First Semester Examination, June 2001 (continued) MATH1061 — DISCRETE MATHEMATICS

13. (8 marks)

(a) What is the minimum number of people in a group, to guarantee that at least 3 people in the group all have their birthday falling in the same month?

that at least 3 people have their bookdays in 3 in one work. the same most is to have 2 in each month and There are 12 months. The way to guarantee

So we need 25 people.

(b) Let the binary relation τ on $S = \{2, 3, 4, 6, 8\}$ be given by $a \tau b$ if and only if $a \mid b$.

• List the ordered pairs in the relation τ .

$$T = \{(2,4), (2,6), (2,8), (3,6), (4,8), (2,2), (3,6), (4,4), (6,6), (8,8)\}$$

ullet Draw the directed graph which corresponds to the relation au.

• Is τ a partial order relation on S? (Explain briefly.)

It is reflexive, antisymmetric and transitive. Tis a partial order relation

• Is τ a total order relation on S? (Explain briefly.)

(2,3) & J and (3,2) & J. \$2 and 3 are not related in any way.

Question 14 see next page

TURN OVER

MATH1061 — DISCRETE MATHEMATICS

First Semester Examination, June 2001 (continued)

14. (10 marks)

(a) Let the binary operation \bullet on the integers $\mathbb Z$ be defined by $a \bullet b = a + b + 2ab$. Is • commutative? (Explain.) Yes.

a · b = a + b + 2ab and b · a = b + a + 2ab 50 a.b.b.a.

Is • associative? (Explain.) Yes

a. (b.c) = a+b+c+2bc+2a(b+c+2bc) >equal (a · b) · c = a + b + 2 a b + c + 2 (a + b + 2 a b) c = a+b+c+2bc+2ab+2ac+4abc
Is there an identity in Z for •? (Explain.) = a+b+c+2ab+2ac+2bc+4abc

Yes. Ois the identity since

and 0. a = a. 0. a · O = a + O + 2(a)(0) = a + 0 + 0 = a

Are there inverses in Z for ullet? (Explain.) $\mathcal{N}_{\mathcal{O}}$.

a . a . . o

a-1+2aa-1=-a

1+20

Solving a a a - 1 = 0 for a - 1 gives ate -a which is not always an 1+20 integer. a+a-1+2aa-1=0

(b) Consider the systems (\mathbf{Z}, \times) , $(\mathbf{Q} - \{0\}, \times)$, (\mathbf{Z}_p, \oplus) , $(\mathbf{Z}_p - \{0\}, \otimes)$, where p is any integer and \times denotes multiplication, \oplus denotes addition modulo p and \otimes group. yes) and crosses (for no) to indicate whether the given system is an abelian denotes multiplication modulo p. Complete the following table with ticks (for 2.1.0