Informatics olympiads:

Approaching mathematics through code

Benjamin A. Burton

Author’s self-archived version
Available from http://www.maths.uq.edu.au/ bab/papers/

Many readers are familiar with the International Mathematical Olympiad (IMO), a
pinnacle in the yearly calendar of mathematics competitions. Here we introduce its cousin
in computer science, the International Olympiad in Informatics (IO1).

The International Olympiad in Informatics is one of the newer Science Olympiads,
beginning in 1989 in Bulgaria under the leadership of Petar Kenderov. In its short lifespan
it has also become one of the largest, with 74 countries participating in 2006 [16]. Like
the IMO, the competition is targeted at secondary school students who compete on an
individual basis.

In this paper we take the reader on a brief tour of the I0I, paying particular attention
to its relationships with traditional mathematics competitions. We begin in Section 1
with the structure of a typical IOI problem, including an outline of the mathematical
ideas that lie behind such problems. For illustration, two problems are worked through in
detail in Section 2. In Section 3 we compare the different ways in which mathematics and
informatics contests encourage students to think mathematically. Section 4 closes with
suggestions for students and teachers who wish to become involved in the IOI.

It should be noted that the IOI is not the only international competition of this type.
Other examples include the ACM International Collegiate Programming Contest for uni-
versity students [1], and the privately-run TopCoder contests [14]. For an overview and
comparison of these and related competitions, see [7].

Thanks must go to Margot Phillipps, the IOI team leader for New Zealand, for her
valuable comments on an earlier draft of this paper.

1 Structure of an I0I Problem

A typical informatics olympiad task requires competitors to create an algorithm that can
solve some given problem. For instance, they might need an algorithm to calculate the
nth Fibonacci number, or to compute the area of the intersection of two polygons. Any
algorithm will not do, however; this algorithm must be both correct and efficient.

The concepts that lie beneath informatics problems are often mathematical in nature,
and for harder problems students need a sound mathematical mindset to succeed. How-
ever, unlike a typical mathematics contest, students do not communicate their solutions by
writing proofs—instead they communicate their solutions by writing computer programs.

*This paper is based on a presentation by the author at the WENMC Congress, 2006.

In a similar vein, solutions are marked by computer. The contest judges prepare an
official data set, consisting of several input scenarios that the students’ programs must
handle. Students receive marks according to whether their programs answer these scenar-
ios correctly and within a given time limit (thereby testing correctness and efficiency).

The official data set essentially takes the place of a traditional marking scheme, and so
the judges must take great care to construct it well. It typically consists a range of cases
from easy to hard, including both small and large input scenarios to test for efficiency,
and both “ordinary” and pathological input scenarios to test for correctness.

A typical problem statement has the following components:

e The task overview. This explains precisely what task the students’ algorithms must
solve, and often wraps it in a real-world (or fantasy) story, or flavourtext.

o The input and output formats. These explain the precise formats of the text files
that students’ programs must read and write. Each scenario from the official data
set is presented to the program in the form of a given input file, which the program
must read. Likewise, each program must write its corresponding solution to a given
output file, which is given back to the judging system for marking.

o Limits on time, memory and input data. These allow algorithms to be tested for
efficiency. Each program is given a small amount of time in which it must run (the
time limit, typically no more than a few seconds) and a maximum amount of memory
that it may use (the memory limit). Competitors are also given upper and lower
bounds for the input data (which the scenarios in the official data set promise not
to exceed), so they can estimate whether their programs are likely to run within the
time and memory limits even for the most difficult scenarios.

e Sample input and output files. These sample files illustrate some simple input scenar-
ios and their solutions. The problem statement should be perfectly understandable
without them; they are merely given as examples so that students can be sure that
they understand both the task and the input/output formats correctly.

Figure 1 shows a problem statement that, whilst simple, illustrates each of the com-
ponents listed above. A sample solution using the Pascal programming language is given
in Figure 2 (though this solution is not optimal, as seen in the following section).

1.1 Correctness and Efficiency

As discussed earlier, algorithms for informatics olympiad problems must be both correct
and efficient. This means that students must think about not only the theoretical concerns
of obtaining the correct answer, but also the practical concerns of doing this without
placing an excessive burden upon the computer.

