11 Practice problem solutions

This section gives worked solutions to all of the practice problems from Sections 1 to 10.

11.1 Factorisation

A1.1 (a)
$$4y^2 - 16y = 4y \times y - 4y \times 4 = 4y(y - 4)$$

(b)
$$32ab + 16b + 8abc = 8b \times 4a + 8b \times 2 + 8b \times ac = 8b(4a + 2 + ac)$$

(c)
$$6xyz + 3yz + 18wyz = 3yz \times 2x + 3yz \times 1 + 3yz \times 6w = 3yz(2x + 1 + 6w)$$

A1.2 (a)
$$4 + 4b + b^2 = (2 + b)(2 + b) = (2 + b)^2$$

(b)
$$25a^2 - 10ad + d^2 = (5a - d)(5a - d) = (5a - d)^2$$

(c)
$$x^2 + 12xy + 36y^2 = (x + 6y)(x + 6y) = (x + 6y)^2$$

(d)
$$144 - 48a + 4a^2 = (12 - 2a)(12 - 2a) = (12 - 2a)^2$$

A1.3 (a)
$$9y^2 - 36 = (3y)^2 - 6^2 = (3y - 6)(3y + 6)$$

(b)
$$64 - 121q^4 = 8^2 - (11q^2)^2 = (8 - 11q^2)(8 + 11q^2)$$

(c)
$$16x^6 - 49y^8 = (4x^3)^2 - (7y^4)^2 = (4x^3 - 7y^4)(4x^3 + 7y^4)$$

A1.4 (a)
$$x^2 - 5x + 4$$

= $x^2 - 4x - 1x + 4$
= $x(x-4) - 1(x-4)$
= $(x-4)(x-1)$

(b)
$$x^2 + 2x - 15$$

= $x^2 - 3x + 5x - 15$
= $x(x-3) + 5(x-3)$
= $(x-3)(x+5)$

(c)
$$y^2 - 3y + 2$$

 $= y^2 - 2y - 1y + 2$
 $= y(y-2) - 1(y-2)$
 $= (y-2)(y-1)$

(d)
$$x^2 + 13x + 42$$

= $x^2 + 7x + 6x + 42$
= $x(x+7) + 6(x+7)$
= $(x+7)(x+6)$

(e)
$$x^2 - 11x + 24$$

= $x^2 - 8x - 3x + 24$
= $x(x-8) - 3(x-8)$
= $(x-8)(x-3)$

(f)
$$a^2 + 7a + 12$$

= $a^2 + 4a + 3a + 12$
= $a(a+4) + 3(a+4)$
= $(a+4)(a+3)$

A1.5 (a)
$$3x^2 + 17x + 10$$

= $3x^2 + 15x + 2x + 10$
= $3x(x+5) + 2(x+5)$
= $(x+5)(3x+2)$

(b)
$$2y^{2} + 12y + 16$$

$$= 2y^{2} + 8y + 4y + 16$$

$$= 2y(y+4) + 4(y+4)$$

$$= (y+4)(2y+4)$$

(c)
$$4x^{2} - 8x - 12$$

$$= 4x^{2} - 12x + 4x - 12$$

$$= 2x(2x - 6) - 2(2x - 6)$$

$$= (2x - 6)(2x - 2)$$

$$4x^{2} - 8x - 12$$

$$= 4x^{2} - 12x + 4x - 12$$
or
$$= 4x(x - 3) - 4(x - 3)$$

$$= (x - 3)(4x + 4)$$

$$4x^{2} - 8x - 12$$
or
$$= 4x^{2} - 12x + 4x - 12$$
or
$$= x(4x - 12) + 1(4x - 12)$$

$$= (4x - 12)(x + 1)$$

(d)
$$2z^{2} - z - 15$$

$$= 2z^{2} - 6z + 5z - 15$$

$$= 2z(z - 3) + 5(z - 3)$$

$$= (z - 3)(2z + 5)$$

11.2 Manipulating fractions

A2.1 (a)
$$\frac{14x}{18x} = \frac{14x \div 2x}{18x \div 2x} = \frac{7}{9}$$

(b)
$$\frac{9ab}{27bc} = \frac{9ab \div 9b}{27bc \div 9b} = \frac{a}{3c}$$

(c)
$$\frac{8+4d}{2e} = \frac{2(4+2d) \div 2}{2e \div 2} = \frac{4+2d}{e}$$

A2.2 (a)
$$\frac{3}{12} + \frac{1}{4} = \frac{3}{12} + \frac{3}{12} = \frac{6}{12} = \frac{1}{2}$$

