MATH1061 — DISCRETE MATHEMATICS

First Semester Examination, June 2001 (continued) MATH1061 — DISCRETE MATHEMATICS

11. (6 marks) Use Mathematical Induction to prove that, for all integers $n \ge 4$,

 $3n+1<2^{n}$.

First Semester Examination, June 2001 (continued)

12. (9 marks)

Binary relations α and β are defined on the set \mathbb{Z}^+ of positive integers by:

 $m \alpha n$ if and only if m + n is even;

 $m \beta n$ if and only if $m \mid n$, that is, m divides n.

properties these relations on \mathbf{Z}^+ have. Insert ticks (for yes) or crosses (for no) into the following table, to show which

	Ω	β
Reflexive		
Symmetric		
Antisymmetric		
Transitive	*	
1 - 1		
Equivalence relation		

Explain your answer to the box marked *.

State which one, and give its equivalence classes. Precisely ONE of these relations is an equivalence relation.

Question 13 see next page.