For example, consider again the solution to Pascal’s Triangle presented in Figure 2.
Whilst it certainly gives correct answers, it is not efficient—in the worst case the recursive
routine pascal(i,j) may call itself on the order of 2" times as it works its way from the
bottom of the triangle to the top. For the maximal case » = 60 this cannot possibly run
within the 1 second that the program is allocated. A simple but inefficient solution such as
this might score ~ 30% in a real competition (that is, approximately 30% of the scenarios
in the official data set would be small enough for this program to run in under 1 second).

Pascal’s Triangle

Pascal’s triangle is a triangular grid of numbers whose rows are numbered 0,1,2...
and whose columns are also numbered 0,1, 2,.... Each number in the triangle is the
sum of (i) the number immediately above it, and (ii) the number immediately above
it and to the left. The numbers along the boundary all have the value 1. The top
portion of the triangle is illustrated below.

Row 0
Row 1
Row 2
Row 3
Row 4

A A
(U
FNQICI R
o W o
NN

—_

Your task is to write a computer program that can calculate the number in row r and
column c of Pascal’s triangle for given integers r and c.

Input: Your program must read its input from the file pascal.in. This file will
consist of only one line, which will contain the integers r and ¢ separated by a single
space.

Output: Your program must write its output to the file pascal.out. This file must
consist of only one line, which must contain the number in row r, column ¢ of Pascal’s
triangle.

Limits: Your program must run within 1 second, and it may use at most 16 Mb of
memory. It is guaranteed that the input integers will be in the range 0 < ¢ < r < 60.

Sample Input and Output: The sample input file below asks for the number in
row 4, column 2 of the triangle. The corresponding output file shows that this number
is 6 (as seen in the triangle above).

pascal.in: pascal.out:

4 2 6

Figure 1: A simple problem that illustrates the various components

The solution can be improved by keeping a lookup table of intermediate values in
different positions within the triangle. That is, each time pascal(i,j) finishes comput-
ing the value in some position within the triangle, it stores this value in a large table.
Conversely, each time pascal(i, j) is called, the program looks in the table to see if the
value in this position has already been calculated; if so, it avoids the recursive descent and
simply pulls the answer from the table instead.

In this way we reduce the number of recursive calls to pascal(i,j) from the order
of 2" to the order of 72 instead, since there are < r? distinct positions in the triangle
that need to be examined en route from bottom to top. Using this lookup table we can
therefore reduce an exponential running time to a (much better) quadratic running time.
For the worst case r = 60 we are left with < 3600 function calls which are easily done
within 1 second on a modern computer. A solution of this type should score 100%.

program Triangle;

var
r, ¢ : longint;

function pascal(i, j : longint) : longint;
begin
{ Compute the value in row i, column j of the triangle. }
if (j =0)or (i =j) then
{ We are on the boundary of the triangle. }
pascal =1
else
{ We are in the interior; apply the recursive formula. }
pascal := pascal(i — 1, j — 1) + pascal(i — 1, j);
end;

begin
assign (input, ’pascal.in’);
reset(input);
assign (output, ’pascal.out’);
rewrite(output);

readln(r, c¢);
writeln(pascal(r, ¢));

close (input);
close (output);
end.

Figure 2: A correct but inefficient solution to Pascal’s Triangle

1.2 Mathematical Foundations

In one sense the 101 is a computer programming competition, since students are required to
write a computer program to solve each task. There are no handwritten or plain-language
solutions; the computer programs are the only things that are marked.

In another sense however, the IOl is a mathematics competition. The tasks are al-
gorithmic in nature—the difficulty is not merely in the programming, but in devising a
mathematical algorithm to solve the task. The computer program then serves as a means
of expressing this algorithm, much as a written proof is the means of expressing a solution
in a traditional mathematics contest.

Looking through recent 101s, the following mathematical themes all make an appear-
ance in either the problems or their solutions:

e (Case analysis and simplification e Constructive proofs
e Combinatorics e Cryptanalysis
e Complexity theory e Difference sequences

e Induction and invariants e Graph theory
e Game theory e Optimisation

o Geometry e Recurrence relations

This list is of course not exhaustive. Although the IOI does not have an official syllabus
as such, moves are being made in this direction; see [17] for a recent proposal by Verhoeff
et al. that to a large degree reflects current practice.

