2. (a) (4 marks) Determine whether the following argument is valid. Please show

s denote "today is Sunday" your working, and let e denote "I do have an exam" ℓ denote "I am lucky".

If today is Sunday, then I do not have an exam. $S \rightarrow \sim c$ If I do not have an exam, then I am lucky $\sim c \rightarrow \chi$ I am lucky and today is not Sunday. $1 \rightarrow c \rightarrow \chi$ Therefore I do have an exam.

Assume the argument is invalid (so T->F). Assument: [(s-> ~e) / (re-> L) / (l / ~s)] -> e Then e is False, & is True and s is False

So since is true, neal is True, line is True

The argument is Invalid (insert either valid or invalid).

(b) (3 marks) Give the negation of

 $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})$ such that xy > 0.

Is the original statement true or false? (Write true or false in the box.)

The original statement is

First Semester Examination, June 2001 (continued) MATH1061 — DISCRETE MATHEMATICS

3. (9 marks) Let $T = \{\emptyset\}$, $Q = \{T\}$, $R = \{T,\emptyset\}$, $S = \{T,Q,R\}$. (Here \emptyset denotes the empty set and $\mathcal{P}(X)$ denotes the power set of X.)

(a) True or false? (Write true or false in the boxes.)

 $Q \subseteq R$

True

 $R \subseteq S$ False

 Ξ

- (iii) ∅ ∈ T
- (iv) 0 ⊆ T

(b) Write the following sets in the boxes provided, and remember your braces

(vii) $T \times Q = \left\{ (\not Q, T) \right\}$	$T \times Q =$	(vii)
{ Ø, T, Q, R }	(vi) S U R =	(v <u>i</u>)
20	(v) $ \mathcal{P}(Q) =$	(v)
{ E \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(iv) $\mathcal{P}(T) =$	(iv)
{} (or you could say T-R=\$)	(iii) T – R =	(iii)
{\phi}	(ii) T∩R=	(E)
{ p, T }	(i) T∪Q=	Ξ

Question 4 see next page.