v(s, b, t+m−1) =
∫∞
−∞ A1(t

−
m)e2s

′
g(s− s′; ∆t) ds′ . . .1155

. . . =

∫ ∞

−∞

A1(t
−
m)√

4πα

∞∑
k=1

(λ∆t)
k

k!

∫ ∞

−∞
. . .

∫ ∞

−∞
exp

(
θ − (β + s− s′ + Yk)

2

4α
+ 2s′

)
k∏

ℓ=1

p(yℓ)dy1 . . . dyk ds′1156

+

∫ ∞

−∞

A1(t
−
m)√

4πα
exp

(
θ − (β + s− s′)

2

4α
+ 2s′

)
ds′,1157

= A1(t
−
m) exp (θ + 4α+ 2 (β + s))

∞∑
k=1

(λ∆t)
k

k!

∫ ∞

−∞
. . .

∫ ∞

−∞
exp (2Yk)

k∏
ℓ=1

p(yℓ)dy1 . . . dyk1158

+A1(t
−
m) exp (θ + 4α+ 2 (β + s)) ,1159

= A1(t
−
m) exp

{(
2µ+ σ2 − 2λκ− λ

)
∆t+ 2s

} ∞∑
k=0

(λ∆t)
k

k!

(∫ ∞

−∞
e2yp(y)dy

)k

,1160

= A1(t
−
m)e2s exp

{(
2µ+ σ2 − 2λκ− λ

)
∆t
}
exp {λ (κ2 + 2κ+ 1)∆t} ,1161

= v(s, b, t−m) e(σ
2+2µ+λκ2)∆t,1162

where we use α = σ2

2 ∆t, β =
(
µ− λκ− σ2

2

)
∆t and θ = −λ∆t.1163

Similarly, for each fixed B(t) = b, we assume the auxiliary linear value function u(s → ∞, b, t) ≈ A2(t)e
s, for some1164
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unknown function A2(t). we have u(s, b, t+m−1) =
∫∞
−∞ A2(t

−
m)es

′
g(s− s′; ∆t) ds′ . . .1165

. . . =

∫ ∞

−∞

A2(t
−
m)√

4πα

∞∑
k=1

(λ∆t)
k

k!

∫ ∞
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. . .
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exp

(
θ − (β + s− s′ + Yk)

2

4α
+ s′

)
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ℓ=1

p(yℓ)dy1 . . . dyk ds′1166

+
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−∞

A2(t
−
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4πα
exp
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θ − (β + s− s′)

2
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+ s′
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ds′,1167
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−
m) exp (θ + α+ β + s)

∞∑
k=1

(λ∆t)
k

k!
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−∞
. . .
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exp (Yk)

k∏
ℓ=1
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+A2(t
−
m) exp (θ + α+ β + s) ,1169

= A2(t
−
m) exp {(µ− λκ− λ)∆t+ s}

∞∑
k=0

(λ∆t)
k

k!

(∫ ∞

−∞
eyp(y)dy

)k

,1170

= A2(t
−
m)es exp {(µ− λκ− λ)∆t} exp {λκ∆t+ λ∆t} ,1171

= u(s, b, t−m) eµ∆t.1172

C Proof of g (s; ∆t) for ξ ∼ Asym-Double-Exponential(q1, η1, η2)1173

In this case, according to Lemma 3.1, we have g(s; ∆t) = . . .1174

. . . =
exp

(
θ − (β+s)2

4α

)
√
4πα

+
eθ√
4πα

∞∑
k=1

(λ∆t)
k
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−∞
. . .
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exp
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2

4α
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=
exp
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4α

)
√
4πα

+
eθ√
4πα

∞∑
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(λ∆t)
k

k!
Ek. (C.1)1176

1177

Here, the term Ek in (C.1) is clearly non-negative and can be computed as1178

Ek =

∫ ∞

−∞
exp

(
− (β + s+ y)

2

4α

)
pξ̂k(y)dy, (C.2)1179

where pξ̂k(y) is the PDF of the random variable ξ̂k =
∑k

ℓ=1 ξℓ, for fixed k. To find pξ̂k(y), the key step is the1180

decomposition of ξ̂k =
∑k

ℓ=1 ξℓ into sums of i.i.d exponential random variables [33]. More specifically, we have1181