2 More Interesting Problems

Whilst the example problem given in Section 1 is illustrative, it is not overly difficult. It
is certainly useful at the junior level for highlighting the benefits of lookup tables, but the
mathematics behind it is relatively simple.

It is often the case that more interesting mathematical ideas do not surface in informat-
ics olympiad problems until the senior level. This is partly because (at least in Australia)
algorithm design is rarely taught at secondary schools, and so challenging algorithmic
problems must wait until students have had a little training.

In this section we turn our attention to senior level problems with more interesting
mathematics behind them. Two of the author’s favourite problems are discussed in some
detail in their own sections below. For other examples of real olympiad problems, see [16]
for an archive of past IOI problems, or see [9] for a thorough discussion of one particular
IOI problem including an analysis of several potential solutions.

2.1 Polygon Game

This problem is not from an IOI per se; instead it is from the 2002 Australian team selection
exam. It is included here because of its relation to the Catalan numbers, a combinatorial
sequence with which some mathematics olympiad students might be familiar.

The problem itself is outlined in Figure 3. Essentially students are given a polygon to
triangulate; each triangulation is given a “score”, and students’ programs must determine
the largest score possible. Given the bound n < 120 and the time limit of 1 second (and
the speeds of computers back in 2002), an efficient algorithm should run in the order of
n? operations or faster.

Brute Force Solution

A simple “brute force” solution might be to run through all possible sequences of valid
moves. This does guarantee the correct answer, but it certainly does not run within the
order of n? operations—instead the running time is exponential in n (with some arithmetic
it can be shown that 4™ is a reasonable approximation).

Indeed, even if we note that the order of moves does not matter, the worst case n = 120
still leaves us with ~ 5x 1057 possible sequences to consider.! Assuming a modern machine
and extremely fast code, this is unlikely to finish in 10°0 years, let alone the 1 second that

!The number of ways in which an n-gon can be triangulated is the Catalan number C,,_» = (2::24) /(n—

1). Using the approximation Cj ~ 4k/k3/2ﬁ, this gives Ci1g ~ 4.86 x 107 for the case n = 120. See [15]
for details.

Polygon Game
(B. Burton, G. Bailey)

You are given a regular polygon with n vertices, with a number written beside each
vertex. A mowve involves drawing a line between two vertices; these lines must run
through the interior of the polygon, and they must not cross or coincide with any other
lines. The score for each move is the product of the numbers at the two corresponding
vertices.

It is always true that after making precisely n — 3 moves you will be left with a set of
triangles (whereupon no more moves will be possible). What is the highest possible
score that can be achieved through a sequence of valid moves?

3 7 3 7

4 1 4 1

As an example, consider the polygon illustrated in the first diagram above. Suppose
we join the leftmost and rightmost vertices, the leftmost and top right vertices, and
the rightmost and bottom left vertices, as illustrated in the second diagram. This
gives a total score of 8 x 6 +8 x 7+ 4 x 6 = 128, which in fact is the highest possible.

Input: The input file polygon.in will consist of two lines. The first line will contain
the integer n, and the second line will list the numbers at the vertices in clockwise
order around the polygon.

Output: The output file polygon.out must consist of one line giving the highest
possible score.

Limits: Your program must run within 1 second, and it may use at most 16 Mb of
memory. It is guaranteed that each input file will satisfy 3 < n < 120.

Sample Input and Output: The following input and output files describe the
example discussed earlier.

polygon.in: polygon.out:
6 128
3761438

Figure 3: The problem Polygon Game from the 2002 Australian team selection exam

the program is allowed. Thus the brute force solution is correct but incredibly inefficient,
and would probably score 5-10% in a real competition.

Greedy Solution

For a faster strategy we might use a “greedy” solution that simply chooses the best avail-
able move at each stage. That is, the program looks at all lines that can be legally drawn
and chooses the line with the greatest score (and then repeats this procedure until no
more lines can be drawn).

This is certainly more efficient than brute force. For each move there are roughly n?
possible lines to consider (more precisely n(n — 1)/2), and this procedure is repeated for
roughly n moves (more precisely n — 3). Thus the entire algorithm runs in the order of n3
operations, and is thereby fast enough for our input bounds and our time limit.

