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Abstract

In recent years the discovery of new types of of materials with novel electronic

properties has given rise to a new field of theoretical condensed matter physics.

These systems are characterized by strong interactions, collective excitations and

low effective dimension. These properties mean that traditional theoretical tech-

niques, such as perturbation expansions and mean-field approximations, often fail.

On the other hand, the remarkable range of anomalous behavior in these systems

produces such effects as organic conductors, high-temperature superconductivity,

heavy-fermion metals, fractional charges etc. , making these among the most inter-

esting and potentially useful materials in nature. Many quite simple models have

been put forward as a basis for understanding these systems. Unfortunately, even

though the models are simple, the solutions are not. In many cases, the only way to

calculate the properties of these models is by numerical techniques. The most suc-

cessful numerical techniques have been Monte-Carlo simulation and, more recently,

the Density-Matrix Renormalization-Group (DMRG). The latter technique is the

main focus of this thesis.

Historically it has been very difficult to deal with higher symmetries in either

analytical or numerical calculations. For example, while the Clebsch-Gordan coef-

ficients are extremely useful for few-body total spin states, they do not lend them-

selves easily to constructing thermodynamic eigenstates of total spin. Numerically,

the situation is similar. Monte-Carlo and exact diagonalization calculations do not

lend themselves easily to the utilization of total spin. Hence it is a refreshing surprise

that these symmetries are relatively easy to incorporate into DMRG. This thesis

describes the extensions to the DMRG algorithm required to utilize SU(2) sym-

metries of spin and pseudospin and also non-Abelian geometric lattice symmetries.

This is the main technological result of this thesis, which has enabled significant

improvements in the accuracy and scope of the numerical calculations.

In this thesis, the properties of several models of strongly correlated behavior are

examined using the symmeterized DMRG approach. The one dimensional Kondo
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lattice model has been extensively studied for two decades, but this thesis shows

that we are still far from understanding the complexities of the model. In particular

it is shown here that even the ground state phase diagram is more complex than

previously thought. The numerical calculations show the existence of an additional,

previously unrecognized, ferromagnetic regime. The work also emphasizes the im-

portance of spin polarons in understanding the model. Spin polarons are collective

states which arise when a cloud of electrons screen the spin of the localized mo-

ments. Due to excess localized spins the polarons are locally ferromagnetic; the

paramagnetic phase of the Kondo lattice arises when neighboring polarons align

non-parallel. For a smaller value of the Kondo coupling, the conduction electrons

have a larger kinetic energy which makes the polarons more mobile, forcing them

to align parallel. This is the origin of the additional ferromagnetic phase.

There has been much recent excitement over the discovery of the striped phase in

high Tc superconductors. This was heightened with the discovery, in a DMRG study

by Steven White, of a striped phase in the two dimensional t−J model. However it

is still far from clear what the relationship is between stripes and superconductivity;

more recent experimental work suggests that, instead of providing a mechanism for

superconductivity, stripes in fact inhibit superconductivity. This thesis extends the

accuracy of the DMRG calculations on the two dimensional t − J model and goes

some way to elucidating the properties of the striped phase. The use of symmetries

of the t − J model in the calculation leads naturally to a geometric view of stripe

formation and the recent ideas that stripe formation is due to a hidden geometric

ordering arising from sublattice parity. From this point of view, the same ordering

that leads to spin-charge separation in one dimensional systems gives rise to stripe

formation in two dimensions.
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• I. P. McCulloch and M. Gulácsi: Total Spin in the density matrix renormal-

ization group algorithm, Phil. Mag. Lett. 81 447, (2001).
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dilute Kondo lattice model, to appear in Phys. Rev. B.
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Introduction

The theoretical description of strongly correlated electrons poses a formidable

problem. Exact solutions are usually impossible, except in certain one-dimensional

models. Fortunately, exact solutions are rarely required when comparing theory

with experiment. Most measurements only probe correlations on energy scales that

are small compared with the Fermi energy EF , so that only the low-energy sector

of a given model is of importance.

Correlated fermions in three dimensions are a well-understood problem. The

theoretical description, given by Fermi-liquid theory, becomes asymptotically exact

at low energies and small wave vectors. The key observation behind Fermi liquid

theory is that the macroscopic properties involve only excitations of the system

on energy scales (temperatures) small compared with the Fermi energy. The state

of the system can be specified in terms of the Fermi surface of the ground state

and its low-lying elementary excitations, which are pictured as a rarefied gas of

‘quasi-particles’. These quasi-particles evolve continuously out of the states of a

free Fermi gas when the interactions are adiabatically switched on. Although the

dynamical properties are renormalized by the interaction, the quasi-particles remain

in one-to-one correspondence with the bare particles.

In interacting one-dimensional systems, the low-energy excitations are collective

density fluctuations and involve large numbers of electrons acting coherently. This

destroys the one-to-one correspondence between non-interacting and interacting

quasi-particles. The non-interacting quasi-particles obviously remain particle-like

in 1D, but the interacting quasi-particles have a bosonic character. The breakdown

of Fermi-liquid theory is also seen in the typical divergence of second-order per-

turbation theory in one dimension. This signals the lack of adiabatic continuity

between the non-interacting and the interacting quasi-particles. On a more formal

level, the Green function of an electron is

G(k, ω) =
1

ε0(k) − ω − Σ(k, ω)
, (0.1)

1



2 Introduction

where ε0(k) is the bare dispersion and Σ(k, ω) is the self-energy containing all

the many-body effects. The poles of the Green function give the single-particle

excitation energies and the imaginary part of the self-energy provides the damping

of these excitations. Σ(k, ω) is continuous in k and for k fixed, a smooth function

of ω. This guarantees solutions of the equation

ε0(k) − ω − Σ(k, ω) = 0 , (0.2)

which determines the single-particle excitation energies. In Fermi-liquid theory,

there is a single solution to this equation; the quasi-particle pole with finite residue.

In one-dimension, expanding the self-energy to second order in perturbation the-

ory yields two poles of the Green function. This violates the single-pole assumption

built into Fermi-liquid theory and heralds the phenomena of spin-charge separa-

tion, ubiquitous in one-dimensional systems. The residue of the poles of the Green

function vanish, therefore the momentum distribution is continuous and the system

does not support the low-energy quasi-particle excitations characteristic of Fermi

liquids, instead giving rise to collective bosonic charge and spin fluctuations. The

theory of the one-dimensional electron sea was pioneered by Haldane [1] and has

been developed since by many people. It is known as Luttinger-liquid theory, in an

analogy with its higher dimensional cousin.

The validity of the Fermi-liquid description for interacting electrons is well ac-

cepted for three-dimensional systems, while the Luttinger-liquid description applies

to one-dimensional systems. To date, the understanding of two-dimensional systems

remains unsatisfactory. Prior to the discovery of the high-temperature superconduc-

tors, there were only a few studies of interacting two-dimensional systems, mostly

in the low-density limit, which turns out to be a Fermi-liquid state [2].

The search for a non-Fermi-liquid ground state in two-dimensional systems arose

from the theoretical problems posed by the high-temperature superconductors and

is mainly credited to Anderson [3]. The low dimensionality of the cuprates and the

absence of characteristic Fermi-liquid behavior in the optical conductivity and resis-

tivity led Anderson to the suggestion that there is a qualitative difference between

the normal-phase ground state and that of other superconducting materials.

The breakdown of Fermi-liquid theory in low dimensional systems of interacting

electrons implies the need for powerful non-perturbative methods [4]. With the

advent of high-performance computing, numerical simulation has become one such

method.

The main numerical algorithms in use today for the solution of models of strongly

correlated electrons are various forms of Monte Carlo, exact diagonalization and



Introduction 3

the Density-Matrix Renormalization-Group (DMRG). Exact diagonalization calcu-

lations are necessarily limited by the exponentially large Hilbert space of lattice

models, and so is useful only for very small systems. Monte Carlo calculations are

usually performed at finite-temperature and are plagued by the so-called fermionic

sign problem, where the anticommutation of fermions causes the weight function to

oscillate in sign, with exponential loss of precision (for a review, see reference [5]

and references cited therein).

The DMRG algorithm was invented by Steven White [6], and has been in ex-

istence for under a decade. In that time the formulation has been under con-

stant development. The initial formulation described an algorithm for solving the

ground state of the spin 1/2 Heisenberg chain [6]. Since then, the algorithm has

been applied to many models, from one-dimensional fermionic systems [7, 8], lad-

der models [9] and some two-dimensional models both in real-space [10–12] and

momentum-space [13, 14]. In addition, generalizations of the DMRG algorithm

have been proposed, for the calculation of thermodynamic properties [15], 2D clas-

sical systems [16], phononic models [17], dynamical correlation functions [18], and

even for diverse applications such as nuclear structure calculations [19] and asymp-

totic freedom in high-energy physics [20]. In recent years it has proven to be the

most accurate tool for the numerical solution of one-dimensional models. For two-

dimensional models, current DMRG calculations are of similar accuracy to Monte

Carlo calculations. Monte Carlo calculations have the advantage of being essentially

independent of the dimensionality of the lattice, while real-space DMRG calculations

suffer greatly when long-range interactions are introduced, which, due to the nature

of the algorithm, are inevitable when the algorithm is applied to higher-dimensional

models. However, two-dimensional DMRG calculations are still possible, if enough

basis states can be kept to achieve the required accuracy. Unfortunately, increas-

ing the number of basis states kept in the DMRG calculation causes a substantial

increase in the amount of computation time required.

It is clear then that one line of progress is to improve the DMRG algorithm

itself, so that more accuracy can be achieved with fewer basis states. One way

of doing this is to utilize more of the symmetries of the system. In the original

DMRG algorithm [6], the only symmetries that are allowed by the construction are

compact, Abelian Lie algebras (hence isomorphic to U(1)) or Abelian finite groups

(such as reflection symmetries, isomorphic to Z2). In chapter 2, the extension to

non-Abelian Lie algebras is presented, which significantly increases the accuracy of

all DMRG calculations for Hamiltonians that admit such a symmetry group. While

this method has so far only been tried in real-space calculations, the procedure also
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applies to non-Abelian finite groups, such as the dihedral DL symmetry of a one-

dimensional ring, which should substantially increase the accuracy of momentum-

space calculations. The technique should also apply to other types of symmetries,

such as supersymmetric models and quantum group symmetries, without additional

complications.

The structure of this thesis is as follows. Chapter 1 reviews the current state

of development of the DMRG algorithm as applied to the ground state of one- or

two-dimensional finite lattices. The optimizations required to produce an efficient

algorithm are discussed in detail, along with the convergence properties and the

important work of Östlund and Rommer [21] on the form of the wavefunction ob-

tained by DMRG. Chapter 2 describes the generalization of the DMRG algorithm

to conserve non-Abelian global symmetries, which is the main technical result in

this thesis and was essential for the success of the applications of the non-Abelian

DMRG algorithm, presented in chapters 3 and 4. The usefulness of the algorithm

is shown by some calculations on the one-dimensional Hubbard model, as the sym-

metry group is enlarged from U(1) × U(1) to SO(4). Some of the efficiency issues

with real-space DMRG in higher dimensions can be resolved by a momentum-space

formulation. The potential for utilizing non-Abelian discrete lattice symmetries in

a momentum space formulation is an exciting area of future research, therefore this

chapter also contains a discussion of the relevant issues, although as yet no calcu-

lations have been performed utilizing non-Abelian lattice symmetries. Chapter 3

contains the bulk of the numerical calculations presented in this thesis, and describes

the physics and numerical physics of the Kondo lattice model [22] in one dimension.

The most interesting new result is the discovery of a previously unrecognized region

of ferromagnetism for intermediate coupling strength, at conduction band filling

0.5 <∼ n <∼ 1. This ferromagnetic region is also shown to exist in the periodic An-

derson model. Chapter 4 describes an application of DMRG to a two-dimensional

system, to determine the properties of the striped phase in the two-dimensional

t − J model. The t − J model was proposed by Anderson [23] and Zhang and

Rice [24] to be an effective model of the copper-oxide planes in the cuprate high-

temperature superconductors, and it is therefore important to determine the ground

state properties of this model.



Chapter 1

The Density-Matrix

Renormalization-Group Algorithm

This chapter is a review of the history and current state of the art of the Density-

Matrix Renormalization-Group method, concentrating on the particular algorithm

(finite-size ground state DMRG) used in the numerical calculations presented in

later chapters. The bulk of the material in this chapter is a summary of several

variations on the DMRG algorithm, taken from pre-existing literature. In addition

to the original articles cited explicitly in the text, many review articles [25–27] and

useful descriptions of implementations of DMRG [28,29] have appeared. Most of the

original work presented on the DMRG algorithm itself appears in chapter 2, with

applications discussed in chapters 3 and 4. However portions of this chapter, sections

1.3.2 and 1.6 also contain original work. Also, additional numerical results have

been obtained to compliment the reported results in several places, most notably

in section section 1.4.3, where the obtained results were in disagreement with the

previous publications.

1.1 Historical Background

The Density-Matrix Renormalization-Group formulation was invented by Steven

White [6], who was working on the problem of why the Wilson Numerical Re-

normalization-Group (NRG) [30] procedure, which had been so successful in solv-

ing the single impurity Kondo problem, fails so badly when applied to other quan-

tum lattice models. Wilson solved the single impurity Kondo problem by mapping

the three-dimensional model onto a one-dimensional chain, by way of a real-space

renormalization-group transformation. Thereafter, the numerical calculation is per-

5



6 1. The Density-Matrix Renormalization-Group Algorithm

formed on a one-dimensional effective Hamiltonian on a N -site lattice,

HN = ∆(N−1)/2





N−1∑

α={↑,↓},n=0

∆−n/2(c†α,ncα,n+1 + cα,n+1c
†
α,n) − J

∑

α,β

c†α,0cβ,0σαβ · S



 ,

(1.1)

where c†α,i is the conduction electron creation operator of spin α at site i and S

is the impurity spin. ∆
N
2 is the width of the N ’th ‘shell’ of the three dimensional

model; the actual value of ∆ is arbitrary (but ≥ 1) and can be tuned numerically.

The purpose of the factor ∆(N−1)/2 is so that the smallest term in HN is of order

unity, this term being c†NcN−1 + cN−1c
†
N . The addition of one lattice site to the

one-dimensional effective model corresponds to increasing the size of the three-

dimensional lattice by a factor ∆
1
2 , via a renormalization-group transformation,

HN+1 = T [HN ] = ∆
1
2HN +

∑

α

(c†α,N+1cα,N + c†α,Ncα,N+1) − EG,N+1 , (1.2)

where EG,N+1 is chosen so that the ground state energy of HN+1 is zero. This is

a true renormalization-group procedure, in the sense that the energy eigenvalues

will flow toward the fixed points as the calculation proceeds. The main focus of

the NRG is then to solve this one-dimensional lattice Hamiltonian. The essential

feature of Wilson’s solution is to consider a group of lattice sites to be a “block”

and diagonalize the Hamiltonian for that block to find a set of eigenstates. This

set of eigenstates is then truncated, keeping only the m states of lowest energy.

Then the Hamiltonian for a larger block is constructed in this basis and the process

repeats. The question becomes what to do with the boundary conditions (BCs)

at the join of the two blocks. For the single impurity Kondo problem, excellent

results were achieved by simply taking open boundary conditions, corresponding to

an infinite potential at each end of the lattice. It turns out though, that this success

depends critically on the nature of the specific renormalization-group transformation

Eq. (1.2). The same approach was tried several times for other problems without

success. For example, Lee [31] implemented this scheme for the problem of Anderson

localization on a 2-dimensional lattice. The major result, that there is a critical

parameter that separates scaling toward extended or localized states, was later

shown by Lee and Fisher [32] to be incorrect.

The main focus since this time has been on solving one-dimensional models

directly, without using a renormalization-group transformation. The analogous ver-

sion of the NRG for a one-dimensional system is to double the block size at each

iteration by joining two identical blocks of m states each and taking the m lowest

energy eigenstates (out of m2 states in total) as the ‘renormalized’ block for the
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next iteration. This program has also not been successful. The work of White and

Noack [33] was instrumental in pinning down the cause of this failure: the set of

low-lying states kept in the standard NRG approach is, in the general case, too

incomplete to obtain an accurate eigenstate for the next largest lattice size. To

illustrate the problem, they used a simple example, of a lattice version of a single

particle in a box, with Hamiltonian matrix,

Hij =







2, if i = j,

−1, if |i− j| = 1,

0, otherwise.

(1.3)

In the limit of large lattice size, this Hamiltonian converges to that of a free particle

in a box, bounded by an infinite potential. The procedure for applying NRG to this

system is to begin with a block which represents a single site, H1, a 1×1 matrix and

the matrix that represents the interaction between two blocks (in this case just the

hopping term), T 1 = −1. The iterations are started by forming the Hamiltonian

matrix composed of two blocks of the previous iteration,

H̄s =

[

Hs−1 T s−1

(T s−1)† Hs−1

]

, (1.4)

and

T̄ s =

[

0 0

T s−1 0

]

, (1.5)

H̄s is diagonalized and the lowest m eigenstates are taken, discarding the rest.

A change of basis is then performed to construct a diagonalized but truncated

Hamiltonian matrix Hs and associated interaction operator T s. The iterations then

proceed starting again at equation (1.4), to construct ¯Hs+1 and ¯T s+1. The necessary

requirement is that the higher energy states at the current iteration are unimportant

in making up the lower energy states at the later iterations. Unfortunately, this is

not true. To see why, we merely need to look at the low-lying states at two successive

iterations, illustrated by Figure 1 (after reference [33]). Any state made up of low-

lying states from the previous iteration must have a “kink” located in the center of

the system. In order to represent accurately states in the larger block, almost all of

the states of the previous iteration are required.

In this case, the loss of accuracy can be fixed by a more sophisticated treatment

of BCs. There is no particular reason why the Hamiltonian H̄s must use open BCs.

Of course, the Hamiltonian matrix used to construct the block at the next iteration

must use open BCs, otherwise there would be extraneous hopping terms, but it is
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0 5 10 15
x

0

|Ψ
(x

)|2

Figure 1.1: Lowest eigenstates of two 8-site blocks (open circles) and a 16-site

block (solid squares) for the one-dimensional model with open BCs.

possible to use a different Hamiltonian matrix for constructing the low-lying eigen-

states than the one used to construct the next block. However, White and Noack [33]

found that using alternate BCs does not substantially improve the convergence of

the algorithm. For example, periodic BCs allow exact representation of the ground

state (which is a constant) but, since the boundaries of the wavefunction are forced

to have the same value, any higher energy states are represented very poorly. Free

BCs, where the derivative of the wavefunction is set to be zero at the block edges,

does not fare any better. White and Noack did have success, however, with combin-

ing the results from several different choices of BC when choosing which eigenstates

to keep. In particular, by taking all four possible ways of combining two blocks with

either open or free BCs and taking the span of the lowest m/4 eigenstates of each

of the resulting Hamiltonians as the truncated Hilbert space for the next iteration,

they achieved considerable success for the single particle free electron system. They

also achieved success in calculating arbitrary excited states, by choosing the m/4

states of closest energy to what is desired. This algorithm has since been entitled

the “combination of boundary conditions” approach [26].

An alternative approach was also suggested by White and Noack [33], which

they call the “superblock” procedure. Here one diagonalizes a larger system con-

taining p > 2 blocks, with a single choice of BC. The idea is that the surrounding

blocks provide the boundary conditions on the blocks of interest, which are placed
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in the middle of the system. m states are extracted from the diagonalization of the

superblock and then one projects the basis onto the portion of the lattice corre-

sponding to the two blocks of interest. This was successful for the non-interacting

single particle model, but high accuracy was achieved only for a fairly large number

of blocks, of the order of 20. This algorithm was the immediate precursor to the

DMRG algorithm.

It is important to note here that the notion of the “renormalization-group” has

been lost. Neither the combination of boundary conditions algorithm, nor the su-

perblock algorithm, contains any notion of renormalization-group flow, or any block

scaling transformation. This is also true of DMRG itself. The name Density-Matrix

Renormalization-Group is now mostly a historical misnomer which still causes oc-

casional confusion in the literature.

1.2 DMRG Fundamentals

Rather than continue in an historical vein, it is instructive to introduce to DMRG

from the point of view of a variational calculation in a truncated Hilbert space. In

this sense, DMRG is much closer to exact diagonalization than it is to Wilson’s

numerical renormalization-group.

In exact diagonalization, one directly constructs the Hamiltonian matrix for the

lattice system and diagonalizes it using some numerical diagonalization algorithm,

usually the Lanczos algorithm [34–36] or similar. The problem with this approach

is that the dimension of the Hilbert space increases exponentially with the lattice

size. For example, the Hubbard model requires four basis states per site; hence the

full Hilbert space of an L-site lattice contains 4L states. Even with sophisticated

numerical techniques, diagonalizing such a matrix for a reasonably large value of

L (say, around 20 or so) rapidly becomes impractical. One way of making such

calculations more efficient is to use symmetries to reduce the size of the Hilbert

space. For example, if one labels the states by their total momentum, then if one

knows that the total momentum of the ground state is zero, one can leave out all the

states with non-zero momentum. In fact, diagonalizing an M -dimensional matrix

takes ∼ M3 steps; thus even if the quantum numbers of the ground state are not

known it will always be beneficial, in the large M limit, to subdivide the Hilbert

space into symmetry sectors and diagonalize each matrix separately. However, these

symmetries do not change the the nature of the exponential increase in matrix

dimension as the lattice size is increased. Also, efficient numerical computation of

the matrix diagonalization requires that the matrix elements are stored in sparse
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form and readily addressable. This requirement makes utilizing higher symmetries,

such as SU(2) total spin symmetry, difficult although certainly not impossible.

The DMRG algorithm is based around an approximation whereby the lattice

system is split into two halves, called the left block and the right block (denoted

A and B here) and the basis in each block is then truncated. The wavefunction is

written in the basis of the tensor product of the two-block basis (usually called the

“superblock” basis),

|Ψ〉 =

NA∑

a=1

NB∑

b=1

ψab |a〉 ⊗ |b〉, (1.6)

where the dimension of the left block is NA and the dimension of the right block is

NB. The choice of division of the system into the two blocks is arbitrary here and, as

we shall see later, is different for the various types of DMRG algorithm. The essential

approximation is to reduce the size of the blocks, such that the wavefunction is

affected in the smallest possible way. To see how this works, we will construct the

basis states in the left block that are the most important in the representation of

the wavefunction. Let |φ〉 be an arbitrary state in the left block basis,

|φ〉 =

Na∑

a=1

φa|a〉. (1.7)

The weight of this state in the superblock wavefunction is simply the norm of

〈φ|Ψ〉 =
∑

ab φaψab|b〉,

W (|φ〉) =

Na∑

a=1

Nb∑

b=1

|φaψab|2 . (1.8)

Now we calculate the expansion coefficients φa such that W (|φ〉) is a maximum,

subject to the constraint that 〈φ|φ〉 = 1. This can be done simply with Lagrange

multipliers, giving the result that

φa′ = λ

Na∑

a

ρa′aφa , (1.9)

where λ is a maximum and ρa′a is the reduced density-matrix,

ρa′a =

Nb∑

b=1

ψa′bψ
∗
ab . (1.10)

Hence the important states required in the system basis are the eigenstates of the

reduced density-matrix that have largest eigenvalue.

An alternative construction of this result can be obtained through linear algebra.

This is the method originally used by White [6]. The critical realization is that the
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basis states in (1.9) can be constructed via a singular value decomposition. By

regarding ψ as a Na ×Nb matrix the singular value decomposition can be effected,

ψ = UDV T , (1.11)

where U is a NA × NA orthogonal matrix, D is a NA × NA diagonal matrix and

V T is a NA × NB column-orthogonal matrix. We assume that NA ≤ NB, but the

singular value decomposition can be performed similarly in the case of NA > NB.

The diagonal matrix D contains the singular values of ψ. The matrices U and V

apply a basis transformation on the system and environment blocks respectively,

that has the effect of diagonalizing ψ. It is important to note that the dimension of

the environment block after the V transformation is NA, which is, in general, less

than the original dimension of this basis. However, ψ is still represented exactly.

Substituting the definition of the reduced density-matrix, Eq. (1.10), we find that

it can be written in terms of the singular value decomposition operators,

ρ = UD2UT . (1.12)

Hence U diagonalizes ρ and the eigenvalues of ρ are simply the squares of the

singular values.

We now summarize the important results. The eigenstates of the reduced

density-matrix (for each block) with largest eigenvalue λi are the optimal states

to keep, with the eigenvalue being the weight of the basis state in the superblock

wavefunction. The truncation of basis states is effected by keeping only the largest

m eigenstates of the density-matrix. The sum of all reduced density-matrix eigen-

values is unity and the deviation of the sum of kept eigenvalues Pm =
∑m

i=1 λi from

unity measures the accuracy of the truncation. A result, that follows directly from

the singular value decomposition construction, is that the maximum number of non-

zero eigenvalues of the density-matrix is min(NA, NB). Hence, for the truncation

procedure to be meaningful we must have

m ≤ min(NA, NB) . (1.13)

If this condition is not satisfied, some of the states kept will have zero weight in

the superblock wavefunction. While these states do not harm the calculation, they

provide little benefit while adding to the computation requirement. In the limit of

large m, Pm becomes 1 and the ‘truncation’ is exact.

It is conventional to refer to the block that is being actively truncated as the

‘system block’ and the other block as the ‘environment block’. This notation comes

from an analogy with thermodynamics. An isolated system is in an eigenstate
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of the Hamiltonian and the density-matrix eigenstates coincide with the those of

the Hamiltonian. However, if the system is not isolated, but is instead connected

to an ‘environment’ (for example, a heat bath), the system is in a mixed state

and the density-matrix eigenstates no longer coincide with the eigenstates of the

Hamiltonian. So in the DMRG algorithm, it is possible to consider one block to

be the ‘system’, which is not isolated and connected to an ‘environment’ (the other

block) that provides the boundary conditions. This is a nice analogy; however it

does not work well when applied to actual DMRG algorithms. As discussed below,

in the infinite-size algorithm, the left and right blocks each represent exactly half of

the (often reflection symmetric) lattice, so there is no distinction as to which block

is the ‘system’ and which is the ‘environment’. This notation works better for the

finite-size algorithm, where the overall lattice size (system + environment) is fixed

while the boundary point of the two blocks shifts at each iteration. In this thesis,

the only use of the ‘system’ and ‘environment’ notation is in this context. But even

in this case the analogy does not carry over completely, as one is usually interested

in the properties of the lattice as a whole, not just the system block.

It is useful to be able to make use of symmetries of the Hamiltonian in applying

the truncation. In the simplest case, let the symmetry operators of the Hamiltonian

be of the form of a set of R operatorsQ1, Q2, . . . , QR which commute with each other

as well as with the Hamiltonian and suppose that each operator separately generates

a one-dimensional compact Lie algebra (hence isomorphic to U(1)). Examples of

such operators would be the number of particles operator, N and the z−component

of total spin, Sz. In each block, the states can be labeled by the eigenvalues of the

symmetry operators Q1, . . ., QR, so we write the left block basis as

|(a), qA
1 , . . . , a

A
R〉; a = 1 . . . NqA

1 ,...,qA
R
, (1.14)

which represents the a’th basis state of quantum numbers qA
1 , . . . , q

A
R. Similarly, the

right block basis can be written as

|(b), qB
1 , . . . , q

B
R〉; b = 1 . . . NqB

1 ,...,qB
R
. (1.15)

The Lie-algebra structure of the symmetry operators implies that the r’th su-

perblock symmetry operator is of the form

Qr = QA
r ⊗ IB + IA ⊗QB

r , (1.16)

where IA and IB are the identity operators acting on the left and right blocks respec-

tively. The tensor product of any left block basis state with any right block basis

state is itself an eigenstate of the superblock symmetry operators, with eigenvalues
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qA
1 +qB

1 , . . . , q
A
R +qB

R . Thus it is easy to project the superblock basis onto some arbi-

trary symmetry sector given by the superblock quantum numbers qS
r = qA

r + qB
r ∀r.

This is called the target state in usual DMRG terminology. Inserting the quan-

tum number labels into the definition of the reduced density matrix, Eq. (1.10), we

obtain

ρ
qA
1 ,...,qA

R

a′a =
∑

qB
1 ,...,qB

R

N
qB
1 ,...,qB

R∑

b=1

ψ(a),qA
1 ,...,qA

R;(b),qB
1 ,...,qB

R
ψ∗

(a′),qA
1 ,...,qA

R ;(b),qB
1 ,...,qB

R
. (1.17)

This matrix is block diagonal with respect to the quantum numbers of the left

block, qA
1 , . . . , a

A
R, as required for the truncation to preserve the quantum numbers.

Thus, there is no complication in implementing these symmetry operators into the

truncation procedure. Later on we will see how to generalize this procedure to

other symmetry operators which do not necessarily mutually commute, having the

structure of e.g. a semi-simple Lie algebra or a finite group.

Since the density-matrix is block diagonal, the condition on m for the truncation

to be meaningful, Eq. (1.13) can be applied separately to each quantum number

sector. This means that, in practice, the overall equality can be difficult to satisfy

and one usually requires that m � min(NA, NB). The exception arises when one

or both blocks contain very few sites and all states should be kept even if they

are not yet used in the superblock basis. It is also possible to craft robust DMRG

algorithms where, due to the particular choice of states kept, the equality in Eq.

(1.13) holds strictly, without any extraneous zero eigenvalues of the reduced density-

matrix (cf. section 1.4).

1.2.1 The infinite-size algorithm

The simplest implementation of a numerical scheme based on the density-matrix

truncation is the so-called infinite-size DMRG. In this scheme, a single lattice site

is added to each of the left and right blocks at each iteration; thus the length L of

the superblock grows by two sites at a time. Prior to the first iteration, the left

and right blocks each consist of a single site. The iterations are started by adding

a single site to each block and forming the superblock as the tensor product of

the resulting two blocks. In the usual graphical notation, this is given by the first

line of Fig. 1.2. Here, solid rectangles indicate truncated blocks with at most m

basis states and open circles indicate bare sites. The ground state wavefunction

of the superblock is found using a matrix diagonalization algorithm, for example

the Lanczos or Davidson algorithms. At the first iteration, this is simply an exact

diagonalization on a four-site system. From the resulting wavefunction. the reduced
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density-matrix is constructed and the truncation to m basis states is performed as

described previously. This is done for the left and right blocks separately. New sites

are then added to each block and the process is repeated. If the system is reflection-

symmetric, the right block can be the spatial reflection of the left block and only

one reduced density-matrix needs to be constructed. This is called the infinite-

size algorithm because it is commonly supposed that the limit of a large number

of iterations corresponds to taking the thermodynamic limit to an infinite lattice

size. It must be remembered however, that infinite-size DMRG only converges to the

exact ground state in the limit m→ ∞ and this limit must be taken before the limit

L→ ∞. Thus the infinite-size algorithm is very useful for calculating densities, for

example the energy per unit length, but not so useful for calculating quantities such

as an excitation energy. To see why this is so, firstly suppose that we take m to be as

large as possible, so that no basis states are truncated at all. The infinite-size DMRG

is then equivalent to a sequence of exact diagonalizations on successively larger

lattices and it is clear that the limit L→ ∞ will give the thermodynamic limit. On

the other hand, for m fixed, every iteration involves an approximation and it is not a

priori clear that the error due to the approximation is bounded as L is increased. In

other words, it is not necessarily true that limL→∞ ∆E(L)/L = 0, where ∆E(L) is

the difference between the true energy and the energy obtained by DMRG. A typical

example of a quantity that is difficult to calculate with the infinite-size algorithm

is the Haldane gap in integer spin chains [37]. For a small system (corresponding

to the first few iterations of the infinite-size DMRG algorithm), the Haldane gap

between the singlet ground state and the first excited triplet state is reproduced

with reasonable accuracy and initially scales well toward the thermodynamic value

of the gap. However, beyond some critical lattice size (that depends on the number

of states kept m), the gap starts to diverge linearly with the lattice size. This is

illustrated extremely well in figure 1 of reference [38]. It is simply not possible to

calculate the gap from the converged limit of an infinite-size DMRG calculation, no

matter how many states are kept.

In the infinite-size algorithm, the target quantum numbers need to be chosen

for each lattice size L = 4, 6, 8, . . ., which means that, in general, the values of

the quantum numbers will fluctuate around the desired value. For example, Fig.

1.3 shows the energy per site at each step of the algorithm, for a portion of a

DMRG calculation on the Kondo lattice model with density n = 4/5 electrons per

site. The electron density fluctuates around the mean value and the density only

matches the desired density once every 5th iteration. In addition, the periodic

fluctuations in the density introduces an artificial peak in the correlation functions
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Figure 1.2: Schematic form of the infinite-size DMRG algorithm. Open rect-

angles represent truncated blocks, solid circles are bare lattice sites.

at the wave number of the density fluctuations. If the electron density per site is

n = p
2q

, where p and q are integers with no common factor, then the period of

the fluctuations is q iterations. This introduces additional correlations with wave

number 2πq/p = πn = 2kF , twice the Fermi momentum of a non-interacting band

of electrons. In some cases, these artificial correlations can skew considerably the

results of a calculation. For example, in the calculations on the Kondo lattice

model, described in detail in chapter 3, an important feature of the ground state

phase diagram is a crossover of the Fermi momentum from the weak interaction

value of πn/2 to the so-called ‘large’ Fermi surface value of π(n + 1)/2. This is

accompanied by a change in the location of the peak in the spin structure factor

from πn to π(1− n). The location of this crossover is considerably distorted by the

presence of additional correlations at πn caused by the density fluctuations inherent

to the infinite-size algorithm. Thus, while the envelope of the energy fluctuations

in figure 1.3 appears to be convergent from both above and below, it is not clear

how closely the calculation converges to the true thermodynamic state.

Moukouri and Caron [39] demonstrated an approach that, while it cannot com-

pletely eliminate the density fluctuations, reduces their effect significantly. At each

iteration, the wavefunction is obtained for two sets of quantum numbers that bracket

the desired density. The density-matrix used to construct the truncation operator

is then a linear combination of the density-matrices of the two ground-states.

The Hamiltonian matrices and truncation operators in the infinite-size algorithm

eventually converge to a fixed point where the matrix elements at each iteration

are identical, save for a scale factor and possibly sign inversions arising from the

algebraic properties of the Hamiltonian for different chain lengths. In the case of
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Figure 1.3: A section of a DMRG run showing the energy per site as a function

of the iteration number.

fractional density this fixed point has period q. This is a renormalization, although

not of the same quantities that are renormalized in the usual renormalization-group

approach. This renormalization property can be used to accelerate the computation,

first shown by Schollwöck [40], where Marshall’s sign rule was used to predict the

sign changes in the elements of the wavefunction vector. This gives an accurate

estimation of the ground state wavefunction to use as an initial guess vector in the

matrix diagonalization.

1.2.2 The finite-size algorithm

If one is interested in calculating accurately the properties of a system of some

specific size, then it is possible to significantly improve upon the accuracy of the

infinite-size algorithm. Constructing an L site system using the infinite-size algo-

rithm requires the construction of blocks of all sizes 2, 3, . . . L/2. In the infinite-size

algorithm these smaller blocks are not needed and can be discarded on the next

iteration. However, the overall system size can be maintained at L if we take the

next left block to be size L/2 + 1 and the right block to be the block from the

previous iteration, of size L/2 − 1. This procedure can be carried further, so that

the n’th iteration uses a left block of size L/2 +n and a right block of size L/2−n.

Once the right block gets small enough that it can be represented exactly (ie. when

the dimension of the Hilbert space becomes less or equal to m), the direction of iter-
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ation is reversed. This is illustrated schematically in Fig. 1.4. Many ‘sweeps’ can be

performed over the system, so that the target state is iteratively improved. It was

recognized early [6] that an important improvement in efficiency can be achieved by

gradually increasing the number of block states kept for each sweep. The number of

states in the environment block, m′, is then the number of states kept in the system

block of the previous sweep. It is important not to make m/m′ too large. There is

no point making this ratio larger than the number of states in a single site, as then

Eq. (1.13) will not be satisfied and some of the basis states kept will be random

vectors and not useful in representing the target state.

u u

u u

u u

u u

u u

u u

u u

u u

u u

Figure 1.4: Schematic form of the finite-size DMRG algorithm.

If the system is reflection symmetric the sweeps need to go only to the half way

point, where both blocks are the same size. At this point, the spatial reflection of

the system block can be used as the environment block and the direction of the

sweeping is reversed. This reduces the computation time and storage requirement

by a factor of two, since only one block of each lattice size is required. If the system

is not reflection symmetric then separate left and right blocks need to be stored for

each lattice size and updating all the blocks requires one complete sweep over the

lattice in each direction.

A hybrid finite/infinite-size algorithm is also possible, that eliminates the density

fluctuations of the pure infinite-size algorithm. Given a density with a periodicity

of q iterations, one can use smaller size blocks from previous iterations to maintain

a lattice size that is an exact multiple of 2q. After the system size is built up to be
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at least 4q sites, the density is thereafter a constant. This procedure is illustrated

in Fig. 1.5, for an example density with q = 3. The system size is built up to 12

sites using the infinite-size algorithm. Thereafter, the system size can be increased

without limit while maintaining a system size that is always a multiple of 6 sites.

u u

u u

u u

u u

u u

u u

u u

u u

u u

u u

u u

u u

u u

L = 12

L = 18

L = 24

Figure 1.5: Schematic form of the hybrid finite/infinite-size DMRG algorithm.

q = 3 in this example.

As illustrated, this algorithm requires reflection symmetry because, after the

initial iterations to build the system size up to 4q, sites are only ever added to the

left block, while re-using smaller spatially-reflected left blocks as the current right

block. For a system without reflection symmetry, it would be necessary to perform

some left-moving iterations to construct the right blocks of the required sizes.

The software infrastructure required to implement the hybrid algorithm differs

little from that required for the full finite-size algorithm. Hence there is little advan-

tage to using this algorithm for a one-dimensional system; it is generally preferable

to do a finite-size scaling based on more accurate calculations from the finite-size

algorithm. As far as the author knows, the only published use of this algorithm is in

the context of two-dimensional DMRG [41], which is discussed in detail in section

1.5.
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1.2.3 Matrix operators

To actually construct the superblock Hamiltonian, a matrix representation of all

the relevant operators is required. These matrix representations must preserve all

the commutation relations of the algebraic form of the Hamiltonian. As an example,

consider a one band electron model (e.g. the Hubbard model), with 4 basis states

per site, |0〉, |↑〉, |↓〉, |↑↓〉. After the choice of basis vectors (1, 0, 0, 0), (0, 1, 0, 0),

(0, 0, 1, 0), (0, 0, 0, 1) to represent these four states, the explicit form of the creation

operators on a single site is given by,

C†
↑ =








0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0








, (1.18)

C†
↓ =








0 0 0 0

0 0 0 0

1 0 0 0

0 −1 0 0








. (1.19)

The annihilation operators are the Hermitian conjugate of these. It is easy to show

that these operators obey the required algebra,

{C†
σ, C

†
τ} = {Cσ, Cτ} = 0 , (1.20)

{C†
σ, Cτ} = δστ . (1.21)

To include the site index, an ordering relation on the sites is required because of

the anticommutation of operators acting on different sites. Choosing the simplest

ordering of sites, from 1 to L left to right, the creation operator acting on the j’th

site is

C†
j,σ = (−1)

Pj−1
i=1 Ni I ⊗ I ⊗ . . .⊗ I

︸ ︷︷ ︸

j−1 terms

⊗C†
σ ⊗ I ⊗ . . .⊗ I

︸ ︷︷ ︸

L−j terms

, (1.22)

where the sign is positive if there is an even number of electrons to the left of site

j and negative if there is an odd number of electrons to the left of site j. This can

be written in a more useful form as

C†
j,σ = P ⊗ P ⊗ . . .⊗ P

︸ ︷︷ ︸

j−1 terms

⊗C†
σ ⊗ I ⊗ . . .⊗ I

︸ ︷︷ ︸

L−j terms

, (1.23)

where P = (−1)N is the single site parity operator,

P =








1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1








. (1.24)
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An electron of spin σ hopping between sites i and j, is written in algebraic form

as

T (i, j, σ) = T †
σiTσj + h.c. . (1.25)

We assume without loss of generality that i < j. Since P 2 = 1, the matrix repre-

sentation of this interaction simplifies to

T (i, j, σ) = I ⊗ · · · ⊗ I ⊗ C†
σiP ⊗P ⊗ . . .⊗ P ⊗ Cσj ⊗ I ⊗ . . .⊗ I + h.c. .

(1.26)

A more convenient form for storing the operators required for this superblock term

when site i is in the left block and site j is in the right block, is to use the operators

CL
i,σ = I ⊗ I ⊗ . . .⊗ I ⊗ Cσ P ⊗ P ⊗ . . . , (1.27)

and

CR
j,σ = P ⊗ P ⊗ . . .⊗ P ⊗ Cσ ⊗ I ⊗ . . . , (1.28)

where the L and R indices indicate operators acting on the left and right blocks

respectively. In this form, T (i, j, σ) =
∑

σ C
L†
i,σ C

R
j,σ +h.c. Unfortunately this matrix

is not reflection symmetric; interchanging all site indices with the spatial reflection,

n→ L+1−n, does not produce the same matrix as a hopping between sites L+1−i
and L + 1 − j. This is because, in Eq. (1.26), the left-most non-trivial matrix

is of the form C†
i,σP , whereas the corresponding matrix of the spatially reflected

operator is C†
i,σ. The origin of this difficulty is physical. In choosing our basis, we

have specified the choice of ordering |↑↓〉 for the double-occupied state. Taking the

spatial reflection requires that this ordering is reversed, so that instead the basis

state |↓↑〉 = − |↑↓〉 is used. Thus to effect a spatial reflection, simultaneously with

changing the labeling of the sites a basis transformation R must be applied to every

site, which gives

Ci,σ → RCi,σ R
−1 = Ci,σP

C†
i,σ → RC†

i,σ R
−1 = PC†

i,σ = −C†
i,σP ,

(1.29)

where R is the single site spatial reflection operator,

R =








1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1








. (1.30)

This is inconvenient. When the left and right blocks are the same size, we would

like the Hamiltonian matrix to be exactly reflection symmetric without the need to
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apply a basis transformation. Then, the superblock wavefunction matrix is either

totally symmetric or totally antisymmetric, depending on whether the wavefunction

is even or odd with respect to spatial reflection. This symmetry reduces by a factor

∼ 2 the number of degrees of freedom in the diagonalization.

One solution to this problem is to use a different basis for the right block,

whereby the operators are stored in the spatially reflected basis. This requires

reversing the order of the operators in the tensor product expansion in Eqn. (1.28)

and applying the spatial reflection transformation to each site. Once this is done,

CL
σi and CR

σ L−i+1 have exactly the same matrix elements; reflection symmetry is

recovered and the right block operators are the same matrices as the left block

operators. This representation is equivalent to that described by Sørensen [42],

although in that work the system under consideration is the Heisenberg spin chain

in which the single site reflection operator R is the identity operator.

In principle, expectation values are rather easy to calculate using DMRG. Ar-

bitrary operators can be constructed in the same way as described above, making

the calculation of expectation values on the ground state wavefunction relatively

simple. In addition, expectation values of operators that act only on one block can

be calculated readily from the reduced density-matrix due to the usual identity,

〈A〉 = tr(ρA) . (1.31)

However there are some complications that occur [43]. Because of the usual open

BCs, translational invariance of expectation values is not preserved, even relatively

far away from the boundaries. The usual solution is to calculate the expectation

values for several neighboring sites and form the average. This is especially necessary

for correlation functions.

Because the blocks are truncated at each step, operators that act on sites far

from the block edge lose accuracy and tend to converge to the mean value. If sites

i and j of a two-point correlation (for example
〈
Sz

i S
z
j

〉
) are in the same block, it

is not a good idea to calculate the expectation value from the product of separate

operators Sz
i and Sz

j after the Hilbert space has been truncated. In matrix form,

this expectation value is

〈
Sz

i S
z
j

〉
=
∑

αβγδ

ψ∗
αδS

z
i,αβS

z
j,βγψγδ . (1.32)

The internal summation over β in the term Sz
i,αβS

z
j,βγ is over the truncated basis,

hence the matrix elements of Sz
i S

z
j will be calculated only approximately. If, how-

ever, sites i and j are in different blocks, the calculation of the expectation value
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changes to,
〈
Sz

i S
z
j

〉
=
∑

αβγδ

ψ∗
αγS

z
i,αβS

z
j,γδψβδ . (1.33)

In this case, the operator Sz
i S

z
j involves no internal summation over the truncated

basis and the expectation value
〈
Sz

i S
z
j

〉
is determined exactly (remembering that

the wavefunction itself is approximate; there is no further loss of accuracy when

calculating expectation values).

Further properties of DMRG correlation functions are discussed in section 1.4,

where it is shown [21] that all correlation functions calculated via DMRG decay

exponentially; power-law behavior cannot occur even when the exact solution would

be critical.

