MATH1061/7861 (Ips.) Assignment 2 Solutions

1. Section 3.1 questions from textbook

7. The perfect square 25 can be written as the sum of the perfect squares 9 and
16. Hence there exists a perfect square that can be written as the sum of two other
perfect squares.

26. Vm,n € Z, if m is even and n is odd, then m + n is odd.
Proof: Suppose that m is an even integer and n is an odd integer. Then by the
definitions of even and odd we know that

m = 2r for some integer r and n = 2s+ 1 for some integer s.

Then
m+n=2r+2s+1=2(r+s)+1

Since r and s are integers, r + s is an integer, and so m +n = 2k + 1 for some integer
k. Hence m + n is odd.

41. The statement “If m and n are positive integers and mn is a perfect square, then
m and n are perfect squares” is false.

Let m = 2 and n = 8. Then mn = 16 is a perfect square, but 2 and 8 are not perfect
squares.

Section 3.2 questions from textbook.

15. Vr,s € R, if r and s are rational, then r — s is rational.
Proof: Suppose that r and s are rational numbers. Then, by the definition of rational,

we have c

r:%fora,bEZ,byéO and s:gforc,dEZ,d;éO.

Then
a ¢ ad-—bc

R A ¥
Since a,b,c,d € Z and b,d # 0, we know that ad — bc and bd are both integers, and

bd # 0. Thus r — s is a rational number.

Section 3.3 questions from textbook.

8. 4 is a factor of 6a - 10b, since

6a - 10b = 60ab = 4(15ab).



15. Va,b,c € Z,if a | b and a | ¢, then a | (b — ¢).
Proof: Let a, b, c be integers. Suppose that a | b and a | ¢. Then

b = ra for some integer r and c¢ = sa for some integer s.

Thus
b—c=ra—sa=(r—sa.

Since r and s are integers, 7 — s is also an integer, and so b — ¢ = ka for some integer
k. Thus a | (b— ¢).

22. The statement “Va,b,c € Z, if a is a factor of ¢, then ab is a factor of ¢” is false.
Let a =2, b = 3 and ¢ = 8. Then a is a factor of ¢, but ab is not a factor of ¢, since
2|8 but 6 /8.

31b. The unique factorization of 4851 is 32 - 72 - 11.

4851 =3-1617=3%-539=3%2.7-77=32-7?-11

Section 3.4 questions from textbook.
6. —37=9-(—5)+8,50¢=—5and r =8.
10b. 207 mod 4 = 3, since 207 =4 - 51 + 3.

23a. Vm,n € Z, m +n and m — n are either both odd or both even.
Proof: The four cases for the parity of two integers m and n are:

e both are even;
e both are odd;
e m is even and n is odd;

e m is odd and n is even.

Case 1 Suppose that m and n are both even. Then
m = 2r for some integer r and n = 2s for some integer s.

Then m+4+n=2r+2s=2(r+s) and m—n=2r—2s=2(r—s).

Since r and s are integers, r 4+ s and r — s are also integers, so m + n = 2a for some
integer @ and m —n = 2b for some integer b. Thus, in this case, m +n and m —n are
both even.

Case 2 Suppose that m and n are both odd. Then
m = 2r + 1 for some integer r and n = 2s+ 1 for some integer s.

Then m+n=02r+1)+2s+1)=2r+2s+2=2(r+s+1) and
m—n=02r+1)—2s+1)=2r —2s=2(r — s).
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Since r and s are integers, r + s+ 1 and r — s are also integers, so m + n = 2a for
some integer ¢ and m — n = 2b for some integer b. Thus, in this case, m + n and
m — n are both even.

Case 3 Suppose that m is even and n is odd. Then
m = 2r for some integer r and n = 2s+ 1 for some integer s.

Then m+n=02r)+2s+1)=2r+2s+1=2(r+s)+1 and
m—-n=2r)—2s+1)=2r—-2s—1=2r—-2s—-2+1=2(r—s—1)+1.

Since r and s are integers, r + s and r — s — 1 are also integers, som +n = 2a + 1
for some integer a and m — n = 2b + 1 for some integer b. Thus, in this case, m +n
and m — n are both odd.

Case 4 Suppose that m is odd and n is even. Then
m = 2r + 1 for some integer r and n = 2s for some integer s.

Then m+n=2r+1)+2s)=2r+2s+1=2(r+s)+1 and
m—n=2r+1)—(2s) =2r—2s+1=2(r —s) + 1.

Since r and s are integers, r + s and r — s are also integers, so m +n = 2a + 1 for
some integer a and m — n = 2b+ 1 for some integer b. Thus, in this case, m 4+ n and
m — n are both odd.

In each case, m +n and m — n are either both odd or both even.
Section 3.5 questions from textbook.

10a(ii). Let n = 2025. Then

2024 2024 2024
202 _ bt = (202 —2 = 251 .
(05-1-{ 1 J \‘1OOJ+{4OOJ> mod 7 = (20254+506—20+5) mod 7 = 2516 mod 7

2516 mod 7 = 3, so in the year 2025, January 1 will be a Wednesday.
13a. Vn,d € Z with d # 0, if d | n, then n = {%J -d.
Proof: Let n and d be integers with d # 0. Suppose that d | n. Then

n = d - k for some integer k.

Thus

HEE V;J ‘d=[k|-d=dk.

But dk = n, and hence n = [gJ - d.



Section 3.6 questions from textbook.