However, is this algorithm correct? Certainly it works in the example from Figure 3.
The best line that can be drawn inside an empty polygon has score 8 x 7, and the second
best has score 8 x 6. The third best has score 7 x 4, but we cannot draw it because it
would intersect with the earlier 8 x 6; instead we use the fourth best line, which has score
6 x 4. At this point no more lines can be drawn, and we are left with a total score of 128
as illustrated in the problem statement.

Nevertheless, a cautious student might worry about whether choosing a good move
early on might force the program to make a very bad move later on. Such caution is well-
founded; consider the polygon illustrated in Figure 4. The greedy solution would choose
the 5 x 5 line (which is the best possible), and would then be forced to choose a 5 x 1
line for its second move, giving a total score of 25 + 5 = 30 as illustrated in the leftmost
diagram of Figure 4. However, by choosing a smaller 20 x 1 line for the first move, we open
the way for another 20 x 1 line for the second move, giving a greater score of 20 + 20 = 40
as shown in the rightmost diagram.

20 20

1 1 1 1

Figure 4: A case that breaks the greedy solution

This greedy solution was in fact submitted by a large number of students in the 2002
Australian team selection exam, where this problem originally appeared. It is a significant
task when teaching informatics olympiad students to help them understand the difference
between solutions that “feel good” (such as the greedy solution) and solutions that can
be proven correct (such as the solution we are about to see). In an informatics olympiad
where written proofs are not required, students need a healthy sense of self-discipline to
spend time with pen and paper verifying that their algorithms are correct.

Correct Solution

It seems then that what we need is an algorithm that tries all possibilities—either directly
or indirectly—but that somehow manages to identify common tasks and reuse their so-
lutions in a way that reduces the running time from the exponential 4" to the far more

desirable n3.

This is indeed possible, using a technique known as dynamic programming. Dynamic
programming is the art of combining generalisation, recurrence relations and lookup tables
in a way that significantly improves running time without any loss of thoroughness or
rigour. We outline the procedure for Polygon Game below.

(i) Generalisation: Instead of solving a single problem (find the maximum score for the
given polygon), we define an entire family of related “subproblems”. Each subprob-
lem is similar to the original, except that it involves only a portion of the original
polygon. These subproblems become our common tasks that can be reused as sug-
gested earlier.

Suppose the vertices of the given polygon are vi,vs,...,v,. For any i < 5 we define
the subproblem P; ; as follows:

Consider the polygon with vertices v;,viy1,...,vj-1,v;, as illustrated in
Figure 5. Find the largest possible score that can be obtained by drawing
lines inside this polygon (including the score for the boundary line v;v;).

Vi+1

Figure 5: The polygon used in the subproblem P; ;

In the cases where i and j are very close (j =i+ 1 or j = i + 2), the subproblem
P; ; becomes trivial since no lines can be drawn at all. On the other hand, where ¢
and j are very far apart (i = 1 and j = n) we are looking at the entire polygon, and
so Py, is in fact the original problem that we are trying to solve.

Note that the boundary line v;0; causes some sticky issues; in most cases it receives
a score, but in extreme cases (such as j = i + 1) it does not. We blissfully ignore
these issues here, but a full solution must take them into account.

(ii) Recurrence relations: Now that we have our family of subproblems, we must find a
way of linking these subproblems together. Our overall plan is to solve the smallest
subproblems first, then use these solutions to solve slightly larger subproblems, and
so on until we have solved the original problem P .

Figure 6: Splitting P; ; into smaller subproblems

The way in which we do this is as follows. Consider the polygon for subproblem
P; ;. In the final solution, the line v;u; must belong to some triangle. Suppose this

triangle is Av;viv;, as illustrated in Figure 6. Then the score obtained from polygon
v; ... v; is the score for line ;w5 plus the best possible scores for polygons v; ... vy
and vy, ...v;. Running through all possibilities for vertex vy, we obtain:

Solution(F; j) = Score(v;v5) + max {Solution(P; 1) + Solution(FPy)} .
1<Kk<]J

Students familiar with the Catalan numbers might recognise this recurrence relation,
or at least the way in which it is obtained. The Catalan numbers arise from counting
triangulations of polygons (rather than maximising their scores). The recurrence
relation that links them is based upon the same construction of Figure 6, and so
takes a similar form (the max becomes a sum, additions become multiplications, and
the subproblem P;; becomes the Catalan number C;_;_1). The Catalan numbers
are a wonderful sequence for exploring combinatorics and recurrence relations, and
interested readers are referred to [15] for details.