1.3 Numerical Optimizations

Since the original description of DMRG [6], several optimizations have been

proposed, some purely implementation details and some with a more physical basis.

This section describes the optimizations that are de facto essential to the finite-

size algorithm, as well as other minor and theoretical optimizations. Optimizations

relating directly to the superblock diagonalization are saved for the later section on

convergence, section 1.6.

1.3.1 Block storage

The original implementation of DMRG [6] constructed the superblock Hamilto-

nian explicitly, as a large, sparse matrix. However, in most cases this is not optimal

in either storage space or computation time. The superblock Hamiltonian, in the

tensor product basis, has the form

H = HA ⊗ IB + IA ⊗HB + interactions, (1.34)

where the interaction terms are of the form MA ⊗MB, where MA and MB may be

dense matrices, in the worst case with order (NA)2 (respectively (NB)2) non-zero

matrix elements. This means that, for some forms of interaction, the number of

non-zero matrix elements in the tensor product MA ⊗MB can be very large, of

the order (NANB)2, loosely O(N 4). Hence the number of non-zero matrix elements

in the Hamiltonian itself can be very large. The storage requirement is thus also

correspondingly large, much larger than the combined storage size of the individual

block operators. Hence, it is possible to achieve a reduction in memory requirement
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by not explicitly constructing the Hamiltonian matrix and simply calculating the

matrix elements on-the-fly, term by term as needed.

The important realization is that representing the Hamiltonian as a tensor prod-

uct also leads to a performance improvement. As far as the author knows, this

procedure was first described by P. Schmitteckert [29]. Using the matrix form of

the wavefunction, ψab, the matrix-vector product Hψ can be written as

(Hψ)a′b′ =
∑

ab

(
HA

a′aψab′ + ψa′bH
B
b′b + interaction terms

)
, (1.35)

where the general form of an interaction term is

([MA ⊗MB]ψ)a′b′ =
∑

ab

(
MA

a′aM
B
b′bψab

)
. (1.36)

Calculating the matrix-vector product for the interaction terms in this form re-

quires, in the worst case, two dense matrix-matrix multiplies, of O(N 3) operations.

This is an order of magnitude better than the worst case of O(N 4) in the original

formulation.

The performance can be improved further, by noticing that the operators acting

on a bare site are usually very sparse (if they are not, then an arbitrary unitary

transformation could be applied to make them so). Hence it is beneficial to fur-

ther unroll the tensor product so that the bare sites added to the left and right

blocks are treated separately. Also, the block operators are sparse in the quantum

number indices, further simplifying the numerical complexity of the multiplication

operation. The origin of this sparseness is physical and arises from the symmetry of

the Hamiltonian. Each operator appearing in a Hamiltonian or expectation value

transforms as an irreducible representation of the global symmetry group of the

Hamiltonian. In the case of e.g. particle number symmetry, this implies that each

operator has a well-defined effect on the number of particles in the system. The

Hamiltonian conserves the particle number, hence the block Hamiltonian matrix

is block diagonal with respect to this quantum number. Also, a creation operator

always increases the particle number by exactly one and an annihilation operator

always decreases the particle number by exactly one. Thus these operators also

have a predictable structure. This theme is expanded upon in chapter 2, where the

symmetry properties of the DMRG algorithm are discussed in detail.

The block-storage optimization was used in all the DMRG calculations presented

in this thesis.
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1.3.2 Wavefunction transformations

So far, the initial ‘guess vector’ for the superblock diagonalization procedure

has not been specified. As mentioned earlier (section 1.2.1), for the infinite-size

algorithm it is possible to obtain an estimate of the target state for use as an initial

condition by using the renormalization properly of the Hamiltonian and truncation

matrices. A similar procedure is possible for the finite-size algorithm, although in

this case the system size is a constant, making the procedure a pure basis transfor-

mation rather than a renormalization. Steven White [44] was the first to describe

the steps necessary to transform the target state wavefunction from the tensor prod-

uct basis of a left block of size n and a right block of size (L − n), to the basis of

block sizes (n+1) and (L−n−1), for use as the initial guess vector in the superblock

diagonalization at the next iteration.

We first introduce some notation. The notation used here is similar to that used

by Östlund and Rommer [21] in their seminal work on the nature of the DMRG

wavefunction (cf. section 1.4). At some point of the sweep, let there be n sites in

the left block and L − n sites in the right block. Let |si〉 , si = 1, 2, . . .Ni be the

single site basis at site i, of dimension Ni. We write the left block+site basis as

|αn−1〉 ⊗ |sn〉 = |αn−1 sn〉 , (1.37)

where |αn−1〉 is the truncated basis for the left-most n − 1 sites, with αn−1 =

1, 2, . . . , m. Similarly, the right block basis is written

|sn+1〉 ⊗ |βn+2〉 = |sn+1 βn+2〉 . (1.38)

Here |βn+2〉 represents the truncated basis for the right most L−n−1 sites (i.e. sites

n + 2,n+ 3,. . . ,L).

We write the truncation operators on the left and right blocks respectively as

|αi〉 =
∑

αi−1,si

LT (i)
αi;αi−1si

|αi−1 si〉 , (1.39)

|βi〉 =
∑

si,βi+1

RT
(i)
βi;siβi+1

|si βi+1〉 . (1.40)

In the first case, this represents the transformation from the tensor product of the

left most i − 1 sites and the ith bare site to the truncated basis for the left most i

sites. In the second case, this represents the transformation from the tensor product

of the ith site and the right most L− i− 1 sites, to the truncated basis for the right

most L− i sites. At the nth step of the sweep, the superblock basis is written

|αn−1 sn〉 ⊗ |sn+1 βn+2〉 . (1.41)
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The wavefunction in the superblock basis is denoted,

∣
∣Ψ(n,n+1)

〉 ∑

αn−1
sn

sn+1
βn+2

ψ
(n,n+1)
αn−1 sn sn+1 βn+2

|αn−1 sn〉 ⊗ |sn+1 βn+2〉 , (1.42)

where the coefficients ψ
(n,n+1)
αn−1 sn sn+1 βn+2

are obtained by the diagonalization algorithm.

We wish to apply basis transforms to this state so that it is written in the basis

used by the next iteration, ie

∣
∣Ψ(g) (n+1,n+2)

〉 ∑

αn
sn+1
sn+2
βn+3

ψ
(n+1,n+2)
αn sn+1 sn+2 βn+3

|αn sn+1〉 ⊗ |sn+2 βn+3〉 , (1.43)

which can be used as a guess vector to accelerate computing the true
∣
∣Ψ(n+1,n+2)

〉
.

It is easiest to split this transformation into parts. Firstly, the left block basis is

truncated giving the truncated wavefunction,

∣
∣Ψ(T ) (n,n+1)

〉
=

∑

αn,sn+1,βn+2

ψ
(T ) (n,n+1)
αn,sn+1,βn+2

|αn〉 ⊗ |sn+1 βn+2〉 , (1.44)

with matrix elements obtained by

ψ
(T ) (n,n+1)
αn,sn+1,βn+2

=
∑

αn,sn+1,βn+2

∑

αn−1,sn

LT (n)
αn;αn−1 sn

ψ
(n,n+1)
αn−1 sn sn+1 βn+2

. (1.45)

This state is not properly normalized; the norm 〈Ψ(T ) (n,n+1)|Ψ(T ) (n,n+1)〉 is equal

to the sum of the density-matrix eigenvalues of the kept states, Pm. Thus a small

amount of information has been lost so that, even in the limiting case where the

DMRG has converged completely, the transformed wavefunction is still not identical

to the target eigenstate.

The transformation from the basis |αn〉 ⊗ |sn+1 βn+2〉 to the basis |αn sn+1〉 ⊗
|βn+2〉 is, in the ordinary case completely trivial. However, when reflection symmetry

is used, as discussed in section 1.2.3 above, the right block is stored in a different

basis to the left block. Thus it is necessary to apply a basis transform to the

site basis when shifting the site from the right block to the left block. This basis

transformation is effected by the R operator,

∣
∣αn s

′
n+1

〉
⊗ |βn+2〉 =

∑

sn+1

Rs′n+1;sn+1
|αn〉 ⊗ |sn+1 βn+2〉 . (1.46)

Usually, the obvious choice of single site basis means that the R operator is diagonal.

This makes the transformation of ψT
αn,sn+1,βn+2

to the shifted basis very easy to
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apply. When non-Abelian symmetries are used (described in detail in chapter 2), the

transformation is non-trivial even in the non-reflection-symmetric case and requires

the 6j coefficients of the algebra.

The final step is to ‘undo’ the truncation on the right basis,

ψ
(g)
αn sn+1 sn+2 βn+3

=
∑

βn2

ψT
αn sn+1 βn+2

RT
(n+2)
βn+2;sn+2βn+3

. (1.47)

Strictly speaking, the truncation operator is not invertible and this operation ex-

pands the dimension of the superblock basis from m2Ni+1 to m2Ni+1Ni+2 states.

Hence there are many entries of the guess wavefunction that are not yet specified.

In particular, it is possible to add any quantity of the form φαn sn+1 sn+2 βn+3, such

that
∑

sn+2,βn+3

RT
(n+2)
βn+2;sn+2βn+3

φαn sn+1 sn+2 βn+3 = 0 , (1.48)

for each value of βn+2, αn and sn+1. In the absence of any information as to what

these entries should be, the easiest approach is to use Eq (1.47) directly, equivalent

to setting the undetermined coefficients to zero. The reverse transformation, to shift

the wavefunction from blocks of size n, (L− n) to blocks (n− 1), (L− n+ 1), is the

exact mirror of the transformation described above.

This transformation requires storing all the truncation operators used on the

previous left moving sweep, RT , for later use on the next right moving sweep and

vice versa. These operators would otherwise not be required to be stored, so this

optimization requires a small additional storage overhead. The operators that are

not required for the current iteration can easily be stored on disk rather than main

memory, so there is no additional RAM requirement, only additional disk space is

required.

This optimization is extremely important, indeed it could be regarded as an

essential component of the finite-size algorithm. As the DMRG sweeps converge,

the overlap between the initial guess wavefunction and the final wavefunction tends

to Pm, which in a typical calculation is of the order 1− 10−5 or larger. Thus only a

very small number of iterations of the matrix diagonalization algorithm need to be

performed. Indeed, a possible approach suggested by White [44] † is to restrict the

number of iterations of the matrix diagonalization algorithm to a small constant

(two or three) and relying on repeated DMRG sweeps to obtain a converged state.

The balance between convergence of the matrix diagonalization and convergence of

the DMRG basis is a subtle and little-studied area. However some investigations

are detailed in section 1.6 below. Even when the number of iterations of the matrix

†although it is not clear whether White actually used this scheme in the published calculations
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diagonalization is not fixed but a conventional eigenvalue convergence criteria is

used, the number of iterations is usually very small and essentially independent

of the dimension of the superblock. Thus, for a superblock dimension of N , the

wavefunction transformation effectively reduces the computation time for obtaining

the wavefunction from O(N 3) to O(N2) operations.

At the central point of a reflection symmetric model, an additional step is re-

quired to obtain the correct wavefunction. To see why, let n = L/2− 1, so that the

obtained initial guess wavefunction will be on the symmetric basis of left and right

blocks of equal size. At this point one uses the spatial reflection of |αn〉 as the right

block basis |βn+3〉. The third step, of ‘undo’ing the right block truncation, fails

because the truncation operator RT
(n+2)
βn+2;sn+2βn+3

is defined over the basis βn+3 of the

previous sweep, but the required basis is the spatial reflection of |αn〉, obtained from

the current sweep. This is clarified by a change in notation. Let the superblock

basis at the central point of the previous sweep be denoted

|Ψaa〉 =
∑

aL,aR

ψaLaR
|aL〉 ⊗ |aR〉 , (1.49)

which is defined over the tensor product of left block basis |aL〉 with its spatial

reflection |aR〉. Let the superblock basis at the current iteration be denoted

∣
∣Ψbb

〉
=
∑

bL,bR

ψbL bR
|bL〉 ⊗ |bR〉 . (1.50)

In this notation, the wavefunction transformation above results in a superblock

wavefunction in the mixed basis

∣
∣Ψba

〉
=
∑

bL,aR

ψbL aR
|bL〉 ⊗ |aR〉 . (1.51)

To transform this to the required basis, a transformation operator is required,

∑

bR,aR

|bR〉TbR aR
〈aR| , (1.52)

that can be used to construct desired wavefunction
∣
∣Ψbb

〉
out of

∣
∣Ψba

〉
. Constructing

this operator requires more than just the mixed wavefunction
∣
∣Ψba

〉
and the wave-

function at the previous step, |Ψaa〉 is also required. The desired transformation,

Eq. (1.52) is the one that maximizes the overlap
〈
Ψba|Ψaa

〉
. The matrix elements

TbRaR
can be obtained directly by solving the maximization problem with the con-

straint that T is row- or column-orthogonal. This is done in full in appendix A, the

result being

Tb a =
∑

α

Ub αVaα (1.53)
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where U and V are obtained from the singular value decomposition of the quantity

ρaL bL
=
∑

aR
ψaL aR

ψbL aR
. This quantity looks similar to a density-matrix, although

that is only superficial, e.g. it is not in general a square matrix.

This transformation is rather complicated, requiring knowledge of the wavefunc-

tion at the symmetric point of the previous sweep and the calculation of a singular

value decomposition, in addition to the three transformation steps required for the

non-reflection symmetric case. However it is well worth the effort. In the experi-

ence of the author, without using this transformation the calculation of the ground

state wavefunction at the symmetric point takes roughly as long to calculate as the

total calculation time for the rest of the DMRG sweep put together, thus essen-

tially negating the advantages of using the reflection symmetry at all. With the

transformation, the initial guess vector is very good, although not quite so good

as the non-reflection-symmetric case. In addition to the loss of accuracy from the

truncation of the basis, there is an additional loss in accuracy because the previous

sweep will typically be not as well converged. A measure of this convergence is how

far the overlap
〈
Ψba|Ψaa

〉
deviates from unity.

As far as is known, this thesis is the first derivation and use of the symmetric

wavefunction transformation.

1.3.3 Basis state factorization

So far it has been assumed that the site basis used in the DMRG as exactly cor-

responds with a single site of the lattice model. There is no particular requirement

for this however. The only condition that is required is that the full Hilbert space

of the model can be written as a tensor product of subspaces,

|s1〉 ⊗ |s2〉 ⊗ · · · ⊗ |sL〉 . (1.54)

The obvious way to achieve this is to map a DMRG site onto a lattice site. However,

in some circumstances the lattice sites are factorizable. For example, the Hilbert

space of a single band of electrons is composed of tensor products of the four di-

mensional site basis |0〉, |↑〉, |↓〉, |↑↓〉. This four dimensional basis is factorizable

into the tensor product of two subspaces, U ⊗D, with

U = |0〉 ⊕ | ↑〉
D = |0〉 ⊕ | ↓〉 .

(1.55)

Thus it is possible, in this case, to map a single lattice site onto two DMRG sites.

The DMRG basis is then the tensor product of 2L ‘sites’, of alternating U and

D basis. The advantage of this procedure is that it halves the number of states
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in the tensor product basis when adding sites to the blocks. Since two sites are

added at each iteration, the effect is to reduce the dimension of the superblock

basis by a factor of four. Thus a saving of ∼ 42 in time required to diagonalize the

superblock is achieved, at the expense of having to do twice as many iterations per

sweep. Of course, for the same number of states kept this optimization would have

the effect of reducing the accuracy, as fewer states are considered in the superblock

diagonalization. But the performance increase allows more states to be kept for the

same amount of computation time, which leads to an overall increase in accuracy

per unit of computation.

This optimization has been used by the author, but not in the majority results

presented in this thesis. In the spin case, this optimization is superseded by the

SU(2) invariant non-Abelian DMRG method described in chapter 2. However, this

optimization still applies in the case of multi-band models, or where the single

lattice site basis can be factorized without violating any symmetry operators. In

particular, it would be possible to apply this to the Kondo lattice model (chapter 3),

to factor the single site basis into the tensor product of a conduction band site and

an f -spin site, even when using SO(4) symmetry. However the non-Abelian DMRG

algorithm is accurate enough that this was not necessary. Basis state factorization

was used in the calculations of the phase diagram of the periodic Anderson model,

described in section 3.8.

1.3.4 Minor optimizations

A small optimization that was used in the numerical calculations is to diagonal-

ize the left block Hamiltonian in the truncated basis. This is simply an additional

unitary transformation that can be combined with the truncation operator, so there

is very little overhead. The advantage is that the contribution to the superblock

Hamiltonian from the block Hamiltonians, HA⊗IB +IA⊗HB is then completely di-

agonal. These matrix elements are of the order of the ground state energy, typically

much larger in magnitude than the interaction terms. Thus this transformation

makes superblock Hamiltonian matrix more diagonally dominant and hence easier

to diagonalize. It is not a large effect though, the saving is around 10% - 30% of the

number of matrix-vector multiplies. This is small compared with the acceleration

due to other optimizations, but it still makes a noticeable improvement. As far as

we know, this thesis is the first use of this optimization.
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1.4 Variational Properties

This section is based around the work, starting with Östlund and Rommer [21],

with additional details by Rommer and Östlund [45], on the exact form of the

converged DMRG wavefunction. This is an important work, because from the form

of the wavefunction it is possible to obtain many properties, such as the nature of

the correlation functions. In addition, there are some systems, i.e. the so-called

“AKLT” models [46], in which the obtained form is in fact exact even when only a

single basis state is kept.

1.4.1 The matrix product ansatz

The easiest way to construct this form is to start with the infinite DMRG algo-

rithm. Using the notation of section 1.3.2, we write the truncation of the basis at

the nth step as

|αn〉 =
∑

s,αn−1

T (n)
αn;sαn−1

|s〉 ⊗ |αn−1〉 . (1.56)

It is assumed that the single site basis |s〉 is independent of the lattice position

n. Changing notation to use a form similar to that of [21], we set T n
αn;αn−1

[sn] ≡
T

(n)
αn;αn−1sn , where Tn[sn] is, for each fixed n and sn, an m ×m matrix. If the limit

n→ ∞ exists in Eq. (1.56), we have Tn[s] → T [s], so the basis |αn〉 can be written,

for large n, as

|αn〉 =
∑

β,s1,s2,...,sn

(T [sn]T [sn−1] · · ·T [s1])
αn α0 |sn sn−1 · · · s1〉 ⊗ |α0〉 . (1.57)

Here |α0〉 represents the initial state for the recurrence relation Eq. (1.56). This

leads to a natural ansatz for the form of the bulk wavefunction, as a matrix product

wavefunction [21, 46]. For each m×m matrix Q, let

|Q〉MP =
∑

{si}
Tr (QT [sn]T [sn−1] · · ·T [s1]) |sn sn−1 · · · s1〉 . (1.58)

The notation |Q〉MP denotes the matrix product state specified by the choice of Q.

Q specifies the boundary conditions on the state. In particular, the choice Q = I

corresponds to periodic boundary conditions. The cyclic invariance of the matrix

trace implies that the resulting state |I〉MP is translationally invariant. This is the

state that Östlund and Rommer used in their calculations [21].

The infinite-size DMRG algorithm provides a way of calculating the operator

T [s], however it is clear that this is not the only possibility. Indeed, the matrix

elements could be determined variationally, by a direct calculation of 〈 I |H | I 〉MP
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as a function of T [s]. This is the approach taken by Östlund and Rommer [21]. For

small values of m, there are enough conditions on the form of T [s] that there are

very few parameters to this calculation. For example, the projection given by T

should preserve the orthonormality of the basis, 〈α′|α〉 = δα′α. Using Eq. (1.56),

Östlund and Rommer demonstrated that the required condition on T [s] is

δα′,α =
∑

α′

n−1,αn−1,s′,s T
∗α′,β′

[s′]T α,β[s] 〈s|s〉 〈β ′|β〉
=

∑

s

(
T [s]T †[s]

)α′α
.

(1.59)

This condition drastically reduces the number of independent degrees of freedom in

T [s]. In addition, it follows from this relation, that |I〉MP is normalized, 〈 I | I 〉MP =

1.

In the calculation of Östlund and Rommer [21], the Heisenberg chain with bi-

linear and biquadratic interactions was studied. This model has the Hamiltonian

H =
∑

n

Sn · Sn+1 − β(Sn · Sn+1)
2 . (1.60)

For β = 1/3, this is the “AKLT” model, where the ground state is exactly solvable

as a matrix product wavefunction with m = 1 states kept. This Hamiltonian Eq.

(1.60) conserves total spin symmetry, which Östlund and Rommer used to obtain

further constraints on the matrix elements of T [s]. With all of the the constraints,

keeping m = 12 states involves only 8 free parameters, which is enough to solve

variationally without difficulty. The only use of the DMRG method was in deciding

how many states should be kept for each quantum number. However, this too could

easily be done variationally [21].

It is of interest to find out whether the matrix product state |I〉MP is an eigen-

state of parity P . Östlund and Rommer showed that a sufficient condition is that

there exists an invertible matrix QP such that

QPT [s] = p (T [s])T QP , (1.61)

where p = ±1. Then, by inserting QPQ
−1
P into the trace in Eq. (1.58) and com-

muting QP through each term to ultimately cancel with Q−1
P again, it can easily be

shown that P |I〉MP = pn|I〉MP . Östlund and Rommer also found the form of QP ,

Qαβ
P = p

∑

s,τ,ν

(
T T [s] ⊗ T [s]

)(αβ),(τν)
Qτν

P , (1.62)

showing that QP , if it exists, is the eigenmatrix of the operator
∑

s

(
T T [s] ⊗ T [s]

)

that has eigenvalue ±1. Although Östlund and Rommer did not prove that QP

always exists, they were able to construct the matrix in every case they examined.
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1.4.2 Expectation values and correlation functions

From Eq. (1.58), The expectation value of some operator X has the form

〈 I |X | I 〉MP =
∑

{sj}{s′j}
Tr(A∗[s′n] · · ·A∗[s′1])

×Tr(A[sn] · · ·A[s1])

×〈 s′n · · · s′1 |X | sn · · · s1 〉 .
(1.63)

Using the trace and matrix product identities Tr(A) Tr(B) = Tr(A⊗B) and (AB)⊗
(CD) = (A⊗ B)(C ⊗D), this becomes

〈 I |X | I 〉MP =
∑

{sj}{s′j}
Tr [(A∗[s′n] ⊗ A[sn]) · · · (A∗[s′1] ⊗ A[s1])]

×〈 s′n · · · s′1 |X | sn · · · s1 〉 .
(1.64)

Östlund and Rommer [21] showed that this can be further simplified by making use

of a “hat mapping”, from a single site matrix operator M to a m2 ×m2 matrix M̂ ,

defined by

M̂ =
∑

s′,s

Ms′sA
∗[s′] ⊗ A[s] . (1.65)

The spin-spin correlation function 〈 I |Sj · Sj+l | I 〉MP then takes on the form [21]

〈 I |Sj · Sj+1 | I 〉MP = Tr(În−2Ŝ · Ŝ)

〈 I |Sj · Sj+l | I 〉MP = Tr(În−l−1Ŝ · Î l−1Ŝ)
(1.66)

Thus the correlation length is determined by the eigenvalues of Î. In general, this

applies to any two point correlation function 〈Mx|My〉. Due to the property Eq.

(1.59), Î is guaranteed to have one eigenvalue equal to unity. Östlund and Rommer

[21] found numerically that all other eigenvalues have absolute value strictly less

than unity. It is not true however that this eigenvalue itself determines the nature of

the correlation function; if all of the rows ofMx and columns of My are orthogonal to

the eigenvector of 1̂ with eigenvalue 1, then this eigenvalue gives zero contribution to

the expectation value. In this case the relevant eigenvalue will have a value strictly

less than unity. The eigenvalue that determines the behavior of the correlation

function is the largest eigenvalue p (which depends on the number of states kept m)

such that the corresponding eigenvector has non-zero overlap with at least one row

of Mx and one column of My. Then, the long range properties of the correlation

function are

〈Mx|My〉 = a p−|x−y| . (1.67)

This implies that the correlation functions decay exponentially, with correlation

length

ξ = − 1

ln p
. (1.68)
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It would appear to be impossible to obtain algebraic correlation functions from the

matrix product ansatz (and therefore, by conjecture [21], in DMRG also). The only

situations where long range order appears is when the relevant eigenvalue of the 1̂

operator is p = 1, which corresponds to 〈Mx|My〉 tending to a finite constant as

|x − y| → ∞. It is important to note that this result refers to the correlations

inherent in the form of the wavefunction itself and has nothing to do with the way

that the correlation function is actually evaluated. In particular, this result should

also apply to e.g. Friedel oscillations and arbitrary n-point correlation functions.

This result is in apparent contradiction to some DMRG calculations, where good

results have been achieved in determining exponents of algebraic correlations (see,

for example reference [47]). In practice, at short-to-intermediate distances, the cor-

relations in a DMRG wavefunction for a gapless system do decay as approximately

algebraic functions. In principle, if enough states are kept that the exponential

correlation length due to the matrix product ansatz is very long, then it is con-

ceivably possible to observe algebraic decay of the correlations for small distances.

However, the situation is in fact rather better than this; the exponential decay of

the correlation functions only starts for distances |x−y| > k, where k is a threshold

distance that depends on the number of states kept m. This is shown in Fig. 1.6,

which illustrates the exponential decay of the spin-spin correlation functions for the

half-filled Hubbard model. We define

gm(r) = |〈S0Sr〉| , (1.69)

to be the envelope of the correlation function at a distance of r sites, for the ground

state with m states kept. Fig. 1.6 shows the quantity

ln

[
gm

g∞

]

, (1.70)

which should behave as −r/ξm, where ξm is the m-dependent correlation length.

However, Fig. 1.6 indicates that the correlation decays closer to

ln

[
gm

g∞

]

∼
{

0, if r < km

(km − r)/ξm, if r ≥ km

, (1.71)

where km is a threshold such that the correlation function decays exponentially only

for r ≥ km.

This curious behavior has been noted before [21,48], but the explanation remains

elusive. Very recently a possible line of progress in this issue was made by Osborne

and Neilsen [49], who have studied the correlations of the DMRG wavefunction

from a quantum information point of view. In DMRG, the choice of states kept



34 1. The Density-Matrix Renormalization-Group Algorithm

0 20 40 60 80
r

-0.4

-0.3

-0.2

-0.1

0

0.1

ln
[g

m
(r

)/
g ∞

(r
)]

m=80
m=60
m=40
m=20

Figure 1.6: Logarithm of the decay of the spin-spin correlation function for

the half-filled Hubbard model with m = 80,60,40 and 20 states kept, using the

SO(4)-invariant algorithm described in chapter 2. The correlation function

starts to decay exponentially only at distances r larger than an m-dependent

threshold.

via the density-matrix eigenvalues maximizes the overlap between the ground state

before and after the truncation, but it does not maximize the entanglement between

the left and right blocks. By instead taking a truncation operator that maximizes

the entanglement between the two blocks, Osborne and Neilsen et al. conjecture

that it is indeed possible to obtain algebraic correlations [49]. In view of the very

general result of the exponential decay of the matrix product wavefunction at long

distances, this conjecture would appear to be unlikely. In any event, it is highly

plausible that there is a direct relationship between the threshold of exponential

decay km and the entanglement of the wavefunction.

1.4.3 Relationship to the DMRG wavefunction

It was shown by Dukelsky et al. [50] that the the converged fixed point of

infinite-size DMRG algorithm does not exactly correspond with the matrix product

wavefunction and in particular the DMRG wavefunction is not exactly translation-

ally invariant. The origin of this difficulty is the fact that two bare sites are added

to the system at each step, so that each block has Nm degrees of freedom (where N

is the number of basis states per site), whereas in the matrix product method [21],
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there are only m degrees of freedom. This was interpreted in reference [50] as caus-

ing a shallow bound state to appear between the left and right halves of the system.

A solution to this, proposed in [50] and carried over to the finite-size DMRG algo-

rithm by Takasaki et al. [51], is to add a site to only the system block; no site is

added to the environment block. This means that the environment block has only

m degrees of freedom, thus as described previously (section 1.2), there will be at

most only m non-zero eigenvalues of the reduced density-matrix. In particular, for

each quantum number in the basis, the maximum number of states will be fixed.

However, once the DMRG iterations have begun to converge, the number of states

in each sector is fixed and the equality in Eq. (1.13) is satisfied. Thus, as long as

enough ordinary DMRG iterations are done to fix the quantum numbers of the basis

states, there is no reduction in the size of the basis when adding only one site at

each iteration. A difficulty of the single-site scheme is that the truncation error is

identically zero. The truncation error is typically used to obtain the scaling of the

ground state energy to zero truncation error, because the energy is usually linear in

the truncation error (with a small quadratic correction). But this cannot be done

for the single-site algorithm, so the scaling must be done using m directly. The

convergence issues are discussed further in section 1.6.

As a concrete example, table 1.1 shows some numerical data for the spin 1

Heisenberg chain, for the limit of small number of states kept. This shows the

ground state energy density in the large lattice size limit for the standard DMRG

and the modified DMRG with one site added per iteration (labeled e2 sites and e1 site

respectively). The final column is the truncation error associated with the standard

DMRG results. Also shown are energies calculated by the variational matrix prod-

uct method (labeled eMP) and some standard DMRG results from reference [50]

(labeled eDMRG JD). This table shows that when adding only a single site per it-

eration the energy density coincides with that of the matrix product method, to

the accuracy of the calculation. The standard DMRG results in column 3, from

reference [50], were intended to show that there is a significant accuracy advan-

tage in adding only a single site at each iteration. However, there is a quite large

disagreement between those DMRG results and that of the current thesis (column

5). After correspondence with one of the authors of this paper (T. Nishino), it has

become clear that the DMRG results in [50] are in error. The DMRG results were

obtained from an implementation of the Interaction-Round-a-Face (IRF) DMRG

algorithm [52] (further discussed in section 2.3.3). It was thought by the authors of

reference [50] that the algorithm used was equivalent to the standard DMRG algo-

rithm with additional symmetries, but this is not the case and the actual algorithm
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Table 1.1: Energy density of the spin 1 Heisenberg chain as a function of the

number of states kept. eMP JD and eDMRG JD are from reference [50]. The

exact energy density is e = −1.4014845 [53].

m eMP JD eDMRG JD e1 site e2 sites 1 − Pm

1 −1.333333 −1.333333 −1.3333333 −1.3333333 1.58×10−2

2 −1.399659 −1.369077 −1.3996590 −1.3996237 4.06×10−4

3 −1.401093 −1.392515 −1.4010933 −1.4010886 5.39×10−5

4 −1.401380 −1.401380 −1.4013806 −1.4013798 1.63×10−5

5 −1.401443 −1.401436 −1.4014447 −1.4014430 7.77×10−6

6 −1.401474 −1.401468 −1.4014757 −1.4014756 1.35×10−6

used corresponds to a different block structure†.

Although this thesis shows that the accuracy advantage of the single-site DMRG

is much smaller than that claimed by Dukelsky et al. [50], this does not completely

eliminate the advantages of single-site DMRG. In particular, the single-site DMRG

results in a wavefunction that is exactly translationally invariant. Figure 1.7 shows

the energy of each bond for the DMRG wavefunction with one and two sites added

per iteration. With the standard two-site algorithm, the wavefunction is far from

being translationally invariant, with a deformation at the center of the chain inter-

preted by Dukelsky et al. [50] as a shallow bound state, although the deformation

is several orders of magnitude smaller than was thought by Dukelsky et al. . With

the single-site DMRG, the bond energy is exactly translationally invariant and is

slightly lower (and hence better) than both the asymptotic and average bond energy

of the standard (two-site) DMRG wavefunction. In addition, there is a large perfor-

mance advantage to using a single added site, because the superblock Hamiltonian

matrix has a much lower dimension. Indeed, even for m = 2, the difference in bond

energy is rather small, so the improved performance is the main advantage of the

single block DMRG, at least for the Heisenberg spin chain. For larger values of m,

the bond energies given by the two algorithms converge rapidly.

Takasaki et al. [51] extended these results to the case of the finite-size algo-

rithm. This work shows that it is also advantageous to add just a single site per

iteration in the latter stages of the finite-size algorithm. When this is done, the

finite-size algorithm has some interesting properties. The only states eliminated

†This is not an essential flaw, in principle any block structure that can be used in standard

DMRG can also be used in IRF-DMRG.
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Figure 1.7: Bond energy 〈Si · Si+1〉 as a function of lattice position for the

DMRG wavefunction of the spin 1 Heisenberg chain with m = 2. The solid

line is the bond energy of the translationally invariant wavefunction from the

single block DMRG.

by the truncation have zero weight in the wavefunction, so the wavefunction is ex-

actly represented after the truncation. This makes the wavefunction transform, Eq.

(1.47) also exact. Because no states that have any weight in the wavefunction are

ever lost, the variational principle implies that the new states introduced at each

iteration can only ever reduce the energy. Thus the obtained ground state energy

must monotonically decrease over the course of the DMRG sweep. It is also shown

by Takasaki et al. [51] that the wavefunction converges to a fixed point that is in-

dependent of the position of the added site in the lattice. This is in sharp contrast

to the behavior of the standard DMRG algorithm, where there is a large position

dependence (further discussed in section 1.6.1). Again, the difference between prop-

erties calculated by the single-site variant and the standard finite-size algorithm goes

to zero as m is increased, making the single-site finite-size DMRG less useful when

a large number of states can be kept. However, similarly to the situation for the

infinite-size algorithm, the single-site finite-size DMRG variant is surely useful from

performance considerations alone. This has not been implemented for the main

results in this thesis however. Additional work needs to be done to fully implement

single-site DMRG. In particular, the convergence criteria discussed in section 1.6

would need substantial modification to work with this algorithm.
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1.5 Two-Dimensional DMRG

There are several ways that the DMRG algorithm can be extended to higher

dimensions. A conceptually simple approach is to replace a single DMRG site

with an entire row of lattice sites. In this way the DMRG iterations proceed by

sweeping across the 2D lattice from one side to the other, with one row being

shifted from the left block to the right block (or vice versa ) at each iteration.

This scheme was implemented by M. S. L. du Croo de Jongh et al. [54] for the

two-dimensional Ising model in a transverse field, for system sizes up to 30 × 6.

Because a single ‘DMRG site’ is an entire row of the real-space lattice, it is relatively

easy to make use of lattice symmetries. M. S. L. du Croo de Jongh et al. [54]

utilized translation symmetry of the lattice rows, as well as spatial reflection and spin

reflection. However the essential difficulty with this approach is that the dimension

of the Hilbert space of the row of lattice sites that is added to the block at each

iteration grows exponentially with the width of the row. For larger lattices this

technique rapidly becomes prohibitively expensive. There are techniques in DMRG

to deal with systems that have a large number of basis states per site, for example

the four-block algorithm developed by R. J. Bursill [55] and the local reduction

approach developed by C. Zhang et al. [17]. In the latter algorithm, only a small

number of the basis states of the site are used at a time. For example, suppose

that there are N basis states per site, but due to limited computational resources

only m states can be included at a time, with m � N . At the first iteration,

the wavefunction is obtained using only m states, chosen arbitrarily or perhaps

using some information from previous steps to guess which are the most likely

states. Then, m/2 say, of the highest weight states are kept and the other m/2 are

discarded. The next set of m/2 basis states are then included in the calculation

and the process repeats until all of the basis states have been used. The number

of iterations required is 2N/m− 1. Since N increases exponentially with the width

of the lattice, the amount of computation required will also increase exponentially,

hence only providing a minor improvement over the algorithm used in reference [54].

An alternative approach to extending DMRG to two dimensions is to add sin-

gle lattice sites to the system, while following a connected one-dimensional path

through the two-dimensional lattice. The original approach of S. Liang and H.

Pang [56] is to map the system into a one-dimensional chain via a horizontal ‘zip-

per’, shown in Fig. 1.8. In the DMRG calculations on the two-dimensional t − J

model in chapter 4, a slightly modified scheme was used, shown in Fig. 1.9, which

reduces the distance of the long-range interactions of the one-dimensional mapping,

at the expense of having fewer nearest-neighbor interactions. It is not possible to



1.5. Two-Dimensional DMRG 39

reflect the system block into an environment block of the proper geometry at each

iteration, thus the finite-size DMRG algorithm must be used. The difficulty is how

to construct the initial blocks for use in the finite-size algorithm. In principle, with

enough computational resources this does not matter, as the finite size algorithm

will converge to the ground state in the large m limit regardless of the initial state

of the system at the start of the finite sweeps. However the rate of convergence

definitely depends strongly on the initial condition, thus the way the initial blocks

are constructed is rather important in practice. In the work of Liang and Pang [56],

two schemes were tried for constructing the initial blocks. In the first scheme, they

performed infinite-size DMRG on a one-dimensional chain as usual, up to a size

Lx × Ly and then turned on additional couplings required to make the lattice two-

dimensional. In the second scheme, they calculated several low-lying eigenstates

of a one-dimensional chain of size Lx + 1 and used these states to prepare the en-

vironment block. Another approach was used by T. Xiang [13] in a momentum

space formulation of the two-dimensional Hubbard model. Because different lat-

tice sizes have different permissible k points, the lattice size needs to be fixed in

both directions before the calculation is started. Xiang used the Wilson numerical

renormalization-group to build the initial blocks for the calculation. This is roughly

equivalent to DMRG where there is no interaction between the left and right blocks.

In this case the eigenstates of the reduced density-matrix coincide with the eigen-

states of the block Hamiltonian. Noack and White [41] used an improved method

whereby the hybrid finite-infinite DMRG algorithm (see section 1.2.2) was used to

maintain the overall size of the system at a multiple of the row size of the lattice.

Thus the system grows by complete rows at a time, even though only two bare sites

are used at each iteration.

Unfortunately, the computational effort of this scheme is not significantly better

than the approach of adding a lattice row at a time. In particular, Liang and Pang

[56] found that the number of states required to achieve a given accuracy increases

exponentially with the lattice size. For the sample model of non-interacting spinless

fermions, they found that the required number of states scales as m ∝ αL, with α '
3.9. Generalizing this result to non-square lattices, they concluded that the required

number of states depends on the number of contact points (i.e. the length of the

interface) between the left and right blocks. The zipper configuration in Fig. 1.8

minimizes the number of contact points to Lx +1, independent of Ly. This matches

the general behavior of the row algorithm of du Croo de Jongh et al. [54], in that

the computational effort increases exponentially with the width of the system, but

is only polynomial in the length. This would appear to be a fundamental limitation
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Figure 1.8: A two-dimensional lattice is mapped to a one-dimensional chain

along the solid line. Interactions between nearest neighbor sites in the vertical

direction become long range interactions in the one-dimensional mapping.
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Figure 1.9: An alternative mapping that reduces the maximum distance of

the long-range interactions on the one-dimensional chain.

of DMRG when applied to two-dimensional systems. The wavefunction in a DMRG

calculation is inherently a one-dimensional matrix product, described by Eq. (1.58),

with correlations between sites decreasing exponentially as the distance between

the sites increases. In a one-dimensional system with short range interactions this

does not present a significant problem. However, a two-dimensional system, when

it is mapped onto a one-dimensional chain, contains long range interactions that

join sites at distances proportional to the lattice size. A truly two-dimensional

generalization of the matrix product wavefunction is possible, where the truncation
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operator T is represented by a higher rank tensor, with one index per nearest-

neighbor site. Higher dimensional generalizations is an active area of research (see

for example the two-dimensional tensor product formulation of Nishino et al. [57]),

however formulating a DMRG-like algorithm to calculate such a wavefunction would

seem to be a formidable problem. However, despite these difficulties it is possible to

treat two-dimensional systems of a somewhat larger size than is practical in an exact

diagonalization. With well-optimized software and fast computers, it is possible to

obtain reasonable results for modest size lattices.

Liang and Pang [56] found that the converged ground state was independent of

the method of constructing the blocks. However this is not true in general as it is

possible, if the number of states kept is too small, that the DMRG self-consistently

converges to an incorrect state. This is a much bigger problem in two-dimensional

calculations where it may not be possible to keep enough states to obtain a ground

state that is independent of the initial conditions. This is especially noticeable if the

ground state is not uniform, but has, e.g. a striped phase. This effect was noticed in

the two-dimensional t−J model with half-periodic, half-open boundary conditions,

by Scalapino and White [58] and also in the calculations done for this thesis [11]

(described in chapter 4).

Recently, Xiang et al. [12] suggested a modification of the usual ‘zipper’ map-

ping, proposing a scheme that allows a lattice of size L × L to be built from the

DMRG blocks used to construct an (L− 1) × (L− 1) lattice. This is an important

advance because the scheme can be applied iteratively to construct a good wave-

function for an arbitrarily large system, which can then be used as the initial state

for finite-size sweeps. While this paper came too late to apply this technique to the

two-dimensional DMRG calculations presented in chapter 4 of this thesis, it is well

worth some investigation; in particular the claim that the approach is significantly

more accurate than other two-dimensional DMRG algorithms in use [12]. The basic

idea is that the two-dimensional system is mapped onto a one-dimensional chain

with a diagonal mapping. In this way the system size can be increased while re-

using blocks from smaller lattice sizes. This is illustrated in Fig. 1.10, which shows

the initial block configuration up to size 3 × 3. These blocks can then be used to

construct a 4× 4 system as illustrated in Fig. 1.11. At the first step of each lattice

size, the two added sites are at diagonally opposite corners of the lattice. This is not

a major complication, however the wavefunction transformation Eq. (1.47) would

need appropriate modifications for this block structure.

After L − 2 iterations, the two added sites are adjacent and the DMRG iter-

ations proceed as usual. Xiang et al. [12] have tested the algorithm on the two-
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 2 x 2                                3 x 3                                     3 x 3

(a)                                   (b)                                         (c)

1           3                  1           3           4                   1          3           4

2           4                 2           5           8                  2            5          8

6          7          9                    6         7          9

Figure 1.10: The configuration used to construct a 3×3 lattice from the initial

2×2 lattice, figure 3 from reference [12]. The solid circles are the locations of

the bare DMRG sites. The numbers specify the order of the sites in the one-

dimensional mapping. (a) is the 2 × 2 lattice at the first iteration. (b) shows

how the 3 × 3 lattice is constructed from two 2 × 2 lattices. (c) shows how

the added sites are moved into the correct sequence in the one-dimensional

mapping.

dimensional spin 1/2 Heisenberg chain for lattice sizes up to 12× 12. Undoubtedly

the algorithm produces an excellent starting wavefunction for the finite-size iter-

ations once the final lattice size is reached, greatly accelerating the computation.

However, Xiang et al. [12] also claim that this algorithm gives significantly more

accurate results than the horizontal zipper scheme. This is supported by some cal-

culations of the ground state energy, which are reproduced in table 1.2. We only

give the results for square lattices here; the original paper also includes calculations

for diagonal lattices, but there seems to be no essential difference between the two as

far as the accuracy of the DMRG is concerned. This table shows that the energy per

bond obtained by the new algorithm is somewhat lower (and therefore better) than

the energy obtained by the horizontal zipper scheme. Moreover the table implies

that the improvement in energy grows substantially as the lattice size is increased.

This is surprising, because the accuracy of two-dimensional DMRG calculations is

expected to depend strongly on the length of the interface between the two blocks.

For the horizontal zipper, the length of this interface is a minimum, at L+1 bonds.

On the other hand, the diagonal zipper has up to 2L bonds connecting the two

blocks. Once the calculation has converged, the ground state energy should be de-

termined only by the configuration of the blocks, ceteris paribis and not on the the

method used to construct the initial state. The method used to construct the L×L
lattice should have no effect on the final accuracy, as long as the calculation has

properly converged. Thus any real improvement in accuracy must arise from the
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form of the mapping onto the one-dimensional chain.

(a)                                                    (b)

1           3          4         10                  1          3           4          10

2           5          9         11                   2          5          9         11

6           8        12        15                    6         8        12       15

7         13        14        16                    7         13        14       16

Figure 1.11: The configuration used to construct a 4×4 lattice from the 3×3

lattice, figure 4 from reference [12].