(b)
$$\frac{1}{3} + \frac{4}{15} = \frac{5}{15} + \frac{4}{15} = \frac{9}{15} = \frac{3}{5}$$

(c)
$$\frac{6}{7} - \frac{2}{3} = \frac{18}{21} - \frac{14}{21} = \frac{4}{21}$$

(d)
$$\frac{13}{18} - \frac{7}{9} = \frac{13}{18} - \frac{14}{18} = -\frac{1}{18}$$

A2.3 (a)
$$\frac{4}{11} \times \frac{7}{12} = \frac{28}{132} = \frac{7}{33}$$

(b)
$$\frac{3}{13} \div \frac{8}{9} = \frac{3}{13} \times \frac{9}{8} = \frac{27}{104}$$

(c)
$$\frac{5}{8} \times \frac{2}{7} = \frac{10}{56} = \frac{5}{28}$$

(d)
$$\frac{3}{8} \div \frac{5}{6} = \frac{3}{8} \times \frac{6}{5} = \frac{18}{40} = \frac{9}{20}$$

A2.4 (a)
$$\frac{ab}{4} + \frac{2c}{8d} = \frac{2abd}{8d} + \frac{2c}{8d} = \frac{2(abd+c)}{8d} = \frac{abd+c}{4d}$$

(b)
$$\frac{4xy}{9} + \frac{3x}{12} = \frac{16xy}{36} + \frac{9x}{36} = \frac{x(16y+9)}{36}$$

(c)
$$\frac{30gh}{14} - \frac{5h}{7g} = \frac{30g^2h}{14g} - \frac{10h}{14g} = \frac{10h(3g^2 - 1)}{14g} = \frac{5h(3g^2 - 1)}{7g}$$

(d)
$$\frac{9a}{24} - \frac{5}{8b} = \frac{9ab}{24b} - \frac{15}{24b} = \frac{9ab - 15}{24b} = \frac{3ab - 5}{8b}$$

A2.5 (a)
$$\frac{12g}{16h} \times \frac{h}{2} = \frac{12gh}{32h} = \frac{3g}{8}$$

(b)
$$\frac{4e}{45} \times \frac{9d}{f} = \frac{36ed}{45f} = \frac{4ed}{5f}$$

(c)
$$\frac{xy}{7} \div \frac{x}{14} = \frac{xy}{7} \times \frac{14}{x} = \frac{14xy}{7x} = 2y$$

(d)
$$\frac{5a}{7} \div \frac{7}{9a} = \frac{5a}{7} \times \frac{9a}{7} = \frac{45a^2}{49}$$

11.3 Solving Equations

A3.1 (a) 13 = $\frac{4a-5}{3}$ 39 = 4a - 544 = 4a11 = a

The solution to $13 = \frac{4a-5}{3}$ is a = 11.

(b) $\frac{7y}{9} - 6 = 5$

7y - 54 = 457y = 99 $y = \frac{99}{7}$ $\text{The solution to } \frac{7y}{9} - 6 = 5 \text{ is } y = \frac{99}{7}.$

(c) $\frac{8}{6x} = 3$ $\begin{array}{rcl}
8 & = & 18x \\
\frac{8}{18} & = & x
\end{array}$ $\frac{4}{9} = x$

The solution to $\frac{8}{6x} = 3$ is $x = \frac{4}{9}$.