ξ̂k =
k∑

ℓ=1

ξℓ
dist.
=

{
ξ̂+ℓ =

∑ℓ
i=1 ε

+
i with probability Qk,ℓ

1 , ℓ = 1, . . . , k

ξ̂−ℓ = −
∑ℓ

i=1 ε
−
i with probability Qk,ℓ

2 , ℓ = 1, . . . , k
. (C.3)1182

Here, Qk,ℓ
1 and Qk,ℓ

2 are given in (3.12), and ε+i and ε−i are i.i.d. exponential variables with rates η1 and η2, respectively.1183

The PDF for each of the cases in (C.3) respectively are1184

pξ̂+ℓ
(y) =

e−η1y yℓ−1 ηℓ1
(ℓ− 1)!

for ξ̂+ℓ , and pξ̂−ℓ
(y) =

eη2y (−y)ℓ−1 ηℓ2
(ℓ− 1)!

for ξ̂−ℓ . (C.4)1185

Taking into account (C.3)-(C.4), (C.2) becomes1186

Ek =
k∑

ℓ=1

Qk,ℓ
1

∫ ∞

0
exp

(
− (β + s+ y)

2

4α

)
pξ̂+ℓ

(y) dy︸ ︷︷ ︸
E1,ℓ

+
k∑

ℓ=1

Qk,ℓ
2

∫ 0

−∞
exp

(
− (β + s+ y)

2

4α

)
pξ̂−ℓ

(y) dy︸ ︷︷ ︸
E2,ℓ

. (C.5)1187

1188

Considering the term E1,ℓ,1189

E1,ℓ =

∫ ∞

0
exp

(
− (β + s+ y)

2

4α

)
e−η1y yℓ−1 η1

ℓ

(ℓ− 1)!
dy = η1

ℓ

∫ ∞

0

1

(ℓ− 1)!
exp

(
− (β + s+ y)

2

4α
− η1y

)
yℓ−1 dy .1190

Making the change of variable y1 = β+s+y√
2α

,1191

E1,ℓ = η1
ℓ

∫ ∞

β+s√
2α

1

(ℓ− 1)!
e−

1
2y

2
1−η1

√
2αy1 eη1 (β+s)

(√
2α y1 − β − s

)ℓ−1 √
2α dy1

=
(
η1

√
2α
)ℓ

eη1 (β+s)

∫ ∞

β+s√
2α

1

(ℓ− 1)!
e−

1
2y

2
1−η1

√
2αy1

(
y1 −

β + s√
2α

)ℓ−1

dy1 .

1192
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Making the change of variable y2 = y1 + η1
√
2α,1193

E1,ℓ =
(
η1

√
2α
)ℓ

eη1 (β+s)+η2
1α

∫ ∞

β+s√
2α

+η1

√
2α

1

(ℓ− 1)!

(
y2 −

(
η1
√
2α+

β + s√
2α

))ℓ−1

e−
1
2y

2
2 dy2

=
(
η1

√
2α
)ℓ

eη1 (β+s)+η2
1α Hhℓ−1

(
η1
√
2α+

β + s√
2α

)
,

(C.6)1194

where Hhℓ is defined in (3.13). Similarly for the term E2,ℓ,1195

E2,ℓ =

∫ 0

−∞
exp

(
− (β + s+ y)

2

4α

)
eη2y (−y)

ℓ−1
ηℓ2

(ℓ− 1)!
dy

=
(
η2

√
2α
)ℓ

e−η2 (β+s)

∫ β+s√
2α

−∞

1

(ℓ− 1)!
e−

1
2y

2
1+η2

√
2αy1

(
−y1 +

β + s√
2α

)ℓ−1

dy1

=
(
η2

√
2α
)ℓ

e−η2 (β+s)+η2
2α

∫ ∞

− β+s√
2α

+η2

√
2α

1

(ℓ− 1)!

(
y2 −

(
η2
√
2α− β + s√

2α

))ℓ−1

e−
1
2y

2
2 dy2

=
(
η2

√
2α
)ℓ

e−η2 (β+s)+η2
2α Hhℓ−1

(
η2
√
2α− β + s√

2α

)
,

(C.7)1196

where Hhℓ is defined in (3.13). Using (C.5), (C.6) and (C.7) together with further simplifications gives us (3.11).1197
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