The DMRG algorithm used in reference [12] appears to be, apart from the mod-

ified mapping onto the one-dimensional chain, equivalent to the DMRG algorithm

used in this thesis, i.e. with the same number of states kept essentially identical

results are obtained. This alternative mapping is a rather simple modification to

make, thus we have calculated, using the author’s DMRG program, the ground state

energy per bond for the horizontal and diagonal zipper algorithms, as well for the

modified horizontal zipper shown in figure 1.9. By an extrapolation of the energy

from between 400 and 500 states kept, an estimate of the true energy per bond has

also been obtained (the methodology for this extrapolation is described in section

1.6). This data appears in table 1.3. The modified horizontal zipper gives results

which are uniformly better than the standard horizontal zipper scheme, but the dif-

ferences so small that it was not worth including the results in table 1.3, therefore

only the energies produced by diagonal and horizontal algorithms are shown. The

fractional error in the energy per bond in table 1.3 shows that there is a noticeable

improvement in the diagonal zipper scheme, but the actual improvement is rather

small. By measuring the difference between the energies of the diagonal and hori-

zontal zipper algorithms without any comparison to the true ground state energy,

the data in table 1.2 incorrectly suggests that the accuracy of the diagonal zipper

compared with the horizontal zipper, increases as the lattice size is increased. In

fact, the improvement in the relative error in the energy appears to be essentially

independent of the lattice size and amounts to around one binary digit or less of

accuracy.
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Table 1.2: Comparison of the ground state energy per bond for the Heisenberg

model on a square lattice of size L2 and open boundary conditions, from

reference [12]. Ed is the energy obtained by the diagonal mapping onto a 1D

chain used in the new algorithm of Xiang [12] and Eh is the energy obtained

from the conventional horizontal mapping.

L m Ed Eh
Eh−Ed

|Eh|

6 50 −0.361972 −0.361919 1.5×10−4

8 50 −0.352040 −0.351149 2.6×10−3

10 50 −0.344292 −0.341389 8.4×10−2

12 50 −0.337374 −0.332574 1.4×10−2

6 100 −0.362096 −0.362089 1.9×10−5

8 100 −0.353213 −0.353057 4.3×10−4

10 100 −0.347043 −0.345771 1.3×10−3

12 100 −0.341588 −0.338833 8.0×10−3
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Table 1.3: Energy per bond of the 2D Heisenberg model calculated using the

author’s DMRG program. Eg is an estimate of the true ground state energy

per bond, extrapolated to m → ∞. Not enough results were calculated for

the 12×12 diagonal mapping to be able to perform the extrapolation for that

case.

Diagonal mapping Horizontal mapping

L m Ed
Ed−Eg

|Eg| Eh
Eh−Eg

|Eg |

6 50 −0.361972476 3.8×10−4 −0.361917718 5.4×10−4

100 −0.362096242 4.7×10−5 −0.362088528 6.8×10−5

500 −0.362113079 6.1×10−8 −0.362113056 1.2×10−7

∞ −0.362113101 − −0.362113100 −
8 50 −0.352042 4.7×10−3 −0.351147 7.3×10−3

100 −0.353213 1.5×10−3 −0.353059 2.0×10−3

500 −0.353720 4.5×10−5 −0.353719 4.9×10−5

∞ −0.353736 − −0.353737 −
10 50 −0.34430 1.4×10−2 −0.34129 2.3×10−2

100 −0.34705 6.3×10−3 −0.34576 1.0×10−2

500 −0.34902 6.3×10−4 −0.34898 7.5×10−4

∞ −0.34925 − −0.34924 −
12 50 −0.3374 2.5×10−2 −0.3335 3.7×10−2

100 −0.3416 1.1×10−2 −0.3388 2.1×10−2

500 −0.3456 1.9×10−3 −0.3452 3.0×10−3

∞ − − −0.3462 −



46 1. The Density-Matrix Renormalization-Group Algorithm

1.6 Convergence

The DMRG algorithm is, like most numerical calculations, subject to both ran-

dom and systematic errors. The systematic errors are errors that affect the quan-

tities in predictable ways. The error caused by the truncation of the block states

falls into this category, at least for some quantities such as the energy. This er-

ror can be compensated for by calculating the scaling of E(m), the ground state

energy as a function of the number of states kept, as m → ∞. Random errors

arise from sources of error which are too hard to systematically compensate for, due

to intrinsic limitations (such as hardware limitations on precision) or algorithmic

truncation, whereby a convergence criteria is used to stop an iterative solver once

some predetermined accuracy has been achieved. In the latter case, the magnitude

of the error is usually controllable, by modifying the convergence criteria for more

or less accuracy of the final result. Examples of random error in the DMRG algo-

rithm are the accuracy of the superblock diagonalization and numerical errors in

the density-matrix diagonalization. In the case of random errors, the best that can

be hoped for is to calculate some reasonable bounds on the magnitude of the error.

This section starts with a discussion of the random and systematic errors that occur

in DMRG, leading to a discussion of the convergence criteria used in this thesis,

both for the superblock ground state eigensolver and the convergence of the DMRG

sweeps themselves. The usual approach, in a small DMRG calculation, is to fix the

number of states m at each sweep from the outset. However, for calculating accu-

rate ground state energies across a significant parameter range, with many separate

DMRG runs, this is far from optimal. If the number of sweeps used is not enough

to obtain a converged energy, the run needs to be repeated with a larger number

of states. This requires a manual inspection of the energy of each sweep to check

the convergence, for every DMRG run. On the other hand, if a conservatively large

number of sweeps is used to ensure convergence a lot of CPU time will be wasted

if the energy converges quickly for some parameter values. For example, in the

studies on the Kondo lattice model, Fig. 3.4 in chapter 3, summarizes the result of

450 DMRG runs alone, the entire study comprises many thousands of DMRG runs.

In the Kondo lattice study, much time was wasted in the early months following

misleading paths suggested by DMRG calculations that later turned out to have

insufficient accuracy or were simply not properly converged.

It is of interest to know how fast the calculation is expected to converge for

a particular error bound. In the case of DMRG this is primarily determined by

the rate of decay of the reduced density-matrix eigenvalues. In extreme cases, for

example the AKLT model, only one state needs to be kept to obtain the exact
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ground state. In a more typical one-dimensional calculation, an exact result is not

possible but the reduced density-matrix eigenvalues decay exponentially fast, such

that extremely small truncation errors are obtained, while keeping a reasonable

number of states in the basis. In the case of a two-dimensional model, the behavior

is typically more pathological, with the truncation error for a fixed number of states

depending strongly on the size of the lattice.

1.6.1 Random errors

The energy as a function of iteration number can vary considerably in the finite

DMRG method. In the early days of DMRG this was a cause for concern, however

it turns out that the variation in energy across a sweep is rather small compared

with the energy variance caused by the truncation of the basis. Figure 1.12 shows

the ground state energy for seven complete DMRG sweeps for the Kondo lattice.

This form of energy variation is typical of a DMRG calculation. Each sweep uses

300 states kept, using the SO(4) algorithm described in chapter 2. There are two

obvious sources of error displayed in this figure. Most striking is the variation in

energy across the sweep, the standard deviation of the energy† being σE = 2.1×10−7.

Also, the average energy across the sweep is itself decreasing, probably exponentially.

The approach used in this thesis is to define E(m) to be the average energy across

the sweep and treat the variance in energy as a random error. Since DMRG is a

variational method, it would also be valid to take the minimum energy of the sweep,

however as will be seen later, such a choice has no effect on the overall calculation

once all errors are taken into account.

The second source of error shown in Fig. 1.12 is lack of convergence of the

DMRG sweeps themselves. Over the seven sweeps, the average energy of the sweep

decreases ∼ 10−6, with only a slow leveling out. There are several ways to measure

the energy difference between two successive sweeps. Perhaps the simplest measure

is the difference between the average energies of two successive sweeps. However,

this is prone to false positives, where the average energy happens to nearly coincide

even though the iterations are not near to convergence. This was the cause of several

failed runs, where by chance the automatic convergence criteria was met, but visual

inspection of the energy revealed the calculation was far from convergence. Once

the DMRG sweeps have converged the energy at each iteration should match closely

the energy at the equivalent iteration of the previous sweep, to very high accuracy.

†This number also includes a contribution from the tolerance of the eigensolver, which is also

of order 10−7. This is a rather conservative estimate however, the true error attributable to the

eigensolver is probably much less than this.
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0 1 2 3 4 5 6 7
−169.7300485

−169.7300480

−169.7300475

−169.7300470

−169.7300465

E

Figure 1.12: Energy at each iteration, for 7 complete DMRG sweeps of the

Kondo Lattice model, 80 site lattice with electron density n = 0.8 coupling

J/t = 2.9 and 300 states kept.

To take this into account an improved measure of the difference in energy between

two sweeps was used, which we call the sweep correlation error,

σS =

(∑

i (Ei − E ′
i)

2

N

)1/2

. (1.72)

Here Ei and E ′
i are the energies at the ith step of two successive DMRG sweeps. For

the data in Fig. 1.12 the correlation error decreases from 2.9×10−7, between the first

two sweeps shown, to 1.6× 10−7 between the last two sweeps. This is very close to

the difference between the average energy of the last two sweeps, which is 1.33×10−7.

Indeed, for perfect correlation between two sweeps, the sweep correlation error will

be exactly equal to the energy difference. Assuming that the average energy of

the sweep converges to the fixed point exponentially, the deviation in energy from

the fixed point will be proportional to the energy difference and hence also to the

correlation error. For the example in Fig. 1.12, an exponential fit to the average

energy gives the fixed point at −169.73004881. The difference between the average

energy at the final sweep in Fig. 1.12 and the extrapolated fixed point is 8.5× 10−7,

around 5 times larger than the sweep correlation error.

One can conceive a convergence criteria based on performing an exponential fit

to the average sweep energy and stopping when the error of the fit is smaller than

some pre-determined tolerance. However this is a rather complex procedure and
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it would probably take some effort to make a robust convergence criteria, without

wasting CPU cycles, based on the direct fit. Instead, in this thesis we make use

of the fact that the sweep correlation error will be proportional to the difference

between the average energy of the current sweep and the extrapolated fitted energy.

By checking the sweep correlation error directly against the given tolerance, we

obtain a much simpler convergence criteria, which should give similar results. This

is at the expense of the tolerance having a small model dependent (and parameter

dependent) component, which has to be determined heuristically. The tolerance of

choice is given by the error in the average sweep energy σE. Thus, the convergence

criteria used can be summarized as stop when

σS ≤ const · σE , (1.73)

where the constant is an estimate of the exponential decay in the fit. For the data

presented in Fig. 1.12, the ideal constant would be 1/5, making the contribution to

the error from the fit equal to the contribution of the error in the average sweep en-

ergy. Very good results are also achieved with a somewhat looser tolerance however.

For most of the results presented in this thesis a constant of 0.5 − 1.0 was found

to be adequate; this is a trade-off between accuracy and the number of sweeps that

need to be performed.

1.6.2 Systematic errors

As we have seen, the truncation of the operators in DMRG introduces a sys-

tematic error into the wavefunction that causes a deviation from the exact energy.

Since this effect is dependent upon m, there is hope that the systematic error can

be eliminated by a suitable scaling to m→ ∞.

We write the wavefunction at step i of the finite algorithm as a linear combination

of the component of the wavefunction that is kept, |κi〉 and the truncated part

|τi〉. The mix of the two states is given by the sum of the reduced density matrix

eigenvalues at step i, P i
m.

|ψi〉 =
√

P i
m|κi〉 +

√

1 − P i
m|τi〉 . (1.74)

The weight of the discarded states at each step is just the truncation error (1−P i
m).

Thus it is natural to expect that the difference between the exact energy and the

energy obtained by the DMRG will be proportional to the cumulative truncation

error 1−Pm =
∑

i(1−P i
m) over the sweep†. This has become a standard calculation

†It is usual in the literature to quote a ‘typical’ truncation error at one particular iteration,

rather than the cumulative truncation error over an entire sweep. There is little justification for

this however.
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in finite-size DMRG. It has also been noted in the literature that there is a small

quadratic dependence on the truncation error, so that a better fit is obtained by

E(m) = E0 + αRm + βR2
m , (1.75)

where E0 is the exact energy and α and β are parameters of the fit. For convenience,

we write Rm = 1 − Pm. In most calculations, β is small enough that, to the

accuracy of the overall calculation, it can be neglected. Indeed, it is possible that the

quadratic dependence is a numerical artifact, due to the tendency for the calculation

to take longer to converge when more states are kept; this is still an open question.

The fit parameters are also highly model and parameter dependent. In general, it is

only possible to attempt the fit Eq. (1.75) when the energy is calculated for several

different values of m while all other parameters are kept fixed. Legeza and Fáth [59]

showed that as the parameters of a model are varied, the magnitude of the error in

the energy can change considerably even if the truncation error changes very little

and vice versa. A typical scaling of the error to m → ∞ appears in Fig. 1.13. The

number of states kept m is, from left to right, 400, 380, 360, 340, 320. This example

is taken from the Kondo lattice model calculations discussed in detail in chapter 3

of this thesis; only the numerical convergence features are discussed in this section.

The parameters in this case are 60 site lattice, electron density per site n = 0.8,

total spin s = 0†, Kondo coupling J = 1.65 and electron hopping t = 1. The

extrapolated energy is shown for both the linear and quadratic fit. The difference

between the linear and quadratic fit is rather small, of the order ∼ 6 × 10−7, but

this is still statistically significant.

An alternative measure of the deviation from the exact result is given by the

difference in energy before and after the truncation of the wavefunction. As far as

we know, this quantity has not been studied outside of this thesis. The truncated

energy at step i of the sweep is defined by

Ei
t = (1 − Ri

m) 〈κi|H|κi〉 − 〈ψi|H|ψi〉 . (1.76)

Expanding |ψi〉 into the kept and truncated parts gives

Ei
t(m) = −Ri

m〈τi|H|τi〉 − 2
√

Ri
m(1 −Ri

m) |〈κi|H|τi〉| . (1.77)

This is linear in the truncation error Ri
m to an extremely high accuracy. The devi-

ation from linearity from the
√

Ri
m(1 − Ri

m) factor is reduced significantly because

the off-diagonal matrix element of the Hamiltonian, 〈κi|H|τi〉 will itself be very

†This is in fact an excited state, the ground state at this coupling being ferromagnetic with

total spin s = 6. But this is unimportant for the convergence properties of the calculation.
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Figure 1.13: The energy as a function of the truncation error for a typical

calculation for the Kondo lattice model, at filling n = 0.8 and coupling J =

1.65, t = 1.

small. Thus the cumulative truncated energy is also a suitable candidate for con-

structing the fit to m → ∞. The advantage of the truncated energy over the

standard truncation error, is that for all cases we have looked at, the coefficient of

the linear term is very close to unity, i.e.

E(m) = E0 + Et(m) + β ′Et(m)2 . (1.78)

If Eq. (1.78) were to hold exactly, this would be an extremely useful result because

it would imply that E(m)−Et(m) is a variational upper bound on the exact energy.

Figure 1.14 shows E(m)−Et(m) as a function of Et(m), for the Kondo Lattice with

the same parameters as in Fig. 1.13. Of particular interest is the vertical scale

in this figure. The worst data point, with 320 states kept, is within 1.5 × 10−6

of the extrapolated exact energy, an order of magnitude better than in Fig. 1.13.

Unfortunately, we have not been able to prove Eq. (1.78). By assuming that the

DMRG iterations have converged to the point where the kept component of the

wavefunction |κi〉 is identical for every iteration across the sweep†, |κi〉 = |κ〉∀i, it

is possible to construct a variational wavefunction as a linear combination of |κ〉
and |τi〉,

|Ψ〉 = a|κ〉 +
∑

i

bi|τi〉 . (1.79)

†This is unlikely to be true, to the necessary accuracy.
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Figure 1.14: The hypothesized energy variational bound as a function of the

truncated energy, for the Kondo lattice model, at filling n = 0.8 and coupling

J = 1.65, t = 1.

Here a and bi are variational parameters. As a first step to calculating the energy

of this state, an approximation is required to eliminate some matrix elements that

are expected to be small and would be very difficult to calculate from within the

DMRG algorithm,

〈τi|H|τj〉 = 0 , if i 6= j . (1.80)

These matrix elements would be extremely difficult to calculate because normally

|τi〉 and |τj〉 never exist in the same basis. By definition, |τi〉 is a member of

the subspace that is thrown away at the end of the ith iteration. Transforming

the subspace of truncated states for later iterations would require an exponentially

increasing number of basis states. Since these terms will be small and in addition

the coefficient of this matrix element in the energy of the state would be of order of

the truncation error Rm, this approximation is well justified. If we require that the

energy of this state can be calculated from only the truncated energy E i
t(m) and

the energy of the converged state, Eκ = 〈κ|H|κ〉, enough constraints on a and bi

appear that the energy can be calculated. Unfortunately, the resulting variational

energy is not a lower bound, but has an additional factor of (1 − Rm),

EΨ = (1 − Rm)(Eκ − Et(m)) . (1.81)

This energy is higher than Eκ, so this trial wavefunction is not useful.
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An alternative approach is to calculate more matrix elements. The remaining

matrix elements are very easy to calculate with DMRG,

ci = 〈κ|H|τi〉 , (1.82)

di = 〈τi|H|τi〉 . (1.83)

This allows the construction of an eigenvalue sub-problem, where the form of the

matrix is









Eκ c1 c2 c3 · · ·
c∗1 d1 0 0

c∗2 0 d2 0

c∗3 0 0 d3
...

. . .










. (1.84)

If the original assumption on the nature of the converged wavefunction |κ〉 is correct,

the lowest eigenvalue of this matrix is a variational upper bound on the energy and

indeed is the best variational bound that could be calculated without calculating

additional matrix elements. This matrix has been solved numerically for some

sample cases; the lowest eigenvalue is always less than the usual DMRG variational

bound thus it is a potentially useful measure. However in all the cases we have looked

at the eigenvalue is somewhat larger than Eκ−Et, so this variational state is not the

one that was sought. This suggests that either the numerically determined scaling

relation of Eq. (1.78) is an unfortunate coincidence of the particular models and

DMRG algorithm that have been studied, or that the assumption of the convergence

of |κ〉 is not justified.

In early sweeps where few states are kept and the wavefunction is not well

converged, there is little reason to calculate the superblock eigenvector to more ac-

curacy than is given by the truncated energy. Indeed, it is possible that calculating

the eigenvector to a high precision in the early sweeps exacerbates the tendency of

DMRG to self-consistently converge to an incorrect state. In this case, reducing

the tolerance of the eigensolver is likely to lead to the DMRG state having a larger

overlap with the true ground state and thus better convergence properties in the

later stages of the calculation. In any event, when a fixed tolerance for the eigen-

solver is used, the bulk of the CPU time is spent when the number of states kept

is small, primarily because the accuracy of the start vector, transformed from the

previous step using the procedure described in section 1.3.2, is not as good when

the truncation error is large. There is little point calculating an extremely precise

eigenstate when most of the precision is lost at the truncation. Thus, we set the tol-

erance of the eigensolver at step i directly from the truncated energy of the previous
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step, Ei−1
t . When the number of states is increased in a steady fashion, this scheme

results in roughly a constant number of iterations of the eigensolver, substantially

independent of the number of states kept. In some circumstances however, the num-

ber of iterations required by the eigensolver fluctuates significantly. We interpret

this as the DMRG “tunneling” between two competing low-lying states, which cross

in energy as m is increased. This interpretation is supported by the typically large

number of energy level crossings observed in the lowest energy states of different

symmetry sectors, even away from a phase transition. This is shown, for example,

in Fig. 3.19, Fig. 3.20 and Fig. 3.21 in chapter 3. There are also known limitations

of the Davidson and Jacobi-Davidson eigensolver algorithms, where for some spe-

cific circumstances the convergence of the eigenvector is extremely slow. However

improvements to the algorithm to combat these problems are possible [60–62] and

this is an active area if research in numerical mathematics. The particular struc-

ture of the superblock Hamiltonian matrix in DMRG suggests that a variant of the

Jacobi-Davidson algorithm specifically tailored for this structure might be possible,

although as far as we know there has not yet been any work on eigensolvers that is

specific to DMRG†.

For the single-site DMRG algorithm discussed in section 1.4, the truncation error

and truncated energy are identically zero. Hence an alternate scaling relation would

need to be developed for this case.

1.6.3 Scaling of density-matrix eigenvalues

The accuracy of the DMRG method for a given number of states kept is deter-

mined by the rate of decay of the density-matrix eigenvalues. Early DMRG calcula-

tions on one-dimensional systems suggested that these eigenvalues decay exponen-

tially [43], although it wasn’t until several years later that this was demonstrated

by the explicit calculation of the density-matrix spectra for some non-critical inte-

grable models, by Peschel, Kaulke and Legeza [65]. The procedure for calculating

the density matrix spectra starts by relating the quantum system to the correspond-

ing two-dimensional classical system. Nishino [66] showed that the density matrices

then become partition functions of strips with a cut and these can, in turn, be

expressed as products of corner transfer matrices [67]. For integrable models, the

spectra of the corner transfer matrices is known in the thermodynamic limit to have

the form wn ∼ exp(−αn), with integer n. Provided that the correlation length ξ is

much smaller than the strip width or chain length L, the same should hold for the

†Details of the Lanczos algorithm have been used to facilitate the calculation of dynamical

properties [63, 64], but this is unrelated to convergence.
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reduced density-matrix eigenvalues ρn.

For a two-dimensional system, numerous studies have found that the number of

states m needed to maintain a fixed accuracy grows exponentially with the width

of the system [54, 56]. In reference [56], this behavior was derived explicitly from

the behavior of non-interacting chains. Consider a toy model of M one-dimensional

chains, forming a ladder of width M , in the limit of small interaction between each

chain. The basis for this system can be written simply as a tensor product of the

basis for each chain. If m states are needed to obtain the desired accuracy for a

single chain, the basis for M chains has dimension mM . This result was put on a

firmer footing by Chung and Peschel [68], who obtained the exact density-matrix

spectra for a two-dimensional system of coupled harmonic oscillators. This system

is integrable in any number of dimensions, allowing the direct calculation of the

reduced density matrices as an exponential in the bosonic operators of the normal

coordinates of the system. This calculation gives a lot of insight into the behavior

of the DMRG algorithm in both one and two dimensions, so it is worth outlining

some of their calculation. The Hamiltonian studied by Chung and Peschel [68] was

H =
1

2

∑

i

(− ∂2

∂u2
i

+ ω2
0u

2
i ) +

∑

i,j

1

2
kij(ui − uj)

2 , (1.85)

where ui is the coordinate of the ith oscillator and w0 its frequency. The masses are

all equal to unity and the oscillators are coupled by springs of strength kij. This

is immediately solvable by a transformation to the normal coordinates, giving the

form of the solution (written here in the original coordinates),

φ(u1, u2, . . .) = exp

[

−1

2

∑

i,j

Aijuiuj

]

. (1.86)

The total density-matrix is then |φ〉〈φ|. By integrating out part of the coordinates,

the reduced density-matrix is obtained,

ρ = C exp

[

−
∑

j

εjb
†
jbj

]

, (1.87)

for bosonic operators b†j and bj. The summation j is over all kept sites. The energies

εj are derived from the Aij matrix. It was shown by Peschel and Chung [69] that

for a chain with nearest-neighbor coupling k and oscillator frequency ω0 = 1 − k,

the εj for half of the system in the thermodynamic limit are given by

εj = (2j − 1) ε, j = 1, 2, . . . , (1.88)
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where

ε = π
I(
√

1 − k2)

I(k)
. (1.89)

Here I(k) is the complete elliptic integral of the first kind. This result is also valid

for finite systems, provided that the size is large compared with the correlation

length.

Next, Chung and Peschel [68] repeated this analysis for a two-dimensional square

lattice of oscillators with nearest-neighbor couplings kx and ky. This can be reduced

to a one-dimensional problem by transforming the columns to normal coordinates.

The corresponding normal frequencies are

ω(q)2 = ω2
0 + 2ky(1 − cos q) (1.90)

where the vertical momenta q for open boundary conditions and M sites is given

by q = πx/M , for x = 1, 2, · · · , (M − 1).

If the columns are then coupled, the different momenta do not mix, thus for each

value of q, a horizontal chain of the form Eq. (1.85) results, where the oscillator

frequency is ω(q) and the coupling is kx. This gives the energies similarly to Eq.

(1.88) and Eq. (1.89), as

εj(q) = (2j − 1) ε(q), j = 1, 2, . . . , (1.91)

with

ε(q) = π
I(
√

1 − k(q)2)

I(k(q))
, (1.92)

k(q) =
kx

kx + ω(q)
. (1.93)

This gives an analytic expression for the spectrum. The actual eigenvalues ρn of

the reduced density-matrix are obtained by specifying the occupation numbers of

the bosonic single particle levels εj(q). From the resulting spectra, Chung and

Peschel [68] derived an asymptotic formula,

ρn ∼ exp

[

− 3

2π2
λ ln2 n

]

, (1.94)

where λ is a parameter that is inversely proportional to the width M of the system,

λ =
2 ε(q = 0)

M
. (1.95)

Thus the 1/M behavior of the exponent is verified. The actual eigenvalues for the

case kx = ky = 1, for a variety of widths M are shown in Fig. 1.15, reproduced
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from reference [68]. It is clear from this figure that the accuracy of the numerical

calculation inevitably decreases rapidly as the system size is increased. Increasing

the strength of the interaction helps to some extent, as the energies ε (and therefore

λ) increase with ky, but this does not remove the essential 1/M dependence in the

exponent.
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Figure 1.15: Density matrix eigenvalues wn for systems of different widths

M . Originally figure 3 from reference [68]

The calculation of Chung and Peschel [68] also provides some insight into the

accuracy of periodic boundary conditions versus open boundary conditions. The

loss of accuracy when periodic boundary conditions are used was noted early [70]

and can be seen explicitly in the calculation of Chung and Peschel [68]. For periodic

boundary conditions, both the left and the right boundaries of each block contain

interactions with the other block. If the density-matrix is calculated for such a half-

ring, for small energies εj the same values appear as in the open boundary case, but

each value appears twice. The reason for this is the form of the eigenstates of the

density-matrix, which for small εj are concentrated near the boundary of the left

and right blocks. The two sets of reduced density-matrix states, each approximately

localized at the point of contact with the opposite block, are approximately inde-

pendent for small εj. Thus the situation is similar to that of a ladder of two weakly

coupled chains, where O(m2) states are required to achieve the same accuracy as

that of a single chain with m states kept.

Recently, another calculation by Chung and Peschel [71] obtained exact density-



58 1. The Density-Matrix Renormalization-Group Algorithm

matrix spectra for a system of non-interacting fermions, with a gapless excitation

spectrum. The results were similar to the previous results for the bosonic system of

coupled oscillators, although in the gapless case the density-matrix eigenvalues decay

even slower, but only by a constant factor. In this work, Chung and Peschel [71]

also investigated the reduced density-matrix spectra for different shapes of blocks,

including the diagonal mapping used in the two-dimensional algorithm of Xiang

et al. [12] and found no essential difference between any block structure.

To confirm these results for the density-matrix spectra for the DMRG program

used in this thesis, the density-matrix spectra for the one-dimensional Hubbard

model at half filling have been calculated, with both open and periodic boundary

conditions. This is shown in Fig. 1.16. Except for the tail for very large n, the

eigenvalues follow closely ρn ∝ exp(−αn1/3). This is in general agreement with the

results of Peschel et al. [65], who considered both the anisotropic XXZ Heisenberg

spin chain and the Ising model in a transverse field. Interestingly, the rapidly

decreasing tail for large n shown in Fig. 1.16 also appears in finite-size corner transfer

matrix spectra [72, 73], however this feature was not seen by Peschel et al. [65].

Rather, they found a tail that tends in the opposite fashion, such that the last few

eigenvalues decrease in magnitude slower than exponential†.

Finally, we note that the potential for two-dimensional momentum space cal-

culations remains mostly un-investigated‡. The calculation by Xiang on the two-

dimensional Hubbard model [13] produced mixed results, however in the 5 years

since that calculation, several optimizations to the DMRG algorithm have been de-

vised (cf. section 1.3) and a more recent algorithm could produce somewhat better

accuracies. While it seems likely that in one dimension, momentum space DMRG is

less accurate than real-space calculations, this does not mean that the asymptotic

behavior for two-dimensional systems is necessarily worse in momentum space than

real-space. In addition, momentum space calculations have the advantage that al-

†This data is close to the limit of the precision so this result may not be significant; in principle

it should be possible to calculate the density-matrix eigenvalues to around the square of the

machine precision (around 10−30), since the values of the wavefunction vector are of order
√

ρn

but actually achieving this precision would require special effort which is pointless in practice

as density-matrix eigenvalues smaller than the machine precision (around 10−15) have negligible

effect on the calculation.
‡During the final stages of preparing this thesis, a preprint by Nishimoto et al. [14] appeared,

detailing (Abelian) momentum-space calculations for the one- and two-dimensional Hubbard mod-

els. While they show that momentum-space calculations in one-dimension are less accurate than

real-space, even with periodic boundary conditions, the results are more promising for higher di-

mensions, where unlike real-space calculations, the accuracy of momentum-space calculations does

not dramatically decrease as the dimension of the lattice is increased.



1.6. Convergence 59

0 200 400 600 800
n

−20

−15

−10

−5

0

lo
g 1

0(
ρ n

)

periodic
open

Figure 1.16: The density-matrix spectra for the one-dimensional Hubbard

model at half-filling, U/t = 1 and 200 states kept, for open and periodic

boundary conditions.

ternative boundary conditions, e.g. periodic or anti-periodic, are easy to apply and

do not involve the dramatic loss of accuracy of open vs periodic boundary condi-

tions in real-space calculations. Given that all DMRG algorithms based around the

one-dimensional matrix product state (cf. section 1.4) probably inevitably require

an exponential number of states kept in a two-dimensional calculation, the lattice

sizes are extremely limited no matter what choice of basis is used. In these cir-

cumstances, where the system sizes are not significantly larger than what could be

achieved with exact diagonalization, it is generally far preferable to use periodic

boundary conditions.
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Chapter 2

The non-Abelian Density-Matrix

Renormalization-Group

For physical reasons, as well as numerical, it would be useful to be able to con-

struct block states that are eigenstates of the total spin operator, S ·S. In principle,

this can be done for all Hamiltonians that commute with the operators Sz, Sy, Sz.

Using eigenstates of Sz only, the Hilbert space of some given jz state contains total

spin states for all values of j = jz, jz + 1, jz + 2, . . .. This makes it difficult to

calculate any properties in the vicinity of a ferromagnetic phase transition, because

whenever states of different total spin are numerically near-degenerate, the DMRG

wavefunction will end up as a mixture of states. This can make first order phase

transitions appear to be second order. It is also very difficult to calculate the energy

increase from a ferromagnetic ground state to an excited state of smaller spin, as

targeting a smaller value of jz will result in a degenerate copy of the ferromagnetic

ground state. A work around is to add a term λS2 to the Hamiltonian, where λ

is some scale factor. It is relatively easy to calculate the matrix elements required

for this. If λ and jz are chosen appropriately, an arbitrary total spin state can

be forced to be the ground state. Thus, if sufficient numerical accuracy can be

achieved, the properties of the system in any total spin sector of the Hilbert space

can be obtained. However, it is difficult to achieve enough numerical accuracy to

obtain good results from this technique; it has been attempted in some studies (for

example, the t − t′ − U Hubbard model [74] and the d − p and periodic Anderson

models [8]), but with limited success.

Unfortunately it is not possible to simply append the total spin quantum num-

ber j to the labels of the block states and apply the DMRG algorithm otherwise

unchanged. Consider the form of the wavefunction matrix in the superblock ba-

sis, when total spin labels ja and jb are added to the left and right block basis

states respectively (to reduce the number of superscripts jz is denoted by m from

61
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now on; this should cause no confusion with the number of kept basis states, also

conventionally denoted m),

|Ψ〉 =
∑

ja,ma,α,jb,mb,β

ψ
jama(α)
jb,mb(β)|jama(α)〉 ⊗ |jbmb(β)〉 . (2.1)

Constructing eigenstates of total spin from the tensor product basis requires using

the Clebsch-Gordan transformation,

|jm〉 =
∑

ja,jb,ma,mb

Cja
ma

jb
mb

j
m |jama〉 ⊗ |jbmb〉 , (2.2)

where Cja
ma

jb
mb

j
m is the Clebsch-Gordan coefficient. The summation of ja and jb is

over all spins such that

|ja − jb| ≤ j ≤ ja + jb , (2.3)

where j is the total spin of the superblock target state. Hence unlike the previous

case where only jz is used, ψ is not block diagonal with respect to the total spin

quantum number and is instead banded, with a bandwidth of 2j + 1. This implies

that the reduced density-matrix, ψψ†, is not block diagonal either. This means that

the truncation operator would mix up the total spin states and beyond the first

truncation the total spin label could not be used. As a first fix to this problem,

we apply a constraint so that the states kept in the truncated basis are forced to

be eigenstates of total spin. This procedure was first described by the author in

references [75, 76]. Adding the constraint S2|φ〉 = j(j + 1)|φ〉 for some half integer

j and re-calculating the form of the density-matrix Eq. (1.17), gives

ρ
(ja,ma)
α′α =

∑

jb,mb,β

ψ
jama(α′)
jbmb(β) ψ

jama(α)∗
jbmb(β) , (2.4)

which is block diagonal with respect to the block total spin ja, as well as the z-

component of spin ma. This matrix is made up of just those elements of the orig-

inal density-matrix Eq. (1.17) that are block diagonal with respect to total spin,

neglecting all elements that are not block diagonal. By expanding ψ in the tensor

product basis via Eq. (2.2), we can see that ρ
(ja,ma)
α′α is independent of the value of

ma. This is required to preserve the usual relationship

S+|ja, ma, (α)〉 =
√

(j −m)(j +m + 1)|ja, ma + 1, (α)〉 , (2.5)

which is required for the application of the Clebsch-Gordan transformation. Thus

the density-matrix needs be calculated for each distinct value of ja, but only for a

single, arbitrary, value of ma.
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This provides a method whereby a specific total spin value can be targeted

by DMRG, with the corresponding performance speed-up arising from the smaller

Hilbert space. However this approach suffers from several problems. Despite the

results of the calculation being independent of the z-component of spin, it is still

necessary to use this label on all of the block states. The conservation of total spin

implies that there exists many constraints on the matrix elements for different z-

components of spin, however this formulation does not utilize this and every possible

matrix element needs to be stored. This is rather expensive in memory, especially

for large values of spin. In addition, the Clebsch-Gordan transformation Eq. (2.2)

is computationally non-negligible. This transformation needs to be carried out

several times each iteration, when adding a site to each block, when constructing

the superblock and the inverse transform has to be calculated to write the superblock

wavefunction in the tensor product basis prior to the construction of the density-

matrix. There is a solution to both these problems, but first we review some required

theory which is essential to the formulation. First we review briefly some of the

basic theory of group representations and characters, leading to the definition of

the Clebsch-Gordan coefficients for arbitrary finite groups and compact Lie groups.

Then the theory of SU(2) rotational invariance is introduced so that the important

Wigner-Eckart theorem for irreducible tensor operators in SU(2) can be stated. This

approach has the advantage that the coupling coefficients of SU(2) have somewhat

simpler properties than the general case, however it is clear from the construction

that the formulation carries over to other symmetries. We then calculate a concrete

matrix representation of the SU(2)-invariant fermionic algebra, leading directly

into the construction of the SU(2)-invariant DMRG algorithm itself in section 2.3.

After a discussion of the generalization to arbitrary symmetries and the relationship

between the current DMRG algorithm and previously published work in the field, we

demonstrate the algorithm for the Hubbard model with SU(2) symmetry (section

2.4) and SO(4) symmetry (section 2.5). Finally, section 2.6 discusses the potential

applications for the non-Abelian formulation with respect to spatial symmetries of

a lattice.

2.1 Group Representations

This section contains a brief review of the principles of the theory of linear

representations of some compact groups (specifically finite groups and compact Lie

groups), including group characters and the Clebsch-Gordan coefficients. This is all

standard theory, found in many textbooks, for example part I of Serre’s book [77]
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contains a good introduction to representations and characters of finite groups,

Miller’s book [78] contains an extremely thorough treatment of the basic theory

with particular reference to applications in physics and van der Waerden’s book [79]

is rigorous but also very readable. Cornwell’s book [80,81] is a thorough exposition

of group theory in physics and one of the few ‘classic’ books on group theory in

physics that is recent enough to contain the generalized Wigner–Eckart theorem.

While the properties of quantum angular momentum and the Lie group SU(2)

were well established soon after the development of quantum mechanics itself, the

generalization of the mathematical theory to other symmetry groups is more recent

and indeed remains the focus of much current research.

2.1.1 Basic definitions and theorems

Definition Representation of a group G

If there exists a homomorphic mapping of a group G onto a group of non-singular

d×d matrices Γ(T ), T ∈ G, with matrix multiplication as the group operation, then

the group of matrices Γ(T ) forms a d−dimensional representation Γ of G. To save

later confusion, the dimension of the matrices of the representation Γ is referred to

as the degree d of the representation; as we shall see later this is quite separate from

the dimension of the relevant Hilbert in the DMRG algorithm. Clearly, the identity

element of G must map onto the d× d identity matrix, so that Γ(I) = Id.

Let φ1, φ2, . . ., φd be the basis of a d−dimensional complex inner product space

V , called the carrier space. For each T ∈ G, define the linear operator Φ(T ) acting

on this basis by

Φ(T )φn =

d∑

m=1

Γ(T )mnφm n = 1, 2, . . . , d . (2.6)

Two representations Γ and Γ′ are equivalent if there exists a non-singular matrix

S which generates a similarity transform Γ′(T ) = S−1Γ(T )S, for each T ∈ G. As all

1× 1 matrices commute, if d = 1 then Γ′T = ΓT for all T ∈ G and for every 1× 1

non-singular matrix S. Thus two representations of degree one are either identical

or not equivalent.

For degree d ≥ 2 the situation is not so simple and in general a similarity

transform will produce an equivalent representation Γ′ whose matrices are different

from those of Γ.

A unitary representation of a group G is a representation Γ in which all the

matrices Γ(T ) are unitary. An important theorem, proven in e.g. [80], states that

if G is a finite group or a compact Lie group, then every representation of G is



2.1. Group Representations 65

equivalent to a unitary representation. Thus it is assumed from now on that all

representations are unitary.

Definition Reducible representation of a group G

A representation of a group G is reducible† if it is equivalent to a representation Γ

which has the partitioned form

Γ(T ) =

[
Γ11(T ) 012

021 Γ22(T )

]

, (2.7)

for every T ∈ G, where Γ11(T ), Γ22(T ) and the zero matrices 012 and 021 have

dimensions s1 × s1, s2 × s2, s1 × s2 and s2 × s1 respectively. By applying the

group operation to this form, it is easily shown that Γ11 and Γ22 are themselves

representations of G, of degree s1 and s2 respectively.

Definition Irreducible representation of a group

A representation of a group G is said to be irreducible if it is not reducible.

This definition implies that an irreducible representation cannot be transformed

by a similarity transform into the block-diagonal form of Eq. (2.7). Thus it is clear

that any unitary representation Γ can be decomposed as

Γ = n1Γ
1 ⊕ n2Γ

2 ⊕ . . .⊕ nkΓ
k =

k⊕

p=1

np Γp , (2.8)

where Γp is irreducible and np specifies the multiplicity of the pth irreducible repre-

sentation.

The basic theorem used in identifying irreducible representations is Schur’s

Lemma. This states that if Γ is a irreducible representation of the group G of

degree d and B is a d× d matrix such that Γ(T )B = BΓ(T ) for every T ∈ G, then

B must be a multiple of the identity matrix. A corollary of this theorem is that

every irreducible representation of an Abelian group has degree one. Conversely, if

every irreducible representation of a group G is of degree one, then G is Abelian.

This corollary is of particular importance in this thesis, because as shown later, the

original formulation of DMRG breaks down whenever the symmetry group contains

one or more representations of degree d > 1.

Another important corollary of Schur’s Lemma is the orthogonality theorem for

matrix representations, which applies to both finite groups and compact Lie groups.

†In general a representation that is reducible only implies that it can be transformed by a simi-

larity transformation into a upper-triangular form and the ability to transform the representation

into block-diagonal form requires the stronger condition of complete reducibility. However this

distinction is not required here, as any unitary reducible representation is completely reducible;

see e.g. [80] for a proof.
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Suppose that Γp and Γq are two unitary irreducible representations of a group G,

which are not equivalent if p 6= q (but which are identical if p = q). Then

1

g

∑

T∈G

Γp(T )∗jkΓ
q(T )st =

1

dp

δpqδjsδkt , (2.9)

where g is the order of G and dp is the degree of Γp.

Similarly, if G is a compact Lie algebra then the summation can be replaced by

an integration over the group,

∫

G

Γp(T )∗jkΓ
q(T )st dT =

1

dp
δpqδjsδkt . (2.10)

2.1.2 Group characters

Although equivalent representations have essentially the same content, there is

a large amount of arbitrariness associated with the explicit form of the matrices.

The group characters provide a set of quantities that are the same for all equiv-

alent representations. Furthermore, for finite groups and compact Lie groups, the

characters uniquely determine the representations, up to equivalence.

Definition The character of a representation

Suppose that Γ is a representation of a group G, with degree d. Then the character

of the group element T ∈ G is

χ(T ) = tr Γ(T ) =
d∑

j=1

Γ(T )jj . (2.11)

The set of characters corresponding to a representation is called the character system

of the representation.

Since Γ(I) = Id, for the identity element of G, it follows that χ(I) = d.

An important theorem states that, if G is a finite group or a compact Lie group,

then a necessary and sufficient condition for two representations to be equivalent is

that they have identical character systems. The characters therefore provide a set of

quantities that are unchanged by similarity transforms. There is an orthogonality

theorem for the group characters, that is analogous to the group representation

orthogonality theorem. Let χp(T ) and χq(T ) be the characters of two irreducible

representations of a finite group G of order g, these representations assumed to be

inequivalent if p 6= q. Then

1

g

∑

T∈G

χp(T )∗χq(T ) = δpq . (2.12)
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Similarly, if G is a compact Lie group, the summation can be replaced by a group

integral, ∫

G

χp(T )∗χq(T ) dT = δpq . (2.13)

The following theorem provides a hint at the usefulness of the group characters.

The number of times np that an irreducible representation Γp (or a representation

equivalent to Γp) appears in a reducible representation Γ is given, for a finite group,

by

np =
1

g

∑

T∈G

χ(T )χp(T )∗ , (2.14)

where χp(T ) and χ(T ) are the characters of Γp and Γ respectively. For a compact

Lie group, this generalizes to

np =

∫

G

χ(T )χp(T )∗ dT . (2.15)

This np is the multiplicity of the irreducible representation in the decomposition of

Eq. (2.8).

A straightforward corollary of this theorem, is that a necessary and sufficient

condition for a representation Γ of a finite group G to be irreducible is

1

g

∑

T∈G

|χ(T )|2 = 1 . (2.16)

The corresponding result for a compact Lie group is

∫

G

|χ(T )|2 dT = 1 . (2.17)

There are two theorems that often (but not always) are sufficient to uniquely

determine the degrees of the inequivalent irreducible representations for a finite

group. Firstly, for a finite group G, the sum of the squares of the degrees of the

inequivalent irreducible representations is equal to the order of G. Secondly, for a

finite group G, the number of inequivalent irreducible representations is equal to

the number of conjugacy classes of G.

For compact Lie groups, the number of inequivalent irreducible representations

is infinite but countable. This implies that the irreducible representations of a

compact Lie group can be specified by a parameter that takes only integral values

(or a set of parameters taking integral values, if more convenient). This means that

it is practical to use group representation theory in a numerical calculations; without

this theorem it would be impossible in general to label an irreducible representation

using a digital computer.
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Of importance in quantum mechanics is the notion of the direct product of

representations. If Γp and Γq are two unitary irreducible representations of a group

G, with degree dp and dq respectively, then the set of matrices defined by

Γ(T ) = Γp(T ) ⊗ Γq(T ) , (2.18)

for all T ∈ G, forms a unitary representation of G of degree dpdq. The character

χ(T ) of this representation is given by

χ(T ) = χp(T )χq(T ) . (2.19)

In general, the representation Γp ⊗ Γq is reducible, even if Γp and Γq are them-

selves irreducible. Suppose that a similarity transformation C is applied to the

representation Γp ⊗ Γq to give an equivalent representation that is a direct sum of

unitary irreducible representations and the unitary irreducible representation Γr of

G appears nr
pq times in this sum. This can be written as

C−1 (Γp ⊗ Γq)C =
⊕

r

nr
pqΓ

r . (2.20)

The right-hand side of Eq. (2.20) is called the Clebsch-Gordan series for Γp ⊗ Γq.

The theorem given previously on the multiplicity of the irreducible representations

gives, for the Clebsch-Gordan series of a finite group,

nr
pq =

1

g

∑

T∈G

χp(T )χq(T )χr(T )∗ , (2.21)

the corresponding result for a compact Lie group being

nr
pq =

∫

G

χp(T )χq(T )χr(T )∗ dT . (2.22)

Thus the Clebsch-Gordan series is determined solely by the characters. Clearly, as

Γp ⊗ Γq is a representation of degree dpdq we have,

dpdq =
∑

r

nr
pqdr . (2.23)

Let φp
j and ψq

k be basis functions for the carrier spaces of Γp and Γq respectively.