(d) $\frac{11b}{12} = \frac{3}{4}$ 11b = 9

 $b = \frac{9}{11}$

The solution to $\frac{11b}{12} = \frac{3}{4}$ is $b = \frac{9}{11}$.

A3.2 (a) $\frac{14a}{17} = 2b$

14a = 34b $a = \frac{34b}{14}$

 $a = \frac{17b}{7}$ The solution is $a = \frac{17b}{7}$.

(b) $\frac{3a}{4} = b + 6$

3a = 4b + 24

 $a = \frac{4b}{3} + 8$

The solution is $a = \frac{4b}{3} + 8$.

(c)
$$\frac{28}{4a} = \frac{b}{5}$$

 $28 = \frac{4ab}{5}$
 $140 = 4ab$
 $\frac{140}{4b} = a$
 $\frac{35}{b} = a$
The solution is $a = \frac{35}{b}$.
(d) $\frac{12}{3a} = \frac{4}{7b}$
 $12 = \frac{12a}{7b}$
 $84b = 12a$
 $7b = a$

(d)
$$\frac{12}{3a} = \frac{4}{7b}$$
$$12 = \frac{12a}{7b}$$
$$84b = 12a$$
$$7b = a$$

The solution is a = 7b.

11.4 Powers

A4.1 9^5 written as a product is $9 \times 9 \times 9 \times 9 \times 9$.

A4.2 (a)
$$x^2 \times x^3 = x^{2+3} = x^5$$

(b)
$$\frac{y^5}{y^2} = y^{5-2} = y^3$$

(c)
$$(x^4)^3 = x^{4\times 3} = x^{12}$$

(d)
$$(2x)^3 = 2^3 \times x^3 = 8x^3$$

(e)
$$x^{-3} = \frac{1}{x^3}$$

A4.3 (a)
$$\frac{2^{13} \times 2^4}{2^{14}} = \frac{2^{13+4}}{2^{14}} = \frac{2^{17}}{2^{14}} = 2^{17-14} = 2^3 = 8$$

(b)
$$125^{2/3} = (125^{1/3})^2 = ((5^3)^{1/3})^2 = (5^{3 \times 1/3})^2 = (5^1)^2 = 25$$

(c)
$$(x \times y)^0 = x^0 \times y^0 = 1 \times 1 = 1$$

$$\mathbf{A4.4} \ \frac{(x^7 \times y^{-4})^2}{(y^{12} \times x^3)^{-3}} = \frac{x^{7 \times 2} \times y^{-4 \times 2}}{y^{12 \times -3} \times x^{3 \times -3}} = \frac{x^{14} \times y^{-8}}{y^{-36} \times x^{-9}} = x^{14 - (-9)} \times y^{-8 - (-36)} = x^{23} \times y^{28}$$

$$\mathbf{A4.5} \ \sqrt{\frac{(x^{-3} \times y)^{-2}}{x^4 \times y^{-6}}} = \sqrt{\frac{x^{-3 \times -2} \times y^{-2}}{x^4 \times y^{-6}}} = \sqrt{\frac{x^6 \times y^{-2}}{x^4 \times y^{-6}}} = \sqrt{x^{6-4} \times y^{-2-(-6)}} = \sqrt{x^2 \times y^4}$$
$$= (x^2 \times y^4)^{1/2} = x^{2 \times 1/2} \times y^{4 \times 1/2} = x \times y^2 \text{ (provided } x > 0 \text{ and } y \neq 0)$$

$$\mathbf{A4.6} \ \frac{2^{14} \times 9^{-3} \times 5^{-1}}{25 \times 8^2 \times 3^{-11}} = \frac{2^{14} \times (3^2)^{-3} \times 5^{-1}}{5^2 \times (2^3)^2 \times 3^{-11}} = \frac{2^{14} \times 3^{2 \times -3} \times 5^{-1}}{5^2 \times 2^{3 \times 2} \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-6} \times 5^{-1}}{5^2 \times 2^6 \times 3^{-11}} = \frac{2^{14} \times 3^{-1}}{5^2 \times 2^6 \times 3^{-1}} = \frac{2^{14} \times 3^{-1}}{5^2 \times 2^6 \times 3^{-1$$

11.5 Trigonometry

A5.1 (a)
$$120 \times \frac{\pi}{180}$$

= $\frac{120\pi}{180}$
= $\frac{2\pi}{3}$

Thus 120° equals $\frac{2\pi}{3}$ radians.