8. Vz,y € R if x +y < 50, then x < 25 or y < 25.
Proof: The contrapositive form of this statement is:
Ve,y € R, if £ > 25 and y > 25, then z + y > 25.
Suppose that r and y are real numbers and that x > 25 and y > 25. By adding
together two numbers that are each greater than 25, we have

z +1y > 50.

Thus if z > 25 and y > 25 then x + y > 50. By contraposition, we have shown that
if x 4y < 50, then either x < 25 or y < 25.

22. Va,b € Q with b # 0, if r is an irrational number, then a + br is an irrational
number.

Proof: Suppose not. That is, suppose that there exist rational numbers a and b with
b # 0 and an irrational number r such that a + br is rational.

Since a and b are rational numbers and b # 0, we know that

= Sandb="S

d f

Also, since a + br is rational, we know that

a for some integers ¢, d, e and f, where d,e, f # 0.

a+br = % for some integers g and h, where h # 0.

Thus
c e g
a7 T n
e _9_¢
f  h d
e gd — ch
—-r =
f hd
T = M
ehd

Now since ¢, d, e, f, g, h are all integers and d, e, f,h # 0, f(gd — ch) and ehd are also
integers, and ehd # 0. Thus r is a rational number, which contradicts our assumption.
Thus it is impossible for the negation of the statement to be true, so we conclude
that if @ and b are rational numbers, b # 0, and 7 is an irrational number, then a + br
is irrational.

2. A reason for why each proof is incorrect is given below, followed by a discussion
of whether the statement is true or false.

(a) This “proof” only shows that the statement is true for the integers 3, 4, 5, 6.
To show that this statement is true, we must show it is true for all possible sets
of four consecutive integers.



(b)

(c)

[Note that this statement is in fact true. Consider the four consecutive integers
z,x+1, 2+ 2, x+ 3. Then

z(z+1)(z +2)(x +3) = 2* + 62° + 112% + 62.

Also (2% + 3z +1)? = 2* + 623 + 1122 + 62 + 1. Therefore, the product of any
four consecutive integers is one less than a perfect square. ]

The “proof” shows that for all integers a, b, ¢, if a | b, then a | bc, which is not
what was asked for. The statement has p — ¢ and the “proof” does ¢ — p.
[Note that this statement is in fact false. Consider the integers a = 15, b = 3,
¢ =10. Then a | be since 15 | 30, but a f b since 15 }3.]
This “proof” is wrong since it starts off by assuming that m — n is even (which
is what we are asked to prove).
[Note that this statement is in fact true. A correct proof is as follows. Suppose
that m and n are odd integers. Since m and n are both odd, we have

m = 2s + 1 for some integer s, and n = 2t + 1 for some integer .
Thus

m—n=2s+1)—(2t+1)=2s—2t =2(s — t).

Since s and t are integers, s — t is an integer, thus m — n = 2k for some integer
k. Hence the difference of any two odd integers is even.|

3. Use the Euclidean Algorithm to calculate the greatest common divisor of each of
the following pairs of numbers.

(a) We apply the Euclidean algorithm to 63 and 49.

63 = 49-1+14
49 = 14-3+7
14 = 7-240

Hence gcd(63,49) = 7.

(b) We apply the Euclidean algorithm to 238 and 14.

238 = 14-1740

Since 14 | 238, we have gcd(238,14) = 14.

(c) We apply the Euclidean algorithm to 1550 and 250.

1550 = 250-6 4 50
250 = 50-5+0

Hence ged (1550, 250) = 50.



4. A solution to the linear Diophantine equation 1550c 4+ 250d = 46500 will only
exist if ged(1550,250) | 46500. Since 50 | 46500, a solution exists. We use part (c)
from the previous question to get 50 = 1550 - 1+ 250 - (—6). Then multiply both sides
of the equation by 46500 < 50 = 930 to get

46500 = 1550 - 930 + 250 - (—5580).

Hence ¢ = 930, d = —5580 is a solution to the linear Diophantine equation
1550¢ + 250d = 46500.

5. A point with integer co-ordinates that lies on the line 63z 4+ 47y = 4 is a solution
to the linear Diophantine equation 63z + 47y = 4. Such a solution only exists if
ged(63,49) | 4. Since 7 ) 4, a solution does not exist. Therefore there is no point
with integer co-ordinates that lies on the line 63x + 49y = 4.

6. (Bonus Question)

A solution to the linear Diophantine equation 1550c¢ + 250d = 46500 in which both
c and d are positive, will give values for the numbers of computers (c) and desks (d)
the company could buy to spend exactly $46500.00. From question 4 we know that
one solution to this linear Diophantine equation is ¢ = 930 and d = —5580. We apply
Theorem 3.10.1 with

co = 930, dy = —5530,a = 1550, b = 250, ged(a, b) = 50,

to get the general solution for ¢ and d. Hence

250 1550

c=930+ —t=930+5t and d = —5580—- ——t = —5580 — 31t
50 50

where ¢ € Z is the general solution to the linear Diophantine equation. To ensure

that ¢ > 0 and d > 0 we need a value of ¢ for which
930 +5t >0 and — 5580 — 31t > 0.

The inequality 930+ 5t > 0 gives t > —186, and the inequality —5580 — 31¢ > 0 gives
t < —180. Thus positive solutions for ¢ and d occur when ¢ € {—181, —182, —183, —184, —185}.
The possible values for x and y are given in the following table.

t|—181 —182 -183 -184 —185
c|l 25 20 15 10 5
d| 31 62 93 124 155

In order to have a balance of desks and computers, the company should buy 25
computers and 31 desks.