Now given that nr
pq is the number of times that the irreducible representation Γr

appears in the Clebsch–Gordan series for Γp ⊗ Γq, there must be nr
pq linearly inde-

pendent sets of basis functions for Γr formed by linear combinations of the products

φp
jψ

q
k. Let these be denoted by θr,α

l , where α = 1, 2, . . . , nr
pq and l = 1, 2, . . . , dr.

These basis functions can be written in the form

θr,α
l =

dp∑

j=1

dq∑

k=1

(
p
j
q
k|rl ,α

)
φp

jψ
q
k . (2.24)
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The coefficients
(p

j
q
k|rl ,α

)
are the generalized Clebsch–Gordan coefficients of the group

G. They can be regarded as forming a dpdq × dpdq non-singular matrix, the rows

being labeled by the pairs (j, k) and the columns by the triple (r, α, l). This is the

matrix C in Eq. (2.20).

The inverse of Eq. (2.24) can be written,

φp
jψ

q
k =

dp∑

j=1

dq∑

k=1

(
α,r

l |pj q
k

)
θr,α

l . (2.25)

The coefficients
(

α,r
l |pj q

k

)
again form a dpdq ×dpdq non-singular matrix, but this time

the rows are labeled by the triple (r, α, l) and the columns by the pair (j, k). This

is the matrix C−1 of Eq. (2.20).

As Γp ⊗ Γq is unitary and the Clebsch–Gordan expansion on the right hand of

Eq. (2.20) is unitary, it is possible to choose C to be unitary also, which implies

that
(

α,r
l |pj q

k

)
=
(p

j
q
k|rl ,α

)∗
. (2.26)

The conventional notation for the Clebsch–Gordan coefficients of SU(2), as Cp
j
q
k
r
l

is possible because for the SU(2) case, the multiplicity of the irreducible representa-

tion, nr
pq is always ≤ 1 for every r, thus all non-vanishing coefficients have α = 1 so

this label is redundant. In addition, a purely real representation of SU(2) is possible,

so that there is no need to distinguish between the Clebsch–Gordan coefficient and

its (complex–conjugated) inverse. These properties mean that the Clebsch-Gordan

coefficients for SU(2) are comparatively easy to use in a calculation, compared with

some other Lie groups. Appendix B lists some formulas and symmetry relations for

the SU(2) coupling coefficients that are used in this thesis.

The condition nr
pq ≤ 1, if it holds on the group G, gives a significant simplifica-

tion to the problem of finding an explicit form for the Clebsch–Gordan coefficients.

As a first step, we note that the product of two Clebsch-Gordan coefficients can be

written in terms of the group characters [80],

∑

α=1

nr
pq(

p
s
q
t |ru,α)

(p
j
q
k|rl ,α

)∗
=
dr

g

∑

T∈G

Γp(T )sjΓ
q(T )tkΓ

r(T )∗ul . (2.27)

For a compact Lie-algebra the corresponding result is

∑

α=1

nr
pq(

p
s
q
t |ru,α)

(
p
j
q
k|rl ,α

)∗
= dr

∫

G

Γp(T )sjΓ
q(T )tkΓ

r(T )∗ul dT . (2.28)

There is a large degree of arbitrariness in the Clebsch-Gordan coefficients, even if

they are assumed to be unitary. Consider first the case nr
pq = 1. If the Clebsch-
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Gordan coefficients
(p

j
q
k|rl ,1

)
satisfy Eq. (2.27), then for any real number w indepen-

dent of j, k and l, the coefficients

(p
j
q
k|rl ,1

)′
= eiw

(p
j
q
k|rl ,1

)
, (2.29)

also satisfy Eq. (2.27). That is, the Clebsch-Gordan coefficients contain an arbi-

trary phase factor whose choice depends on p, q and r and is entirely a matter of

convention. If nr
pq > 1, the situation is even more complicated. In this case, the

coefficients defined by

(p
j
q
k|rl ,α

)′
=

nr
pq∑

β=1

sαβ

(p
j
q
k|rl ,β

)
, (2.30)

where s is any nr
pq×nr

pq unitary matrix, also satisfy Eq. (2.27). Thus the arbitrariness

of the coefficients is increased from a single phase factor to a nr
pq×nr

pq unitary matrix.

When G is a finite group and nr
pq = 1, Eq. (2.27) provides a direct way of

evaluating the Clebsch-Gordan coefficients. Firstly, choose a set of j, k, l such that

dr

g

∑

T∈G

Γp
jjΓ

q
jjΓ

rT ∗
ll , (2.31)

is non-zero. From Eq. (2.27), it is clear that this number must be real and positive.

Adopting the phase convention that
(p

j
q
k|rl ,1

)
is real and positive, Eq. (2.27) implies

that

(p
j
q
k|rl ,1

)
=

[

dr

g

∑

T∈G

ΓpTjjΓ
q(T )kkΓ

r(T )∗ll

]1/2

. (2.32)

Then for all s = 1, 2, · · · , dp, t = 1, 2, · · · , dq and u = 1, 2, · · · , dr, we have

(p
s
q
t |ru,1) =

(dr/g)
1/2
∑

T∈G
Γp(T )sjΓ

q(T )tkΓ
r(T )∗ul

[∑

T∈G
Γp(T )jjΓq(T )kkΓr(T )∗ll

]1/2
. (2.33)

Although this formula generalizes in the obvious way for a compact Lie group,

it is much easier to use Lie-algebraic methods to determine the Clebsch-Gordan

coefficients in this case. This procedure is outlined in the next section for the case

of SU(2). In principle, the calculation of the Clebsch-Gordan coefficients for a

compact Lie group is straightforward, if tedious (see e.g. chapter 16 of reference

[81]); however direct formulas suitable for use in numerical computations are less

easy to obtain, especially in the non-multiplicity-free case (when one or more of the

nr
pq > 1), such as SU(3).
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2.2 Angular Momentum

In classical mechanics, the angular momentum L of a particle is defined to be

the moment of the momentum,

L = r × p, (2.34)

where r and p are the position and linear momentum respectively. Angular momen-

tum is an additive quantity, like linear momentum and the total angular momentum

of a system is defined to be the sum Ltotal ≡
∑

αLα of the constituent angular mo-

menta.

Extending this definition to quantum mechanics, the position and momentum

become operators, satisfying the commutation relation [rj, pj] = i~δij. It follows

that the angular momentum operator obeys the commutation relation

[
Li, Lj

]
= ieijkL

k , (2.35)

where eijk is the Levi-Cevita totally antisymmetric tensor and we choose units ~ ≡ 1.

Given that the motion of each particle is, in the absence of interactions, inde-

pendent of the motion of all other particles, it follows immediately that the position

and momentum operators for different particles mutually commute,

[ri
α , r

j
β] = [ri

α , p
j
β] = [pi

α , p
j
β] = 0 , α 6= β . (2.36)

The total angular momentum operator L =
∑

αLα, as well as the angular

momentum of each particle, Lα, obey the same commutation relation Eq. (2.35).

There are two distinct ways of proceeding to characterize the properties of L;

either using the differential form of the operators, or in an approach pioneered

by Born, Heisenberg and Jordan [82], convert the problem into a finite-dimensional

matrix eigenvalue problem. This latter approach reveals that the complete structure

of the angular momentum operators can be calculated from the algebraic relations

Eq. (2.35) alone, which define the Lie algebra SO(3), locally isomorphic to SU(2).

This is important, because the spin vector S obeys identical commutation relations,

but without the differential form of the orbital angular momentum. Thus, we can

proceed to review the properties of an arbitrary angular momentum J , which we

define as any quantity that satisfies

[
J i, J j

]
= ieijkJ

k . (2.37)

This approach encompasses orbital angular momentum, spin, or any other quantity

that obeys this algebra.
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As a first step to calculating the structure of the algebra, we note that the

operator J2 = J2
x + J2

y + J2
z , commutes with J ,

[J2 , J ] = 0 . (2.38)

Thus it is possible to simultaneously diagonalize J 2 and at most one of the set

J i, conventionally the choice is to diagonalize J z. Thus the eigenvalue problem is

formulated,

J2|j2′, jz′〉 = j2′|j2′, jz′〉 ,
Jz|j2′, jz′〉 = jz′|j2′, jz′〉 ,

(2.39)

where j2′ and jz′ are (assuming that the J i can be put in Hermitian form) real num-

bers and j2′ is positive. The next step is to construct two non-Hermitian operators

J± = Jx ± iJy , (2.40)

which satisfy the commutation relations

[J2 , J±] = 0 ,

[Jz , J±] = ±J± ,

[J+ , J−] = 2Jz .

(2.41)

By virtue of these commutation relations, one finds that, if J+|j2′, jz′〉 6= 0, then

J2(J+|j2′, jz′〉) = j2′(J+|j2′, jz′〉) , (2.42)

and

Jz(J+|j2′, jz′〉) = (jz′ + 1)(J+|j2′, jz′〉) . (2.43)

Similarly, if J−|j2′, jz′〉 is non-zero, it is also a simultaneous eigenstate, with eigen-

values of j2′ and jz′ − 1. This behavior, of increasing or decreasing the eigenvalue

of Jz, gives the operators J+ and J− the names raising and lowering operators

respectively. The raising and lowering processes must terminate. This is easy to

prove given the norm of J+|j2′, jz′〉,

〈 j2′, jz′ | J−J+ | j2′, jz′ 〉 = (j2′ − jz′(jz′ + 1))〈j2′, jz′|j2′, jz′〉 . (2.44)

For the norm to be non-negative, one must have j2′−jz′(jz′+1) ≥ 0. Thus jz′ cannot

be raised indefinitely, but there must be some jz′
max such that |j2′, jz′

max〉 6= 0, but

J+|j2′, jz′
max〉 = 0. Therefore j2′ = jz′

max(j
z′
max + 1). Similarly, the norm of J−|j2′, jz′〉

must be positive, which implies that the lowering process also must terminate such

that there exists a jz′
min such that |j2′, jz′

min〉 6= 0 but J−|j2′, jz′
min〉 = 0. From this it

follows that j2′ = jz′
min(j

z′
min − 1).
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The fact that the process must terminate above and below quantizes the eigen-

values of J2 and Jz. To see why, one repeatedly applies the raising operator to

|j2′, jz′〉. At some point this terminates, so we have, for some non-negative inte-

ger k, (J+)k|j2′, jz′〉 6= 0, but (J+)k+1|j2′, jz′〉 = 0. Similarly, there exists some

non-negative integer l such that (J−)l|j2′, jz′〉 6= 0 but (J−)l+1|j2′, jz′〉 = 0. Then

jz′
max = jz′ + k, jz′

min = jz′ + l and j2′ = (jz′ + k)(jz′ + k + 1) = (jz′ − l)(jz′ − l − 1).

This requires that we have

jz′ = l−k
2
,

j2′ =
(

k+l
2

) (
k+l
2

+ 1
)
,

jz′
max = k+l

2
,

jz′
min = −k+l

2
.

(2.45)

This implies the existence of a set of eigenkets of J 2,

|j2′, jz′〉 , J+|j2′, jz′〉, . . . , (J+)k|j2′, jz′〉,
J−|j2′, jz′〉, . . . , (J−)j|j2′, jz′〉 .

(2.46)

The eigenvalues of Jz corresponding to these kets are

jz′, jz′ + 1, . . . , jz′ + k = jz′
max,

jz′ − 1, . . . , jz′ − l = jz′
min .

(2.47)

The standard way of enumerating these results is to introduce j = (k+ l)/2 and let

m denote any number in the set {j, j−1, . . . ,−j}. Then |jm〉 denotes a normalized

simultaneous eigenket of J2 and Jz, with eigenvalues

J2|jm〉 = j(j + 1)|jm〉 ,
Jz|jm〉 = m|jm〉 .

(2.48)

Hence 2j is a non-negative integer and m ranges from −j to +j in steps of unity.

By virtue of the Hermiticity of J , these states are orthogonal,

〈j ′m′|jm〉 = δj′jδm′m . (2.49)

The action of J± on these basis states is now easily calculated,

J+|jm〉 =
√

(j −m)(j +m + 1)|jm + 1〉 ,
J−|jm〉 =

√

(j +m)(j −m + 1)|jm− 1〉 .
(2.50)

This gives, with Eq. (2.48), the matrix elements of J ,

〈 j ′m′ | J± | jm 〉 =
√

(j ∓m)(j ±m+ 1)δj′jδm′,m±1 ,

〈 j ′m′ | Jz | jm 〉 = mδj′jδm′m .
(2.51)
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These matrices are block-diagonal with respect to j, thus we can label each block as

J [j], a (2j+1)×(2j+1)-dimensional matrix. Given an arbitrary angular momentum

operator J , it can be decomposed into a direct sum of blocks,

J =
⊕

j

nj J
[j] , (2.52)

where nj is the multiplicity of block J [j] in J .

A rotation of angle θ about some axis given by the unit vector n̂ is given by the

unitary matrix

U(θn̂) ≡ e−iθn̂·J , (2.53)

which, given the expansion Eq. (2.52), reduces to the study of the matrices

Dj(θn̂) ≡ e−iθn̂·J [j]

, (2.54)

where the matrix elements of the representation Dj are given by

Dj
m′m(θn̂) = 〈 jm′ | e−iθn̂·J [j]

| jm 〉 . (2.55)

The action of U(θn̂) on the eigenket |jm〉 is then given by

U(θn̂)|jm〉 =
∑

m′

|jm′〉〈jm′|U(θn̂)|jm〉

=
∑

m′

Dj
m′m(θn̂)|jm′〉 .

(2.56)

2.2.1 The Wigner-Eckart theorem

Suppose that a system has a rotational symmetry and hence can be completely

described in terms of a basis set of eigenstates of total angular momentum, |jm(α)〉.
The label (α) denotes all other quantum numbers that are not associated with

angular momentum. Consider now an arbitrary operator T that acts on the system.

This can be described completely by the set of matrix elements

{ 〈 j ′m′(α′) |T | jm(α) 〉 } . (2.57)

The physical probabilities associated with these probability amplitudes must neces-

sarily be invariant with respect to arbitrary transformations of the coordinate frame.

Thus |〈 j ′m′(α′) |T | jm(α) 〉|2 is an invariant. The implications of this constraint

can be summarized by a fundamental theorem on symmetry due to Wigner [83],

The invariance of the physical probability |〈 j ′m′(α′) |T | jm(α) 〉|2 under a sym-

metry implies that either (a) the probability amplitude, Eq. (2.57) is invariant,
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or (b) the probability amplitude transforms under the symmetry into its complex

conjugate.

Wigner showed that the latter case corresponds to time reversal, thus in the case

of rotational symmetry the amplitude itself is invariant, hence

〈 j ′m′(α′) |T | jm(α) 〉 = invariant to rotations of coordinates. (2.58)

This is valid for all possible basis states, so it follows directly that it is also true for

arbitrary vectors in the Hilbert space,

〈ψ |T |φ 〉 = invariant to rotations of coordinates, (2.59)

for arbitrary vectors |φ〉 and 〈ψ|. The action of a rotation U = exp(−iθn̂ · J) on

the ket |φ〉 is

|φ〉 → |φ′〉 = U |φ〉 , (2.60)

with a corresponding unitary transformation on the bra vector,

〈ψ| → 〈ψ′| = 〈ψ|U−1 . (2.61)

The statement of the invariance Eq. (2.59) now takes the form

〈ψ |T |φ 〉 = 〈ψ′ |T ′ |φ′ 〉 , (2.62)

which implies

〈ψ |T |φ 〉 = 〈ψ |U−1T ′U |φ 〉 , (2.63)

from which one obtains

T ′ = UTU−1 . (2.64)

Under an infinitesimal transformation U = exp(−i δθ n̂ · J), T transforms as

T ′ = T − i δθ n̂ · [J , T ] , (2.65)

thus

δT ≡ T ′ − T = −i δθ n̂ · [J , T ] . (2.66)

The appearance of a commutator with the angular momentum operators motivates

the definition of an irreducible tensor operator of rank J (J = 0, 1
2
, 1, · · ·). An

irreducible tensor operator of rank J , denoted T [J ], is a set of linear operators
{

T
[J ]
M : M = −J,−J + 1, · · · , J

}

, where the commutator action with the angular

momentum J is

[J+ , T
[J ]
M ] =

√

(J −M)(J +M + 1)T J
M+1 ,

[J− , T
[J ]
M ] =

√

(J +M)(J −M + 1)T J
M−1 ,

[Jz , T
[J ]
M ] = M T J

M .

(2.67)
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The components T
[J ]
M are referred to as the projections of the irreducible tensor

operator T [J ].

From this definition it is easy to derive the action of the rotation U(θn̂) on T J ,

U(θn̂)T
[J ]
M U−1(θn̂) =

∑

M ′

DJ
M ′M(θn̂)T

[J ]
M ′ . (2.68)

This is exactly analogous to the transformation of a ket vector, Eq. (2.56).

Curiously, the operator J , in the usual from J = (Jx, Jy, Jz) does not itself

transform as an irreducible tensor operator. The reason is that, in this form J

transforms according to the vector representation of SO(3), whereas the definition

Eq. (2.67) applies to a rank J representation of SU(2). The two algebras are locally

isomorphic, the correspondence given by

J1
−1 = −J−

J1
0 = Jz/

√
2

J1
1 = J+ .

(2.69)

In this form, J1 is an irreducible tensor operator of rank 1.

The importance of irreducible tensor operators is demonstrated by the Wigner-

Eckart theorem,

When written in an angular momentum basis, each matrix element of an ir-

reducible tensor operator is a product of two factors, a purely angular momentum

dependent factor (the “Clebsch-Gordan” coefficient) and a factor that is independent

of the projection quantum numbers (the “reduced matrix element”).

The reduced matrix elements, being independent of the projection quantum

number, act on a different basis set and are denoted with the unusual notation

‖j(α)〉. The explicit relationship between the two basis sets is is given by the

Clebsch-Gordan coefficients,

〈 j ′m′(α′) |T [J ]
M | jm(α) 〉 = 〈 j ′(α′) ‖T J ‖ j(α) 〉Cj

m
J
M

j′

m′ , (2.70)

where the reduced matrix element 〈 j ′(α′) ‖T J ‖ j(α) 〉 is defined by

〈 j ′(α′) ‖T J ‖ j(α) 〉 =
∑

mM

Cj
m

J
M

j′

m′〈 j ′m′(α′) |T [J ]
M | jm(α) 〉 . (2.71)

The value of m′ is arbitrary here, as long as −j ′ ≤ m′ ≤ j ′, as the summation over

m and M gives a coefficient that is independent of m′. Alternatively, one can sum

over all m′ and divide by 2j ′ + 1,

〈 j ′(α′) ‖T [J ] ‖ j(α) 〉 =
1

2j ′ + 1

∑

mMm′

Cj
m

J
M

j′

m′〈 j ′m′(α′) |T [J ]
M | jm(α) 〉 . (2.72)
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The importance of the Wigner-Eckart theorem is that it establishes a clear sep-

aration between the geometric (group-theoretic) aspects of an operator, given by

the Clebsch-Gordan coefficients and the essential physics, given by the reduced ma-

trix elements. This is a very important principle, which can be carried further to

describe the coupling of tensor operators in a manifestly SU(2)-invariant way.

2.2.2 Coupling of tensor operators

Consider two operators S [k1] and T [k2], each of which is an irreducible tensor

operator with respect to the total angular momentum J . Thus each of the sets

of operators
{

S
[k1]
µ1

}

and
{

T
[k2]
µ2

}

obey the commutation relations given by Eq.

(2.67). We generalize the usual matrix product to the coupling of irreducible tensor

operators by introducing the symbol

[S [k1]×T [k2]]
[k]
, (2.73)

to denote the set of operators with components

[S[k1]×T [k2]]
[k]

µ , µ = −k,−k + 1, . . . , k . (2.74)

These are defined by a coupling of the components S
[k1]
µ1 and T

[k1]
µ1 , given by

[S [k1]×T [k2]]
[k]

µ ≡
∑

µ1 µ2

Ck1
µ1

k2
µ2

k
µS

[k1]
µ1 T

[k1]
µ1 . (2.75)

The proof that [S [k1]×T [k2]]
[k]

is indeed a irreducible tensor operator of rank k

follows from the action under a rotation, Eq. (2.68).

The application of the Wigner-Eckart theorem to this operator gives

〈 j ′m′(α′) | [S [k1]×T [k2]]
[k]

µ | jm(α) 〉 = 〈 j ′(α′) ‖ [S [k1]×T [k2]]
[k] ‖ j(α) 〉Cj

m
k
µ

j′

m′ .

(2.76)

Expanding [S[k1]×T [k2]]
[k]
µ with Eq. (2.75), gives, after a couple of lines of algebra,

〈 j ′(α′) ‖ [S[k1]×T [k2]]
[k] ‖ j(α) 〉

= (−1)j+j′+k
∑

(α′′)j′′

[(2j ′′ + 1)(2k + 1)]
1
2

{

j ′ k1 j ′′

k2 j k

}

×〈 j ′(α′) ‖S[k1] ‖ j ′′(α′′) 〉〈 j ′′(α′′) ‖T [k2] ‖ j(α) 〉 ,

(2.77)

where the coefficients {· · ·} are the Wigner 6j coefficients, defined as a sum over
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four Clebsch-Gordan coefficients,

(−1)j+j′+k[(2j ′′ + 1)(2k + 1)]
1
2

{

j ′ k1 j ′′

k2 j k

}

≡
∑

µ1 µ2 µ m m′′

Ck1
µ1

k2
µ2

k
µC

j
m

k
µ

j′

m′C
j′′

m′′

k1
µ1

j′

m′Cj
m

k2
µ2

j′′

m′′ .

(2.78)

m′ may be chosen arbitrarily in this result, given −j ′ ≤ m′ ≤ j ′. This gives the

reduced matrix elements of the coupling [S [k1]×T [k2]]
[k]

directly from the reduced

matrix elements of S [k1] and T [k2] in a form that is, after the calculation of the 6j

coefficients, independent of the projection numbers. The existence of more than

one choice of the rank k in the coupling means that it is not possible, in general,

to define uniquely a multiplication operator. This means that the set of irreducible

tensor operators on the space of reduced matrix elements does not form an algebra,

but can instead be interpreted as a generalization of an algebra whereby there are

many ‘multiplication’ operators. An additional complication is that this generalized

‘algebra’ is non-associative. Applying Eq. (2.77) to the coupling of three operators

[[S × T ]×U ] and [S×[T × U ]] gives

[S[k1]×[T [k2]×U [k3]]
[k23]

]
[k]

= (−1)2k
∑

k12

√

2k12 + 1

{

k1 k2 k12

k3 k k23

}

×[[S[k1]×T [k2]]
[k12]

×U [k3]]
[k]

.

(2.79)

Proof of this follows from the definition Eq. (2.75) and the symmetry properties of

the Clebsch-Gordan coefficients. Alternatively, it can be proven from the properties

of the 6j coefficients alone, by using the Biedenharn-Elliott identity [84].

The mathematical properties of the coupling of tensor operators can be put on

a more concrete footing by using the unit tensor operator formulation described at

length in Biedenharn and Louck [85]. When written in terms of unit tensor oper-

ators, the coupling forms an associative, non-Abelian algebra called the Wigner-

Racah algebra. However, with this formulation the operator product of two unit

tensors does not in general transform irreducibly. In practice, as we shall see later,

we are usually interested in coupling two tensor operators to an irreducible ten-

sor. Thus if the Wigner-Racah formulation was used, the most common operation

would be the product of unit tensor operators followed by a projection onto some

irreducible component. This destroys the associativity properties of the product

operation, so it is not clear that this formulation provides any advantage for the

purposes of this thesis.

A special case of the coupling law Eq. (2.77) that is particularly relevant to the

DMRG algorithm is when the operators act on different spaces, such that they have
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a tensor product form

S
[k1]
µ1 = T

[k1]
µ1 (1) ⊗ I(2) ,

T
[k2]
µ2 = I(1) ⊗ T

[k2]
µ2 (2) .

(2.80)

Here I(i) denotes the identity operator and T [ki](i) is an irreducible tensor operator

with respect to the angular momentum J(i) of part i of a two-part physical system

(i = 1, 2). The total angular momentum of the system is J = J(1) + J(2). In

this case, we write the coupling as [S [k1]×T [k2]]
[k] ≡ [T [k1](1)⊗T [k2](2)]

[k]
. Repeated

application of the Wigner-Eckart theorem to these tensor operators gives, after some

algebra,

〈 j ′ (j ′1j ′2α′
1α

′
2) ‖ [T [k1](1)⊗T [k2](2)]

[k] ‖ j (j1j2α1α2) 〉

=






j1 j2 j

k1 k2 k

j ′1 j ′2 j ′




〈 j ′1 (α′

1) ‖T [k1](1) ‖ j1 (α1) 〉〈 j ′2 (α′
2) ‖T [k2](2) ‖ j2 (α2) 〉 ,

(2.81)

where






j1 j2 j

j1 k2 k

j ′1 j ′2 j ′




 ≡ [(2j ′1 + 1)(2j ′2 + 1)(2j + 1)(2k + 1)]

1
2







j1 j2 j

k1 k2 k

j ′1 j ′2 j ′







, (2.82)

and the term in curly brackets is the Wigner 9j coefficient, which can be defined as

a summation over 6j coefficients [84],







j1 j2 j

k1 k2 k

j ′1 j ′2 j ′







≡ (−1)j1+j2+j+k1+k2+k+j′1+j′2+j′
∑

j′′

(−1)2j′′(2j ′′ + 1)

×
{

j ′ k1 j ′′

k2 j k

}{

j ′ j ′2 j ′1
j1 k1 j ′′

}{

j ′′ j1 j ′2
j2 k2 j

}

.

(2.83)

The coupling law Eq. (2.81) has immediate applications to numerical blocking

techniques, where a common task is to obtain the matrix elements of operators

acting on the complete system given the matrix elements of the constituent blocks.

2.2.3 Properties of irreducible tensor operators

An important class of irreducible tensor operators are those that are rotational

invariants, that is, operators that transform under a rotation as

U(θn̂)T
[J ]
M U−1(θn̂) = T

[J ]
M . (2.84)
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It follows immediately from Eq. (2.66) that T must commute with J and hence T

must transform as a rank-0 tensor. The converse is also immediate from Eq. (2.67);

all rank-0 tensors are rotational invariants. In this case, the Wigner-Eckart theorem

Eq. (2.70) simplifies dramatically, to

〈 j ′m′(α′) |T 0
0 | jm(α) 〉 = 〈 j ′(α′) ‖T 0 ‖ j(α) 〉 δj′jδm′m∆jm , (2.85)

where ∆jm is unity if −j ≤ m ≤ j and zero otherwise. Thus, a rotational invariant

operator is block diagonal with respect to j and m and the matrix elements are

independent of the projection m.

For higher rank tensors, the properties of the Clebsch-Gordan coefficients imply

that the reduced matrix is block-banded and the permissible non-zero matrix ele-

ments are between elements |j ′(α′)〉 and |j(α)〉, with j ′ = j + ∆J and the allowed

values of ∆J are

∆J = J, J − 1, . . . ,−J . (2.86)

The matrix elements of J itself were derived in Eq. (2.51), which gives the

reduced matrix elements

〈 j ′(α′) ‖J [1] ‖ j(α) 〉 =
√

j(j + 1) δj′j δα′α . (2.87)

The construction of the coupled tensor operators [S [k1]×T [k2]]
[k]

leads to a nat-

ural way of constructing a rotational invariant,

[S[K]
×T [J ]]

[0]

0 =
∑

M

(−1)J−M

(2J + 1)
1
2

S
[J ]
M T

[J ]
−M . (2.88)

This can be written, apart from the unimportant J-dependent pre-factor, as a trace

over M , by recasting T [J ] as a conjugate irreducible tensor operator T̄
[J ]

,

T̄
[J ]
M ≡ (−1)J−MT

[J ]
−M . (2.89)

Thus, if S [J ] and T̄
[J ]

denote tensor and conjugate tensors respectively, then the

quantity
∑

M

SJ
M T̄

[J ]
M , (2.90)

is a rotational invariant.

The transform properties of this operator are different to that of T
[J ]
M , in that the

transform coefficients are the complex conjugate of the rotation matrix elements,

U(θn̂) T̄
[J ]
M U−1(θn̂) =

∑

M ′

DJ∗
M ′M(θn̂) T̄

[J ]
M ′ . (2.91)
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The usual definition of the Hermitian conjugate is equivalent to taking the com-

plex conjugate of the transpose. In the case of irreducible tensor operators, such

a definition is not completely satisfactory, because it is easy to show that such an

operator transforms as a conjugate irreducible tensor. In the DMRG code it would

be desirable to only have one species of tensor operators; the appearance of con-

jugate tensors, with different transformation rules and coupling coefficients, is an

unnecessary complication. Thus in this thesis, we use an alternate definition of the

Hermitian conjugate T †[J ]
, such that it transforms as an ordinary tensor operator,

〈 j ′m′(α′) |T †[J ]
M | jm(α) 〉 = (−1)J−M 〈 jm(α) |T [J ]

−M | j ′m′(α′) 〉∗ . (2.92)

This amounts to taking, in addition to the usual Hermitian conjugate, the tensor

conjugate given in Eq. (2.89). This notation is equivalent to that used in reference

[86], but is different to the notation of reference [84]. The advantage of the current

notation is that the reduced matrix elements of the Hermitian conjugate of an

operator can be written directly in terms of the reduced matrix elements of the

original operator,

〈 j ′(α′) ‖T †[J ] ‖ j(α) 〉 = (−1)J+j−j′

√

2j + 1

2j ′ + 1
〈 j(α) ‖T [J ] ‖ j ′(α′) 〉∗ . (2.93)

Unfortunately the notation is somewhat confusing and it is very important to dis-

tinguish the conjugate of a tensor (which transforms as a conjugate irreducible

tensor) and the Hermitian conjugate of a tensor (which transforms as an ordinary

irreducible tensor). However with this definition of Hermitian conjugation, we can

do everything with ordinary irreducible tensors and we no longer need to deal with

conjugate irreducible tensors at all.

An interesting feature of the Hermitian conjugation operation is that applying

Hermitian conjugation twice does not in all cases give the original operator, but

instead

(T †[J ]
)† = (−1)2J T [J ] . (2.94)

Thus for tensors that transform as half-integral representations, an additional minus

sign appears and the Hermitian conjugation needs to be applied four times to recover

the original operator. Even rank tensors can also have unfamiliar properties with

respect to Hermitian conjugation. For example, the total angular momentum J [1]

itself is skew-Hermitian, J †[1] = −J [1].

The commutation relations between irreducible tensor operators needs to be

generalized, in particular the rank of the coupled tensors does make a difference.

We define the generalized commutator by
[

S[k1] , T [k2]
][k]

= [S[k1]×T [k2]]
[k] − [T [k2]×S[k1]]

[k]
, (2.95)
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and the anticommutator by

{

S[k1] , T [k2]
}[k]

= [S [k1]×T [k2]]
[k]

+ [T [k2]×S[k1]]
[k]
. (2.96)

2.2.4 Tensor formulation of the fermionic algebra

In this section, the algebra of the operators corresponding to a system of fermions

is re-cast into irreducible tensor form. The usual algebra for a system of fermions is

given by annihilation operators cσ,i and creation operators c†σ,i, of z−component of

spin σ acting on site i. Spin 1
2

is assumed, with σ taking values of ↑ and ↓. These

operators obey the anti-commutation relations

{c†σ,i , cτ,j} = δστ δij , (2.97)

{c†σ,i , c
†
τ,j} = {cσ,i , cτ,j} = 0 . (2.98)

The operator ni, defined by

ni = c†↑,ic↑,i + c†↓,ic↓,i , (2.99)

gives the number of particles at site i, as a consequence of the commutation relations

[ni , cσ,i] = −cσ,i

[ni , c
†
σ,i] = c†σ,i .

(2.100)

The total spin at each site is defined through the Pauli spin matrices,

Si =
1

2

∑

σ,τ

c†σ,iσστ cτ,j , (2.101)

and we choose the usual representation of the spin matrices,

σx =

(
0 1

1 0

)

,

σy =

(
0 −i
i 0

)

,

σz =

(
1 0

0 −1

)

.

(2.102)

It follows that the creation and annihilation operators obey commutation relations

with respect to the spin operators,

[Sz , c↑,i] = −1
2
c↑,i ,

[Sz , c↓,i] = 1
2
c↓,i ,

(2.103)
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Assuming that there is no orbital component, the total angular momentum J is

equal to the total spin S. Thus it is clear that the creation and annihilation oper-

ators can be re-cast as rank 1
2

tensors (spinors),

c
[1/2]
i =

(
c−1/2,i

c1/2,i

)

,

c
†[1/2]
i =

(
c†−1/2,i

c†1/2,i

)

.

(2.104)

Direct comparison between the commutation relations Eq. (2.103) and those of a

irreducible tensor operator Eq. (2.67) gives a possible identification

c−1/2,i = c↑,i

c1/2,i = c↓,i

c†−1/2,i = −c†↓,i
c†1/2,i = c†↑,i ,

(2.105)

We have chosen the sign in the first two relations for c[1/2] and chosen to set c†[1/2] =

(c[1/2])†, which then gives the final two relations for c†[1/2], via Eq. (2.93). This means

that (c†[1/2])† = −c[1/2].

For a single site, the commutation relations imply that the complete set of basis

states is four-dimensional. The usual notation for the basis states is {|0〉, |↑〉, |↓〉, |↑↓〉},
but here we want to use the notation more applicable to the irreducible tensor for-

mulation, |jm(α)〉. Taking the non-SU(2) label α to be the number of particles n

is sufficient to distinguish all the basis states,

|0〉 → |0, 0, (0)〉
|↑〉 → |1/2, 1/2, (1)〉 = c†↑|0〉
|↓〉 → |1/2,−1/2, (1)〉 = c†↓|0〉

|↑↓〉 → |0, 0, (2)〉 = c†↑c
†
↓|0〉 .

(2.106)

With respect to this basis, the matrix elements of the operators c↑ and c↓ are

c↑ =








0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0








,

c↓ =








0 0 1 0

0 0 0 −1

0 0 0 0

0 0 0 0








.

(2.107)
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The matrix elements of c†↑ and c†↓ are the (ordinary) Hermitian conjugate of these.

The reduced basis ‖j(α)〉 corresponding to this set is three-dimensional,

‖0, (0)〉
‖1/2, (1)〉 = c†[1/2] ‖0, (0)〉
‖0, (2)〉 = 1√

2
[c†[1/2]×c†[1/2]]

[0] ‖0, (0)〉 .
(2.108)

In this basis, the reduced matrix form of c[1/2] is given by

c[1/2] =





0
√

2 0

0 0 1

0 0 0



 . (2.109)

The matrix elements of the creation operator are then given from the definition of

the Hermitian conjugate of an irreducible tensor operator and are

c†[1/2] =





0 0 0

1 0 0

0 −
√

2 0



 . (2.110)

By using the coupling law between tensors acting on separate parts of a system, Eq.

(2.81), the matrix elements of c
†[1/2]
i (and arbitrary combinations of c

†[1/2]
i acting

on different sites) can be constructed in the basis of eigenstates of total spin of the

complete system.

The generalized commutation relations, applied to the spinor form of the oper-

ators, are
{

c
†[1/2]
i , c

[1/2]
j

}[0]

= 1√
2
δij ,

{

c
†[1/2]
i , c

[1/2]
j

}[1]

= 0 ,
(2.111)

{

c
[1/2]
i , c

[1/2]
j

}[0]

= −2
√

2δij η
[0]
i ,

{

c
[1/2]
i , c

[1/2]
j

}[1]

= 0 .
(2.112)

{

c
†[1/2]
i , c

†[1/2]
j

}[0]

= 2
√

2δij η
†[0]
i ,

{

c
†[1/2]
i , c

†[1/2]
j

}[1]

= 0 ,
(2.113)

Here η
[0]
i and η

†[0]
i are the η-pairing operators [87], which transform as SU(2) scalars†

and annihilate and create a double occupied site respectively,

η
[0]
i = c↓c↑ = − 1√

2
[c

[1/2]
i ×c

[1/2]
i ]

[0]
,

η
†[0]
i = c†↑c

†
↓ = 1√

2
[c

†[1/2]
i ×c

†[1/2]
i ]

[0]
.

(2.114)

†Later we shall see that the operators η+ and η− actually transform as components of a vector

operator with respect to an additional SU(2) pseudospin symmetry.
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The unusual square root factors appearing in the coupling of tensor operators are

a consequence of the orthonormality conditions on the Clebsch-Gordan coefficients

Eq. (B.3); in principle these factors can be adjusted by a different choice of normal-

ization.

Re-casting the number operator ni in tensor form shows that, as expected, it

transforms as a rotational invariant,

ni = n
[0]
i =

√
2 [c

†[1/2]
i ×c

[1/2]
i ]

[0]
. (2.115)

The spin operator is given by the triplet coupling

S
[1]
i = [c

†[1/2]
i ×c

[1/2]
i ]

[1]
. (2.116)

As shown earlier, this operator is skew-Hermitian, with reduced matrix elements

given by Eq. (2.87). The members of the multiplet are

S
[1]
i =





S
[1]
−1

S
[1]
0

S
[1]
1



 =






c†↓c↑[

c†↑c↑ − c†↓c↓

]

/
√

2

−c†↑c↓




 . (2.117)

Coupling S [1] × S[1] into a rotational invariant gives the total spin S2 operator,

with an additional normalization factor similar to the case in Eq. (2.115),

S2
i = −

√
3 [S

[1]
i ×S

[1]
i ]

[0]
=

√
3 [S

†[1]
i ×S

[1]
i ]

[0]
. (2.118)

Including the identity operator I, the set of rotational invariants {I, N, S2, η, η†}
form a linearly independent set for all rotational invariants that can be constructed

out of the basis states of a single site. The subset {I, N, S2} forms a linearly

independent set of all rotational invariants acting on a single site that also preserve

particle number.

2.3 Non-Abelian DMRG

This section describes the non-Abelian DMRG algorithm itself, the generaliza-

tion of the SU(2) case to an arbitrary compact symmetry and the relationship

between the non-Abelian algorithm and previous work on rotationally invariant

DMRG algorithms.

2.3.1 Construction

Now that we have seen how to manipulate irreducible tensor operators, it is

straightforward to recast the DMRG algorithm into this form. Once the single site



86 2. The non-Abelian Density-Matrix Renormalization-Group

operators have been expressed in terms of the reduced basis, the tensor product of a

block operator with a single site operator becomes a projection onto an irreducible

component of the tensor product coupling, given by Eq. (2.81). The construction

of the superblock Hamiltonian as a block-sparse matrix described in section sec-

tion 1.3.1 is essentially the same except for the 9j coefficient that appears as a

multiplicative factor for each set of quantum numbers. Because the Hamiltonian is

always a rotational invariant, by definition it transforms as the identity represen-

tation, for which the Clebsch-Gordon coefficients are trivial. The interaction terms

in the Hamiltonian, Eq. (1.36) for the coupling of the left block operator MA[k1] of

rank k1 and right block operator MB [k2] of rank k2
† becomes

([[MA[k1]
×MB [k2]]

[0]
]ψ[j])j′1j′2

=

∑

j1j2

(

MA[k1]
j′1j1ψ

[j]
j1j2

(

MB [k2]
j′2j2

)†
)






j1 j2 j

k1 k2 0

j ′1 j ′2 j




 ,

(2.119)

where the interaction is a coupling of a rank k1 operator and a rank k2 operator and

the target state is the D(j) representation of SU(2). As in the original formulation

of Eq. (1.36), for each set of quantum number labels (j ′1, j1, j
′
2, j2), the components

of the left block operator MA[k1]
j′1j1, right block operator MB [k2]

j′2j2 and wavefunc-

tion ψ[j]
j′1j′2

are in general dense matrices. Thus, the additional multiplicative factor

arising from the 9j coefficient is of no consequence since multiplying a matrix by a

constant factor is O(n2) operations, whereas the matrix-matrix multiply is O(n3)

operations. In fact, the ability to scale the matrix-matrix multiply by a real num-

ber is already present in the optimized Basic Linear Algebra Subroutines (BLAS)

package [88] used in the DMRG software, thus as long as the 9j coefficient itself can

be calculated quickly, the 9j factor has negligible effect on the computation time of

the superblock Hamiltonian matrix-vector multiply.

Once the wavefunction ψ[j]
j1j2 has been obtained, the reduced density-matrix

needs to be calculated. Clearly this must be a rotational invariant operator, trans-

forming as the identity representation of the symmetry algebra. Since the 9j coeffi-

cients for the identity representation are trivial, this is essentially unchanged from

the original construction, being

ρ[0]
j′1j1 =

∑

j2

ψ[j]
j′1j2

(

ψ[j]
j1j2

)†
. (2.120)

The transformation of the wavefunction from one step to use as the initial vector

of the next step, described for the original DMRG formulation in section 1.3.2 is

†For semi-simple Lie algebras, the allowable representations from the Clebsch-Gordan expansion

implies k1 = k2. For finite groups, k1 must be the inverse of k2.



2.3. Non-Abelian DMRG 87

modified somewhat by the rotational invariant formulation because the procedure

involves a basis transformation of the form |αn〉⊗ |sn+1 βn+2〉 → |αn sn+1〉 ⊗ |βn+2〉.
In terms of the quantum numbers of the states, assuming |αn〉, |sn+1〉 and |βn+2〉
having quantum number labels j1, j2 and j3 respectively, the transformation is

‖j1(j2j3)j23; j〉 → ‖(j1j2)j12j3; j〉. This requires the 6j coefficients [84], giving

‖j1(j2j3)j23; j〉 =
∑

j12

(−1)j1+j2+j3+j

√

(2j12 + 1)(2j23 + 1)

{

j1 j2 j

j3 j12 j23

}

× ‖(j1j2)j12j3; j〉 .
(2.121)

It turns out that the algorithm, as presented above, is significantly less efficient

when the target state transforms as any spin j greater than zero. To see why this

happens, consider the structure of the superblock wavefunction in matrix form,

ψ[j]
j1j2. In the case of j = 0, the only non-zero matrix elements are for j1 = j2,

which means that ψ[0]
j1j2 can (after a trivial reordering of indices) be put in block-

diagonal form. However, if j > 0, the allowed matrix elements are all j1 and j2 such

that |j1 − j2| ≤ j ≤ j1 + j2. This means that in the j > 0 case the wavefunction

matrix is banded, with a bandwidth of 2j+1. This drastically increases the number

of allowed non-zero elements in the wavefunction matrix, which amounts to an

increase in the dimension of the superblock Hilbert space. For small j, this is an

(2j + 1)-fold increase in the dimension of the superblock Hilbert space, which has

a disastrous effect on the computation time. There is a solution to this problem,

which was inspired by the solution to the corresponding problem in IRF-DMRG [52]

(see section 2.3.3 below) and suggested by Nishino Tomotosi. Targeting a state of

spin j is equivalent to adding a non-interacting spin of magnitude j coupled to the

spin of the system and then targeting the identity j = 0 representation. This non-

interacting spin can be inserted anywhere in the lattice; if the spin is added between

the left and right blocks then the resulting construction is formally equivalent to

that of targeting the spin j state directly. However, a much more efficient choice

is to put the non-interacting spin at one end of the lattice. This means that at

every step of the finite-size algorithm the identity j = 0 state can be targeted, with

the corresponding improvement in the dimension of the superblock basis. With the

original method of targeting the states, the performance of the non-Abelian DMRG

algorithm degrades rapidly as the target spin is increased. With the non-interacting

spin formulation, the performance actually improves as the target spin is increased,

as would be expected by the reduced overall size of the Hilbert space for higher

spin.

However, placing the non-interacting spin at one edge of the lattice necessarily

breaks the reflection symmetry of the system, so it is no longer possible to use
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reflection symmetry at the mid point of the lattice. In addition, it would appear

to preclude an efficient non-Abelian infinite-size DMRG algorithm, as in this case

the magnitude of the non-interacting spin would need to be a function of the lattice

size.

Even using the finite-size algorithm, it is necessary in general to target states of

non-zero spin during the build sweep. For large spin j, all of the spin states in the

initial four site block will have spin greater than zero, therefore the j = 0 sector

of the Hilbert space is empty. The solution is to gradually reduce the spin of the

target state such that it starts high and becomes zero once the lattice reaches full

size. That is, if the overall target state is spin j and lattice size L, then the target

state jT at lattice size l is

jT = j(1 − l/L) , (2.122)

rounded to the nearest permissible (integer or half-integer) value.

To summarize, the complete algorithm for the ‘infinite-size’ case is listed in table

2.1. The differences from the DMRG algorithm as originally published [43] are: (1)

The targeting of the appropriate symmetry sector is done via a non-interacting spin

of magnitude j positioned at the left end of the lattice (site 0), rather than projecting

onto a z-component of spin sector of the superblock basis. (2) This algorithm does

not use reflection symmetry about the midpoint of the lattice, since that symmetry

is broken by the non-interacting spin. (3) The coupling law for irreducible tensor

operators Eq. (2.81) is used instead of the ordinary matrix direct product. (4) The

final target state must be specified at the beginning of the iterations, which makes

this algorithm useless for anything other than constructing the initial blocks for the

‘finite-size’ algorithm.