(b)
$$260 \times \frac{\pi}{180}$$

$$= \frac{260\pi}{180}$$

$$= \frac{13\pi}{9}$$

Thus 260° equals $\frac{13\pi}{9}$ radians.

(c)
$$315 \times \frac{\pi}{180}$$
$$= \frac{315\pi}{180}$$
$$= \frac{7\pi}{4}$$

Thus 315° equals $\frac{7\pi}{4}$ radians.

A5.2 (a)
$$\frac{4\pi}{9} \times \frac{180}{\pi}$$

= $\frac{720}{9}$
= 80

Thus $\frac{4\pi}{9}$ radians 80°.

(b)
$$\frac{3\pi}{5} \times \frac{180}{\pi}$$

$$= \frac{540}{5}$$

$$= 108$$

Thus $\frac{3\pi}{5}$ radians 108° .

(c)
$$\frac{\pi}{9} \times \frac{180}{\pi}$$
$$= \frac{180}{9}$$
$$= 20$$

Thus $\frac{\pi}{9}$ radians 20°.

A5.3 (a)
$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$
, so $\sin \theta = \frac{5}{13}$

(b)
$$\cos \theta = \frac{\text{adj}}{\text{hyp}}, \quad \text{so} \quad \cos \theta = \frac{12}{13}$$

(c)
$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$
, so $\tan \theta = \frac{5}{12}$

A5.4 (a)
$$\cos 56^{\circ} = \frac{x}{19}$$

 $x = 19 \times \cos 56^{\circ}$
 $x = 10.62$

The length of side x is 10.62cm.

(b)
$$\sin 15^{\circ} = \frac{8}{z}$$

$$z \times \sin 15^{\circ} = 8$$

$$z = \frac{8}{\sin 15^{\circ}}$$

$$z = 30.91$$

The length of side z is 30.91cm.

(c)
$$\tan \theta = \frac{13}{12}$$

 $\theta = \tan^{-1} \left(\frac{13}{12}\right)$
 $\theta = 47.29^{\circ}$

The angle θ is 47.29°.

A5.5 (a)
$$\sin \frac{11\pi}{6} = -\sin \frac{\pi}{6}$$

= $-\frac{1}{2}$

(b)
$$\cos \frac{5\pi}{6} = -\cos \frac{\pi}{6}$$

= $-\frac{\sqrt{3}}{2}$

(c) $\tan \frac{4\pi}{3} = \tan \frac{\pi}{3}$ = $\sqrt{3}$

(d) $\sin \frac{14\pi}{15} = \sin \frac{\pi}{15}$ = 0.208

A5.6 (a) Sine is negative in the 3rd and 4th quadrants. The angle in the 1st quadrant whose sine is $\frac{1}{\sqrt{2}}$ is $\frac{\pi}{4}$. Thus,

(b) We know $\cos \theta = x$, and x is equal to 1 at the point (1,0), which represents the angles 0 and 2π .

(c) Tangent is positive in the 1st and 3rd quadrants. The angle in the 1st quadrant whose tangent is $\frac{1}{\sqrt{3}}$ is $\frac{\pi}{6}$. Thus,

$$\theta = \frac{\pi}{6}$$
 and $\theta = \pi + \frac{\pi}{6}$

$$\theta = \frac{\pi}{4}$$
 and $\theta = \frac{7\pi}{6}$.

