1. Section 4.1 questions from textbook

21.

$$\sum_{m=0}^{4} \frac{1}{2^m} = \frac{1}{2^0} + \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4}$$

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}$$

$$= \frac{16}{16} + \frac{8}{16} + \frac{4}{16} + \frac{2}{16} + \frac{1}{16}$$

$$= \frac{31}{16}.$$

30.
$$(1^3 - 1) + (2^3 - 1) + (3^3 - 1) + (4^3 - 1) = \sum_{i=1}^{4} (i^3 - 1).$$

34.
$$(1-r)\cdot(1-r^2)\cdot(1-r^3)\cdot(1-r^4)=\prod_{i=1}^4(1-r^i).$$

49.
$$\frac{5!}{7!} = \frac{5!}{7 \cdot 6 \cdot 5!} = \frac{1}{7 \cdot 6} = \frac{1}{42}$$
.

Section 4.2 questions from textbook.

15. Proof Let P(n) be the statement

$$\left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdot \ldots \cdot \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n},$$

or equivalently

$$\prod_{i=2}^{n} \left(1 - \frac{1}{i^2} \right) = \frac{n+1}{2n}.$$

Then P(2) is the statement $\left(1 - \frac{1}{2^2}\right) = \frac{2+1}{2 \cdot 2}$.

$$P(k)$$
 is the statement $\prod_{i=2}^{k} \left(1 - \frac{1}{i^2}\right) = \frac{k+1}{2k}$.

$$P(k+1)$$
 is the statement $\prod_{i=2}^{k+1} \left(1 - \frac{1}{i^2}\right) = \frac{k+2}{2(k+1)}$.

Now
$$P(2)$$
 is true since $\left(1 - \frac{1}{2^2}\right) = \frac{3}{4}$ and $\frac{2+1}{2 \cdot 2} = \frac{3}{4}$.

Assume that P(k) is true and use that to show that P(k+1) is true.

L.H.S. of
$$P(k+1) = \prod_{i=2}^{k+1} \left(1 - \frac{1}{i^2}\right)$$

$$= \left[\prod_{i=2}^k \left(1 - \frac{1}{i^2}\right)\right] \cdot \left(1 - \frac{1}{(k+1)^2}\right)$$

$$= \left(\frac{k+1}{2k}\right) \cdot \left(1 - \frac{1}{(k+1)^2}\right) \text{ (since we assumed } P(k) \text{ is true)}$$

$$= \left(\frac{k+1}{2k}\right) \cdot \left(\frac{k(k+2)}{(k+1)^2}\right) \text{ (by the hint on the assignment sheet)}$$

$$= \frac{(k+1)k(k+2)}{2k(k+1)^2}$$

$$= \frac{k(k+2)}{2k(k+1)}$$

$$= \frac{k+2}{2(k+1)}$$

$$= \text{R.H.S of } P(k+1).$$

Thus by mathematical induction, for all integers $n \geq 2$,

$$\left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdot \ldots \cdot \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}.$$

Section 4.3 questions from textbook.

20b. Proof Let P(n) be the statement $n! > n^2$.

Then P(4) is the statement $4! > 4^2$.

P(k) is the statement $k! > k^2$.

P(k+1) is the statement $(k+1)! > (k+1)^2$.

P(4) is true since 4! = 24 and $4^2 = 16$ and 24 > 16.

Assume that P(k) is true and use that to show that P(k+1) is true.

L.H.S. of
$$P(k+1) = (k+1)!$$

= $(k+1)k!$
> $(k+1)k^2$ (since we assumed $P(k)$ is true)
> $(k+1)(k+1)$ (since $k^2 > k+1$ for $k \ge 4$)
= $(k+1)^2$
= R.H.S. of $P(k+1)$.

Thus, by mathematical induction, for all integers $n \ge 4$, $n! > n^2$.

24. Proof Let P(n) be the statement $d_n = \frac{2}{n!}$.

Then P(1) is the statement $d_1 = \frac{2}{1!}$.

P(k) is the statement $d_k = \frac{2}{k!}$.

P(k+1) is the statement $d_{k+1} = \frac{2}{(k+1)!}$.

P(1) is true since the value of $d_1 = 2$ was given in the question.

Assume that P(k) is true and use that to show that P(k+1) is true.

L.H.S of
$$P(k+1) = d_{k+1}$$

$$= \frac{d_k}{k+1} \quad \text{(by the formula given in the question)}$$

$$= d_k \cdot \frac{1}{k+1}$$

$$= \frac{2}{k!} \cdot \frac{1}{k+1} \quad \text{(since we assumed } P(k) \text{ is true)}$$

$$= \frac{2}{k!(k+1)}$$

$$= \frac{2}{(k+1)!}$$

$$= \text{R.H.S of } P(k+1)$$

Thus, by mathematical induction, for all integers $n \ge 1$, $d_n = \frac{2}{n!}$.

2. (a) The first person has to shake hands with (n-1) people, the second person has to shake hands with (n-2) people (since they already shook hands with the first person), the third person has to shake hands with (n-3) people, the fourth person has to shake hands with (n-4) people, etc.., until the (n-1)th person only has to shake hands with the nth person. Thus the total number of handshakes is

$$(n-1) + (n-2) + (n-3) + \dots + 3 + 2 + 1.$$

(b) In summation notation

$$1+2+3+\ldots+(n-3)+(n-2)+(n-1)=\sum_{i=1}^{n-1}i.$$

(c) **Proof** Let P(n) be the statement $\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$.