In this algorithm, the left block consisting of sites 0 (the non-interacting spin),

1, 2, . . . , n is denoted An and the right block consisting of sites n, n + 1, . . . , L is

denoted Bn. The notation for the truncation operators is the same as in section

1.3.2; LT n denotes the truncation operator acting on left sites 0, 1, . . . , n and RT n

denotes the truncation operator acting on right sites n, n+ 1, . . . , L.

Table 2.2 describes the ‘finite-size’ algorithm for non-Abelian symmetries. This

algorithm only describes a right-moving sweep; the left-moving sweep is the exact

mirror image of this algorithm.
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Table 2.1: ‘Infinite-size’ algorithm with SU(2) symmetry, for target system

size of L sites and total spin j.

1. Setup: Construct the reduced basis and matrix elements for each site in the

lattice using the Wigner-Eckart theorem Eq. (2.72).

2. Make a single block consisting of a one-dimensional basis of a single spin j.

3. Make the initial blocks. The initial left block A1 consists of two sites, the

non-interacting spin and the first actual lattice site, coupled via Eq. (2.81).

The initial right block BL consists of a single site. Initially the system size

is l = 2, not counting the non-interacting spin.

4. Start of iterations: Add one site to each block, using the coupling rule Eq.

(2.81). This adds two sites to the complete system, l → l + 2.

5. Form the superblock Hamiltonian matrix (in block-sparse form) again using

the coupling Eq. (2.81) in the subspace of spin (1 − l/L), rounded to the

nearest permissible half-integer.

6. Diagonalize the Hamiltonian to find one (or more) of the low energy eigenvec-

tors.

7. Form the reduced density-matrix for the left and right blocks separately, using

Eq. (2.120).

8. Diagonalize each density-matrix to find the eigenvalues and eigenvectors. Dis-

card all but the largest m eigenvalues and associated eigenvectors of each

density-matrix and construct left and right truncation operators to change

basis to the kept density-matrix eigenstates. This gives the truncation op-

erators LT l/2 and RTL−l/2+1.

9. (Optional) Diagonalize the Hamiltonian for the left and right blocks in the

truncated basis and use the resulting eigenstates as the new basis rather

than the reduced density-matrix eigenstates (cf. section 1.3.4).

10. Apply the left and right truncation operators to each operator that will be

needed to construct the superblock Hamiltonian for l + 2 sites. This gives

the truncated blocks Al/2 and BL−l/2+1.

11. Store the left and right block operators and truncation operators for later use

in the ‘finite-size’ sweeping.

12. Repeat: Go to step 4, until the current lattice size l is equal to the desired

length L.
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Table 2.2: ‘Finite-size’ algorithm with SU(2) symmetry, for L sites and target state j.

1. Setup: Use the ‘infinite-size’ algorithm to obtain left and right blocks up to

sizes L/2. Let n = L/2 be the number of sites in the left block (not counting

the non-interacting spin site).

2. Start of iterations: Add one site to the left block using the coupling rule Eq.

(2.81), to form An ⊗ sn+1.

3. Retrieve the right block Bn+3 stored previously and add a site to it to form

the block sn+2 ⊗ Bn+3.

4. Transform the wavefunction from the An−1 ⊗ sn ⊗ sn+1 ⊗ Bn+2 basis to the

An ⊗ sn+1 ⊗ sn+2 ⊗ Bn+3 basis, using section 1.3.2 and Eq. (2.121). This

requires the truncation operator RTn+2 stored previously.

5. Form the superblock Hamiltonian matrix (in block-sparse form) using the

coupling Eq. (2.81) in the subspace of spin zero (the identity representation

of the symmetry algebra).

6. Diagonalize the Hamiltonian to find one (or more) of the low energy eigenvec-

tors.

7. Form the reduced density-matrix for the left block only.

8. Diagonalize the left density-matrix. Discard all but the largest m eigenval-

ues and associated eigenvectors and construct the left truncation operator
LTn+1 to change basis to the kept density-matrix eigenstates.

9. (Optional) Diagonalize the left block Hamiltonian in the truncated basis and

use the resulting eigenstates as the new basis, rather than the reduced

density-matrix eigenstates.

10. Apply the left truncation operator to form the truncated block An+1.

11. Store the left block and truncation operator for later use.

12. Repeat: Increment n → n + 1 and go to step 2 until n = L − 2.
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2.3.2 General formulation

We have seen how to construct the DMRG algorithm for SU(2) symmetry. How-

ever as shown in section 2.1, the Clebsch-Gordan coefficients and hence the Wigner-

Eckart theorem and associated coupling laws, apply to arbitrary finite groups and

compact Lie groups. In fact, the Wigner-Eckart theorem can be proven for more

general conditions [89] and the analogous coupling laws can be formulated for

e.g. quantum groups and supersymmetry. For example, SO(4) symmetry is partic-

ularly easy, because SO(4) is locally isomorphic to SU(2) × SU(2). Thus, every

representation of SO(4) can be labeled by two half-integer quantum numbers, writ-

ten as D(i, j) ≡ D(i) ×D(j), where D(i) and D(j) are irreducible representations

of SU(2). This means that the 6j and 9j coupling coefficients used in Eq. (2.81)

and Eq. (2.121) are simply the product of two SU(2) coefficients,

{

(a1, a2) (b1, b2) (c1, c2)

(d1, d2) (e1, e2) (f1, f2)

}

SO(4)

≡

{

a1 b1 c1

d1 e1 f1

}

SU(2)

×
{

a2 b2 c2

d2 e2 f2

}

SU(2)

,

(2.123)

and 




(a1, a2) (b1, b2) (c1, c2)

(d1, d2) (e1, e2) (f1, f2)

(g1, g2) (h1, h2) (i1, i2)






SO(4)

≡






a1 b1 c1

d1 e1 f1

g1 h1 i1






SU(2)

×






a2 b2 c2

d2 e2 f2

g2 h2 i2






SU(2)

.

(2.124)

This formulation encompasses all symmetries that can be used in DMRG, in-

cluding the Abelian symmetries used in the original formulation. For an Abelian

symmetry, the 6j and 9j coefficients are simple enough that they are rarely written

explicitly. For example, the 9j coefficients of a U(1) symmetry of, e.g. particle-

number, are






n1 n2 n

N1 N2 N

n′
1 n′

2 n′






U(1)

= δn′

1,N1+n1
δn′

2,N2+n2
δn′,n+Nδn,n1+n2δN,N1+N2δn′,n′

1+n′

2
. (2.125)

If this set of 9j coefficients is used in Eq. (2.81), the coupling reduces to the ordinary

matrix direct product and the original formulation of DMRG is recovered exactly.
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2.3.3 Relationship to previous work

There have been previous attempts to explicitly include SU(2) rotational in-

variance into the DMRG algorithm. The most successful previous algorithm is the

interaction-round-a-face DMRG (IRF-DMRG) algorithm introduced by Sierra and

Nishino [52]. In this method, the vertex Hamiltonian is first transformed into an IRF

model [67] and then a variant of DMRG is applied to the IRF Hamiltonian. The IRF

model can be chosen such that it explicitly factors out the symmetry group. The

resulting Hamiltonian matrix elements are, in principle, identical to those given by

the non-Abelian formulation. Using the IRF-DMRG algorithm, Sierra and Nishino

studied the spin 1 Heisenberg chain using SU(2) symmetry and and the XXZ chain

using quantum group SUq(2) symmetry [52]. Later, the IRF-DMRG was applied to

the spin 1 and spin 2 Heisenberg chains by Tatsuaki [90]. However, the IRF-DMRG

algorithm is complicated by the necessity to calculate the Boltzmann weights for

each interaction term in the Hamiltonian. Without a special effort to factorize the

coupling coefficients, the number of non-trivial IRF weights increases rather quickly

as the magnitude of the spins in the system is increased and for a larger symmetry

group. Thus, as far as we know, the IRF-DMRG has not been applied to any more

complex models, such as the fermionic models treated in this thesis.

Sakamoto and Kubo [7] describe a different method of constructing eigenstates

of SU(2). This algorithm requires estimating the total spin of the ground state,

calculating the wavefunction for every possible z-component of spin and then con-

structing the SU(2) invariant density-matrix,

ρi′i =
1

2j + 1

j
∑

m=−j

ψi′j(m)ψ∗
ij(m) , (2.126)

where ψij(m) is the ground state wavefunction with z-component of total spin m.

The description given by Sakamoto and Kubo [7] is not clear on how ψij(m) is

actually obtained for each value of m. In principle, given ψij(m) for a single value

of m, all other components can be calculated by successive applications of the

S+ and S− operators. This is a trivial calculation for eigenstates of total spin.

However, in that case it is not necessary to perform the summation in Eq. (2.126),

as the density-matrix will contain the same elements independent of m. There is

also no mention of projecting the superblock Hilbert space onto a given total spin

sector, in fact the description of the algorithm explicitly states that the total spin

is determined after obtaining the wavefunction, implying that the diagonalization

is performed in a state of fixed z-component of spin only. So it is not clear what

the advantage of this algorithm is, or the magnitude of the efficiency gain, if any.
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2.4 The Hubbard Model

The Hubbard model [91,92] was introduced as an attempt to describe d-electron

correlations in transition metals and has since seen many different applications, for

example it has been suggested as a realistic (albeit simplified) model of the Cu-O

planes in high Tc superconductors [23] (cf. chapter 4). The Hamiltonian is

H =
∑

i,j,σ

tijc
†
i,σcj,σ + U

∑

i

[(

ni,↑ −
1

2

)(

ni,↓ −
1

2

)

+
1

4

]

, (2.127)

which consists of two contributions, a hopping integral tij which is usually taken to

be translationally invariant and acting between nearest-neighbors only, i.e. tij = −t
for i, j nearest-neighbors and zero otherwise and an on-site term of strength U , rep-

resenting the effective screened Coulomb interaction. The important component of

this interaction term is Uni,↑ni,↓, which gives an energy penalty (in the U > 0 case)

for each double-occupied site. The other components appearing in the interaction

are irrelevant in the current case, being a constant (depending on the number of lat-

tice sites) and a term proportional to the total number of electrons (i.e. a chemical

potential). Since the number of electrons commutes with H, this is a good quan-

tum number in the DMRG calculations thus it is not necessary to explicitly add a

chemical potential; the number operator can simply be replaced by its eigenvalue

resulting in a trivial energy shift. The reason for writing the interaction in this form

(rather than simply U
∑

i ni,↑ni,↓) will become clear in section 2.5.

The Hubbard model has been shown to be integrable in one dimension [93] which

makes the model useful for testing the efficiency and accuracy of numerical algo-

rithms, although the numerical solution is useful in its own right for the calculation

of quantities which are not so easy to determine from the exact solution.

The SU(2)-invariant matrix representation of the fermionic algebra was deter-

mined in section 2.2.4. All that remains is to construct the interaction term and the

SU(2)-invariant form of the Hamiltonian Eq. (2.127). In the full single site basis of

Eq. (2.106), the operator (ni,↑ − 1
2
)(ni,↓ − 1

2
) + 1

4
has the matrix elements

(

ni,↑ −
1

2

)(

ni,↓ −
1

2

)

+
1

4
=

1

2








1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1







. (2.128)

The application of the Wigner-Eckart theorem Eq. (2.70) gives the reduced matrix
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elements in the basis of Eq. (2.108),

[(

ni,↑ −
1

2

)(

ni,↓ −
1

2

)

+
1

2

][0]

=
1

2





1 0 0

0 0 0

0 0 1



 . (2.129)

Putting all of this together, the SU(2)-invariant Hamiltonian reads

H = −
√

2t
∑

<i,j>

(

[c
†[i]
1/2×c

[j]
1/2]

[0]
+ h.c.

)

+U
∑

i

[(

ni,↑ −
1

2

)(

ni,↓ −
1

4

)

+
1

4

][0]

.
(2.130)

Conventional DMRG studies of a system such as the Hubbard model use the U(1)×
U(1) basis of number of particles N and z-component of total spin sz. The SU(2)-

invariant DMRG algorithm allows the z-component of the total spin to be replaced

by the total spin s itself, giving a much larger symmetry group, U(1) × SU(2).

Table 2.3 compares the accuracy and efficiency of the DMRG calculation when these

two basis sets are used, for the Hubbard model at half-filling, for a 60 site lattice

with t = U = 1. This data was calculated on a desktop machine with an Athlon

500MHz processor. For the case of half-filling, the degree of the representation of

the block basis is equal to the number of states that would need to be kept in the

U(1) × U(1) basis to achieve the same accuracy. Each basis state of total spin j

in the U(1) × SU(2) basis corresponds to 2j + 1 basis states of the U(1) × U(1)

basis. This appears as the well-known (2j+1)-fold degeneracy in the density-matrix

eigenvalues [43] of the original DMRG algorithm.

Table 2.3 shows that the use of the SU(2)-invariant algorithm results in almost

two orders of magnitude improvement in the fractional error in the energy and

in the cumulative truncation error. There is an increase in the CPU time per

sweep, however most of the variance in CPU time is due to different numbers of

matrix-vector multiplies being performed by the eigensolver. The CPU time for

each matrix-vector multiply is nearly identical irrespective of the choice of symmetry

group.

Table 2.4 shows the accuracy and efficiency of the U(1)×U(1) and U(1)×SU(2)

algorithms when targeting a state of higher spin, in this case s = 5 (or sz = 5, in

the case of the U(1) × U(1) algorithm). The data for the U(1) × SU(2) basis was

obtained by targeting the spin 5 state directly, without using the non-interacting

spin. Thus, while there is a small accuracy improvement, the CPU time per sweep is

much larger, because the dimension of the superblock Hilbert space is significantly

bigger for the same number of block states. The loss of efficiency is corrected
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Table 2.3: Comparison of U(1)×U(1) and U(1)×SU(2) basis for the ground

state of the half-filled Hubbard model for a 60 site lattice, at t = U = 1.

Columns are the basis used, number of states kept m, degree of the group

representation d, energy E, fractional error in the energy, cumulative trunca-

tion error over the sweep 1 − σ, CPU time in seconds per sweep.

basis m d E (E − Eg)/|Eg| 1 − σ CPU

U(1) × U(1) 100 200 −61.7484986435 5.2×10−5 5.3×10−4 10

U(1) × U(1) 200 200 −61.7514641444 4.5×10−6 4.8×10−5 41

U(1) × U(1) 300 300 −61.7516910404 7.9×10−7 8.8×10−6 110

U(1) × SU(2) 100 226 −61.7515581914 2.9×10−6 3.1×10−5 15

U(1) × SU(2) 200 468 −61.7517319907 1.3×10−7 1.4×10−6 64

U(1) × SU(2) 300 716 −61.7517389831 1.4×10−8 1.5×10−7 158

by using a non-interacting spin to force the target state into the singlet sector as

described previously. The resulting algorithm produces the data shown in table

2.5. The difference in energy between the two forms of targeting the state using

the U(1) × SU(2) basis is extremely small, which indicates that the additional

superblock states that occur in the direct targeting method have negligible effect on

the variational energy, while substantially reducing the computational efficiency.

For the higher spin states of Hubbard model, the accuracy improvement arising

from the SU(2)-invariant algorithm is rather small. The improvement is much more

significant in the vicinity of a ferromagnetic phase transition, where many states of

different total spin are numerically near-degenerate and the ability to target directly

a single sector of total spin substantially reduces the density of low-lying eigenstates

of the superblock Hamiltonian. This is apparent in the Kondo lattice calculations

in chapter 3.
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Table 2.4: Comparison of the U(1) × U(1) and U(1) × SU(2) basis for the

lowest spin 5 excited state for the half-filled Hubbard model on a 60 site lattice

with t = U = 1. The U(1) × SU(2) were obtained by directly targeting the

spin 5 state (no non-interacting spin).

basis m E (E − Eg)/|Eg| 1 − σ CPU

U(1) × U(1) 100 −59.5701792131 4.0×10−5 3.9×10−4 11

U(1) × U(1) 200 −59.5723270633 3.6×10−6 3.8×10−6 41

U(1) × U(1) 300 −59.5725015232 6.3×10−7 6.8×10−5 102

U(1) × SU(2) 100 −59.5702795890 3.8×10−5 3.9×10−4 26

U(1) × SU(2) 200 −59.5723402180 3.3×10−6 3.7×10−5 90

U(1) × SU(2) 300 −59.5725035338 5.9×10−7 6.8×10−6 207

Table 2.5: Energy and CPU time using the U(1)×SU(2) basis for the lowest

spin 5 excited state for the half-filled Hubbard model on a 60 site lattice with

t = U = 1, using a non-interacting spin to target the appropriate symmetry

sector.

basis m E (E − Eg)/|Eg| 1 − σ CPU

U(1) × SU(2) 100 −59.5702385716 3.9×10−5 3.8×10−4 14

U(1) × SU(2) 200 −59.5723344203 3.4×10−6 3.6×10−6 47

U(1) × SU(2) 300 −59.5725027479 6.1×10−7 6.7×10−6 113
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2.5 SO(4) Example

In 1990, C. N. Yang and S. C. Zhang [94] showed that the Hubbard model

contains an additional symmetry group, known as pseudospin. To obtain this sym-

metry, one notices that the Hamiltonian Eq. (2.127) is invariant under a particle-hole

transformation of the e.g. down spins only,

c†i,↓ → c̄†i,↓ = (−1)i ci,↓ ,

ci,↓ → c̄i,↓ = (−1)i c†i,↓ .
(2.131)

The staggered phase ensures that the hopping term connecting nearest-neighbor

sites is preserved. More generally, the hopping term remains invariant if and only

if the lattice is bipartite, with hopping only from one partition of lattice sites to the

other partition.

Since the Hamiltonian is invariant under the transformation Eq. (2.131), for any

operator X that commutes with H, the image under the transformation, X̄, must

also commute with H. In particular, this applies to the operators S+, S− and Sz.

This is useful because the image of these operators under the transformation Eq.

(2.131) results in a new set of operators generating an additional SU(2) symmetry,

Q+
i = S̄+ = (−1)i c†i,↑c

†
i,↓ ,

Q−
i = S̄− = (−1)i ci,↓ci,↑ ,

Qz
i = S̄z = 1

2
(ni,↑ + ni,↓ − 1) .

(2.132)

The pseudospin operators† Q+, Q−, Qz all mutually commute with S+, S− and Sz,

which means that the 6 quantities generate the algebra SU(2) × SU(2), which is

locally isomorphic to SO(4). The pseudospin symmetry is a generalization of the

U(1) particle number symmetry. Indeed, the z-component of pseudospin is related

to the particle number N by

N = L + 2Qz . (2.133)

Particle-hole symmetry corresponds to pseudospin reflection Qz → −Qz. The pseu-

dospin operators are closely related to the η-pairing operators defined in section

2.2.4 and are important in superconductivity [87, 95, 96].

On a single site of the Hubbard model, pseudospin symmetry places the empty-

and double-occupied states into a multiplet of degree 2, with pseudospin 1/2 and

spin zero. The singly-occupied states in the spin 1/2 multiplet have zero pseudospin

and are essentially unchanged from the U(1) × SU(2) case. These two multiplets

†In the literature, it is common to denote the pseudospin vector by I+, I− and Iz. However,

to avoid confusion with the identity operator I , the pseudospin vector is denoted Q+, Q−, Qz in

this thesis.
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have the quantum numbers of the holon and spinon respectively [97]. Thus the

pseudospin gives a particularly useful construction for demonstrating spin-charge

separation of the one-dimensional model.

The additional SU(2) symmetry label means that there are now two spin indices

on every operator and basis state, which we write as [q, s] for pseudospin q and spin

s. This places the c
[i]
1/2 and c

†[i]
1/2 into a single operator with two spinor indices†,

c
[1/2,1/2]
i , transforming as the D(1/2, 1/2) representation of SO(4).

Choosing an ordering of reduced basis states ( ‖0, 1/2〉, ‖1/2, 0〉 ) (respectively

the spinon and holon), a concrete matrix representation of c
[1/2,1/2]
i can be obtained,

c
[1/2,1/2]
i =







(
0

√
2√

2 0

)

, if i even;

(
0 −

√
2√

2 0

)

, if i odd.

(2.134)

This operator is skew-Hermitian. It is important to note that the generators of

pseudospin SU(2) Eq. (2.132) do not commute with the spatial reflection operator

R. This is because spatial reflection flips sites from the even sublattice onto the odd

sublattice and vice versa . Spatial reflection is only possible with the simultaneous

exchange of odd and even sublattices. Applying separately either spatial reflection

or exchange of sublattice, violates pseudospin symmetry. For example, suppose that

there existed a unitary transformation R that transforms as a rotational invariant

with respect to SO(4) and has the effect of flipping the sublattice at some arbitrary

site i. Such an operator would have the effect of interchanging the sign of the

creation/annihilation operator Eq. (2.134), giving

R

(
0

√
2√

2 0

)

R−1 =

(
0 −

√
2√

2 0

)

. (2.135)

It is easy to see that there is no such operator.

The coupling C
[1/2,1/2]
i × C [1/2,1/2]

i has three irreducible representations, [0, 0],

[0, 1] and [1, 0]. These are

[c
[1/2,1/2]
i ×c

[1/2,1/2]
i ]

[0,0]
= −1 ,

[c
[1/2,1/2]
i ×c

[1/2,1/2]
i ]

[0,1]
= −S [0,1]

i ,

[c
[1/2,1/2]
i ×c

[1/2,1/2]
i ]

[1,0]
= −Q[1,0]

i .

(2.136)

†Despite the superficial similarity, this has very little in common with a Dirac bispinor. Al-

though the degree of the representation is the same, bipinors transform as the D(1/2, 0)⊕D(0, 1/2)

representation.
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Table 2.6: Energy and CPU time for the SO(4) basis for the ground state of

the half-filled Hubbard model for a 60 site lattice, at t = U = 1. cf. table

2.3.

basis m d E (E − Eg)/|Eg| 1 − σ CPU

SO(4) 100 526 −61.7517351742 7.6×10−8 8.4×10−7 18

SO(4) 200 1136 −61.7517397636 1.4×10−9 1.5×10−8 71

SO(4) 300 1766 −61.7517398448 9.9×10−11 1.0×10−9 133

The last two projections are respectively the spin and pseudospin operators at site

i. In the SO(4) reduced basis, the Hubbard interaction term in 2.127 becomes

proportional to the number of holons and is given by

U
∑

i

[(

ni,↑ −
1

2

)(

ni,↓ −
1

4

)

+
1

4

][0,0]

=
U

2

∑

i

nh
i , (2.137)

where the number of holons at site i, nh
i , is a rotational-invariant operator given by

nh
i =

(
0 0

0 1

)

. (2.138)

The number of spinons, ns
i , has a similar form,

ns
i =

(
1 0

0 0

)

, (2.139)

and these two operators satisfy the identity

nh
i + ns

i = 1 . (2.140)

Thus the Coulomb interaction can be written using many different combinations of

the nh and ns operators.

Using pseudospin SO(4) symmetry gives an additional accuracy improvement

over the U(1)× SU(2) basis. This is shown in table 2.6, for the half-filled Hubbard

model with the same parameters as table 2.3. The use of non-Abelian symmetries

gives an improvement of three orders of magnitude in the fractional error in the

energy and the cumulative truncation error with 100 states kept, extending to almost

four orders of magnitude for 300 states kept.

The results for the spin 5 excited state with the SO(4) algorithm appear in

table 2.7. Again there is a significant accuracy improvement compared with the

U(1) × SU(2) algorithm shown in table 2.5.
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Table 2.7: Energy and CPU time for the SO(4) basis for the lowest spin

5 excited state for the half-filled Hubbard model on a 60 site lattice with

t = U = 1. cf. table 2.5.

basis m E (E − Eg)/|Eg| 1 − σ CPU

SO(4) 100 −59.5723497975 3.2×10−6 3.4×10−5 16

SO(4) 200 −59.5725312667 1.3×10−7 1.4×10−6 64

SO(4) 300 −59.5725381253 1.4×10−8 2.2×10−7 148

In the large-U limit of the Hubbard model, the energy penalty for each holon

in the system implies that the number of holons is minimized, i.e. given a band

filling specified by qz, the total pseudospin will be q = |qz|. Thus in this case it

is sufficient to label the states by qz alone, so that the SU(2) pseudospin reduces

to U(1). The basis states can be labeled by the number of holons, nh = 2|qz| and

the total spin s. The reduced basis consists of two states ‖1, 0〉 transforming as

the one-dimensional D(1, 0) representation and ‖0, 1/2〉 transforming as the two-

dimensional D(0, 1/2) representation of U(1) × SU(2). The total degree of the

single site basis has been reduced from four states to three, as the pseudospin up

and down states, corresponding to double-occupied and empty sites respectively,

become formally equivalent. The physical choice for positive U → ∞ is to take the

‖1, 0〉 state to represent the empty site, eliminating all double-occupied sites from

the model.

An equivalent choice of basis is to take the U(1) quantum number to be the

number of spinons, rather than the number of holons. This is equivalent because

of the identity nh
i + ns

i = 1, shown previously. With this choice, the two reduced

single site basis elements are notated ‖0, 0〉 and ‖1, 1/2〉.

2.6 Spatial Symmetries

Previous momentum-space calculations using DMRG [13,14] have utilized trans-

lation symmetry of the lattice, generated by the translation operator T , so that the

basis states transform as irreducible representations of CL, the cyclic group of order

L. This group is Abelian, so the formulation of the DMRG algorithm is essentially

the same as the real-space case, except that for the models under consideration

(as far as we know, all studies of the DMRG in momentum space have consid-
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ered the Hubbard model), the momentum-space Hamiltonian contains many more

terms. The lattice sites of the momentum-space formulation can be labeled by the

momentum, k = 2πh/L, for h an integer with 0 ≤ h < L.

The full symmetry group of a lattice is generally bigger than just CL, even in

the one-dimensional case. The addition of spatial-reflection (parity) P extends the

symmetry group, since there are now two generators P and T , with

TL = 1 ,

P 2 = 1 ,

P T P = T−1 .

(2.141)

This is the dihedral group DL, of order 2L and the relation P T P = T−1 implies

that it is non-Abelian. The properties of this group are discussed in practically any

book on group theory (e.g. [77, 78, 80]). The set of 2L elements in the group is

{T, T 2, . . . , TL = 1, PT, PT 2, . . . , PTL = P}. The irreducible representations are

slightly different when L is even versus L odd; here we consider only the case of

L even. There are four irreducible representations of degree 1, obtained by setting

T and P to be ±1 in all possible ways. This corresponds to the states of total

momentum k = 0, π, with parity p = ±1. All other representations are degree two.

Let k = 2πh/L, for h an arbitrary integer. A representation of DL is given by

Γk(T n) =

(
cos kn sin kn

− sin kn cos kn

)

,

Γk(P ) =

(
1 0

0 −1

)

.

(2.142)

It is easy to verify by direct calculation, that this is indeed a representation for all

integers h. It depends only on the momentum k modulo 2π, moreover Γk and Γ−k

are isomorphic, hence we may assume that 0 ≤ k ≤ π (equivalent to 0 ≤ h ≤ L/2).

The extreme cases k = 0 and k = π are reducible and are equivalent to the direct

sum of the parity ±1 representations described previously. On the other hand, for

0 < k < π, it is easy to show that the representation Γk is irreducible. Thus, the

representations found so far are the four representations of degree 1, labeled by

(k, p) with k = 0, π, p = ±1 and L/2−1 representations of degree 2, labeled by (k),

with k = 2πh/L for h an integer, 0 < h < L/2. The sum of the squares of their

degrees is 4 × 1 + (L/2 − 1) × 4 = 2L, which is the order of the group. Thus we

have found all of the irreducible representations.

Note that the number of irreducible representations and hence the number of

distinct sites of the momentum-space lattice, has been reduced from L to L/2 + 2.

This reduction in the number of lattice sites arises from the symmetry group being
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non-Abelian and it reflects the two-fold degeneracy of states with momentum k and

−k, when k 6= 0, π. The two-fold degeneracy does not occur when k = 0 or k = π

and instead the parity becomes a good quantum number, with p = ±1. Thus, non-

Abelian lattice symmetries have a rather different effect to the continuous spin and

pseudospin SU(2) symmetries considered previously. The reduction in the number

of lattice sites by a factor of ∼ 2, coupled with the reduction in the dimension of the

Hilbert space due to momentum and parity conservation, is undoubtedly beneficial

to the accuracy of the algorithm. However, placing momenta k and −k into the same

multiplet has the effect doubling the degree of the representation of the single-site

basis. This serves to increase the dimension of the superblock Hamiltonian, acting

against the reduction in dimension due to momentum and parity conservation. It is

not yet clear how this trade-off will affect the efficiency of the DMRG algorithm. It

would seem however that, as the size of the lattice symmetry group is increased, the

degree of the single-site basis increases rapidly. For example, for a two-dimensional

square lattice with periodic boundary conditions in both directions, the symmetry

group is rather large, with four generators {Tx, Ty, Px, Rxy}, corresponding to trans-

lation in the x and y direction, spatial reflection in the x direction and rotation 90

degrees about the z-axis (spatial reflection in the y direction is equivalent to the

combination Rxy PxR
−1
xy ). The lowest symmetry point has degree 8, which implies

that for a DMRG calculation using this symmetry group, at the low symmetry

points a single site in the DMRG lattice would represent 8 different momenta, as

now points {(kx, ky), (kx,−ky), (−kx, ky), (−kx,−ky), (ky, kx), (ky,−kx), (−kx, ky),

(−kx,−ky)} are all included in the same multiplet. Thus, the degree of the site

basis would be very large, i.e. even in the simplest case of only two basis states per

momenta, the single site basis would have, for some lattice sites, degree 28 = 256.

Because many of the basis states have degree d > 1 the actual number of states will

be much less than the total degree, but only by a factor of the order of order d,

which still implies that the number of basis states increases exponentially as addi-

tional non-Abelian lattice symmetries are included in the calculation. The trade-off

between increasing the number of good quantum numbers versus increasing the

dimension of the single-site basis needs to be fully investigated before large-scale

calculations using non-Abelian lattice symmetries are attempted.



Chapter 3

The Kondo Lattice Model

The Kondo lattice model is one of the canonical models used to study impurity

effects in strongly correlated electron systems and has been the subject of intense

study for many years. The Kondo lattice model describes the interaction between

a band of conduction electrons (c-electrons) and a lattice of localized magnetic

moments, e.g. f -electrons. In this chapter, the the ground state phases of the one-

dimensional Kondo lattice are presented, focusing on the antiferromagnetic coupling

regime J/t > 0, starting with previously known results and then the numerical

DMRG results which show the existence of a previously unrecognized ferromagnetic

region at intermediate coupling. In the final section, this new phase is shown to

also exist in the periodic Anderson model.

3.1 Introduction

The Kondo lattice model is a special case of a general two-band electron system

with inter-band interactions. Like the Hubbard model, the Kondo lattice contains

pseudospin symmetry, so this discussion of the properties of the Kondo lattice is

carried out from this point of view. The assumptions from which the Kondo lattice

model can be derived are: (i) There is at most one localized f -electron at each

lattice site. In the pure Kondo lattice, there is always one f -electron at each site,

but in general it may be a fraction of the sites, to model dilute Kondo impurities.

The original version of the Kondo model had only a single f -electron (now known

as the single-impurity Kondo model) and was the subject of the famous work by

Wilson using the numerical renormalization group [30]. (ii) The only interactions

are between the f - and c-electrons on each site. There are no inter-site interactions.

The motivation for this assumption is mostly to simplify the model, without losing

essential physics. In any real system, there will be dipolar and exchange interac-

tions between the localized electrons, however given that there is only one localized

103
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electron per site, such interactions are necessarily between nearest neighbor sites or

even longer range. Thus these interactions are expected to be much smaller than

the intra-site interaction between the f - and c-electrons. By a similar argument, all

inter-site c− c and c−f interactions are also neglected. In some parameter regimes

these interactions are likely to be important, for example in the heavy fermion alloys

(cf. section 3.2.2).

Given that each f−band site contains only a single spin with zero pseudospin,

there is only one choice of non-trivial interaction between the c− and f−electrons

that does not break SO(4) symmetry, namely a spin-spin interaction, giving the

Hamiltonian

H = −t
L−1∑

i,σ

(c†i,σci+1,σ + h.c.) + J

L∑

i=1

Sc
i ·Sf

i , (3.1)

where t > 0 is the usual kinetic parameter and Sc
i , S

f
i are the spin operators at site

i for the c- and f -electrons respectively. A single site of the Kondo lattice is thus

the tensor product of a Hubbard-type site and a spin, giving an 8 dimensional rep-

resentation transforming under SO(4) rotations as D(0, 0)⊕D(0, 1)⊕D(1/2, 1/2).

The complete set of states is given in table 3.1. The interaction is diagonal in this

basis, as the site reduced basis states are also eigenstates of Sc · Sf . Thus the en-

ergy of each basis state is also listed. In this chapter, except when explicitly stated

otherwise, hopping t = 1 is assumed.

The Kondo lattice model can be derived as a limiting case of the more general

periodic Anderson model (also known as the Anderson lattice model), for which the

Hamiltonian is

H = −t
∑

<i,j>,σ

(c†i,σcj,σ + H.c.) + U
∑

i

f †
i,↑fi,↑f

†
i,↓fi,↓

+εf
∑

i,σ

f †
i,σfi,σ + V

∑

i,σ

(c†i,σfi,σ + H.c.) .
(3.2)

Here, c†i,σ, ci,σ are the creation and annihilation operators for a conduction-band

electron of spin σ at site i, f †
i,σ, fi,σ are the creation and annihilation operators

for a localized band of electrons (typically f - or d-electrons), U > 0 is the on-site

Coulomb repulsion between f -electrons, εf is the energy of the localized electrons

and V is the hybridization between the c- and f -band. The hybridization term

makes the periodic Anderson model superficially different from the Kondo lattice

model, in which the f -electrons are fixed at their lattice sites and 〈c†i,σfi,σ〉 is strictly

zero. Schhrieffer and Wolff [98] showed that this difference is in fact superficial only

and that the periodic Anderson model reduces to the Kondo lattice model in the

local moment regime. The local moment regime has the f level εf below the Fermi
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Table 3.1: Basis states of a single site of the Kondo lattice model. The

notation for the reduced basis is ‖q, s〉 of pseudospin q and spin s. As there

is at most one basis state of a given set of quantum numbers, these labels

are enough to completely specify the basis. c-electrons are denoted by {↑, ↓},
f -electrons by {⇑,⇓}.

State Energy q s degree Projections qz sz

‖0, 0〉 −3J/4 0 0 1 (|↑⇓〉 − |↓⇑〉)/
√

2 0 0

‖0, 1〉 J/4 0 1 3 |↓⇓〉 1 −1

(|↑⇓〉 + |↓⇑〉)/
√

(2) 0 0

|↑⇑〉 0 1

‖1/2, 1/2〉 0 1/2 1/2 4 |⇓〉 −1/2 −1/2

|⇑〉 −1/2 1/2

|↑↓⇓〉 1/2 −1/2

|↑↓⇑〉 1/2 1/2

energy and εf + U above the Fermi energy. Thus the ground state has a single

f -electron at each site and double occupation of the f -band sites is suppressed by

the strong Coulomb repulsion U . Under the symmetric condition

εf = −U
2
, (3.3)

the energy of an unoccupied f -band site is the same as the energy of a double

occupied f -band site and the system has SO(4) pseudospin symmetry. By per-

forming a perturbative expansion of the Hamiltonian Eq. (3.2) with respect to V ,

Schhrieffer and Wolff [98] showed that the Kondo lattice model is recovered, with

an antiferromagnetic exchange interaction inversely proportional to U , given by

Jeff =
8V 2

U
. (3.4)

Therefore the limit of strong Coulomb interaction corresponds to the weak coupling

limit of the Kondo lattice model and conversely the weak Coulomb interaction

corresponds to the Kondo lattice with strong coupling. It must be remembered

however that for small U , the periodic Anderson model is no longer in the local

moment regime and the Schhrieffer-Wolff transformation is not applicable.
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3.2 Applications to Real Materials

The Kondo lattice describes materials in which the main interactions are be-

tween two distinct types of particles; localized electrons, of which the only relevant

property is the magnetic moment and itinerant conduction electrons. This situation

is realized in two important classes of materials, manganese oxide perovskites, in

which there usually exists a mixture of Mn3+ and Mn4+ ions and the so-called heavy

fermion compounds, which contain rare-earth or actinide elements such that atomic-

like f -electrons interact with a conduction band. Although these materials are not

one-dimensional, so far the Kondo lattice model has proven to be substantially in-

tractable in two and three dimensions. While there is great hope of making progress

toward the numerical solution of the model in higher dimensions (especially in two

dimensions), in the near future, the study of the one-dimensional case remains the

most important and practical theoretical tool for modeling these materials.

3.2.1 Manganese oxide perovskites and colossal magnetore-

sistance

The manganese oxide perovskites have the form R1−xAxMnO3, where R is La,

Nd or Pr is a trivalent rare earth element and A is Ca, Sr, Ba, Cd, Pb is divalent

and usually an alkaline earth. These materials have a rich phase diagram with

several generic low-temperature phases [99]. At low doping x <∼ 0.2, there is a spin-

cantered insulating state. This is often followed by a small region of ∆x ∼ 0.05,

which is ferromagnetic insulator. For 0.2 <∼ x <∼ 0.5, the materials are ferromagnetic

metals. These materials have, in recent years, attracted renewed interest due to the

discovery of colossal magnetoresistance (CMR) [100]. The magnetoresistance is

∆ρ

ρ(0, T )
=
ρ(H, T ) − ρ(0, T )

ρ(0, T )
, (3.5)

where ρ(H, T ) is the resistivity in an applied magnetic field H at temperature T .

The magnetoresistance undergoes a ∼ 1, 000-fold reduction in thin films of man-

ganese oxide compounds near the Curie temperature in the metallic ferromagnetic

phase. The great interest is stimulated by the potential applications in magnetic

recording heads. Even more recently, ARPES measurements of the Fermi surface of

La1.2Sr1.8Mn2O7 by Chaun et al. [101] found evidence for a pseudogap, long sus-

pected to play a critical role in high-temperature superconductivity and indications

of a striped phase.

The relevance of the Kondo lattice to manganese oxide perovskites arises from

the properties of the 3d shell electrons in Mn. In the undoped RMnO3 compounds,
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the manganese atoms are triply ionized and contain four 3d electrons in the outer

shell. In the perovskite lattice the 3d band splits and Mn3+ has the following

configuration [102]: Three electrons occupy the lower three-fold degenerate localized

t2g orbitals and one electron is in an upper two-fold degenerate delocalized eg orbital.

Upon doping the trivalent rare earth R with a divalent element A, such as an alkaline

earth, electrons are stripped from the Mn atoms resulting in a mixture of Mn3+ and

Mn4+ ions. The latter are missing the eg electron. A very strong Hund’s rule

coupling forces alignment of the spins of the localized t2g electrons and these act

as the localized moments in the Kondo lattice model. The delocalized eg electrons

form the conduction band. Since there are in fact three t2g electrons the localized

spin is 3/2, so the application of the Kondo lattice model to these materials requires

approximating the localized spins to be 1/2, rather than 3/2. The coupling between

the localized electrons and the delocalized eg orbitals is again via Hund’s rule. This

favors strong ferromagnetic alignment, corresponding to J < 0 and |J |/t > 1. Of

potential importance is electron-phonon effects in these materials. These are ignored

in the Kondo lattice model, which may result in the model being unable to reproduce

critical properties of the real materials. It is argued by Millis et al. [103–105] that

it is necessary to include the electron-phonon coupling induced by a Jahn-Teller

splitting of the Mn3+ ions. However, this issue is still open, although it would seem

likely that phonon effects play some role [101]. As far as the author knows, a striped

phase has never been observed in the Kondo lattice model, but it has been suggested

by Nagaev [106] that impurity models such as the Kondo and Anderson lattices are

in fact natural candidates for stripe formation, more so than other models such as

Hubbard or t − J . A solution of the two-dimensional Kondo lattice model in the

appropriate parameter regime would be of critical importance in clarifying these

issues.

3.2.2 Rare earth and actinide compounds

One broad class of compounds with interesting strong interaction effects are the

heavy fermion materials, characterized by a very small energy scale which gives a

Fermi-liquid-like state at low temperatures. This small energy scale, typically only a

few tens of Kelvins, manifests most prominently in the specific heat C and the spin

susceptibility χ. The linear coefficient of the specific heat C/T is extremely large

compared with that of conventional metals, by two or three orders of magnitude.

The spin susceptibility is similarly enhanced, but the Wilson ratio of these two quan-

tities remains of order unity. Therefore it is possible to accommodate this behavior

in the standard Fermi-liquid picture by taking the quasiparticle mass m∗ to be two
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or three orders of magnitude larger than the bare electron mass, thus the quasipar-

ticles are named heavy fermions. Heavy fermion materials exhibit a large diversity

of ground states, including magnetically ordered states (CeAl2 and U2Zn17), novel

(non-BCS) superconductivity (CeCu2Si2 and UBe13) and ground states which are

neither magnetically ordered nor superconducting (CeAl3 and UAl2). The heavy

fermion systems contain two different types of electrons. One is a set of conduction

electrons in s- p- or d-orbitals that move through the lattice forming broad bands.

The other set is electrons in inner f -orbitals. The electrons keep their essentially

atomic character even in the periodic lattice, thus they hybridize with the con-

duction electrons only weakly. As a consequence the electron-electron interaction

between f -electrons on the same ion is the largest energy scale of the system, fol-

lowed by Hund’s rule coupling. The situation is realized by one ionic configuration,

fn say, which has lower energy than the other f configurations, such that the energy

of the fn electrons lies completely below the energy of the conduction band, which

is in turn below the energy of the other f states. By neglecting orbital degeneracy

and all interactions between c- and f -electrons not on the same site, this can be

modeled by the periodic Anderson model. The configuration of the energy levels

puts this in the Kondo regime.

A related class of compounds that have attracted great interest in the last decade

are the Kondo insulators. The Kondo insulators are semiconductors containing rare-

earth or actinide elements and are characterized by a very small excitation gap, of

the order of a few meV , much smaller than ordinary semiconductors where the

gap is of the order ∼ 1eV . The Kondo insulators are reviewed in references [107]

and [108].

3.3 Single-Impurity Limit

The Kondo lattice model can be considered an extension of the single impurity

model. The single-impurity model has a single localized spin interacting with the

conduction electrons at a single site only. This is described by the Hamiltonian

H1 imp = −t
L∑

<i,j>,σ

(c†i,σcj,σ + h.c.) + JSc
0·Sf

0 . (3.6)

An antiferromagnetic coupling J > 0 is assumed. Historically, study of the single

impurity model preceded that of the lattice case† and H1 imp is now well understood,

†although Frölich and Nabarro [109] considered the lattice case in 1940 as a model of magnetic

ordering of nuclear spins
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to the point of an exact solution via the Bethe ansatz [110, 111]. Thus, this section

is merely a brief outline of the large body of work that has been obtained on this

model, concentrating on features that are of relevance to the lattice case. The book

by Hewson [112] contains a thorough discussion and list of references on the various

types of calculations that have been performed on the single-impurity model.

Interest in the single-impurity model arose from the famous Kondo effect; the

anomalous increase in the resistivity of dilute magnetic alloys as the temperature

T decreases to T → 0. In simple metals the resistivity decreases monotonically as

the temperature is lowered, because the main contribution to the resistivity for low

temperatures is from electron-phonon scattering, which decreases as T 5 for small

T . In metals with dilute magnetic impurities, such as iron in gold, the resistivity

is not monotonic with temperature, but has a resistance minimum before rising

again as T → 0. A breakthrough in understanding this phenomena was achieved by

Kondo [113], who calculated the resistivity ofH1 imp to third order in the coupling J ,

by diagrammatic perturbation theory. He found that at third order, the interaction

leads to spin scattering of the conduction electrons with the magnetic impurity,

giving a − logT contribution to the resistivity. This explained well the behavior

of the resistance in the vicinity of the minimum and the temperature scale of this

resistance minimum became known as the Kondo temperature TK . The scattering

off the magnetic impurity leads to a sharp increase in the density of states at the

Fermi surface, known as the Kondo resonance.

Since logT diverges as T → 0, it is clear that the perturbation theory fails at

temperatures much lower than TK. Thus, while Kondo’s calculation provided the

first understanding of the effect of dilute magnetic impurities, the method could

not access the low temperature regime. The problem of finding a solution valid as

T → 0 became known as the Kondo problem. This was essentially solved in the

1970’s by Wilson’s numerical renormalization group. This numerical algorithm was

the precursor to DMRG and is described in more detail, although from a numerical

perspective, in the introduction to DMRG in chapter 1. The results of the Wilson

numerical renormalization calculation show that as the Kondo temperature TK is

approached, the initially small antiferromagnetic coupling J > 0 becomes large

and the conduction electrons form a magnetically neutral singlet with the localized

spin, quenching the magnetic impurity. The resistance minimum then reflects the

formation of strongly-coupled screening clouds of conduction electrons around each

magnetic impurity.