(d) Cosine is positive in the 1st and 4th quadrants. The angle in the 1st quadrant whose cosine is $\frac{1}{4}$ is $\cos^{-1}\left(\frac{1}{4}\right) = 1.32$ radians. Thus,

$$\theta = 1.32$$
 and $\theta = 2\pi - 1.32$

$$\theta = 1.32$$
 and $\theta = 4.97$

11.6 Solving quadratic equations

A6.1 (a) Yes,
$$x^2 - \frac{1}{2}x + 4 = 0$$

- (b) No, this is a cubic equation.
- (c) Yes, this expands to $x^2 + x 6 = 0$
- (d) Yes, this is equivalent to $x^2 3x 2 = 0$

A6.2 (a)
$$2x^2 + 10x + 12 = 0$$

 $(x+2)(2x+6) = 0$
 $x+2=0$ or $2x+6=0$
 $x=-2$ or $2x=-6$
 $x=-2$ or $x=-3$

The solutions to $2x^2 + 10x + 12 = 0$ are x = -2 and x = -3.

(b)
$$4x^2 - 25 = 0$$
$$(2x)^2 - 5^2 = 0$$
$$(2x - 5)(2x + 5) = 0$$
$$2x - 5 = 0 \text{ or } 2x + 5 = 0$$
$$2x = 5 \text{ or } 2x = -5$$
$$x = \frac{5}{2} \text{ or } x = -\frac{5}{2}$$
The solutions to $4x^2 - 25 = 0$ are $x = 5/2$ and $x = -5/2$.

(c)
$$x^2 + 4x = 0$$

 $x(x+4) = 0$
 $x = 0$ or $x + 4 = 0$
 $x = 0$ or $x = -4$

The solutions to $x^2 + 4x = 0$ are x = 0 and x = -4.

(d)
$$y^2 + 6y + 9 = 0$$

 $(y+3)(y+3) = 0$
 $y+3 = 0$
 $y = -3$

The solution to $y^2 + 6y + 9 = 0$ is y = -3.

A6.3 (a)
$$x^2 + 6x + 9 = 0$$

$$x = \frac{-6 \pm \sqrt{36 - 36}}{2}$$

$$x = \frac{-6 \pm \sqrt{0}}{2}$$

$$x = -3$$

The solution to $x^2 + 6x + 9 = 0$ is x = -3.

(b)
$$7p^2 + 6p + 1 = 0$$

$$p = \frac{-6 \pm \sqrt{36 - 28}}{14}$$

$$p = \frac{-6 \pm \sqrt{8}}{14}$$

$$p = \frac{-6 \pm 2\sqrt{2}}{14}$$

$$p = \frac{-3 \pm \sqrt{2}}{7}$$

$$p = \frac{-3 + \sqrt{2}}{7} \text{ or } x = \frac{-3 - \sqrt{2}}{7}$$
The solutions to $7p^2 + 6p + 1 = 0$ are $p = \frac{-3 + \sqrt{2}}{7}$ and $p = \frac{-3 - \sqrt{2}}{7}$.

(c)
$$2x^2 - 10x + 13 = 0$$

$$x = \frac{10 \pm \sqrt{100 - 104}}{4}$$

$$x = \frac{10 \pm \sqrt{-4}}{4}$$

There are no real solutions.

11.7 Solving inequalities

A7.1 (a)
$$\frac{4x}{7} \ge 3 + x$$

 $4x \ge 21 + 7x$
 $-3x \ge 21$
 $x \le -7$

The solution to $\frac{4x}{7} \ge 3 + x$ is $x \le -7$.

(b)
$$12-6x < 8-x \\ -5x < -4$$

$$x > \frac{4}{5}$$
 The solution to $12-6x < 8-x$ is $x > \frac{4}{5}$.

(c)
$$\frac{11a+4}{6} > 3+2a$$

$$11a+4 > 18+12a$$

$$-a > 14$$

$$a < -14$$
The solution to
$$\frac{11a+4}{6} > 3+2a \text{ is } a < -14.$$

(d)
$$\frac{7b-14}{b} \le 5$$

If $b > 0, b \ne 0$,
 $7b-14 \le 5b$
 $2b \le 14$
 $b \le 7$
If $b < 0$,
 $7b-14 \ge 5b$
 $2b \ge 14$
 $b \ge 7$

Now, for b < 0 we have $b \ge 7$. Hence there is no solution when b < 0.