Then P(2) is the statement $\sum_{i=1}^{1} i = \frac{2 \cdot 1}{2}$.

P(k) is the statement $\sum_{i=1}^{k-1} i = \frac{k(k-1)}{2}$.

P(k+1) is the statement $\sum_{i=1}^{k} i = \frac{(k+1)k}{2}$.

P(2) is true since $\sum_{i=1}^{1} i = 1$ and $\frac{2 \cdot 1}{2} = 1$.

Assume that P(k) is true and show that P(k+1) is true.

L.H.S. of
$$P(k+1)$$
 = $\sum_{i=1}^{k} i$
= $\sum_{i=1}^{k-1} i + k$
= $\frac{k(k-1)}{2} + k$ (since we assumed $P(k)$ is true)
= $\frac{k^2 - k}{2} + \frac{2k}{2}$
= $\frac{k^2 + k}{2}$
= $\frac{(k+1)k}{2}$
= R.H.S. of $P(k+1)$

Thus, by mathematical induction, for all integers $n \geq 2$,

$$\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}.$$

(d) If each pair of teams played exactly once, then there would be

$$1+2+3+\ldots+(n-2)+(n-1)=\frac{n(n-1)}{2}$$
 games,

but each pair of teams plays exactly twice so there are $2 \cdot \frac{n(n-1)}{2} = n(n-1)$ games. With 14 teams, there would be $14 \cdot 13 = 182$ games played in a complete season.

3. Section 5.1 questions from textbook.

6c. No, $\{2\}$ is not an element of $\{1, 2\}$.

6d. Yes, $\{3\}$ is an element of $\{1, \{2\}, \{3\}\}$.

9a. $A \cup B = \{x \in \mathbb{R} \mid -2 \le x < 3\}.$

9b. $A \cap B = \{x \in \mathbb{R} \mid -1 < x \le 1\}.$

13c. Yes, $T \subseteq S$. Every integer that is divisible by 6 is also divisible by 3.

15d, 15e. The shaded areas corresponds to $A - (B \cup C)$ and $(A \cup B)^c$.

Section 5.3 questions from textbook.

38. Every integer is a member of exactly one of the sets A_0 , A_1 , A_2 or A_3 , and the four sets are mutually disjoint. If we apply the quotient-remainder theorem to an arbitrary integer n with d=4, then the possible remainders are zero (so n would be in the set A_0), one (so n would be in the set A_1), two (so n would be in the set A_2), or three (so n would be in the set A_3). Hence these four sets form a partition of the integers.

41b. The set $X \times Y = \{(a, x), (b, x), (a, y), (b, y)\}$. Since $X \times Y$ has 4 elements, the power set of $X \times Y$ will have $2^4 = 16$ elements. The set $\mathcal{P}(X \times Y)$ is

```
 \{ \emptyset, \\ \{(a,x)\}, \{(b,x)\}, \{(a,y)\}, \{(b,y)\}, \\ \{(a,x), (b,x)\}, \{(a,x), (a,y)\}, \{(a,x), (b,y)\}, \{(b,x), (a,y)\}, \{(b,x), (b,y)\}, \{(a,y), (b,y)\}, \\ \{(a,x), (b,x), (a,y)\}, \{(a,x), (b,x), (b,y)\}, \{(a,x), (a,y), (b,y)\}, \{(b,x), (a,y), (b,y)\}, \\ \{(a,x), (b,x), (a,y), (b,y)\} \}
```

4. Let A(x) represent the statement $x \in A$ and B(x) represent the statement $x \in B$. Then the statement we are asked to prove is

$$\forall x \in \text{a universal set}, (A(x) \to B(x)) \to ((A(x) \land B(x)) \to B(x)).$$

Thus we use a truth table to investigate the statement form

$$(a \to b) \to ((a \land b) \to b).$$

a	b	$a \rightarrow b$	$a \wedge b$	$(a \wedge b) \to b$	$(a \to b) \to ((a \land b) \to b)$
Т	Τ	Т	Τ	Τ	T
Τ	\mathbf{F}	F	F	${ m T}$	T
\mathbf{F}	\mathbf{T}	Т	F	${ m T}$	T
\mathbf{F}	F	Т	F	Τ	T

Since this statement form is a tautology, the property

if
$$A \subseteq B$$
, then $(A \cap B) \subseteq B$ is true.

5. The following three Venn diagrams show (A-B), (C-B) and $(A-B)\cap (C-B)$.

The following two Venn diagrams show $(A \cap C)$ and $(A \cap C) - B$.

The Venn diagrams illustrate the fact that

$$(A-B)\cap (C-B)=(A\cap C)-B.$$

- **6.** Here $A = \{\emptyset\}$ and $B = \{A\} = \{\{\emptyset\}\}.$
 - The empty set is a member of A.
 - The empty set is not a member of B.
 - \bullet The empty set is a subset of A. (The empty set is a subset of every set.)
 - The empty set is a subset of B.
 - A is a not a subset of B.
 - A is a member of B.