The correctness of the scaling approach was confirmed in 1980 with the discovery

of an exact solution to H1 imp by Andrei [110] and Vigman [111] using the Bethe
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ansatz. The exact solution verified that the single-impurity model contains only a

single energy scale TK below the conduction electron bandwidth, which measures

the energy for the quenching of the localized spin via singlet formation with the

conduction electrons. The form of the Kondo temperature is

TK ∝ exp

[

− 1

ρ(εF )J

]

, (3.7)

where the density of conduction electron states at the Fermi surface is

ρ(εF ) = 2
∑

k

δ(ε(k) − ε(kF )) . (3.8)

As a result of the existence of only one energy scale, the low temperature thermo-

dynamic properties of the model are universal functions of T/TK. For a summary

of these properties, see appendix K of reference [112].

It remains unclear as to what extent these results apply to the Kondo lattice

model. Many aspects of the single-impurity model have no clear analogue in the

lattice case. The most important of these is the extent of the Kondo screening cloud.

When the conduction electrons screen the localized spin, the scaling arguments

suggest that the screening cloud extends over a scale ξK ∼ vF/kBTK, where vF

is the Fermi velocity of the electrons. Since TK is generally of the order of tens of

Kelvins, the screening cloud extends over thousands of lattice spacings. This cannot

occur in the lattice case, because the conduction electrons are never separated from a

localized spin. This is the ‘exhaustion principle’, first noted by Nozières [114]; there

are not enough conduction electrons (or alternatively there are too many holons) to

be able to screen all of the localized spins, so the extent of the screening cloud per

localized spin is less than one lattice spacing, thus is clearly a localized effect and

qualitatively very different from the single impurity case. Nevertheless there have

been several attempts to define a ‘Kondo temperature’ for the lattice model which,

similarly to the single-impurity case, measures the energy scale for the formation of

spin singlets around the localized spins. In the weak coupling regime of the lattice

model, the electrons are much more delocalized and the possibility exists that there

is a second energy scale T ∗ that signifies the onset of a coherent state over the

whole lattice. This energy scale does not exist in the single-impurity model. Most

of the work in this direction has been on the Kondo lattice in three dimensions,

or dynamical mean-field calculations (infinite dimensions), e.g. references [115–117]

and references cited therein.
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3.4 Exactly Solved Limits

The Kondo lattice has been studied extensively for well over two decades, how-

ever despite the intense effort, rigorous results are relatively few. Generally speak-

ing, methods developed for the single-impurity Kondo model are impossible, as in

the case of the Bethe Ansatz solution [110,111], or involve uncontrolled approxima-

tions. Primary examples of the latter are 1/N expansions, slave-boson methods and

Gutzwiller projections. Reference [118] contains a detailed discussion and many ref-

erences for these approaches. These methods have been moderately successful in de-

scribing the formation of a coherent band of quasiparticles in the three-dimensional

model, as observed in the heavy fermion compounds. While the various methods

developed on the basis of the single-impurity model appear to capture some of the

essential physics of the lattice problem, it is a priori unclear as to which aspects of

the various solutions are reliable and which are not. In particular, there is not yet

a consensus on the ground state phase diagram.

The mean-field calculation of Doniach [22] in 1977, for the model in three dimen-

sions, indicated a ferromagnetic phase at weak coupling and a paramagnetic phase

at strong coupling. For the one-dimensional case, the many mean-field and slave-

boson calculations produced mixed results (for a review, see reference [119] and

references cited therein). Initial Monte Carlo results by Troyer and Würtz [120]

suggested that the weak coupling regime is paramagnetic, with a transition to a

ferromagnetic ground state as the coupling J is increased. This was contrary to the

intuitive picture at the time, which suggested that for strong coupling, Kondo sin-

glet formation would suppress ferromagnetic order. Since this work, some rigorous

results supplemented by several numerical calculations, give substantial agreement

on most of the broad features of the phase diagram. Before proceeding to present

the results of the numerical calculations, it is useful to summarize what is known rig-

orously about the lattice model. Section 3.4.1 contains a brief discussion of results

for the one dimensional Kondo lattice with a half-filled conduction band. Qualita-

tively, the main properties of the phase diagram for finite doping are specified by

the behavior in the low conduction electron density limit and the strong coupling

J → ±∞ limit. These limits are exactly solvable and are described in sections 3.4.2

and 3.4.3 respectively.

3.4.1 Half-filling

The Kondo lattice with half-filled conduction band is thought in some circles to

be a good effective model for the Kondo insulators (see, for example references [121]
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and [122]). As mentioned in section 3.2.2, the Kondo insulators are semiconductors

with a very small gap, arising from hybridization between singly-occupied localized

f -orbitals and a half-filled conduction band [107, 108]. There are however doubts

as to whether the Kondo insulators are in the local moment regime [30, 112], and

hence some question as to whether the Kondo lattice is applicable, or whether the

periodic Anderson model should be used instead.

Half-filling is defined by n = Ne/L = 1, where Ne is the number of conduction

electrons and L is the number of lattice sites. This corresponds to z-component of

pseudospin qz = 0, thus the ground state is also a pseudospin singlet. A theorem

on the ground state of the half-filled Kondo lattice model is rigorously proven in

references [123] and [124]:

In any dimension, the Kondo lattice on a bipartite lattice has, for J > 0 a

unique ground state that is a spin singlet. For ferromagnetic coupling J < 0 the

same conclusion holds as long as the number of sites in each sublattice is the same.

In addition, in the large J limit (either positive or negative) there is a spin gap.

Thus the ground state of the half-filled lattice forms a spin-liquid. The properties

of the ground state are different in the J > 0 and J < 0 cases, so it is convenient

to consider them separately.

At large antiferromagnetic coupling J → ∞ the ground state is trivial and

comprises L Kondo singlets, for a total ground state energy E → −3JL/4. The

lowest energy spin excitation requires flipping a Kondo singlet into a Kondo ‘triplet’,

for an increase in energy of J . The lowest energy charge excitation requires moving

an electron from one site to another, forming two holons (or a holon and an anti-

holon) and two f -spins. These can couple either as (pseudo-)spin triplets or singlets;

the charge gap corresponds to the pseudospin triplet and spin singlet case, but the

energies of all these states are degenerate in the large J limit. However, it is proven

later in section 3.4.3 that the large J limit is ferromagnetic in a perturbative sense to

leading order in t/J , hence the pseudospin triplet and spin triplet state actually has

lower energy than the pseudospin triplet and spin singlet state. The persistence of

both the spin and charge gaps down to J → 0 was initially suggested by a mapping

onto the Hubbard model via real-space renormalization by Jullien and Pfeuty [125]

and has since been examined by exact diagonalization [126] and DMRG [121] and

further supported by approximate analytic techniques; Gutzwiller-projected mean-

field solutions [122] and a mapping of the Kondo lattice model to a nonlinear sigma

model with a semi-classical approximation for the localized spins [127]. At strong

coupling the gap is linear in J , while taking an exponential form ∆E ∼ e−a/J for

small J .
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For large ferromagnetic coupling J → −∞, substantially less work has been

done. Exact diagonalization results coupled with finite-size scaling show that there

exists a gap for J < 0, however the nature of the gap is quite different. Unlike the

J > 0 case, J → −∞ leads to a ground state made up of Kondo triplets. Electron

hopping necessarily breaks the Kondo triplets leading to an increase in energy of

J/2, thus the leading effective interaction must instead be of a spin exchange type.

Indeed, at strong coupling the ground state is a Haldane phase; instead of the spin

gap increasing as J → −∞ it decreases [126].

3.4.2 Low density

The case of one electron in the Kondo lattice was solved exactly by Sigrist

et al. in 1991 [128] (see also the review in reference [118]), for the case of antiferro-

magnetic coupling J > 0. This section contains an outline of this proof. A general

basis state for a single c-electron in a lattice of L sites can be written in the form

|j, σ; σ1, . . . , σL〉 = σ|j, σ〉 ⊗ |σ1, . . . , σL〉 , (3.9)

where |j, σ〉 denotes a conduction electron of spin σ at site j and |σ1, . . . , σL〉 is a

basis state for the localized spins. Due to the spin symmetry of the Kondo lattice,

it is sufficient to take a single value, say M , for the z-component of total spin. The

overall factor of σ is a phase factor which is positive if the conduction spin is up

(σ = +1) and negative if the conduction spin is down (σ = −1). The purpose of

this phase factor is to make the off-diagonal matrix elements of the Hamiltonian in

this basis all non-positive, to allow the application of the Perron-Fronebius theorem.

The application of the Hamiltonian to this basis state gives

H|j, σ; σ1, σ2, . . . , σL〉 = −t
∑

a

|j + a, σ; σ1, σ2, . . . , σL〉

+
1

4
Jσσj |j + a, σ; σ1, σ2, . . . , σL〉

−1

4
J(1 − σσj)|j,−σ; σ1, . . . ,−σj , . . . , σL〉 ,

(3.10)

where the sum
∑

a is taken over the nearest neighbors of j. The successive appli-

cation of the Hamiltonian to a basis state will ultimately connect all basis states,

i.e. for two arbitrary basis states |a〉 and |b〉 there always exists an integer n such

that 〈 a |Hn | b 〉 6= 0. With the non-positivity property, this gives sufficient condi-

tions to apply the Perron-Fronebius theorem, which states that the lowest energy

eigenstate |ψg(M)〉 has a strictly positive wavefunction in this basis and is nonde-

generate.
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To calculate the value of the total spin of the state |ψg(M)〉, it is sufficient

to construct a reference wavefunction |φ〉 with a given total spin which has finite

overlap, 〈φ|ψg(M)〉 6= 0. The choice of wavefunction used by Sigrist et al. [128] is

|φ((L− 1)/2)〉 = |j, ↑; ↓, ↑, ↑, · · · , ↑〉 + |j, ↓; ↑, ↑, ↑, · · · , ↑〉 . (3.11)

This state represents a Kondo singlet at site 1 with all other localized spins aligned

parallel, for z-component of spin equal to the total spin, which is (L − 1)/2. The

repeated application of S− to this state, to make the z-component of spin equal to

the z-spin of the ground state M , yields

|φ(M)〉 = (S−)(L−1)/2−M |φ((L− 1)/2)〉

= [(L− 1)/2 −M ]!

×
∑

σ2+σ3+...+σL=M

(

|j, ↑; ↓, σ2, . . . , σL〉 + |j, ↓; ↑, σ2, . . . , σL〉
)

.

(3.12)

This is a non-zero vector, hence 〈φ(M)|ψg(M)〉 6= 0 and |φ(M)〉 has finite overlap

with the ground state. This proves that the total spin of the ground state is s =
1
2
(L− 1).

Given that the total spin of the ground state of the Kondo lattice with a single

electron is known, the exact form of the wavefunction is not difficult to obtain [128].

Choosing the z-component of spin to be maximal, the ground state can be written

as

|φ〉 =

L∑

i=1

(

Aic†i↓ +

L∑

j=1

Bijc†i↑S
−
j

)

|FM〉 , (3.13)

where Ai and Bij are yet to be determined coefficients and |FM〉 is the ferromagnetic

state of zero conduction electrons and all localized spins up. The spin of this state

is enforced by requiring S+|φ〉 = 0.

Operating on |φ〉 with the Hamiltonian gives an eigenvalue equation for Ai and

Bij,

EAi = −t∑aA
i+a − 1

4
JAi + 1

2
JBii ,

EBij = −t
∑

aB
i+a,j + 1

2
JδijA

i − 1
4
J(2δij − 1)Bij ,

(3.14)

where the summation
∑

a is over nearest neighbor sites of site i. These equations

can be solved in momentum space by taking the Fourier transforms

ÃK = 1√
L

∑L
j=1A

ie−iKj ,

B̃Kq = 1
L

∑L
j,l=1B

jle−iKj−iq(j−l) .
(3.15)
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Here K is the total momentum and is a good quantum number. The energy eigen-

values EK are given by the solutions of

F (EK) = −EK − εK + J/2

EK − εK − J/4
, (3.16)

with

F (E) ≡ 1

L

∑

q

J

2E − εq − J/2
. (3.17)

The corresponding wavefunctions can be determined by

B̃Kq = − 1√
L

E − εq − J/4

E − εK+q − J/4
ÃK , (3.18)

with the normalization condition |ÃK|2 +
∑

q |̃(B)K|2 = 1.

The analysis by Sigrist et al. [128] revealed that the ground state has zero total

momentum, K = 0 and for every momentum the wavefunction describes a bound

state, i.e. a massive spin polaron.

3.4.3 Strong coupling

In the doped case (corresponding to non-zero pseudospin), the large J limit has

been studied extensively. Taking J = ∞, the only states that survive are, from

table 3.1, the Kondo singlet ‖0, 0〉 and the holon-spin ‖1/2, 1/2〉. If two Kondo

singlet sites were to instead form two holons (i.e. an unoccupied c-electron site and

a double occupied c-electron site), there would be an energy penalty of 3J/2. Thus

for large coupling J , the number of holons will the the minimum possible i.e. 2q,

since it is energetically favorably for any additional holons to instead form into

Kondo singlets. This reduces the effective symmetry of the pseudospin down to

U(1). Thus we can replace the pseudospin at site i with the number of holons at

site i, nh
i , with nh

i = 2qi. Then the total pseudospin is given by the total number of

holons, q = 1
2

∑

i n
h
i . This gives the two basis states, written in U(1) × SU(2) form

of holon number and spin, as ‖0, 0〉 and ‖1, 1/2〉. These basis states are identical

to those of the U = ∞ Hubbard model discussed in chapter 2. In fact, it was

shown by Lacroix [129] that the Kondo lattice can be mapped rigorously to the

Hubbard model in this case, where the localized spins are represented as fermions.

The Hamiltonian reads

H =
t

2

∑

i,σ

f̃ †
i,σf̃i+1,σ + H.c. +

3J

4

∑

i

(1 − ni) , (3.19)

where the fermion operators f̃ †
i,σ and f̃i,σ satisfy the constraint ni = f̃ †

i,σf̃i,σ ≤ 1,

i.e. no double occupancy. An empty site of this Hubbard model corresponds to a
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Kondo singlet and a site occupied by a spin corresponds to an empty site (thus an

unpaired f spin) of the Kondo lattice. Because of the lack of double occupancy

and only nearest-neighbor hopping, the electrons in the U = ∞ Hubbard model

can never move past one another; given an ordering of electrons, say from left to

right, that ordering is preserved by the action of the Hamiltonian. In addition there

are no spin-flip interactions; therefore the spin degrees of freedom are completely

degenerate and can be specified separately from the charge degrees of freedom [130].

Such a state of N fermions can be specified as a product of a charge wavefunction

and a spin wavefunction,

|ΨN ; (σ1, σ2, . . . , σN )〉 = |N〉 ⊗ |σ1, σ2, . . . , σN〉
=

∑

i1<i2<...<iN
Ai1,i2,...,iN f̃

†
i1,σ1

f̃ †
i2,σ2

· · · f̃ †
iN ,σN

|0〉 .
(3.20)

The vacuum state |0〉 corresponds to the half-filled lattice of all Kondo-singlets.

The complete spin degeneracy does not persist away from the J = ∞ case and it

was shown by Sigrist et al. [131] (see also [118]) using a perturbative expansion with

respect to t/J , that the spin degeneracy is lifted and the ground state is completely

polarized with total spin s = (L−N)/2. This corresponds to the spin being equal

to the pseudospin. Note that ‘completely polarized’ here means polarized with

respect to the available basis states, being just the Kondo singlet and the holon-

spin. This is not the maximal spin state, which would have every spin aligned and

spin s = (L+N)/2. However spin s = (L−N)/2 is the largest spin that can be the

ground state for large J/t. This is because increasing the spin beyond (L − N)/2

requires flipping one or more Kondo singlet states into Kondo triplets. This gives an

increase in energy of J , similarly to the gap in the half-filled case discussed earlier.

In fact, the proof of the spin gap at half filling extends readily to a gap between

Eg(q, s = q) and Eg(q, s = q + 1). The existence of a gap between lowest states of

two spin sectors does not imply that there is a true gap in the excitation spectrum

however. There will only be a true gap if J is larger than the energy of all the

singlet excitations.

This result for strong coupling was later extended by Yanagisawa and Hari-

gaya [132], who proved a similar result for the partially filled Kondo lattice when a

strong Hubbard conduction band on-site Coulomb repulsion is added to the stan-

dard Hamiltonian of Eq. (3.1). As the Coulomb repulsion U → ∞, the ground

state of the extended Kondo lattice is fully polarized with spin s = (L − N)/2 for

all couplings J > 0. For J < 0, the ground state is again ferromagnetic, but with

maximal spin s = (L + N)/2. In the case of J > 0, this result is easy to under-

stand from the mapping onto the Hubbard model discussed above. The Hubbard

U term adds an energy penalty U/2 to each holon in the system. Thus it is again
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energetically favorable for any excess holons to instead form Kondo singlets so the

number of holons is the minimum possible. Thus the mapping onto the Hubbard

model proceeds exactly as in the large J case.

3.5 Effective Interactions In The Kondo Lattice

Model

There are some parameter regimes in which the dominant interaction processes

can be identified. The results presented in this thesis show that, unfortunately,

the number of such regimes is smaller than previously thought. At weak coupling

|J/t| � 1, second order perturbation theory gives an effective Ruderman-Kittel-

Kasuya-Yodida (RKKY) interaction [133–135]. This is an effective interaction be-

tween the localized spins which is mediated by the conduction electrons. The deriva-

tion is discussed in section 3.5.1. Kondo singlet formation, the dominant effect in

the single-impurity model, was the focus of much early work on the lattice model.

However the extent of the similarities between Kondo singlet formation in the sin-

gle impurity model and the lattice model is not clear. Certainly, the mechanism of

Kondo singlet formation in the single impurity model, responsible for the Kondo

screening cloud, is not present in the lattice case. Of more importance is the double-

exchange interaction, which was recognized as early as 1951 to be of importance

in the perovskite manganese oxides [136], but has only recently been discussed in

relation to the Kondo lattice [137, 138].

3.5.1 RKKY

At J = 0, both the conduction electrons and the localized spins in the Kondo

lattice are non-interacting. Thus the wavefunction separates into a tensor product

of the conduction band wavefunction and the localized spin wavefunction. There

is complete 2L-fold degeneracy in the localized spin state, which is expected to be

broken perturbatively when J is increased from 0. The wavefunction, written as a

product of the free electron ground state |0〉 and an arbitrary spin state, is |Ψ〉 =

|0〉⊗|σ〉, where |σ〉 =
∑

σ1,σ2,...,σL
ψσ

σ1 ,σ2,...,σL
|σ1σ2 . . . σL〉 is the wavefunction for the

localized spins. Treating the interaction with the localized spins as a perturbation

HKL to the free electron Hamiltonian H0, the application of Rayleigh-Schrödinger

perturbation theory gives,

E = E0 + 〈Ψ |HKL |Ψ 〉 −
∑

n6=0

|〈n|〈 σ |HKL | 0 〉|σ〉|2
En − E0

+ · · · , (3.21)
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where |n〉 are the non-interacting excited states, with H0| i〉 = Ei| i〉. The only

excited states giving non-vanishing matrix elements are those of the form |n〉 =

c†ckσcck′σ′ |0〉, with |k′| < kF < |k|. To second order, this gives,

E = E0 +
∑

ij JRKKY(i− j)〈 σ |Si · Sj | σ 〉 ,

JRKKY(i− j) =
J2

2L2

∑

|k′|<kF <|k|≤π/a

ei(k′−k)(i−j)a

ε(k) − ε(k′)

(3.22)

where L is the lattice size, with lattice constant a. This implies that the complete

2L-fold degeneracy of the localized spins at J = 0 is lifted perturbatively so that the

localized spins order so as to minimize E, giving an effective interaction between

the localized spins at sites i and j of JRKKY(i − j), called the RKKY interaction

[133–135].

The form of Eq. (3.22) is generic to any dimension. However the summation

over k and k′ is significantly different depending on the dimension. This calculation

is carried out in reference [139], with the results

JRKKY(r) =







meJ2

2π
[Si(2kFr) − π

2
] 1D ,

mek2
F J2

8π
[J0(kF r)Y0(kF r) + J1(kFr)Y1(kFr)] 2D ,

mekF J2

16π3r3 [cos(2kFr) − sin(2kF r)
2kF r

] 3D ,

(3.23)

where r = |i−j|a is the distance between lattice sites i and j. The special functions

in Eq. (3.23) are the sine integral Si and the first and second kind Bessel functions

of order n, Jn and Yn respectively.

Ordering of localized moments with wavevector 2kF is characteristic of the

RKKY interaction in any dimension. In three dimensions, the interaction decreases

at large distances as r−3. In two dimensions, the interaction also decreases at large

distances because of the 1/r asymptotic behavior of the Bessel functions. In one

dimension however, the interaction diverges. The Fourier component of JRKKY at

wavevector k is given by

JRKKY(k) =
1

2π

∫ ∞

−∞
JRKKY(r)eikr dk . (3.24)

From the 1D form of the real-space interaction, the form of the momentum-space

interaction is

JRKKY(k) ∝ 1

k
ln

∣
∣
∣
∣

2kF + k

2kF − k

∣
∣
∣
∣
, (3.25)

which has a logarithmic divergence at 2kF . This divergence is typical of perturbation

theory applied to one-dimensional systems. While the ordering of the localized

moments is still expected to be predominantly at wavevector 2kF , it is not possible
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to use the RKKY interaction itself to describe this ordering; since the interaction

diverges there is no lower bound to the ground state energy, even for arbitrarily

small J . Thus it is necessary to go beyond perturbation theory to properly account

for the weak coupling regime of the Kondo lattice model in one dimension. The

results from bosonization [137, 140] give RKKY-like behavior, with dominant 2kF

modulations superimposed on an incoherent background. This behavior fits well

with previous numerical results at weak coupling [28, 39] as well as the numerical

results presented in this thesis.

3.5.2 Double exchange

Double-exchange ordering was introduced by Zener [136] to describe ferromag-

netism in the manganese oxide perovskites. Zener considered the Mn oxide com-

pounds La1−xAxMnO3, with 0 < x < 1 and A = Ca, Sr or Ba. The compound

contains Mn3+ and Mn4+ ions, in concentrations 1−x and x respectively. For x = 0

the compounds are insulating, while for moderate doping x >∼ 0.2 they are metallic

ferromagnets. Zener proposed that the close connection between ferromagnetism

and conduction in these materials can be accounted for by supposing that the eg

electrons in Mn3+ ions can hop to vacant eg orbitals on neighboring Mn4+ ions. Since

hopping electrons tend to preserve their spin and Hund’s rule coupling strongly fa-

vors alignment of the eg spin with that of the localized t2g electrons (cf. section

3.2.1), this hopping should favor a ferromagnetic alignment of the t2g electrons on

neighboring Mn ions. Since the hopping of the eg electrons occurs through an in-

termediate O2− ion, Zener called this the double-exchange interaction. The name

is somewhat unfortunate, as the interaction is not an exchange in the usual sense,

but it simply reflects the tendency of hopping electrons to preserve their spin.

A microscopic derivation of the double-exchange interaction was given by Ander-

son and Hasegawa [141] for the two-site Kondo lattice with ferromagnetic coupling

J < 0, which models the Hund’s rule coupling of the Mn oxides. However, double-

exchange operates regardless of the sign of the coupling; the fact that the electrons

align parallel or antiparallel to the localized spins at each site is irrelevant to the

preservation of spins while hopping. It is the latter which forces the localized spins

to align. The first hints of this are in Anderson and Hasegawa’s original work [141],

where they noticed that the sign of the coupling was largely irrelevant to the ferro-

magnetic ordering within a semi-classical approximation for the localized spins. In

the SO(4)-symmetric basis, the matrices of the two-site Kondo lattice are very small

so it is worthwhile exploring in full detail. The three reduced basis states of a single

site of the Kondo lattice are given in table 3.1, with the basis transforming under
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SO(4) rotations as the representation D(0, 0) ⊕D(0, 1) ⊕D(1/2, 1/2) of degree 8.

For two sites, the Clebsch-Gordan series expansion gives the representation

[D(0, 0) ⊕D(0, 1) ⊕D(1/2, 1/2) ]⊗ [D(0, 0) ⊕D(0, 1) ⊕D(1/2, 1/2) ]

= 3D(0, 0)⊕ 4D(0, 1) ⊕ 4D(1, 0) ⊕D(1, 0) ⊕ 4D(1/2, 1/2)

⊕ 2D(1/2, 3/2)⊕D(0, 2) ⊕D(1, 1) .

(3.26)

Thus there are 8 SO(4) symmetry sectors of the two site Kondo lattice and the

largest subspace is 4 dimensional. This could be reduced further, e.g. by using

spatial reflection, but 4× 4 matrices are not hard to deal with so this step is hardly

worthwhile. The complete set of basis states is given in table 3.2. The one electron

sector comprises all states that can be constructed from a single holon and either

a Kondo triplet or a Kondo singlet. This is of course degenerate (via particle-hole

symmetry) with the 3 electron sector. Two spin states are possible; a Kondo singlet

coupled with a holon has spin 1/2, transforming as the D(1/2, 1/2) representation

and a Kondo triplet coupled with a holon gives both a spin 1/2 state (D(1/2, 1/2)

representation) and a spin 3/2 state (D(1/2, 3/2) representation). To simplify the

notation of table 3.1, we denote the Kondo singlet, Kondo triplet and holon states

by ‖S〉, ‖T 〉 and ‖H〉 respectively. The correspondence with the previous notation

is
‖S〉 = ‖0, 0〉 ,
‖T 〉 = ‖0, 1〉 ,
‖H〉 = ‖1/2, 1/2〉 .

(3.27)

Consider first the the ferromagnetic (1/2, 3/2) sector. The complete Hamiltonian

is

H(1/2,3/2) = −t
(

‖HT 〉〈TH‖+ ‖TH〉〈HT‖
)

+
J

4

(

‖HT 〉〈HT‖+ ‖TH〉〈TH‖
)

,

(3.28)

or, in matrix form,

H(1/2,3/2) =

(
J/4 −t
−t J/4

)

. (3.29)

This is trivially diagonalizable, with eigenvalues J/4 + t and J/4 − t. The eigen-

states correspond respectively to antisymmetric and symmetric states with respect

to spatial reflection. The ground state eigenvector is

‖Ψ0〉 =
1√
2
(‖HT 〉 + ‖TH〉) , (3.30)

corresponding to the ground state eigenvalue of E0,J<0 = J/4 − t. This is the

prototypical state for double-exchange ordering; a holon moves through a Kondo

triplet background, preserving the spin (and indeed the pseudospin) at each hop.
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Table 3.2: Basis states of the two-site Kondo lattice. The dimension is the

number of distinct states in each symmetry sector and the degree of the

representation is the degeneracy of each state.

(q, s) Sector Degree Dimension States

(0, 0) 1 3 ‖SS〉
‖TT 〉
‖HH〉

(0, 1) 3 4 ‖ST 〉
‖TS〉
‖TT 〉
‖HH〉

(1, 0) 3 1 ‖HH〉
(1/2, 1/2) 4 4 ‖SH〉

‖HS〉
‖TH〉
‖HT 〉

(1/2, 3/2) 8 2 ‖HT 〉
‖TH〉

(0, 2) 5 1 ‖TT 〉
(1, 1) 9 1 ‖HH〉
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Now consider the (1/2, 1/2) sector, where the spin is a minimum. Using the

ordering of basis vectors specified in table 3.2, the Hamiltonian is

H(1/2,1/2) =








−3J/4 −t/2 0 −
√

3t/2

−t/2 −3J/4
√

3t/2 0

0
√

3t/2 J/4 −t/2
−
√

3t/2 0 −t/2 J/4








. (3.31)

The four eigenvalues are E = −J
4
± 1

2

√
J2 ± Jt+ 4t2. For J < 0, the lowest energy

state is E1,J<0 = −J
4
−

√
J2 − Jt + 4t2, which is always higher than the lowest

energy state in the (1/2, 3/2) sector, of E0,J<0 = J/4 − t.
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Figure 3.1: The expectation value of the total spin for the conduction band

and the f -spins for antiferromagnetic coupling J > 0, for a 60 site lattice at

filling n = 0.7. The ferromagnetic state has total spin s = 9.

For antiferromagnetic coupling J > 0, the situation is obscured because for only

two sites the spin of the completely polarized ferromagnetic state of spin (L−N)/2

is only 1/2, coinciding with the minimum possible spin. Instead, Fig. 3.1 shows the

expectation value of the total spin, given by s(s+1) = 〈S·S〉, of the conduction band

and the f -spins separately, for the fully polarized ferromagnetic state and the singlet

state of the Kondo lattice for 60 sites with filling n = 0.7. For these parameters, the

fully polarized state has total spin s = 9. When the spin of the complete system

is a singlet, the spin of the conduction electrons must be the same magnitude but

aligned antiparallel with the spin of the f -spins. The important aspect of this figure
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is that the spin of the conduction band and the f -spins considered separately, rapidly

increases as the Kondo coupling is turned on, so that even for the ferromagnetic state

the conduction electrons are predominantly aligned antiparallel to the f -spins. Thus

the picture of double exchange for antiferromagnetic coupling J > 0 is of conduction

electrons aligned parallel with each other, but antiparallel to the background of

ferromagnetic f -spins.

3.5.3 Kondo singlet formation

It is clear that the mechanism of Kondo singlet formation, responsible for the

large conduction-electron screening cloud in the single-impurity model, is absent

in the lattice case. Indeed, the similarities of the strong coupling limit between

J → ∞ and J → −∞ (which extends to a large region of the phase diagram

discussed in section 3.6) suggests that Kondo singlet formation is not an important

effect per se in the lattice model, but rather the importance lies in the side-effect

of localization of the conduction electrons. This localization also occurs in the case

of ferromagnetic coupling J < 0, except here it is due to Kondo triplet formation,

rather than Kondo singlets. However, it is apparent from the numerically obtained

phase diagram (see section 3.7.2), that the RKKY interaction and double-exchange

are insufficient by themselves to describe all of the phases of the Kondo lattice

model. These additional effective interactions have not yet been characterized.

3.6 Phase diagram from bosonization

The bosonization technique is useful for a large class of one-dimensional systems.

The essential idea is that the fermionic fields are represented in terms of collective

density operators that satisfy bosonic commutation relations. This mapping is exact

down to a short wavelength cutoff α, of the order α ∼ k−1
F , which is of the order

of the mean distance between electrons. The utility of this approach lies in the

general property of bosonic Hamiltonians, being generally much easier to handle

than fermionic Hamiltonians. Thus it is relatively simple to apply, for example,

a unitary transformation to simplify a bosonic Hamiltonian. Bosonization as it

is currently used in one-dimensional strongly correlated electron systems was first

introduced by Bloch [142] and Tomonaga [143] and further developed by Mattis

and Lieb [144], Coleman [145], Luther and Peschel [146], Mandelstam [147] and

Heidenreich et al. [148]. The bosonization solution of the Kondo lattice, by Honner

and Gulácsi [137, 149] was the first analytic work to rigorously establish the phase

diagram and provide a non-perturbative explanation of the 2kF correlations in the
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RKKY regime without the divergences that plague the perturbative approach. This

is the most far reaching analytic calculation on the Kondo lattice model to date, so

it is worth the describing broad features of the derivation and solution. We make no

attempt at providing a detailed description of the bosonization technique; instead

many excellent tutorials exist in the literature, e.g. references [150–152], which serve

as the background to this section.

Bosonization of a lattice system begins by constructing the density operators in

momentum space, corresponding to right-moving (+) and left-moving (-) collective

excitations of charge (ρ) and spin (σ) about the Fermi points +kF and −kF ,

ρ+(k) =
∑

σ,0<k′≤π/a

c†
k′− k

2
,σ
c
k+ k

2
,σ
,

ρ−(k) =
∑

σ,−π/a<k′≤0

c†
k′− k

2
,σ
c
k+ k

2
,σ
,

σ+(k) =
∑

σ,0<k′≤π/a

σc†
k′− k

2
,σ
c
k+ k

2
,σ
,

σ−(k) =
∑

σ,−π/a<k′≤0

σc†
k′− k

2
,σ
c
k+ k

2
,σ
.

(3.32)

These densities satisfy the bosonic algebra

[ρr(k) , ρr′(k
′)] = δr,r′ δk,−k′

rkL
2π

,

[σr(k) , σr′(k
′)] = δr,r′ δk,−k′

rkL
2π

.
(3.33)

When k = 0, the densities correspond to the number of right-movers and left-

movers respectively. In order to simplify the notation somewhat, it is conventional

in bosonization to give a separate notation for the number operators, normalized

with respect to the non-interacting ground state |0〉,

Nν
± = ν±(0) − 〈 0 | ν±(0) | 0 〉 , (3.34)

where ν = ρ, σ denotes charge and spin respectively.

The density fluctuations with a wavelength shorter than α are excluded by a

cut-off function Λα(k), a typical cutoff function would be, e.g. a Gaussian Λα(k) =

exp(−α2k2/2). We can now define the Bose fields themselves:

φν(j) = πja
L

(Nν
+ +Nν

−) − i
∑

k 6=0
π
kL

[ν+(k) + ν−(k)]Λα(k)eikja

θν(j) = πja
L

(Nν
+ −Nν

−) − i
∑

k 6=0
π
kL

[ν+(k) − ν−(k)]Λα(k)eikja .
(3.35)

Here a is the lattice spacing and j is an integer label of the real space lattice

sites. The derivatives of the Bose fields are notated ∂xψν(j), which is shorthand for

∂xψν(x/a) evaluated at x = ja.
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In the one-dimensional Kondo lattice, the conduction band may be bosonized

but not the localized spins [137]. This is because the spins are strictly localized and

their Fermi velocity vanishes. Substituting the definition of the Bose fields into the

Hamiltonian of the Kondo lattice gives,

H =
vFa

4π

∑

j,ν

{[∂xθν(j)]
2 + [∂xφν(j)]

2}

+
Ja

2π

∑

j

[∂xφσ(j)]Sz
j

+A
Ja

2α

∑

j

{cos[φσ(j)] + cos[2kF ja+ φρ(j)]}(e−iθσ(j)S+
j + h.c.)

−AJa
2α

∑

j

sin[φσj] sin[2kF ja + ψρj]S
z
j ,

(3.36)

where A is a dimensionless constant that depends on the cutoff function Λα(k).

The bosonized Hamiltonian generates the same behavior as the original Hamil-

tonian provided that the conduction electrons are not too strongly localized. In

particular, this Hamiltonian does not describe directly Kondo singlet formation.

The Bose representation of the spin-flip terms responsible for Kondo singlet for-

mation is reliable only at long wavelengths, describing the properties of spin-flip

interactions only at large distances from the site of the scattering localized spin.

This provides a good description at weak couplings, but as is usual for bosoniza-

tion, this may be insufficient when the coupling is strong enough that the electrons

become trapped on-site by the localized spin. Indeed, this perhaps accounts for why

some of the features of the phase diagram obtained numerically by the author do

not appear in the bosonization solution (cf. section 3.7.2).

It is important to note that the SO(4) spin and pseudospin symmetry has been

explicitly broken in the bosonized Hamiltonian Eq. (3.36). This is due to use use of

Abelian bosonization, which breaks the SU(2) rotation symmetry down to U(1) for

both the spin and pseudospin symmetries [150]. While the Hamiltonian Eq. (3.36)

commutes with S2, it does not commute with S+, S− and Sz, the generators of

SU(2), therefore the degeneracy of the ground state for spin s > 0 is broken and

the Abelian bosonization explicitly picks out the state for which the z-component

of spin is a maximum.

To simplify the Hamiltonian, Honner and Gulácsi next applied a unitary trans-

formation to change the basis such that the conduction electron spin degrees of

freedom are coupled directly to the localized spins. The transformation used was
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H → H̃ = e−SHeS, where

S = i
Ja

2πvF

∑

j

θσ(j)Sz
j . (3.37)

The transformation can be carried out exactly, without the use of a perturbative

expansion, giving the transformed Hamiltonian H̃,

H̃ =
vFa

4π

∑

νj

{[∂xθν(j)]
2 + [∂xφν(j)]

2}

− J2a2

4π2vF

∑

j,l

{∫ ∞

0

dk cos[k(j − l)a]Λ2
α(k)

}

Sz
jS

z
l

+A
Ja

2α

∑

j

{cos[K(j) + φσ(j)] + cos[2kF ja+ φρ(j)]}

×
(
e−i(1+Ja/2πvF )θσ(j)S+

j + h.c.
)

−AJa
α

∑

j

{sin[K(j) + φσ(j)] sin[2kF ja + φρ(j)]S
z
j .

(3.38)

The function K(j) is related to the commutator of the spin Bose fields,

K(j) = i
Ja

2πvF

∑

l

[φσ(j) , θσ(l)]Sz
l . (3.39)

This is highly non-local. At distances ja � α, [φσ(j) , θσ(l)] → sign(j)iπ, thus

K(j) effectively adds all the localized spins to the right of site j and subtracts

all the localized spins to the left of site j. Honner and Gulácsi [137] showed that

K(j) vanishes in the ferromagnetic phase and essentially measures the amount of

disorder.

The second term in the transformed Hamiltonian Eq. (3.38) represents a non-

perturbative effective interaction between the localized spins, which originates from

the forward scattering part of (J/2)
∑

j(nj↑ − nj↓)S
z
j in the Kondo lattice Hamilto-

nian. The interaction is independent of the sign of J and is the only term in the

transformed Hamiltonian that is of order J2, thus this term is expected to domi-

nate the ordering of the localized spins as J increases. Honner and Gulácsi [137]

showed that the interaction is ferromagnetic for all choices of cutoff function; thus

it satisfies all the properties of double-exchange, discussed in section 3.5.2. For rea-

sonable choices of cutoff function, the integral in the second term of Eq. (3.38) can

be evaluated showing that the interaction is short-ranged and is well approximated

by taking the nearest neighbor form −J ∑j S
z
jS

z
j+1, where

J =
J2a2

2π2vF

∫ ∞

0

dk cos(ka)Λ2
α(k) . (3.40)
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An effective Hamiltonian for the localized spins is obtained from Eq. (3.38), by

taking appropriately chosen expectation values for the conduction electron Bose

fields. Since the Bose fields enter only at order J in the transformed Hamiltonian,

Honner and Gulácsi [137] approximated these fields by their non-interacting J = 0

expectation values†

〈φσ(j)〉 = 〈θσ(j)〉 = 0 . (3.41)

This completely eliminates the conduction electron Bose fields and gives an effective

Hamiltonian for the localized spins only,

Heff = −J
∑

j

Sz
jS

z
j+1

+A
Ja

α

∑

j

{cos[K(j)] + cos[2kF ja]}Sx
j

−AJa
α

∑

j

{sin[K(j)] sin[2kF ja]}Sz
j .

(3.42)

The remainder of this section is devoted to a survey of the properties of this effective

Hamiltonian.

Since the ferromagnetic double-exchange coupling J is of order J 2, it is immedi-

ate from Eq. (3.42) that Heff describes ferromagnetic ordering of the localized spins

for strong coupling J/t � 1 for all fillings n < 1. As described previously, K(j),

defined in Eq. (3.39) vanishes whenever the ground state is ferromagnetic, thus the

destruction of ferromagnetic ordering at weak coupling is governed by the second

term in Eq. (3.42) and the effective Hamiltonian takes the form of a transverse-

field Ising chain in the phase transition regime. Thus the Kondo lattice undergoes

a quantum ferromagnetic to paramagnetic phase transition at a filling dependent

critical coupling Jc. A great deal is known about the transverse-field Ising chain, in

particular the critical line for the transition is known [153–155], which then gives

the critical line of the Kondo lattice [137],

Jc

t
=

8π2A sin(πn/2)

α
∫∞
0
dk cos(ka)Λ2

α(k)
. (3.43)

The renormalization group analysis [154,155] of the Ising chain with a transverse

field features a Griffiths phase, where anomalous clusters of double-exchange ordered

localized spins survive into the paramagnetic region and similarly, disordered regions

of paramagnetism survive into the ferromagnetic phase. These regions are due to

†In the light of the numerical results presented in section 3.7, it has become apparent that this

approximation is not reliable near to half-filling. This is discussed in section 3.7.2.
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the incommensurability of the conduction band filling with respect to the lattice of

localized spins and the consequent inability of the conduction band to either totally

order or totally disorder the localized spins as the transition is crossed. Although

these anomalous regions are very dilute, they dominate the low-energy properties

of the spin chain. Strictly speaking, an incommensurate filling is not possible to

obtain in a numerical study of a finite lattice. Similar effects could perhaps occur

due to, e.g. open boundary conditions or simply from numerical truncation, caus-

ing small deviations in the density and wavelength of the correlations. However

numerical perturbations will only lead into an anomalous region if it is energetically

favorable for the finite system to undergo a slight phase separation, into a region

of incommensurate filling in the anomalous phase, with a compensating region of

different phase. However the numerical results for antiferromagnetic coupling J > 0

show no sign of any instability toward phase separation. There is a phase separated

region for J < 0 observed numerically [156], but it appears unrelated to the Griffiths

phase.

Fig. 3.2 shows the phase diagram from reference [137]. The critical line was

constructed by fitting Eq. (3.43) to the numerical data that was available at the

time.

3.7 Numerical Results

This section details the DMRG results obtained by the author for the anti-

ferromagnetic J > 0 Kondo lattice model. The focus is on the region between

quarter-filling and half-filling, where comparatively little is known. After describing

the construction of the SO(4)-invariant Hamiltonian, the obtained phase diagram

is presented, focusing on the newly discovered intermediate coupling ferromagnetic

region. The order of the phase transitions has been a controversial issue for several

years, with analytic results suggesting that the transition should be second order,

but conflicting numerical results suggesting a first order transition. Some progress

toward clarifying these issues is presented in section 3.7.3. The nature of the ground

state, specifically the location of the Fermi surface (in one dimension, this ‘surface’

reduces to the two Fermi points +kF and −kF ), has been the focus of recent studies

on the Kondo lattice. This is discussed in section 3.7.4, followed by a discussion of

the Luttinger liquid parameters in section 3.7.5. Clearly, without a rigorous error

analysis any numerical study is at best a suggestive guide and at worst danger-

ously misleading. The justification of the presented numerical results is discussed

in section 3.7.6.
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Figure 3.2: The phase diagram of the Kondo lattice model for antiferromag-

netic coupling J > 0, as determined by bosonization [137]. The fitting of the

parameters is from numerical data; open circles and squares are exact diag-

onalization data from reference [157], the solid square is Monte Carlo data

from reference [120], the solid diamond and solid circles are DMRG data from

references [39] and [28] respectively.

3.7.1 Construction of the SO(4) Hamiltonian

The construction of the DMRG algorithm for the Kondo lattice model with

SO(4) symmetry proceeds essentially the same as that for the Hubbard model, de-

scribed in chapter 2. Written in terms of the conduction band creation/annihilation

operator at the ith site c
[1/2,1/2]
i , conduction band spin operator S

[0,1]
c,i and localized

spin operator S
[0,1]
f,i , the Hamiltonian of the Kondo lattice model with open boundary

conditions reads

H = 2t

L−1∑

i=1

[c
[1/2,1/2]
i ×c

[1/2,1/2]
i+1 ]

[0,0]
−

√
3J

L∑

i−1

[S
[0,1]
c,i ×S

[0,1]
f,i ]

[0,0]
. (3.44)

The number of SO(4) basis elements is, from table 3.1 described previously, just

three, so the single site operators are represented as 3 × 3 matrices. Choosing a
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mapping of the basis state kets onto vectors in IR3,

‖0, 0〉 ≡ (1, 0, 0) ,

‖0, 1〉 ≡ (0, 1, 0) ,

‖1/2, 1/2〉 ≡ (0, 0, 1) ,

(3.45)

the single site operators can be written in explicit form. The matrix elements of

c
[1/2,1/2]
i are, from the Wigner-Eckart theorem Eq. (2.70),

c
[1/2,1/2]
i =











0 0
√

2

0 0
√

2

−
√

2/2
√

3/2



 , if i even;





0 0
√

2

0 0
√

2√
2/2 −

√

3/2



 , if i odd.

(3.46)

This explicitly takes into account the bipartite lattice and the choice of signs ensures

the Hermiticity of [c
[1/2,1/2]
i ×c

[1/2,1/2]
i+1 ]

[0,0]
. Similarly to the case of the Hubbard

model, [c
[1/2,1/2]
i ×c

[1/2,1/2]
j ]

[0,0]
is Hermitian if sites i and j are in different sub-lattices

and skew-Hermitian if sites i and j are in the same sub-lattice.