The solution to $\frac{7b-14}{b} \le 5$ is b > 0 and $b \le 7$, that is $0 < b \le 7$.

A7.2 (a)
$$|3x| > 12$$

If $3x \ge 0$, $3x > 12$
 $x > 4$
If $3x < 0$, $-3x > 12$
 $x < -4$

The solution to |3x| > 12 is x > 4 or x < -4.

(b)
$$|4b - 6| \le 18$$

If
$$4b - 6 \ge 0$$
, $4b - 6 \le 18$
 $4b \le 24$
 $b \le 6$

For this case we want the values of b that satisfy both $4b - 6 \ge 0$ and $b \le 6$. This means $b \ge \frac{3}{2}$ and $b \le 6$, so we want $\frac{3}{2} \le b \le 6$.

If
$$4b-6 < 0$$
, $-(4b-6) \le 18$
 $6-4b \le 18$
 $-4b \le 12$
 $b \ge -3$

For this case we want the values of b that satisfy both 4b-6<0 and $b\geq -3$. This means $b<\frac{3}{2}$ and $b\geq -3$, so we want $-3\leq b<\frac{3}{2}$.

The solution to $|4b-6| \le 18$ is $\frac{3}{2} \le b \le 6$ and $-3 \le b < \frac{3}{2}$, which is $-3 \le b \le 6$.

(c)
$$7 \ge |x + 14|$$

For this case we want the values of x that satisfy both $x + 14 \ge 0$ and $x \le -7$. This means $x \ge -14$ and $x \le -7$, so we want $-14 \le x \le -7$.

If
$$x + 14 < 0$$
, $7 \ge -x - 14$
 $7 + x \ge -14$
 $x \ge -21$

For this case we want the values of x that satisfy both x+14<0 and $x\geq -21$. This means x<-14 and $x\geq -21$, so we want $-21\leq x<-14$.

The solution to $7 \ge |x + 14|$ is $-14 \le x \le -7$ and $-21 \le x < -14$, which is $-21 \le x \le -7$.

(d)
$$9 < |3c - 6|$$

If
$$3c - 6 \ge 0$$
, $9 < 3c - 6$
 $-3c < -15$
 $c > 5$

For this case we want the values of c that satisfy both $3c - 6 \ge 0$ and c > 5. This means $c \ge 2$ and c > 5, so we want c > 5.

If
$$3c - 6 < 0$$
, $9 < -(3c - 6)$
 $9 < 6 - 3c$
 $3c < -3$
 $c < -1$

For this case we want the values of c that satisfy both 3c - 6 < 0 and c < -1. This means c < 2 and c < -1, so we want c < -1.

The solution to 9 < |3c - 6| is c > 5 or c < -1.