Since the spin interaction term is a sum of operators acting only on a single site,

it is not necessary to use the separate S
[0,1]
c,i and S

[0,1]
f,i operators, but instead this

term is absorbed into the local single site Hamiltonian H local
i , which, in our choice

of site basis, has the form

H local
i =





−3J/4 0 0

0 J/4 0

0 0 0



 . (3.47)

These two operators are enough to completely specify the Hamiltonian of the Kondo

lattice. In contrast, the Hamiltonian written using U(1) symmetries requires more

operators, c†↑,i, c
†
↓,i, c↑,i and c↓,i. So although the construction of the DMRG algo-

rithm is more complicated, with various 6j and 9j symbols entering into the generic

construction of the algorithm, the model-dependent operators, represented by the

reduced matrices Eq. (3.46) and Eq. (3.47) are actually simplified, in the sense that

we have gone from five operators over an eight dimensional basis, to two operators

over a three dimensional basis.

3.7.2 Numerical phase diagram

The phase diagram calculated from the DMRG appears in Fig. 3.3. The solid

curve is a fitting of the critical line from the bosonization result of Eq. (3.43). The



3.7. Numerical Results 131

location of the paramagnetic/ferromagnetic phase transitions was determined by

calculating the lowest energy state in two or more total spin sectors and determin-

ing the critical coupling of the crossover point. The most striking feature of this

phase diagram is the previously unrecognized regions of ferromagnetism in the in-

termediate coupling regime close to half filling. As far as we know, this region has

not been predicted by any analytic calculations. On reviewing the older numeri-

cal calculations, hints of this region can be seen but the results were discarded by

the respective authors as numerical instability. The exact diagonalization study by

Tsunetsugu, Sigrist and Ueda [157] found ferromagnetism at J/t = 1.5 at filling

n = 0.75, but the calculation was coarse grained enough that this was the only

data point that falls within the intermediate coupling ferromagnetic region. Shi-

bata, Ueda, Nishino and Ishii [158] noted that their DMRG calculations for 10 and

20 site clusters indicated a region of ferromagnetism at 1.6 < J/t < 1.8 at filling

n = 0.9, but they do not report any ferromagnetism for larger lattices, nor did

they comment on the physical origin of this phase. The recent review by Tsunet-

sugu, Sigrist and Ueda [118] makes no mention of ferromagnetism for intermediate

coupling near half-filling. Indeed, this paper makes the bold claim that the one

dimensional ground state phase diagram was completely known, a claim that was

repeated in a later work by Shibata and Ueda [159], again without mentioning the

intermediate coupling ferromagnetism.

Since the intermediate coupling ferromagnetism has only previously been seen

in very small systems, it is natural to question whether this constitutes a finite

size effect. In a thermodynamic system the conduction band forms a continuum,

whereas in a finite size system, the conduction band states are necessarily gapped

(although the gap is very tiny for even a moderate size lattice), which could po-

tentially introduce distortions in the phase diagram. Figure 3.4 shows the energy

difference between the lowest energy state in every spin sector, from 0 ≤ s ≤ q,

for a 60 site lattice with q = 9, corresponding to filling n = 0.7. The baseline is

the s = 9 state, so the ground state is fully polarized ferromagnetic when all the

energy differences are positive and less than fully polarized (or paramagnetic) when

the energy differences are negative. The s = 9 state was chosen as the baseline

because the numerical error in the energy is smaller for this state (cf. section 3.7.6).

This clearly shows four different regimes. From the bosonization and the small J/t

perturbative expansion, the degeneracy of the spin states at J = 0 is expected to be

lifted by corrections of order (J/t)2. The obtained numerical results do not extend

to very weak coupling, but the results down to J/t = 0.5 are consistent with this.

However, the excitation energy to the ferromagnetic state reaches a maximum at
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Figure 3.3: The phase diagram of the Kondo lattice model for antiferromag-

netic coupling J > 0.

a relatively low J/t ∼ 0.65 and then rapidly decreases again. Thus it is clear that

the weak coupling regime does not extend to very large J/t. This is supported by

Fig. 3.5. This figure shows the kinetic energy T and ‘internal energy’ U , which is

defined by

U = J
∂E

∂J
= J

L∑

i=1

〈Sc
i · Sf

i 〉 . (3.48)

The internal energy has an asymptotic large J/t value of U → 3
4
J(L − 2q), where

the conduction electrons localize and form Kondo singlets of energy 3J/4, leaving

2q unpaired f -spins that have zero internal energy. Fig. 3.5 shows that the internal

energy is close to the asymptotic large J/t value even for relatively small coupling,

indicating that virtually all of the conduction electrons have condensed into Kondo

singlets. Thus it is no surprise that the weak coupling regime only survives for fairly

small coupling J . What is more surprising is that for slightly larger coupling, the

system becomes ferromagnetic. This is unlikely to be caused by double exchange;

the total spin of the conduction electrons alone is rather small, unlike in the double

exchange regime where the conduction electrons align spin parallel, but antiparallel

to the f -spins. This phase does perhaps fit into the bosonization picture however.
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The original calculation of Honner and Gulácsi [137] approximated the conduction

band Bose fields by the non-interacting J = 0 value, justified by expectation that

these terms in the bosonized Hamiltonian will become irrelevant at both weak and

strong coupling (cf. section 3.6). The available numerical data at the time did not

indicate that there was interesting physics in the intermediate coupling regime, so

that it was thought that this approximation was completely satisfactory. If the spin

Bose fields are instead taken to be the expectation value of the regular sine-Gordon

model, which was found by Zachar, Kivelson and Emery [160] as an effective model

of the Kondo lattice in the large density limit, the effective Hamiltonian is [161]

Heff = − J2A
2π2vF

∑

j

Sz
jS

z
j+1

+2JB
∑

j

{

1 −
(〈Φσ〉2sG

2

)(

1 +
J

2πvF

)2

+ cos(2kF j)

}

Sx
j , .

(3.49)

where 〈Φσ〉2sG is the expectation value of the spin density of the sine-Gordan model

and A and B are cutoff functions arising from the bosonization. The intermediate

coupling ferromagnetic region can be modeled by this Hamiltonian, however there

are more parameters that are undetermined from the bosonization than was the

case for the original effective Hamiltonian in Eq. (3.42). This gives an extremely

wide variety of possible phase transitions, so this effective Hamiltonian is not useful

without a lot of numerical data to fit the undetermined parameters.

A finite-size scaling of the gap between the ferromagnetic ground state and the

paramagnetic singlet state, for a point in the middle of the intermediate coupling

ferromagnetic phase at J/t = 1.1 and filling n = 0.7, appears in Fig. 3.6. This shows

that the energy of the singlet state is always higher than the ground state energy

and that this almost certainly persists to the thermodynamic limit. The energy

gap is expected to scale linearly with the lattice size, although there are clearly

deviations, presumably due to the open boundary and relatively small lattice sizes.

Unfortunately, for larger lattices, L >∼ 120 in this case, it is difficult to calculate the

energies with enough accuracy.

For larger coupling, 1.4 ≤ J/t ≤ 2.6 in Fig. 3.4, the ground state is again

paramagnetic and in this region the DMRG is numerically very stable. The spin

excitations here have been calculated with enough accuracy to obtain reliably the

spin susceptibility, which is discussed in section 3.7.5. Above the critical J/t bound-

ing this paramagnetic region, double-exchange dominates and the system is in the

strong coupling ferromagnetic phase.

At larger filling, above n >∼ 0.8, a third ferromagnetic region appears. The first

signs of this phase are apparent in the magnitude of the spin excitations at n = 0.8,
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Figure 3.4: The energy difference between each spin state, relative to the

energy of the fully polarized ferromagnetic state, for a 60 site lattice at q = 9,

corresponding to a filling of n = 0.7.

shown in Fig. 3.7. There is a quite pronounced reduction in the magnitude of the

spin excitations and there is also a level crossing between the s = 1 and s = 2

states at 1.05 < J/t < 1.25, suggesting that the ground state here is a partially

polarized ferromagnet. However, although the numerical accuracy in this region is

enough that the feature in the spin excitation energy is significant, the difference

in energies of the neighboring s = 0 and s = 1 states is more sensitive to error

(cf. section 3.7.6). Above filling n = 5/6, the third ferromagnetic region is fully

polarized. Fig. 3.8 shows the difference between the energy states of different spin

for a 60 site lattice with q = 5, corresponding to filling n = 5/6. At this filling, the

third ferromagnetic region is extremely pronounced, with the excitation energy to

the singlet spin state being comparatively big, much bigger than the spin excitation

energy in the second ferromagnetic phase.

3.7.3 Order of the phase transitions

The order of the phase transition in the Kondo lattice has long been a source

of controversy. The bosonization results [137] suggest that, via the mapping onto

the transverse Ising chain, the phase transition should be second order, with the
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Figure 3.5: The kinetic and internal energies of the 60 site system with q = 9.

ground state magnetization M obeying

M =

(
J − Jc

Jc

)δ

, (3.50)

for J > Jc. The exponent δ varies with the filling. However, early numerical

studies were inconclusive with respect to the order of the transition. The exact

diagonalization study by Tsunetsugu et al. [157] found a partially polarized ground

state at low electron density, but not at higher fillings. Fig. 3.9 shows the ground

state spin as a function of the coupling, in the vicinity of the phase transition for a 40

site lattice at quarter filling, n = 1/2. This shows that the second derivative of the

energy with respect to the magnetization, ∂2E/∂M2, is always positive and hence

the transition is second order. The energy levels near the transition are numerically

close to degeneracy, so this is a rather sensitive calculation. A 40 site lattice is the

largest that could be solved with enough accuracy to be able to determine the energy

difference between the spin states. However, the sign of ∂2E/∂M2 is most unlikely

to change as a function of the lattice size. The numerical results are not accurate

enough to attempt calculating the critical exponent δ in Eq. (3.50), but it would not

take a huge increase in computation time to do this, at least for moderately small

lattices. There is a small instability in Fig. 3.9, where the energy for even values

of the spin s is slightly lower than the energy for odd values of the spin, which is

most likely a finite size effect. The dotted lines in the figure interpolate between
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Figure 3.6: The energy difference between the ferromagnetic ground state

and the singlet excited state as a function of the lattice size, for J/t = 1.1

and filling n = 0.7.

neighboring spin energies to minimize this instability.

The order of the phase transitions in the intermediate coupling ferromagnetic

regime has not been determined. The calculations used to determine the phase

diagram are not accurate enough to determine the sign of ∂2E/∂M2 in the vicinity

of the phase transitions, however the numerical evidence would tend to support all

phase transitions being second order. This is also supported by the bosonization

results using the sine-Gordon spin expectation values for the Bose fields, discussed

in section 3.7.2

3.7.4 Fermi surface sum rules

The location of the Fermi points in the one-dimensional Kondo lattice model

has been a controversial issue for several years. The early exact diagonalization

study by Tsunetsugu et al. [157] suggested that in the weak coupling regime, the

model describes a paramagnetic Luttinger liquid and hence the dominant spin and

charge correlations are at 2kF , where kF is the Fermi wave number, found to be

given by the conduction electrons only, i.e. kF = kFsmall
≡ πnc/2. However, the

Kondo lattice can be derived in the appropriate limits from the periodic Anderson

model, which is conventionally assumed to have a ‘large’ Fermi surface, such that

the f -spins are included. If this picture also applies to the Kondo lattice, then the
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Figure 3.7: The energy difference between each spin state, relative to the

energy of the fully polarized ferromagnetic state, for a 60 site lattice at q = 6,

corresponding to a filling of n = 0.8. The strong coupling ferromagnetic phase

occurs above the critical coupling J/t ' 2.95. There is a second region of fully

polarized ferromagnetism at 1.60 < J/t < 1.85. Between 1.05 < J/t < 1.25

there is a partially polarized ground state.

Fermi surface should be given by kF = kFlarge
≡ π(nc + 1)/2.

A later study by Moukouri and Caron [39] examined the Kondo lattice at density

nc = 0.7 and found agreement with the ‘small’ Fermi surface picture, even away

from the weak coupling regime. This was also the conclusion of a Monte Carlo study

by Troyer and Würtz [120]. However, Ueda, Nishino and Tsunetsugu [162] found

that the Kondo lattice, with the addition of a frustrated next-nearest neighbor hop-

ping, has a large Fermi surface. It remains uncertain as to the extent that this result

applies when the next-nearest neighbor hopping is removed. In particular, the addi-

tional term changes the phase diagram quite substantially, with the strong coupling

regime being an additional paramagnetic phase, rather than the usual ferromagnetic

phase. Ueda et al. only found a large Fermi surface in the strong coupling param-

agnetic regime with the next-nearest neighbor hopping added, but they suggested

that the two paramagnetic phases may be adiabatically connected, in which case it

is likely that the Fermi surface is large throughout the whole of the phase diagram.

Even if this is true, the addition of the next-nearest neighbor hopping breaks the

SO(4) symmetry and the bipartite structure of the Kondo lattice, which is expected

to have a significant effect.
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Figure 3.8: The energy difference between each spin state, relative to the

energy of the fully polarized ferromagnetic state, for a 60 site lattice at q = 5,

corresponding to a filling of n = 5/6. There are three distinct regions of fully

polarized ferromagnetism.

The large Fermi surface picture was given further strength by a second study by

Moukouri and Caron [163], this time for the Kondo lattice with an additional di-

rect f − f -spin interaction JH . An antiferromagnetic coupling was used to stabilize

the paramagnetic state for larger values of the Kondo coupling J , where the f -spin

structure factor and the conduction electron momentum distribution both indicated

a large Fermi surface. However the results for weak coupling were not clear; the

density fluctuations introduced in the infinite-size DMRG algorithm (cf. section

section 1.2.1) effectively made this region numerically inaccessible. The conclusion,

that the Fermi surface is large for the pure Kondo lattice with JH = 0, is dependent

on the assumption that the strong and weak coupling paramagnetic phases of the

Kondo lattice model are adiabatically connected. Further studies of Friedel oscilla-

tions in the pure Kondo lattice model, by Shibata et al. [158] placed the existence

of a large Fermi surface in the strong coupling end of the paramagnetic region be-

yond doubt, however little has been said by these authors on the weak coupling

regime. In particular, if the hypothesis of reference [158], that the Fermi surface of

the Kondo lattice is always large, then an additional mechanism is needed to explain

the 2kFsmall
correlations which are observed both numerically and in bosonization

calculations [137]. It is notable that while reaching the conclusion that the Fermi
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Figure 3.9: The magnetization per site M = s/L, as a function of the coupling

J in the vicinity of the phase transition at quarter filling n = 0.5, for a 40

site lattice.

surface is always large, Shibata et al. [158] did not present any calculations for

coupling below J/t = 1.5. In this work, Shibita et al. did find a ferromagnetic

region at filling n = 0.9, between 1.6 <∼ J/t <∼ 1.8, but made no comment on the

physics of this phase, except for noting that it appears as a level crossing between

the paramagnetic and fully polarized† ferromagnetic states [158], suggesting a first

order transition. This observed ferromagnetic region was ignored in later papers by

the same authors [118, 159].

In a finite size calculation, the Fermi wave number should appear as a finite

gap in the conduction electron momentum distribution. In one dimension, the gap

vanishes only in the thermodynamic limit, with a logarithmic size dependence. In

the calculation for the Kondo lattice with the direct f − f spin interaction [163],

there is no evidence that such a gap opens at kFsmall
in the weak coupling regime.

However, Moukouri and Caron used a fixed JH = 0.5, so correspondence between

the weak coupling regime J/t � 1 of this model and the weak coupling regime

of the pure Kondo lattice with JH = 0 is not clear. It is notable that Moukouri

and Caron found no evidence for a ferromagnetic region at intermediate coupling,

however this is not such as surprise as several other numerical studies failed to

see this phase‡. Another possibility that requires further investigation is that the

†with s = (L − N)/2
‡The threshold of accuracy required to observe the intermediate coupling ferromagnetism is
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intermediate coupling regime is unstable with respect to the added f − f spin

interaction.

The current results indicate that the dominant correlations are at 2kFsmall
in the

weak coupling paramagnetic phase, in agreement with most previously published

results that have examined this regime (for example references [28, 163]), with the

exception of the Friedel oscillation results for J/t = 1.5 at filling n = 0.9, where a

large Fermi surface was found [158]. Thus the Friedel oscillation calculations are in

disagreement with the spin correlation calculations at this point. The current results

suggest that the large Fermi surface appears only above the intermediate coupling

ferromagnetic region. Some numerical data of the conduction electron momentum

distribution and f -spin structure factor for a range of couplings at filling n = 0.6

appear in Fig. 3.10. This shows the crossover from 2kFsmall
= 0.6π correlations for

small coupling to 2kFlarge
= 0.4π for stronger coupling, together with the appearance

of a feature at kFlarge
in the conduction band momentum distribution.
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Figure 3.10: Conduction band momentum distribution n(k) and f -spin struc-

ture factor S(k) for the Kondo lattice at filling n = 0.6. The inset shows the

appearance of a feature at kFlarge
for stronger coupling.

The importance of this controversy resides in the application of the Luttinger

theorem [164] in one-dimension. This theorem says that the volume inside the Fermi

surface is invariant as the interaction strength changes, as long as the number of

particles does not change. This theorem has been proven under rather general con-

discussed in section 3.7.6.
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ditions for three dimensions and the applicability of the theorem to one-dimension

has been the focus of much interest for many years. The theorem was proven by

Luttinger by demonstrating that the correction to the volume vanishes order by

order in the perturbative expansion [164]. Clearly, this proof breaks down in the

presence of non-perturbative effects, typical in a one-dimensional system.

In 1997, Yamanaka, Oshikawa and Affleck [165] presented a proof of the Lut-

tinger theorem applicable to a wide range of one-dimensional models, including the

Kondo lattice. At this time, it appeared that the weight of evidence suggested that

the Fermi surface of the Kondo lattice is always large, even in the weak coupling

regime. The current results, indicating that there is a large region of ferromagnetism

at intermediate coupling cast a doubt over this result, as the Luttinger theorem is

not required to hold across a phase transition. Thus it remains possible that the

Fermi surface is small in the weak coupling regime and changes discontinuously to a

large Fermi surface as the coupling j is increased. This however remains conjecture.

The appearance of multiple intermediate ferromagnetic phases further complicates

the picture. The properties of the ‘nested’ paramagnetic phase(s) in the intermedi-

ate coupling regime and in particular the nature of the dominant correlations and

the Fermi surface, has not yet been investigated.

3.7.5 Luttinger liquid parameters

The spin-1/2 Luttinger liquids have gapless spin and charge excitations, char-

acterized by the velocity vk and correlation exponent Kk, with k = σ for the spin,

k = ρ for the charge degrees of freedom. In the paramagnetic region where the

ground state is a spin singlet, the spin SU(2) symmetry fixes the correlation expo-

nent Kσ to be unity [150]. The low-energy physics of a Luttinger liquid is completely

determined by these parameters. In particular, the spin and charge susceptibilities

are given by

χσ =
2

πvσ
, (3.51)

χρ =
2

πvρ
. (3.52)

The asymptotic forms of the density-density and spin-spin correlation functions

are [150]

〈n(0)n(x)〉 ∼ A1 cos(2kFx)x
−(1+Kρ) + A2 cos(4kFx)x

−4Kρ , (3.53)

〈S(0) · S(x)〉 ∼ cos(ref2kFx)x
−(1+Kρ) , (3.54)
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In the Luttinger model, when Kρ is small (≤ 1/3) the 4kF charge density wave

oscillations dominate over the 2kF ones. For larger Kρ (corresponding to weaker

coupling), the 2kF correlations dominate. Shibata and Ueda [159] examined charge

density Friedel oscillations induced by the open boundary conditions and spin den-

sity Friedel oscillations induced by a magnetic field applied at the edges of the

lattice. The asymptotic form of the Fridel oscillations is expected to be the same

as the correlation functions [159]. Thus, with a careful numerical fit, Shibata and

Ueda were able to determine Kρ in a small region of the phase diagram. In addi-

tion, the spin and charge susceptibilities are relatively easy to calculate, which in

combination allows the spin and charge velocities to be determined, via Eq. (3.51)

and Eq. (3.52). The calculated Kρ from Shibata and Ueda [159] appears in Fig.

3.11. This data is somewhat surprising. The limiting case of Kρ → 1/2 as J → ∞
is clear as in this limit the Kondo lattice maps onto the U = ∞ Hubbard model

(cf. section 3.4.3), where the correlation exponent is given by the spinless fermion

value of Kρ = 1/2. What is surprising is that the exponent decreases as the coupling

strength decreases. This means that the effective repulsive interaction between the

conduction electrons increases in strength as the coupling J is reduced. For J = 0,

the conduction band is non-interacting, giving Kρ = 1. The expected behavior in

the weak coupling regime would be (by analogy with the Hubbard model) for Kρ

to converge continuously to the non-interacting value as J → 0.

The momentum distribution function of a Luttinger liquid is given by [150]

n(k) ∼ 1

2
− A1sign(k − kF)|k − kF|α − A2(k − kF) , (3.55)

where the exponent α is

α = (Kρ + 1/Kρ − 2)/4 . (3.56)

The data in Fig. 3.11 suggests that, at the lower boundary of the large Fermi

surface regime, α = 1 and thus the singularity in the momentum distribution dis-

appears [159]. Whether this behavior continues into the weak coupling regime is an

interesting issue that has not yet been resolved.

No new data has been obtained in this thesis for the correlation exponent Kρ.

The method used by Shibata and Ueda [159] to obtain the spin Friedel oscillations

violates spin SU(2) symmetry and the presence of large short-range corrections to

the asymptotic behavior of the correlations makes a direct fit difficult. However,

an independent check of the data in Fig. 3.11 is obviously important. The spin

and charge susceptibilities have been calculated however. The spin susceptibility in

the large Fermi surface regime at filling n = 0.7 appears in Fig. 3.12. This agrees

with the limited data published by Shibata and Ueda [159], reproduced in table
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Figure 3.11: Correlation exponent Kρ for filling n = 2/3 and t = 1. Fig. 11

of reference [159].

3.3 for filling n = 2/3. Unfortunately, the data for J/t = 1.5, where the current

results indicate that the spin susceptibility should be sharply increasing, were not

given. The charge susceptibility at filling n = 5/6 is shown in Fig. 3.13. The

non-interacting susceptibility, at J = 0 where vρ,σ → vF , is also shown. It appears

that the charge susceptibility for the Kondo lattice does converge smoothly in the

J → 0 limit. The asymptotic large J value should tend to the large U limit of the

Hubbard model, where vρ = 2t sin(πn), giving in this case χρ(U = ∞) = 0.6366 at

filling n = 5/6. This limiting behavior also looks quite plausible from the data in

Fig. 3.13.

3.7.6 Error analysis

In the numerical calculations, the energies were calculated by an extrapolation

to large number of states kept, based on sweeps of typically 400, 380, 360, 340, 320

states kept. For the calculation of the order of the phase transition, 500 states were

kept. Fig. 3.14 shows the degree of the block representation as a function of the

number of states kept, at the half-filled ground state of spin zero and pseudospin

zero. In this case, the degree of the representation is equal to the number of block
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Table 3.3: Luttinger liquid parameters of the one-dimensional Kondo lattice

model at density n = 2/3. From Table I of reference [159].

J/t Kρ vσ χσ vρ χρ

1.5 0.19±0.03 0.30±0.06 0.42

1.8 0.24±0.02 0.014 46 0.41±0.06 0.38

2.0 0.27±0.02 0.011 56 0.48±0.06 0.36
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Figure 3.12: The spin susceptibility of the Kondo lattice model in the large

Fermi surface regime at filling n = 0.7, calculated from a 60 site lattice.

states that would need to be kept in the Abelian U(1) ⊗ U(1) representation, used

in all previous DMRG studies on the Kondo lattice model. For higher spin or

pseudospin states, the relative advantage of the SO(4) symmetry decreases linearly,

until at the maximum possible spin and pseudospin the dimension of the Fock space

is unity, independent of the choice of symmetry. The degree δ of the block basis as

a function of the number of states kept m follows closely δ = 5.71m, with a very

small quadratic dependence. As the number of states kept is increased and states

with smaller weight in the wavefunction are included in the basis, the spread of

quantum numbers of the states increases. The distribution of quantum numbers is

bounded below by the [0, 0] representation of degree 1, but is not bounded above;

this leads to the small quadratic dependence. The degree of the representations for
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Figure 3.13: The charge susceptibility of the Kondo lattice model at filling

n = 5/6, calculated from a 60 site lattice.

500 states kept indicates that this is equivalent to well over 3000 states kept using

a U(1) ⊗ U(1) representation. By this measure, this is by far the most accurate

DMRG study that the author is aware of. The largest number of states kept using

an algorithm that is directly comparable with that used in this thesis is, as far as

is known, 1500 states kept, in a study of the 2-leg Hubbard model [9].

Figures 3.15 and 3.16 show the estimated relative error in the energy, σE/|E|,
as a function of the coupling J and spin s, for 60 site lattice and two values of

pseudospin, q = 5 and q = 9. This corresponds to fillings n = 25/30 and n = 7/10

respectively. These figures show that the relative error depends mostly on the

coupling J and is only weakly dependent on the spin s and pseudospin q. This

strong dependence on the coupling J is in fact mostly an artifact of the convergence

criteria discussed in section 1.6.1. It turns out that for small J , the estimated

standard error in the energy of each sweep is comparatively big, implying that the

tolerance used for convergence in Eq. (1.73) should be smaller in the weak coupling

regime. However, enough accuracy has been achieved even in the weak coupling

regime to be able to determine the phase diagram.

To be able to measure the total spin of the ground state, the error in the energy

for each total spin s must be less than the energy difference between the spin states.

Figures 3.17 and 3.18 show the estimated error in the energy, relative to the size of

the largest energy gap between any two spin states, for the same parameter regimes
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Figure 3.14: The degree of the block basis δ, as a function of the dimension

of the basis m, for the singlet ground state of the half-filled Kondo lattice.

For this target state, δ corresponds to the equivalent number of states that

would need to be kept if SO(4) symmetry was not used.

as in Fig. 3.15 and Fig. 3.16. In all parameter regimes, the error in the energy is less

than the energy gap, thus these figures demonstrate that enough accuracy has been

achieved in the numerical calculations to determine reliably the total spin of the

ground state. Note that this does not mean however that the ground state spin can

be determined exactly in all parameter regimes; this would require that σE is much

smaller than the minimum energy difference between the spin states. In most of the

phase diagram, the difference between lowest energy states of spin s and s+ 1 is of

the same order of magnitude, independent of s (as long as s ≤ q, as there is a finite

gap for s > q, cf. section 3.4.3). However, near a paramagnetic-ferromagnetic phase

transition the spin of the ground state becomes indeterminate, as by definition at

the phase transition itself one (or more) total spin states will be degenerate. In the

regions of Fig. 3.17 and Fig. 3.17 where σE/|∆sE| is close to unity, the ground state

spin can only be determined to within ±1 or so. This is only a small section of the

parameter regime, in the weak- to intermediate-coupling regime close to half-filling.

In all other parameter regimes, the absolute error in the total spin of the ground

state is much less than one.

To see in more detail the rate of convergence of the DMRG algorithm, Fig. 3.19

shows the energy at each DMRG iteration for a typical point in the large Fermi
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Figure 3.15: The relative error σE/|E| as a function of the coupling J and

spin s, for a 60 site lattice with pseudospin q = 5, corresponding to a filling

of n = 5/6.

surface regime, at J = 2.5, for a 60 site lattice with q = 4 (equivalent to filling

n = 13/15). This is the perhaps the most numerically stable regime in the phase

diagram. In this set of calculations, the number of states kept m was increased

gradually, in increments of 5 states, up to 400 states kept at sweep number 80.

Then, m was maintained at 400 states until the convergence criteria described in

section 1.6.1 was reached. This was then followed by sweeps of decreasing number

of states kept, down to a minimum of m = 320. It is clear from Fig. 3.19 that this

set of calculations has converged extremely well; the curves are extremely flat once

the convergence criteria has been reached and the difference in converged energy as

the number of states kept is changed is much smaller than the energy gap between

the spin states. In this parameter regime, enough accuracy has been achieved to

calculate reliably the spin susceptibility. However, although the number of states

kept increases linearly until sweep number 80, the convergence of the energy is

extremely non-linear. There is an energy level crossover between the s = 0 and

s = 1 states, giving an incorrect ground state until a total of 53 sweeps have been

performed. Most likely, this level crossover is due mostly to slower convergence of

the spin s = 0 calculation, rather than a genuine crossover in the converged ground

state as the number of states kept is increased. This convergence is in marked

contrast to that described in the early DMRG studies. For example, reference [43]
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Figure 3.16: The relative error σE/|E| as a function of the coupling J and

spin s, for a 60 site lattice with pseudospin q = 9, corresponding to a filling

of n = 7/10.

suggests that two or three sweeps is adequate for convergence and that it is sufficient

to perform only a single sweep with the largest number of states kept. With the large

scale DMRG calculations performed in recent years, it has become apparent that

the convergence of DMRG in the asymptotic large m limit is completely different

to the convergence of the early studies with relatively small numbers of states kept.

A rather different situation is shown in Fig. 3.20. This data is calculated at

the same filling (n = 13/15), but this time at J = 1.45, in the third ferromagnetic

region. The convergence in this region of the phase diagram is not nearly so good.

The energy is still decreasing at sweep 80 when the maximum number of states kept

is reached, thus this calculation is not as well converged as it should be. This is

an artifact of the J dependence on the convergence criteria, discussed previously.

In principle is not difficult to remedy this, at the expense of some additional CPU

time†. There are multiple energy level crossings at around 300 states kept, to the

point that until sweep 64, the ground state is completely different to the ground state

at 400 states kept. The slope dE/dm suggests that the converged energy decreases

monotonically as the spin is decreased, consistent with a stable ferromagnetic ground

state. A DMRG calculation stopping at less than 300 states kept‡ would give the

†Assuming that the convergence would occur in a similar number of sweeps as in Fig. 3.19, the

extra CPU time required for improved convergence would not be prohibitive.
‡This would be equivalent to around 1500 states in a U(1) ⊗ U(1) basis, which would place
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Figure 3.17: The standard error in the energy relative to the separation of

the low lying spin states. This corresponds to the fractional error in the total

spin. Lattice size is 60 sites, with pseudospin q = 5, corresponding to a filling

of n = 5/6.

opposite conclusion, namely a stable paramagnetic state. This demonstrates the

sensitivity of the calculation and explains why this ferromagnetic state has not

been identified before in numerical studies. Indeed, if the number of states kept was

a physical parameter, then this figure would indicate a first order phase transition!

This figure was chosen as an example of particularly poor convergence, although it

is still possible to infer the ground state phase from this calculation. The majority of

calculations in the new ferromagnetic regions have much better convergence. A more

typical example is illustrated in Fig. 3.21, here in the second ferromagnetic region

for a 60 site lattice with pseudospin q = 9 (equivalent to filling n = 7/10) at J = 1.1.

In this calculation, good convergence was achieved with a maximum of 340 states

kept. Despite the superficial similarities with Fig. 3.20, the convergence is much

better; the plateau where the energy remains constant for several sweeps around

the m = 340 mark is a clear indication that the ground state wavefunction has

converged well. Note that there are still energy level crossings prior to convergence.

such a calculation at or beyond the extreme limit of the capabilities of conventional DMRG with

current generation computers.
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Figure 3.18: The standard error in the energy relative to the separation of

the low lying spin states. Lattice size is 60 sites, with pseudospin q = 9,

corresponding to a filling of n = 7/10.
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Figure 3.19: The energy at each DMRG iteration, for a 60 site lattice, J = 2.5

and q = 4, in the middle of the large Fermi surface region. The vertical

bar denotes the point where the maximum of m = 400 states was reached.

Thereafter, the number of states was decreased, down to m = 320 states kept.
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Figure 3.20: The energy at each DMRG iteration, for a 60 site lattice,

J = 1.45 and q = 4, in the third ferromagnetic region. The vertical bar

denotes the point where the maximum of m = 400 states was reached. There-

after, the number of states was decreased, down to m = 320 states kept. This

calculation is an example of the relatively poor convergence in the weak cou-

pling regime.
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Figure 3.21: The energy at each DMRG iteration, for a 60 site lattice, J = 1.1

and q = 9, corresponding to a filling n = 7/10. The vertical bar denotes the

point where the maximum of m = 340 states was reached. Thereafter the

number of states was decreased, down to m = 240. The plateaus where

convergence is reached for each value of m are clearly visible.
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3.8 The Periodic Anderson Model

In section 3.1 it was described how the Kondo lattice model can be recovered as

the limiting case of the symmetric periodic Anderson model in in the local moment

regime. A naive application of the Schrieffer-Wolff transformation to the Kondo

phase diagram of Fig. 3.3 yields, for the example case of V = 0.75, t = 1, the

phase diagram shown in Fig. 3.22. The number of electrons in this figure refers

to the total of the conduction plus f electrons, so in the local moment regime the

density of electrons per site is nAnderson = nKondo + 1, since the usual notation for

the Kondo lattice model does not count the localized f -spins in the electron den-

sity. The Schrieffer-Wolff transformation does not apply outside the local moment

regime, so there is no reason why this phase diagram should be accurate for either

small U , or very close to quarter-filling [98]. Indeed, in 1993 Möller and Wolfe [119]

used a slave boson treatment to show that in the strong coupling case (large U)

near quarter filling there is a narrow band of antiferromagnetism and a phase tran-

sition to a ferromagnetic ground state at larger band filling. Later, Guerrero and

Noack [166] studied the model using DMRG and showed that the small U region

is paramagnetic. The phase diagram obtained by Guerrero and Noack is shown in

Fig. 3.23. Here C denotes what Guerrero and Noack refer to as complete ferromag-

netism, which has been denoted fully polarized ferromagnetism in this thesis, where

all un-paired f -elecrons are aligned parallel for a state of spin s = (2 − n)L/2 and

I denotes incomplete ferromagnetism, where the ground state is partially polarized

with spin s < (2 − n)L/2. It was later shown by Guerrero and Noack [8] that the

incomplete ferromagnetic regime is phase separated into domains of ferromagnetism

in an antiferromagnetic background.

Notably, the additional region of ferromagnetism at intermediate coupling dis-

covered in the Kondo lattice model is absent in the phase diagram of Fig. 3.23. The

intermediate coupling ferromagnetism is also absent in a phase diagram calculated

by the author using an early version of the DMRG software. This phase diagram

appears in Fig. 3.24. This earlier program used SU(2) spin symmetry, but not

pseudospin symmetry. In addition, the number of states kept was, by contempo-

rary standards, tiny at just m = 20. In the light of the discovery of intermediate

coupling ferromagnetism in the Kondo lattice model, some additional results have

been calculated for the periodic Anderson model for a few points surrounding the

location of the intermediate ferromagnetic phase as determined by the Schrieffer-

Wolff transformation. These results appear in table 3.4 and show that there is

indeed an intermediate ferromagnetic region in this model.

A re-examination of the results used to calculate the phase diagram in Fig.
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Figure 3.22: Naive application of the Schrieffer-Wolff transformation of the

Kondo lattice phase diagram, for V = 0.75, t = 1. The transformation in fact

breaks down for small U and close to quarter-filling (n = 1).

3.24 reveals the source of the incorrect determination of the ground state phase.

With only 20 states kept, it was not possible to perform a rigorous scaling to zero

truncation error. As described in section 3.7.6, it is rather common for there to be

energy level crossings between the lowest energy states in different spin sectors as

the number of states is increased. This probably explains why the ferromagnetism

was missed in the studies of Guerrero and Noack [8, 166]. These calculations did

not use SU(2) symmetry, so the total spin of the ground state was determined

by calculating the expectation value 〈S · S〉. Given the tendency of DMRG to

converge to a self-consistent excited state [11] (cf. section 1.5), it is likely that in

the initial sweeps, where not many states are kept, the DMRG wavefunction was

converging to the singlet state and not enough states were kept in later sweeps for

the wavefunction to ‘tunnel’ into the higher spin state.

3.9 Summary

The extension of DMRG to non-Abelian symmetries allowed us to make use

of spin and pseudospin symmetries inherent in the Kondo lattice and periodic

Anderson models to make the most complete determination of the ground-state

phase diagram yet obtained for these models. In particular, we have made sub-
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Figure 3.23: Phase diagram of the periodic Anderson model obtained from

DMRG, from figure 3 of reference [166]. The parameters here are t = 0.5,

V = 0.375. This corresponds to the parameters used in Fig. 3.22, where all

parameters are divided by 2, i.e. U = 1 in this figure corresponds to U = 2

in Fig. 3.22.

stantial progress in mapping the boundaries of a previously unrecognized ferro-

magnetic regime for intermediate coupling strengths, for conduction band filling

0.5 < n < 1. This ferromagnetic phase divides the weak coupling regime, charac-

terized by RKKY-like spin correlations at wave number nπ, from the “large Fermi

surface regime”, characterized by spin correlations at wave number (n− 1)π.

The work by Yamanaka et al. [165] on the Luttinger theorem in one-dimension

suggested that the Fermi point of the Kondo lattice model is fixed as the interaction

strength is varied and is therefore ‘large’, since the large Fermi surface has previously

been detected in numerical calculations (as far was we know, there have been no

analytic calculations showing the existence of the large Fermi surface). However,

this picture is inconsistent with the numerical data at weak coupling as well as the

bosonization results and the weak coupling perturbative expansion†, which all show

backscattering correlations at 2kFsmall
given by the conduction-band filling only.

The intermediate coupling ferromagnetic regime potentially provides a resolution

to this problem, if the proof of the Luttinger theorem does not apply across a phase

†Although the perturbative expansion must be seen as suggestive only, since the expansion

diverges at second order.
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Figure 3.24: Phase diagram of the periodic Anderson model for V = 1.5, t =

1. By to the Schrieffer-Wolff transformation, there should be an intermediate

coupling ferromagnetic region at the top right hand corner.

transition.

The general picture we have obtained is of physics governed by the formation of

spin polarons. As the Kondo coupling is turned on, the conduction-band electrons

couple weakly to the f -spins forming an extended cloud as the conduction elec-

trons attempt to screen the f -spins. Since there are more f -spins than conduction

electrons, the shielding is incomplete and the polarons are locally ferromagnetic.

The paramagnetic phase at weak coupling is due to spiral correlations from the

RKKY-like effective interaction. For stronger coupling, the conduction electrons

bind tightly to the f -spins and it is no longer useful to talk in terms of separate

conduction-band and f -spins. Rather, the relevant particles in the system are the

Kondo singlet, Kondo triplet and the unpaired f -spins. These latter particles are

effectively a bound state of a conduction-band holon and an f -spin. Presumably,

backscattering interactions between the Kondo singlets and the holons lead to the

2kFlarge
correlations characteristic of the large Fermi surface regime. For still higher

couplings, the double-exchange mechanism dominates leading to an effective Hub-

bard model with perturbative ferromagnetic coupling between the unpaired f -spins.

The physics behind the intermediate coupling ferromagnetic region remains sub-

stantially unknown. The bosonization calculations allow for additional phases if the

spin Bose fields are not well-approximated by the non-interacting values [161], but
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Table 3.4: Energy for the lowest singlet and fully polarized ferromagnetic

states of the periodic Anderson model, for a 60 site lattice with V = 0.75,

t = 1. The fully polarized ferromagnetic state has spin s = 9 for density

n = 1.7, and spin s = 6 for density n = 1.8. The intermediate ferromagnetic

region is shown at U = 4 for density n = 1.7 and n = 1.8. These points are

in the two branches of the intermediate ferromagnetic region shown in Fig.

3.22.

U n s E

2.5 1.7 0 −164.646171

2.5 1.7 9 −164.638130

4 1.7 0 −202.397026

4 1.7 9 −202.397776

5.5 1.7 0 −243.548654

5.5 1.7 9 −243.527937

2.5 1.8 0 −167.486517

2.5 1.8 6 −167.486109

4 1.8 0 −206.016579

4 1.8 6 −206.016592

results in several parameters that must be determined from outside of the bosoniza-

tion calculation and is in no way predictive. While the numerical calculations are

extremely useful in obtaining the phase boundaries, without some guiding princi-

ple as to the physical origins of the intermediate coupling ferromagnetic region it

is difficult to know what to look for in the numerical experiments. The author is

of the opinion that an analytic derivation of the large Fermi surface correlations

(i.e. an effective interaction that leads to 2kFlarge
spin-spin correlations) would be

extremely useful for the full explanation of the properties of the Kondo lattice. The

numerical results indicate that the kFlarge
region is very robust, suggesting that the

physics should be comparatively transparent. An analytic construction of the ef-

fective interactions in the intermediate coupling ferromagnetic region is likely to

be harder to obtain, but surely some insight into this phase would arise from the

crossover of the weak coupling effective interactions (known from the bosonization

calculations [137]) and the large Fermi surface effective interactions.



Chapter 4

Two-Dimensional DMRG - the

t− J Model

Since the discovery of superconductivity in the rare-earth copper oxides [167],

there has been a growing interest in strongly correlated electronic systems. The

t − J model proposed by Anderson [23] and Zhang and Rice [24] is an example of

this interest. The theoretical predictions and implications of the model are possibly

relevant and useful for a deeper understanding, particularly of the high tempera-

ture superconductors and more generally of the motion of holes in an antiferromag-

net. Following the discovery of a low temperature striped phase in the underdoped

cuprates [168–170], White and Scalapino [10] published numerical evidence using

DMRG for a striped phase of the two-dimensional t − J model. The numerical

result generated much controversy, in part for the boundary conditions used, where

obtaining sufficient numerical accuracy dictated periodic boundary conditions in

only one direction and in the early results, a staggered magnetic field.

The motivation for studying the t−J model in this thesis was to test the SU(2)-

invariant DMRG for a two-dimensional model and in doing so, confirm the existence

of the striped phase and uncover some more of the physics of the model.

4.1 The Physics of the t− J Model

The cuprate superconductors share the perovskite structure of many novel com-

pounds (for example the CMR materials). A canonical example, the YBCO com-

pound, is illustrated in Fig. 4.1. By general consensus, research has focused on the

two-dimensional Cu-O planes as being responsible for the superconducting proper-

ties. In principle then, the relevant model mirrors that of the Cu-O planes, of a

square lattice with Cu atoms on the sites and O atoms on the links. The hopping

is mainly between Cu and O, but other terms may well be relevant. For example,

157
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a large overlap between the O atoms would lead to a direct hopping among them.

Although physically this description is already much simplified, it is necessary, if

theoretical progress is to be made, to further simplify the Hamiltonian. Ander-

son [23] suggested that a one-band Hubbard model encapsulates the basic physics.

In the regime of large U/t, the Hubbard model further simplifies to the t−J model,

given by the Hamiltonian

H = −t
∑

〈i,j〉,σ
(c†i,σcj,σ + H.c.) + J

∑

〈i,j〉
(Si · Sj −

1

4
ninj) , (4.1)

defined on the subspace of no double occupancy and 〈i, j〉 means summation over

nearest neighbor pairs only. The single site operators act on the three dimensional

basis of an empty site (hole), a single up spin and a single down spin.

This section discusses the derivation of the t − J model as the strong-coupling

limit of the Hubbard model, as well as efforts to derive the t−J model directly from

the Cu-O Hamiltonian. The known properties of the ground state phase diagram

are then discussed.

Figure 4.1: The perovskite structure of YBCO. Picture obtained from the

BALSAC project [171].
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4.1.1 Strong coupling limit of the Hubbard model

The t− J model is an effective model of the large U Hubbard model, to second

order in the perturbative expansion for small t/U . Starting from the Hubbard model

and following the approach of Emery [172] (equivalent to the calculation of Chao

et al. [173]), we write

H = H0 +H1 , (4.2)

with

H0 = U
∑

i

ni,↑ni,↓ , (4.3)

H1 =
∑

i,j

tijc
†
icj . (4.4)

The hopping matrix tij is taken to be tij = −|t|, if i,j are nearest neighbor, tij = 0

otherwise. Emery [172] calculated the second order expansion for large attractive

interaction, U < 0 and then showed that the same solution applies to the U > 0

model in a very simple way. For U → −∞, the H0 component of the Hamiltonian

describes real-space pairing of electrons on each site. For N electrons (assuming N

is even) the ground state is degenerate, with every possible configuration of pairs

having the same total energy E0 = NU/2. Breaking a pair requires an energy gain

of |U |. However the effect of the hopping term H1 is to break such pairs, so it is

clear that H1 gives no contribution at first order. The singly occupied states are

unoccupied, so every basis state has spin zero, reducing the SO(4) symmetry down

to the SU(2) pseudospin symmetry only.

Let the various degenerate ground states of H0 be denoted |α〉. This basis is

thus the set of states which contain only unoccupied or double occupied sites. If E

is the energy of the perturbed ground state |ψ〉, then

(E −H0)|ψ〉 = H1|ψ〉 . (4.5)

Multiplying the right hand side by 1 ≡ P +
∑

α |α〉〈α|, where P = 1 −∑α |α〉〈α|
is the operator that projects out the unperturbed ground states, gives

(E −H0)|ψ〉 = PH1|ψ〉 +
∑

α

|α〉〈α |H1 |ψ 〉 . (4.6)

On multiplying both sides by (E −H0)
−1 one obtains

|ψ〉 = (E −H0)
−1PH1|ψ〉 +

∑

α

|α〉〈α |H1 |ψ 〉
E − E0

. (4.7)

This is equivalent to

|ψ〉 =
∑

α

aα|ψα〉 , (4.8)
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where

|ψα〉 = (E −H0)
−1PH1|ψα〉 + |α〉 , (4.9)

and

aα =
〈α |H1 |ψ 〉
E − E0

. (4.10)

Expanding Eq. (4.9) to first order in (E −H0)
−1PH1 gives,

|ψα〉 = (E −H0)
−1PH1|α〉 + |α〉 . (4.11)

Now H1|α〉 is a state of one broken pair and thus has no overlap with any of the

ground states |α〉. Hence P has no effect on this state. H1 breaks exactly one pair

for an excitation energy of −U , so that

|ψα〉 =

(
H1

U
+ 1

)

|α〉 . (4.12)

substituting this into Eq. (4.10) gives

(E − E0)aα =
1

U

∑

α′

〈α |H2
1 |α′ 〉aα′ , (4.13)

which is a Schrödinger equation in the |α〉 subspace with effective Hamiltonian

H2
1/U . Since the Hilbert space in which this effective Hamiltonian acts is the set of

degenerate ground states |α〉, the only non-zero matrix elements of 〈α |H 2
1 |α′ 〉 are

those where the first application of H1 transfers and electron of spin σ from site j

to site i and the second application of H1 either returns the electron to its original

site, or transfers and electron of spin −σ from site i to site j. Thus the effective

Hamiltonian is

H ′
1 = − 1

|U |
∑

i,j,σ

t2ijc
†
i,σcj,σc

†
j,σci,σ + c†i,−σcj,−σc

†
j,σci,σ . (4.14)

This can be written in several equivalent ways, the most useful of which is to make

use of the eta-pairing operators

ηi = ci,↑ci,↓ ,

η†i = c†i,↓c
†
i,↑ .

(4.15)

Recall from section section 2.5, that the η†i and ηi are related to the q+ and q−

components of the pseudospin vector operator by

q+
i = (−1)iη†i ,

qi
i = (−1)iηi .

(4.16)
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The z-component of this operator gives the number of particles,

qz
i =

1

2
(ni,↑ + ni,↓ − 1) . (4.17)

Writing the Hamiltonian Eq. (4.14) using these operators gives

H ′
1 =

1

|U |
∑

i,j

t2ij
(
q+
i q

−
j + q−i q

+
j + 2qz

i q
z
j + 2sz

i s
z
j − 1

)
. (4.18)

Because the only single site basis states are unoccupied and doubly occupied states,

sz
i vanishes on every site, so this term can be neglected. The constant term is also

irrelevant. Thus the effective Hamiltonian is

H ′
1 =

2

|U |
∑

i,j

t2ij qi · qj . (4.19)

Thus, the U < 0 Hubbard model in the strong coupling limit is equivalent to the

Heisenberg spin chain. It is important to note here that the spins in the effective

Heisenberg model do not correspond to the real spins in the Hubbard model, which

make no appearance in the effective Hamiltonian Eq. (4.19), but rather to the charge

pseudospin symmetry. The z−component of the spin in the effective Heisenberg

model is effectively the number of electrons, and is given by qz =
∑

i(ni,↑ +ni,↓−1).

To apply this result to the U > 0 model, Emery [172] applied a canonical

transformation consisting of a particle-hole transformation for the down spins only†,

c̄i,↓ = c†i,↓
c̄i,↑ = ci,↑ ,

(4.20)

This transforms the Hamiltonian into a model with the sign of the U term reversed,

H̄0 = −U
∑

i

n̄i,↑n̄i,↓ + U
∑

i

n̄i,↑ ,

H̄1 = −t
∑

<i,j>

(

c̄†i,↑c̄j,↑ − c̄†i,↓c̄j,↓

)

.
(4.21)

For U > 0, the coupling is now attractive, with the number of pairs being equal

to the number of up spins of the original basis. The second order term in the

perturbative expansion is now exactly the same as before, except now if the system is

doped away from half filling, the first order term is not zero. Away from half-filling,

the hopping H1 breaks the degeneracy at first order by transferring an electron from

†This is similar to the transformation used to obtain the pseudospin operators from the ordinary

spin operators, except that the staggered phase factor is missing. This causes the hopping term

to have a spin-dependent amplitude.
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a singly occupied site to an empty site. All other first order processes vanish due to

the energy penalty U for transferring an electron from a singly occupied site to a

doubly occupied site. Thus, the first order component of the Hamiltonian is PH1P ,

where P now projects out all states that have a double occupied site,

P = 1 −
∑

i

ni,↑ni,↓ . (4.22)

The second order component, H̄2
1/U is

H ′
1 =

2

U

∑

i,j

tij
(
si · sj − qz

i q
z
j

)
. (4.23)

Away from half-filling, qz
i does not vanish, so this term must be retained in Eq.

(4.23). Thus the full effective Hamiltonian is

H ′ = −t
∑

<i,j>,σ

(

Pc†i,σcj,σP + H.c.
)

− 4t2

U

∑

<i,j>

(
si · sj − qz

i q
z
j

)
. (4.24)

On expanding the pseudospin interaction, qz
i q

z
j = 1

4
(ninj − ni − nj + 1), the usual

t − J Hamiltonian is obtained (aside from an irrelevant constant term and term

proportional to the total number of electrons), with coupling

Jeff =
4t2

U
. (4.25)

This is valid for U � t, which implies that J � t.

Note that there are terms missing in Eq. (4.23) that arise in the large U Hubbard

model away from half-filling, such as the three site interaction

c†i,σcj,σc
†
j,σ′ck,σ′ , (4.26)

and the four site interaction

c†i,σcj,σc
†
k,σ′cl,σ′ . (4.27)

However, these terms are usually neglected on the grounds that three and four

site interactions are expected to be less important in understanding the magnetic

correlations of the model, but the real effect of these terms is unclear [174].

4.1.2 Derivation as an effective model of CuO planes

Zhang and Rice [24] have presented a justification of the t − J model as an

effective model of the high temperature superconducting copper oxides from a very

general starting point, valid away from the strict limit J � t where the t − J
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model is an effective Hamiltonian for the Hubbard model. It is generally agreed

that the holes introduced into a superconductor reside primarily on the O sites and

do not form Cu3+ ions; this suggests that a single-band model might be inadequate

and two (or more) bands are necessary. However Zhang and Rice argue that the

hybridization strongly binds a hole on each square of O atoms to the central Cu2+

ion forming a local singlet. This singlet then moves through the lattice of Cu2+ ions

in a similar way to a spinless holon in the single band Hubbard model. The starting

point of Zhang and Rice’s calculation [24] is a Hamiltonian describing a single layer

of square planar coordinated Cu and O atoms,

H =
∑

i,σ

εdd
†
i,σdi,σ +

∑

k,σ

εpp
†
k,σpk,σ

+U
∑

i

d†i,↑di,↑d
†
i,↓di,↓ +

∑

<i,k>,σ

Vikd
†
i,σpk,σ + H.c. .

(4.28)

Here d†i,σ create Cu holes (3dx2−y2) at site i and p†k,σ create O holes (2px, 2py) at

site k. The < i, k > summation is over the four O sites k around each Cu site i.

The hybridization matrix Vik is taken to be the overlap of Cu and O holes. The

symmetry of the wavefunctions gives the signs shown in Fig. 4.2. Taking these signs

into account, the hybridization matrix can be written as

Vik = (−1)Mikt0 , (4.29)

where t0 is the amplitude of the hybridization, Mik = 0, if k = i− 1
2
x̂ or i− 1

2
ŷ and

Mik = 1, if k = i + 1
2
x̂ or i+ 1

2
ŷ.

Consider one Cu ion surrounded by four O ions. A hole at an oxygen site can be

in a symmetric or antisymmetric state with respect to the central copper ion. Both

of these states may combine with the d-wave Cu hole to form either a singlet or a

triplet state. To second order in perturbation theory about the atomic (t = 0) limit,

Zhang and Rice [24] showed that the singlet state has lowest energy, so it is then

assumed that it is possible to work in the singlet subspace only, without losing any

of the essential physics. Thus, a hole located on the oxygen site has been replaced

by a spin singlet centered on the copper site. This is equivalent to removing one

Cu spin-1
2

from the square lattice of Cu spins, giving an effective model of spins

and holes on a square lattice. The oxygen ions are no longer explicitly present in

the model. After some further calculations, Zhang and Rice [24] showed that the

effective model is the t− J model.

This reduction to the t − J model is still controversial†. In particular, Emery

and Reiter [175] argue that the resulting quasiparticles have both charge and spin,

†For a review, see reference [174] and references cited therein.
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Figure 4.2: The sign of the wavefunction given the 3dx2−y2 symmetry of the

Cu holes, and the 2px, 2py symmetry of the O holes. The unit length is the

Cu-Cu distance. From reference [24].

in contrast to the Cu-O singlets that form the effective one-band t − J model.

Zaanen, Oleś and Horsch [176] studied the motion of a triplet carrier in a spin- 1
2

background, which might occur if the singlet approximation of Zhang and Rice [24]

does not strictly apply and found the properties to be completely different from the

standard t− J model.

4.1.3 Stripes versus phase separation

The t−J model belongs to the class of systems which do not obey the condition

of Perron-Frobenuis [177]. This condition states that if the off-diagonal elements of a

matrix are all non-positive and if the matrix is not in a block diagonal form then the

ground state eigenvalue is non-degenerate. In the case of the t−J Hamiltonian the

off-diagonal elements are not all non-positive. Thus the theorem can not be applied,

which implies that the phenomenon of ground state level crossing is present [178].

As a direct consequence of this, the thermodynamic system is unstable against phase

separation. Emery, Kivelson and Lin [179] showed that the model phase separates

completely into hole-rich and no-hole phases.

Many experiments have found evidence for stripes† and stripes arise in a number

†For a recent review, see reference [180].
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of different theories involving strong correlations [10,181–184]. The first direct evi-

dence of the existence of a stripe ground state emerged from t−J model calculations

by White and Scalapino [10], with further calculations by the same authors [185,186]

and Scalapino and White [58]. The reason the striped phase was found first in the

t − J model, rather than the Hubbard model, is that the t − J model inherits all

the exchange hole correlations resulting from the antiparallel spin correlations in

the U → ∞ limit. Hence if stripes do exist, they will be more robust in the t − J

model.

Stripes have been studied by a number of numerical techniques in the t − J

model, unfortunately resulting in conflicting conclusions. A major question is if

stripes are part of the known phase separated regime of the t− J model [187], or if

they represent a different ground state phase.

In two dimensions, it was argued that phase separation corresponds to stripe

formation [187]. Stripe formation is one of the most controversial issues in the

study of high temperature superconductors, where there is a phase separation of

the holes which is limited to short range by Coulomb forces.

4.2 The DMRG Algorithm

4.2.1 Construction of the SU(2) invariant Hamiltonian

In matrix form, choosing basis vectors (1, 0) to be a hole and (0, 1) to be a spin,

The operators relevant to the t-J model are

c[−1,1/2] =

(

0
√

2

0 0

)

c†[1,1/2] =

(

0 0

1 0

)

s[0,1] =

(

0 0

0
√

3/4

)

n[0,0] =

(

0 0

0 1

)

p[0,0] =

(

1 0

0 −1

)

,

where we use square brackets to denote which representation of U(1) ⊗ SU(2) the

operators transform as. p[0,0] is the usual parity matrix used to enforce the correct

commutation relations on the DMRG matrix operators (cf. section 1.2.3.
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We now write the Hamiltonian so that the operators transform as representations

of the global symmetry group. For the t− J model, this is

H = −
√

2t
∑

〈i,j〉
(c

†[1,1/2]
i · c[−1,1/2]

j + H.c.) −
√

3J
∑

〈i,j〉
S

[0,1]
i · S [0,1]

j − 1

4
J
∑

〈i,j〉
n

[0,0]
i · n[0,0]

j .

(4.30)

Note that the interaction between two nearest neighbor sites (i, j) in the non-Abelian

representation requires summing 4 distinct terms, c†icj, cic
†
j, SiSj and ninj. In the

Sz basis used in all previous DMRG calculations on the t − J model, there are 8

terms: c†↑ic↑j , c↑ic
†
↑j, c

†
↓ic↓j, c↓ic

†
↓j, S

+
i S

−
j , Sz

i S
z
j , S

−
i S

+
j and ninj. Thus, although

the matrix elements of the single site operators are more difficult to calculate using

the non-Abelian formulation, there are correspondingly fewer matrix elements and

operators required.

4.2.2 Boundary conditions

The DMRG algorithm was applied to the two-dimensional t − J model by un-

rolling the two-dimensional lattice into a one dimensional model with long range

interactions, following the ‘zipper’ approach described in section 1.5. The boundary

conditions the same as those used by White [10]; periodic boundary conditions in

the y direction and open boundary conditions in the (generally longer) x direction.

Ideally, one would like to perform the calculations with periodic boundary condi-

tions in both directions, but as described in section 1.6.3, this would substantially

increase the number of states required. Although the resulting one dimensional

zipper model is reflection symmetric at the midpoint of the lattice, it is difficult to

make use of this symmetry due to the non-uniform nature of the ground state. As

a DMRG sweep progresses from one end of the system toward the center point, the

holes and spins tend to distribute themselves in a slightly asymmetric way between

the left and right halves of the system so that, when the center point is reached,

the left block basis is biased toward states that have too few holes and the right

block basis is biased toward states that have too many holes (or vice versa ). En-

forcing reflection symmetry by using only one block plus its spatial reflection leads

to a catastrophic reduction in the number of admissible superblock states and a

corresponding jump in the energy at that DMRG iteration.

4.2.3 Initial conditions

While there are many possible ways to construct the initial blocks, we use the

simple approach of constructing the initial blocks ‘in place’; that is, starting from an
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initial 4 site system consisting of the 2 extreme sites from the left and right ends of

the zipper and adding two sites at a time, one from each end of the zipper, working

toward the center of the system. This means that for most of the warm-up sweeps,

there are no interaction terms between the left and right blocks. An alternative

procedure is to rotate the system 90 degrees, so that the opposite ends of the zipper

are connected on the periodic boundary. However this introduces many more inter-

actions between the left and right blocks throughout the calculation, which impacts

on the accuracy. With no interactions between the two blocks, the eigenstates of

the block density matrix coincide with the eigenstates of the block Hamiltonian.

Therefore, there will only be a single non-zero density matrix eigenvalue (more, if

the ground state is degenerate). The effect is that, until the first inter-block in-

teraction appears, m − 1 of the block eigenstates are essentially random vectors.

There are other methods of constructing the initial blocks [12, 41, 56] (cf. chapter

1 section 1.5), but the dominant effect in this case is not the inter-block interac-

tions, but rather the initial density of holes. This can be specified by manipulating

the target state as a function of system size. We have done this to obtain various

initial conditions; a state with all holes uniformly distributed, a phase separated

state and several random states. An important test of the validity of the obtained

ground-state is that it is obtained independently of this initial condition.

4.3 Numerical Results

Calculations have been made for various lattice sizes, keeping up to 1200 basis

states per block. Table 1 shows a comparison of the ground state energy as a function

of the number of basis states kept, using the U(1) ⊗ U(1) and U(1) ⊗ SU(2) basis,

for a typical point in the ‘striped’ regime [10]. The SU(2) symmetry provides a

saving of a factor of two in the number of block states required. However, even with

1200 states kept in the U(1)⊗SU(2) basis (equivalent to around 2500 states in the

U(1)×U(1) basis), the achieved energy is around 0.25% higher than the estimated

true ground state energy. This compares very poorly with the accuracies generally

achieved by DMRG for one dimensional models.

In DMRG, the ground state wavefunction is iteratively improved, but only lo-

cally. This can lead to a situation where the DMRG converges self-consistently to

an incorrect state, depending on the initial conditions and the details of the algo-

rithm [58]. In many cases, for a small number of states (but still relatively large

compared with traditional DMRG studies) we have observed qualitatively different

DMRG wavefunctions, depending on how the initial build sweep is performed. We
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Table 4.1: Comparison of U(1) and SU(2) bases for the number of states

versus ground state energy of a 16 × 6 t − J system with J = 0.35, t = 1, 8

holes and cylindrical boundary conditions. The results using the U(1) basis

are from reference (White and Scalapino 1999) We also include an estimate

of the true energy, extrapolated to zero truncation error.

basis m E

U(1) 1000 −52.279

SU(2) 500 −52.284

SU(2) 800 −52.463

SU(2) 1200 −52.520

− ∞ −52.65 ± 0.05

have also observed different converged wavefunctions even with the same initial con-

dition, simply by varying the the rate at which the number of basis states per block

is increased as the DMRG sweeps progress. For example, for the calculation of the

16 × 6 system used in table 4.1, using 500 basis states in the U(1) ⊗ SU(2) basis,

the ground state is most likely a two stripe configuration in agreement with [10].

However, if we increase the number of retained states at a faster rate so that it takes

fewer sweeps to reach the final total, we actually obtain a three stripe configura-

tion. It is not until the number of states is increased to 800 that the three stripe

configuration moves out of this local minima and formed the two stripe configura-

tion. Simply performing additional DMRG sweeps with 500 states is not effective

in ‘tunneling’ between the two competing low lying states.

A possible way of dealing with the problem of competing low lying states is

to compare the energies of the competing states, similarly to what was done for

the different total spin symmetry sectors in determining the phase diagram of the

Kondo lattice model in chapter 3. The problem with this approach is that DMRG

only provides a variational upper bound on the energy and that the goodness of the

variational energy (and therefore the truncation error associated with the DMRG

state) can depend significantly on the nature of the ground state. This is exacer-

bated by the non-uniform nature of the ground state of the t − J model. While

extrapolation to zero truncation error (described in section 1.6) is relatively easy to

do in a typical one-dimensional calculation, the number of states that need to be

kept in a two-dimensional calculation makes this a very time consuming procedure

and impractical in this case.
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In this chapter, we only report results where we have a unique ground state,

independent of the initial conditions (at least for the initial conditions we have

used). However, the problem of multiple candidate ground states depending on the

initial conditions deteriorates rather quickly as the system size increases. Indeed,

one doesn’t need to increase the system size too far before the DMRG fails to

converge to a believable ground state at all, at least in a reasonable number of

sweeps.

Fig. 4.3 shows, for the striped phase, the hole density along the x direction for

a fixed number of holes (8), as the system size is increased. As the size grows, the

stripes tend to move further apart while keeping approximately the same width,

although it is difficult to make any real conclusions about the stripe width from

this limited data. In particular, the indicated width of the fluctuations in the real

space density may be much larger than the correlation width of the stripe itself, if

the stripe is delocalized. This depends on how much effect the boundary conditions

have in pinning the stripes. A better measure of the stripe width would come from

the density-density correlation functions, however these have not yet been obtained.

Fig. 4.4 shows the effect of reducing the number of holes to 6, for the 16 × 6

case. The ground state shown here is curious in that it breaks spatial reflection

symmetry (and thus cannot be the true ground state in the limit of larger number

of states kept), but it does provide evidence that it is energetically favorable to form

a ‘normal’ stripe of hole density 4/6 and one ‘proto’ stripe, of hole density 2/6,

rather than two stripes of equal hole density, or a single stripe. This suggests, as

with the results from Fig. 4.3, that that the thermodynamic hole density per stripe

is a constant (which depends on J/t). There is nothing in the DMRG algorithm

that forbids the formation of broken symmetry states such as the one seen in Fig.

4.4. The true ground state is likely to be very similar to either a symmetric or

antisymmetric combination of the state shown in Fig. 4.4 and its spatial reflection.

If the symmetric and antisymmetric states have very similar energy, then numerical

mixing of the two states will favor the state which minimizes the variational energy

for the given finite number of block states kept, which ceteris paribis occurs when

most of the block states at each block size are in the same symmetry sector. Thus, it

is favorable for all of the basis states to have a similar hole configuration, rather than

half of the basis having the spatially reflected configuration as would be required if

the wavefunction was an eigenstate of spatial reflection.

In Fig. 4.5, we attempt to find the optimal filling per stripe, by increasing the

system size and number of holes by 50%, to a 24 × 6 lattice with 12 holes. Since

we consistently obtain three stripes, this limits the hole density per unit length
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Figure 4.3: Hole density across the x direction of a t − J lattice with 8 holes

and J/t = 0.35, for lattice sizes 16 × 6, 18 × 6 and 20 × 6.

of the stripes to 0.5 < d < 1. This is the largest system that we could study,

while still being reasonably certain that the obtained ground state is substantially

independent of the initial conditions. Thus, for these parameters and boundary

conditions, the two dimensional t− J model almost certainly has a striped ground

state and doping the system changes the density of stripes while the number of holes

per stripe remains constant. It is difficult, however, to extrapolate these results to

make definite conclusions about the nature of the ground state of the t− J model

in the thermodynamic limit. Because of the half-periodic boundary conditions, the

hole density is constant in the y direction. Therefore any fluctuation in the hole

density across the system, pinned by the open boundary in that direction, will

appear as a vertical stripe in these calculations, whether or not it is truly a ‘stripe’.

Other possible ground states of the thermodynamic t − J model, such as diagonal

stripes or antiferromagnetic bubbles, are not permitted by construction.

Another important point to note is that in the phase separated regime, the holes

are attracted to the open boundary of the finite system. On the other hand, in the

striped regime, the holes are repelled by the boundary. Thus the open boundary

may well have a significant effect on the nature of the ground state that we observe

and especially, on the critical value of J/t that separates stripe formation from phase

separation.
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Figure 4.4: Hole density across the x direction of a 16 × 6 t − J lattice, with

6 holes and J/t = 0.35.

4.4 The Physics of Stripes

This section describes some of the physical properties of stripes that are impor-

tant for their theoretical description, with particular reference to aspects affecting

the potential for numerical solutions. This is a very large area of condensed matter

physics and there is no hope to fully cover the many ideas currently in the litera-

ture. It is only possible to give the merest overview here and point the interested

reader to recent articles [106, 174, 188, 189] and references cited therein for a com-

plete description. This section does however cover what appear to be the promising

directions for future investigations from a numerical point of view.

4.4.1 Antiphase boundaries

It is important to emphasize that stripe formation always implies the presence

of antiphase boundaries, i.e. antiphase domain walls in the antiferromagnet. In

all approaches, antiphase boundaries are found in conjunction with stripes; from a

simple mean-field calculations [181] to the more sophisticated quantum numerical

approaches [10, 190–192]. From our numerical data we cannot conclude that the

antiphase boundaries are a consequence of stripes or vice versa . What we are

certain of, is that the presence of the antiphase boundaries is a clear evidence of

stripe existence. This favors the earlier observation that stripes are different from
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Figure 4.5: Hole density across the x direction of a 24 × 6 t − J lattice, with

12 holes and J/t = 0.35.

phase separation.

An interesting explanation of the antiphase boundaries was suggested by Na-

gaev† [106]. This brings us back to the general theory of metal-insulator transition,

as formulated by Mott [194], who pointed out that the number of free carriers should

jump discontinuously at the transition. Hence, there has to be a region of phase

separation near the metal insulator transition. The existence of phase separation

associated with doping away from an antiferromagnetic phase was recognized prior

to the discovery of high temperature superconductors [195, 196].

Nagaev refers to this phase as nanoscale phase separation [106,193], where phase

separation is accompanied by charge separation, which in a perfect isotropic crystal,

form an almost periodic structure. Thus, a nanoscale phase separation is realized

as a form of charge density wave. In this language the antiphase boundaries appear

as the ferromagnetic droplets: a hole can delocalize over a finite domain by flipping

the spins of the neighboring Cu ions, forming a small ferromagnetic islands known

as ferrons [106]. It is interesting to note that if this is the origin of the antiphase

boundaries then a second hole can lower its energy by localizing on the same ferron

island, i.e., on the same antiphase boundary. This has the appearance of a real

space pairing mechanism.

Hence, looking at the stripes as being a nanoscale phase separation, the an-

†For a review, see also reference [193] and references cited therein.
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tiphase boundaries (periodic ferrons) will appear as a consequence of the periodic

hole structure. At mean-field level this can be understood by recalling that the

coexistence of a charge and spin density-wave will always gives rise to ferromag-

netism [197, 198].

4.4.2 Geometrical ordering

From the conventional symmetry point of view, antiphase boundaries are an

oddity. The spin and hole degrees of freedom are associated with continuous SU(2)

symmetries which simply do not allow for an Ising-like Z2-symmetric domain wall.

Strictly speaking, it is incorrect to talk about domain walls in the spin system. In

chapter 2, it was shown that the construction of the spinon and holon basis for

the Hubbard model is intimately connected with the lattice being bipartite, where

hopping is allowed only between the two sublattices†, say A and B. Hopping within

a sublattice (A-A hopping or B-B hopping) does not preserve pseudospin. Clearly,

there are two distinct ways that the bipartite lattice can be divided into sublattices,

as one can start labeling with either an A site, or a B site. Thus there is a Z2 degree

of freedom associated with the construction, which is called ‘sublattice parity’ [199].

The bipartite property of the lattice is not apparent until the charge SU(2)

pseudospin symmetry is utilized, where it is necessary for the pseudospin operators

(defined in Eq. (2.132)) to have a staggered phase. The spinons have zero pseu-

dospin, so they do not see this staggered phase. It is coupled only to the holons,

i.e. in the frame of reference of a holon, hopping flips the sublattice parity. This

has the appearance of a Z2 local gauge symmetry. This mechanism is essential for

spin-charge separation in one-dimension, which leads to the question as to what is

the effect of flipping the sublattice parity in higher dimensions. The wildly different

properties of one-, two- and three-dimensional systems indicates that the available

topological excitations of a bipartite lattice depend strongly on the dimensionality.

Zaanen et al. [184] argue that the stripes just one such manifestation of topological

excitations in two-dimensions.

The sublattice parity is also associated with spatial reflection (parity), because it

is exactly the single-site spatial-reflection operator R that is responsible for flipping

the sublattice parity (cf. section 2.5). The parity-symmetric two-dimensional doped

Mott insulator (i.e. t− J model) was studied at the mean-field level by Wen [200],

where a topological excitation was found that corresponds to a Z2 vortex. This

applies a π phase-shift to holons as they move around the vortex. Although vortex

†Hopping within a sublattice is only allowed if the hopping integral is purely imaginary, or

additional terms are present, such as a bond-charge interaction [96].
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excitations are prima facie rather different to domain walls, the structure of the

symmetries suggests that there may be a direct connection between the parity-

symmetric Z2 gauge symmetry and the Z2 gauge symmetry arising from sublattice

parity.

4.4.3 Lattice dynamics

The discovery of the isotope effect in conventional superconductors [201, 202]

provided important clues as to the microscopic mechanism of superconductivity.

The effect of changing isotope mass on the superconducting critical temperature

Tc, implies that superconductivity is not a purely electronic interaction, but lat-

tice vibrations (phonons) play an important role on the phenomena. Indeed, in

conventional superconductors phonons play a pivotal role, mediating the effective

attraction that enables the formation of the Cooper pairs [203,204]. Thus, the ques-

tion of the magnitude of the phononic effects in the high Tc cuprate superconductors

is of prime importance.

Studies of the isotope effect have been carried out in almost all known cuprates

(for a review, see reference [205] and references therein). It is shown in Zhao

et al. [206] that the oxygen-isotope effect in optimially doped cuprates is small and

decreases with increasing Tc. On the other hand, studies again by Zhao et al. [207]

show that the oxygen-isotope effect in La2−xSrxCuO4 increases with a decrease in

doping, becoming very large in the deeply underdoped region. This suggests that the

phonon modes related to oxygen vibrations are strongly coupled to the conduction

electrons. In addition to the large oxygen-isotope effect, the copper-isotope effect

in several cuprates is smaller than the oxygen-isotope effect in the deeply under-

doped region, but stronger than the oxygen-isotope effect near optimal doping. This

suggests that copper-dominated phonon modes are involved in the superconducting

pairing.

Many models of electron-phonon coupling have been applied to the cuprates.

From the point of view of numerical calculations using DMRG, a practical approach

is to apply the adiabatic approximation method, as done by Kuwabara [208]. In this

method the lattice bond variables are determined self-consistently, by applying the

Hellmann-Feynman force equilibrium condition [209,210] at the end of each DMRG

sweep, which determines the updated configuration of the lattice for the next sweep.

With some effort, such an algorithm could be applied to a two-dimensional system,

which would be useful for solving realistic models of phonon-mediated superconduc-

tivity [211, 212].

A rather general problem with more realistic models of superconductivity, from
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the viewpoint of obtaining numerical solutions, is that phenomonological interac-

tions, spin-orbit couplings, phonons, additional bands etc. tend to break symmetries

that exist in simpler models, or increase the computational effort required for an ac-

curate solution beyond what is possible with the software and hardware technology

available today†. With numerical methods that can take advantage of non-trivial

symmetries of the model, it is advantageous to preserve as many symmetries as

possible. Using the non-Abelian DMRG algorithm for example, it is quite likely

that introducing a spin-orbit coupling via a phenomonological spin-SU(2)-breaking

term would have a larger detrimental effect on the efficiency of the algorithm than

introducing a true orbital degree of freedom that preserves total angular momen-

tum SU(2). Given the computationally-intensive nature of two-dimensional DMRG

calculations, the large efficiency gain arising from utilizing additional symmetries is

an important consideration affecting the feasibility of numerical calculations using

DMRG.

†Indeed, this is arguably true even for the simple two-dimensional models of strongly-correlated

electrons.
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Conclusion

In this thesis the extension of the DMRG algorithm to explicitly preserve non-

Abelian global symmetries was presented. This results in a substantial improvement

to the accuracy and efficiency of the algorithm. The non-Abelian formulation of the

DMRG algorithm hinges upon mostly well-established theory of group representa-

tions, most notably the Wigner-Eckart theorem, which enables the factoring-out

of constraints imposed by the symmetry (which ordinarily appear as degenerate

states), thereby reducing the overall dimension of the Hilbert space while also in-

creasing the number of block-diagonal symmetry sectors of the Hamiltonian. This

has the practical effect of reducing the number of basis states needed for a fixed

accuracy, by a factor of five or more in some of the calculations presented in this

thesis. The application of DMRG to the problems of greatest current interest (two-

dimensional models, preferably with periodic boundary conditions) requires signif-

icantly more accuracy than what is typically needed for a one-dimensional model.

Achieving this accuracy purely by increasing the number of states kept requires a

very large amount of computation and is not yet practical except for very small

systems. Thus a method of increasing the accuracy without increasing the number

of basis states, such as the use of non-Abelian symmetries, is very important. Until

recently there has been very little work done on the search for additional symmetries

of non-integrable models. Even pseudospin symmetry of the Hubbard model was

not discovered until as late as 1990 [94]. The potential for numerical algorithms

that can make use of non-Abelian global symmetries provides additional impetus

for the search for additional symmetries in physically-relevant models.

The non-Abelian formulation was not the only development pertaining to the

DMRG algorithm itself that was presented in this thesis. Other results include;

• The wavefunction transformation required for fully utilizing reflection sym-

metry.

• Performance increases by diagonalizing the left and right block Hamiltonian

177
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contributions to the superblock Hamiltonian.

• The use of the truncated energy as an alternative measure of the accuracy of

the DMRG calculation.

The ground-state phase diagram of the Kondo lattice model was studied ex-

tensively, making explicit use of the SO(4) pseudospin symmetry inherent in the

model. The calculations presented here are significantly more accurate than pre-

vious numerical studies of the Kondo lattice model, which enabled us to obtain a

variety of results for this model, such as;

• Calculations of the phase transition curve up to conduction-band filling n =

0.95 strongly suggest that the critical coupling Jc/t remains finite in the limit

n→ 1, providing independent verification of the bosonization results of refer-

ence [137].

• Direct calculation of the magnetization indicates that the main phase transi-

tion is second order. The narrowness of the transition makes this difficult to

observe by conventional techniques.

• A complex region of ferromagnetism, consisting of at least two distinct ferro-

magnetic phases, was found in the intermediate coupling regime for conduction-

band filling 0.5 < n < 1.

• The intermediate coupling ferromagnetic regime was shown to also exist in

the periodic Anderson model.

The discovery of the intermediate coupling ferromagnetic region adds another di-

mension to the ongoing debate as to the size of the Fermi surface of the Kondo

lattice model. It was not inevitable that the corresponding phase should appear in

the periodic Anderson model. In the periodic Anderson model the f -band electrons

are mobile, unlike the Kondo lattice case where 〈c†i,σfi,σ〉 is strictly zero. Thus ap-

pearance of the same phase in the periodic Anderson model is also of great interest,

in particular the appearance of spin correlations at wave number determined only

by the conduction-band filling suggests that much of the physics of both models is

still to be determined.

The use of SU(2) symmetry of the t − J model improves the accuracy of the

DMRG calculations significantly. In this thesis, the numerical results were presented

for the two-dimensional t−J model, to demonstrate the potential for DMRG calcu-

lations on two-dimensional models and provide a verification of the results obtained
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by Steven White [10], which, at the time of publication, generated much contro-

versy. The main result of the numerical calculations is that, for the specific choice

of half-open half-periodic boundary conditions, a striped phase does appear for

physically-relevant coupling and most likely the hole-density per stripe is a con-

stant as the system is doped and depends only on the coupling J/t. This is in

agreement with the DMRG results obtained by Steven White [10]. However, it is

difficult to extrapolate these results to the thermodynamic model and especially, the

influence of the open boundary plays a large role in the transition from the striped

phase to the phase-separated regime and a largely unknown role in the formation

of the striped phase itself. Given the difficulty of applying the DMRG algorithm to

two-dimensional models, the primary focus of future work in this area must surely

be on the numerical algorithm itself. One line of inquiry that appears to be particu-

larly promising is momentum space formulations making explicit use of non-Abelian

lattice symmetries.
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Appendix A

Symmetric Block Wavefunction

Transform

In this Appendix, the basis transformation required to obtain an initial wave-

function at the mid-point of a reflection-symmetric DMRG calculation is derived. At

the mid-point, the wavefunction can be written in matrix form as a tensor product

of left and right basis states, firstly for the wavefunction at the previous sweep,

Ψ = (ψa′a) . (A.1)

The wavefunction, at the end of the transformation process described in section

1.3.2 is given in a mixed basis,

Φ = (φba) , (A.2)

which is the tensor product of the left block basis of the current sweep with the

right block basis of the previous sweep. The task is to find a transformation T =

(tba) which gives the correspondence between the two basis sets, thereby allowing

the wavefunction to be determined in the b basis only, as required for the DMRG

algorithm when reflection symmetry is used.

The required transformation maximizes the overlap between the wavefunction

at the current and the wavefunction at the previous sweep. The dimension of the

|a〉 and |b〉 basis sets, Na and Nb respectively, are not necessarily the same thus T

is not in general a square matrix.

Consider first the case Nb < Na. The rows of T can be constrained to be

orthogonal and normalized via a set of Lagrange multipliers λa′a/2, represented as

a matrix which can be taken to be symmetric. Thus the maximization problem is

F =
∑

a,a′,b

φbaTba′ψaa′ −
∑

b′b

λb′b

2

∑

a

(Tb′aTba − δb′b) . (A.3)
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Taking the partial derivative with respect to Tβα, one obtains

∂F

∂Tβα
=
∑

α

φβaψαa −
∑

b

λβbTbα . (A.4)

The solution of ∂F
∂Tβα

= 0 gives the desired transformation. Switching to matrix

form,

Φ Ψ† = ΛT , (A.5)

where Λ = (λb′b) is an Nb ×Nb symmetric matrix, Φ is an Nb ×Na matrix, Ψ is an

Na ×Na matrix and T is an Nb × Ba row-orthogonal matrix.

We now perform the singular value decomposition of the left-hand side of Eq.

(A.5), giving,

ΦΨ† = U DV T , (A.6)

where U is an Nb×Nb orthogonal matrix, D is an Nb×Nb diagonal matrix containing

the singular values and V T is an Nb × Na row-orthogonal matrix. The singular

value decomposition of the right-hand side of Eq. (A.5) is performed for Λ and T

separately, giving

ΛT = U DΛW
T XDT V

T , (A.7)

where DΛ is an Nb × Nb diagonal matrix containing the singular values of Λ, W T

is a Nb × Nb orthogonal matrix, X is an Nb × Nb orthogonal matrix and DT is an

Nb ×Nb diagonal matrix containing the singular values of T . Now Λ is symmetric,

therefore the singular value decomposition reduces to a similarity transformation,

giving W = U . But T is row-orthogonal therefore the singular values are identically

equal to 1, giving DT = I. Thus the singular values of Λ must coincide with the

singular values of ΦΨ†, implying DΛ = D. Thus,

ΦΨ† = U DV T = U DUT X V T , (A.8)

which implies that X = U . Thus, from the singular value decomposition of T ,

T = XDT V
T = U V T , (A.9)

where U and V T are given by the decomposition of ΦΨ† in Eq. (A.6). This completes

the proof of the Nb < Na case. The proof for Nb > Na proceeds in exactly the same

fashion, except that U becomes an Nb × Na column-orthogonal matrix and V T

becomes an Na ×Na orthogonal matrix.



Appendix B

Clebsch-Gordan, 6j and 9j

Coefficients of SU(2)

This appendix lists explisit forms and symmetry relations of the SU(2) Clebsch-

Gordan, 6j and 9j Coefficients that are used in the non-Abelian DMRG, described

in chapter 2.

Clebsch-Gordan Coefficients

An explicit form is:

Cj1
m1

j2
m2

j
m = δm1+m2,m

×
[

(2j + 1)(j + j1 − j2)!(j − j1 + j2)!(j1 + j2 − j)!
(j + j1 + j2 + 1)!

] 1
2

×
[

(j +m)!(j −m!)
(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!

] 1
2

×
∑

s

(−1)j2+m2+s(j2 + j +m1 + s)!(j1 −m1 + s)!

s!(j − j1 + j2 − s)!(j +m − s)!(j1 − j2 −m + s)!
.

(B.1)

With arbitary precision integer arithmetic this can be evaluated as the square root

of a rational number.

Orthogonality of rows:

∑

m1m2

Cj1
m1

j2
m2

j
mC

j1
m1

j2
m2

j′

m′ = δjj′δmm′ . (B.2)

Orthogonality of colums:

∑

jm

Cj1
m1

j2
m2

j
mC

j1
m′

1

j2
m′

2

j
m = δm1m′

1
δm2m′

2
. (B.3)
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184 B. Clebsch-Gordan, 6j and 9j Coefficients of SU(2)

The ‘classical’ symmetries form a group of order 12 and until the work of Regge [213]

it was believed that these exhausted the symmetries. The true symmetry group is

of order 72. The symmetry relations are (the group is generated by the first 4, the

last two are for reference),

Cj1
m1

j2
m2

j
m = (−1)j1+j2−jCj1

−m1,
j2
−m2,

j
−m ,

Cj1
m1

j2
m2

j
m = (−1)j1+j2−jCj2

m2

j1
m1

j
m ,

Cj1
m1,

j2
m2,

j
m1+m2

= C
1
2
(j1+j2+m1+m2)

1
2
(j1−j2+m1−m2),

1
2
(j1+j2−m1−m2)

1
2
(j1−j2−m1+m2),

j
j1−j2

,

Cj1
m1

j2
m2

j
m = (−1)j2+m2

√
2j+1
2j1+1

Cj
−m,

j2
m2,

j1
−m1

,

Cj1
m1

j2
m2

j
m = (−1)j1−m1

√
2j+1
2j2+1

Cj1
m1,

j
−m,

j2
−m2

,

Cj1
m1

j2
m2

j
m = (−1)j2+m2

√
2j+1
2j1+1

Cj2
−m2,

j
m,

j1
m1
,

(B.4)

6j Coefficients

The simplest known explitit form is due to Racah [214, 215],

{

j1 j2 j

k1 k2 k

}

= ∆(j1j2j)∆(k1k2j)∆(j1k2k)∆(k1j2k)

×
∑

z

(−1)z(z + 1)!

(z − j1 − j2 − j)!(z − k1 − k2 − j)!(z − j1 − k2 − k)!(z − k1 − j2 − k)!

× 1
(j1 + j2 + k1 + k2 − z)!(j1 + k1 + j + k − z)!(j2 + k2 + j + k − z)!

,

(B.5)

where ∆(abc) is the triangle coefficient,

∆(abc) = εabc

[
(a+ b− c)!(a− b + c)!(−a+ b + c)!

(a + b+ c+ 1)!

] 1
2

. (B.6)

Here εabc enforces the triangle condition,

εabc =

{
1, if c ∈ {|a− b|, |a− b| + 1, . . . , a+ b};
0, otherwise.

(B.7)

This is, despite the apparant asymmetry, in fact symmetric in all permutations of

a, b, c.

Similarly to the case of the Clebsch-Gordan coefficients, the 6j coefficient can

be evaluated reasonably efficiently as the square root of a rational number, using

arbitary precision integer arithmetic. However this still requires a relatively large

amount of CPU time per 6j coefficent. Thus the code used in this thesis stores
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already-calculated coefficients in a hash table and uses the permutation symmetries

of the 6j coefficients to avoid re-calculating coefficients that can be obtained by a

permutation. The known symmetries of the 6j coefficients form a group of order

144, however the code in this thesis uses only the subset that are true permutations

of the coefficients. These symmetries comprise all permutations of the columns and

the exchange of any pair of elements in the top row with the corresponding elements

in the bottom row. This forms a symmetry group of order 24.

9j Coefficients

The DMRG code in this thesis uses the expansion of the 9j coefficients in terms

of a summation over 6j coeffecients:







j11 j12 j13

j21 j22 j23

j31 j32 j33







=
∑

k

(−1)2k(2k+1)

{

j11 j21 j31

j32 j33 k

}{

j12 j22 j32

j21 k j23

}{

j13 j23 j33

k j11 j12

}

.

(B.8)

From this, it can be shown that the 9j coefficient is zero unless the triangle condi-

tions are fulfilled by the entries in each row and each column. There are 72 known

symmetries of the 9j coefficent. The 9j coefficient is invarant under even permu-

tations of its rows, even permutation of its columns and under interchange of rows

and columns (transposition). It is multiplied by a factor (−1)
P

ik jik under an odd

permutation of its rows or columns.

In practice, for all two-site interactions of the form [Sk1 ⊗ T k2]k, at least one

of the operators must transform as a rotational invariant which implies that one or

more of the jij are zero. Thus the summation over k in Eq. (B.8) is over a single

value and the calculation of the 9j coefficient is already rather fast. Indeed, it could

be made faster since in this case the 9j coefficient can be expressed in terms of a

single 6j coefficient, e.g. in the case of j33 = 0,







j11 j12 j13

j21 j22 j23

j31 j32 0







=

(−1)j12+j13+j21+j31δj13j23δj31j32

{

j12 j22 j32

j21 j11 j23

}

[(2j31 + 1)(2j13 + 1)]
1
2

. (B.9)

The location of the zero can be shifted to any position using the symmetry relations.

However given the speed of the calculation of the 6j coefficients this would have

negligable impact on the speed of the DMRG code.
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[65] I. Peschel, M. Kaulke and Ö. Legeza: Density-matrix spectra for integrable

models, Ann. Phys. 8 153, (1999).

[66] T. Nishino: Density Matrix Renormalization Group Method for 2D Classical

Models, J. Phys. Soc. Japan 64 3598, (1995).

[67] R. J. Baxter: Exactly Solvable Models in Statistical Mechanics, Academic

Press, New York, 1982.

[68] M.-C. Chung and I. Peschel: Density-matrix spectra for two-dimensional

quantum systems, Phys. Rev. B 62 4191, (2000).

[69] I. Peschel and M.-C. Chung: Density Matrices for a Chain of Oscillators, J.

Phys. A 32 8419, (1999).

[70] S. R. White and D. A. Huse: Numerical renormalization-group study of low-

lying eigenstates of the antiferromagnetic S=1 Heisenberg chain, Phys. Rev.

B 48 3844, (1993).

[71] M.-C. Chung and I. Peschel: Density-matrix spectra of solvable fermionic

systems, Phys. Rev. B 64 064412, (2001).

[72] I. Peschel and T. T. Truong: Corner Transfer Matrices and Conformal Invari-

ance, Z. Phys. B 69 385, (1987).

[73] T. T. Truong and I. Peschel: Diagonalization of finite-size corner transfer

matrices and related spin chains, Z. Phys. B 75 119, (1989).

[74] S. Daul: First and second order ferromagnetic transition at T = 0 in a 1D

itinerant system, Eur. Phys. J. B 14 649, (2000).
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