11.8 Sigma notation

- **A8.1** (a) $\sum_{n=1}^{3} 2n$ is the sum for n = 1, 2, 3 of 2n. This is $2 \times 1 + 2 \times 2 + 2 \times 3$, which is equal to 2 + 4 + 6.
 - (b) $\sum_{n=-1}^{2} 3^n$ is the sum for n = -1, 0, 1, 2 of 3^n . This is $3^{-1} + 3^0 + 3^1 + 3^2$, which is equal to $\frac{1}{3} + 1 + 3 + 9$.
 - (c) $\sum_{i=0}^{5} i(i+2)$ is the sum from i=0 to 5 of i(i+2). So this is simply 0(0+2)+1(1+2)+2(2+2)+3(3+2)+4(4+2)+5(5+2), which is equal to 0+2+8+15+24+35.
- **A8.2** (a) The sum 3+4+5+6+7+8 is the sum of all integers from 3 to 8. In sigma notation this is $\sum_{i=3}^{8} i$.
 - (b) The sum -2+1+4+7 is the sum of four terms, each of which represents an increase of 3 over the previous term. So if we consider the first term to be $0\times3-2$ (using 3 because this is the difference between consecutive terms), we can use sigma notation to get $\sum_{i=0}^{3} 3i 2$.
 - (c) The sum $1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{100}$ is the sum of 100 terms, each of which is a fraction where the numerator is 1 and the denominator is the number between 1 and 100 which corresponds to the particular term. In sigma notation this is $\sum_{i=1}^{100} \frac{1}{i}$.
- **A8.3** $\sum_{j=3}^{6} (-1)^{j} (2j+n^{j-2}) \text{ corresponds to the sum with } j=3,4,5,6 \text{ of } (-1)^{j} (2j+n^{j-2}).$ This is $(-1)^{3} (2\times 3+n^{3-2})+(-1)^{4} (2\times 4+n^{4-2})+(-1)^{5} (2\times 5+n^{5-2})+(-1)^{6} (2\times 6+n^{6-2})$ which is equivalent to $-(6+n)+(8+n^2)-(10+n^3)+(12+n^4)$.
- A8.4 The sum $3x_1 5x_2 + 7x_3 9x_4$ is a sum with alternating plus and minus signs for each term, a factor out the front that increases by 2 each time, and a power of x that increases by 1 for each consecutive term. If we let the variable over which the sum is to be performed be i, and allow this to go from 1 to 4, the first term could be $(2i + 1)x_i$. This gives the right terms, but now the positives and negatives must be dealt with. Since $(-1)^0 = 1$ and $(-1)^1 = -1$, we can include the term $(-1)^{i-1}$ to give the full sum. This gives a final answer of $\sum_{i=1}^{4} (-1)^{i-1} (2i+1)x_i$.

Graphing lines and parabolas 11.9

A9.1 (a) y = 4x - 7

x-intercept: 0 = 4x - 7, so $x = \frac{7}{4}$

y-intercept: y = 0 - 7, so y = -7

Points to plot: (1.75,0) and (0,-7).

(b)
$$3y = -2x + 4$$

x-intercept: 0 = -2x + 4, so x = 2

y-intercept: 3y = 0 + 4, so $y = \frac{4}{3}$

Points to plot: (2,0) and (0,1.33).

(c)
$$-2y = \frac{x}{2} - 3$$

(c) $-2y = \frac{x}{2} - 3$ *x*-intercept: $0 = \frac{x}{2} - 3$, so x = 6

y-intercept: -2y = 0 - 3, so $y = \frac{3}{2}$

Points to plot: (6,0) and (0,1.5).

A9.2 (a) The two points given are (1,6) and (2,16). The gradient, m:

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{16 - 6}{2 - 1} = 10$$

The y-intercept, c:

Using the point (1,6) on the line gives

$$y = mx + c$$

$$6 = 10 \times 1 + c$$

$$6 = 10 + c$$

$$-4 = c$$

Substituting m and c into the general equation we now have the equation for the line given in the graph above, y = 10x - 4.

(b) The two points given are (2,0) and (4,-6). The gradient, m:

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-6 - 0}{4 - 2} = \frac{-6}{2} = -3$$

The y-intercept, c:

Using the point (2,0) on the line gives

$$y = mx + c$$

$$0 = -3 \times 2 + c$$

$$0 = -6 + c$$

$$6 = c$$

Substituting m and c into the general equation we now have the equation for the line given in the graph above, y = -3x + 6.

(c) The two points given are (4, -4) and (8, -7). The gradient, m:

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-7 - -4}{8 - 4} = \frac{-3}{4}$$

The y-intercept, c:

Using the point (4, -4) on the line gives

$$\begin{array}{rcl} y & = & mx + c \\ -4 & = & -\frac{3}{4} \times 4 + c \\ -4 & = & -3 + c \\ -1 & = & c \end{array}$$

Substituting m and c into the general equation we now have the equation for the line given in the graph above, $y = -\frac{3}{4}x - 1$.

77

A9.3 (a)
$$y = 4x^2 - 25$$

x-intercept:
$$0 = 4x^2 - 25$$
, so $0 = (2x - 5)(2x + 5)$,

$$x = \frac{5}{2} \text{ and } x = -\frac{5}{2}$$

y-intercept:
$$y = 0 - 25$$
, so $y = -25$

Turning point:
$$x = \frac{-b}{2a} = \frac{0}{8} = 0$$

$$y = 4(0)^2 - 25 = -25$$

Points to plot: (-2.5, 0), (2.5, 0) and (0, -25).

(b)
$$y = x^2 + 4x + 5$$

x-intercept:
$$0 = x^2 + 4x + 5$$
, using the quadratic formula there are no real roots.

y-intercept:
$$y = 0 + 4(0) + 5$$
, so $y = 5$

y-intercept:
$$y = 0 + 4(0) + 5$$
, so $y = 5$
Turning point: $x = \frac{-b}{2a} = \frac{-4}{2} = -2$

$$y = (-2)^2 + 4(-2) + 5 = 1$$

Points to plot: (0,5) and (-2,1).

(c)
$$y = -x^2 + 4x - 4$$

x-intercept:
$$0 = -x^2 + 4x - 4$$
, so $0 = (-x + 2)(x - 2)$, so $x = 2$

y-intercept:
$$y = 0 - 4(0) - 4$$
, $y = -4$

Turning point:
$$x = \frac{-b}{2a} = \frac{-4}{-2} = 2$$

$$y = -(2)^2 + 4(2) - 4 = 0$$

Points to plot: (2,0) and (0,-4).

11.10 Derivatives and anti-derivatives

A10.1 (a)
$$f(x) = 4x^2 + 2x + 6$$

 $f'(x) = 2 \times 4x^{(2-1)} + 2x^{(1-1)} + 0$
 $f'(x) = 8x + 2$

(b)
$$f(x) = 9x^3 - 5x^{-4} + 5$$

 $f'(x) = 3 \times 9x^{(3-1)} - -4 \times 5x^{(-4-1)} + 0$
 $f'(x) = 27x^2 + 20x^{-5}$

(c)
$$f(x) = \sqrt{x} + 2x^2$$

 $f'(x) = \frac{1}{2} \times x^{(\frac{1}{2}-1)} + 2 \times 2x^{(2-1)}$
 $f'(x) = \frac{1}{2\sqrt{x}} + 4x$

(d)
$$f(a) = a^4 - a^2 + a$$

 $f'(a) = 4 \times a^{(4-1)} - 2 \times a^{(2-1)} + a^{(1-1)}$
 $f'(a) = 4a^3 - 2a + 1$

A10.2 (a)
$$f(x) = 4 \cos x$$

 $f'(x) = 4 \times -\sin x$
 $f'(x) = -4 \sin x$

(b)
$$f(x) = 2 \sin x + 8x$$

 $f'(x) = 2 \times \cos x + 8x^{(1-1)}$
 $f'(x) = 2 \cos x + 8$

(c)
$$f(a) = a^2 + \sin a - 4$$

 $f'(a) = 2 \times a^{(2-1)} + \cos a + 0$
 $f'(a) = 2a + \cos a$

(d)
$$f(x) = x^3 - 3\cos x + 2x$$

 $f'(x) = 3 \times x^{(3-1)} - 3 \times -\sin x + 2x^{(1-1)}$
 $f'(x) = 3x^2 + 3\sin x + 2$

A10.3 (a)
$$f(x) = 5e^x$$

 $f'(x) = 5e^x$

(b)
$$f(x) = -7e^x + x^2$$

 $f'(x) = -7e^x + 2 \times x^{(2-1)}$
 $f'(x) = -7e^x + 2x$

(c)
$$f(x) = 2\ln(x)$$

 $f'(x) = 2 \times \frac{1}{x}$
 $f'(x) = \frac{2}{x}$

(d)
$$f(a) = 4a^2 + \ln(a)$$

 $f'(a) = 2 \times 4a^{(2-1)} + \frac{1}{a}$
 $f'(a) = 8a + \frac{1}{a}$