(iii) Lookup tables: Now that we have a recurrence relation, our overall plan is straightfor-
ward. We begin by solving the simplest P; ; in which ¢ and j are very close together
(j =i+1 and j =i+ 2, where no lines can be drawn at all). From here we calculate
solutions to P;; with ¢ and j gradually moving further apart (these are solved us-
ing our recurrence relation, which requires the solutions to our earlier subproblems).
Eventually we expand all the way out to Py, and we have our final answer.

At first glance it appears that this algorithm could be very slow, since the recurrence
relation involves up to (n — 2) calculations inside the max{...} term, each involving
its own smaller subproblems. However, we avoid the slow running time by storing
the answers to each subproblem F;; in a lookup table, similar to what we did for
Pascal’s Triangle in Section 1.

There are roughly n? subproblems in all (more precisely n(n — 1)/2). For each
recurrence we simply look up the answers to the earlier subproblems in our table,
which means that each new subproblem requires at most n additional steps to solve.
The overall running time is therefore order of n? x n = n?, and at last we have our
correct and efficient solution.

2.2 Utopia Divided

Our final problem is from I0I 2002, and indeed was one of the most difficult problems of
that year’s olympiad. Summarised in Figure 7, this is a fascinating problem that could
just as easily appear in a mathematics olympiad as an informatics olympiad. We do not
present the solution here; instead the reader is referred to [10] for the details. We do
however present an outline of the major steps and the skills required.

1. Simplifying the problem: The first crucial step is to simplify the problem to a single
dimension. In this case the input becomes a sequence of n distinct positive integers
(not 2n integers) and a sequence of n plus or minus signs (not n quadrants). Your
task now is to rearrange and/or negate the n integers to create a one-dimensional
path along the number line; this path must begin at 0 and travel back and forth
between the 4+ and — sides of the number line in the given order.

For example, suppose the integers were 6,8,10,11 and the signs were +, —, —, +. A
solution might be to use steps 8, —10, —6 and 11 in order; here the path begins at

Utopia Divided
(S. Melnik, J. Park, C. Park, K. Song, I. Munro)

Consider the (z,y) coordinate plane, and number the four quadrants 14 as illustrated
in the leftmost diagram below. You are given a sequence of 2n distinct positive
integers, followed by a sequence of n quadrants. Your task is to create a path that
begins at (0,0) and travels through these n quadrants in the given order.

You must create your path as follows. Your 2n positive integers must be grouped into
n pairs; each of these pairs becomes a single (z,y) step along your path. You many
negate some (or all) of these integers if you wish.

A

+

Y
A

Quad 2 Quad 1
e =r+
Quad 3 ' Quad 4
v

For example, suppose that n = 4 and you are given the sequence of integers 7 5 6
1 3 2 4 8 and the sequence of quadrants 4 1 2 1. You can solve the problem by
rearranging the integers into the following pairs:

(7,-1) (-5,2) (—-4,3) (8,6)

Following these steps from (0,0) takes you to the point (7,—1), then (2,1), then
(=2,4) and finally (6, 10), as illustrated in the rightmost diagram above. This indeed
takes you through quadrants 4, 1, 2 and 1 in order as required.

Input: The input file utopia.in will consist of three lines, containing the integer n,
the sequence of 2n positive integers, and the sequence of n quadrants respectively.

Output: The output file utopia.out must consist of n lines, giving the n steps in
order. Each line must list the x and y integer components of the corresponding step.

Limits: Your program must run within 2 seconds, and it may use at most 32 Mb of
memory. It is guaranteed that each input file will satisfy 1 < n < 10000.

Sample Input and Output: The following input and output files describe the
example discussed earlier.

utopia.in: utopia.out:
4 7 -1
75613248 -5 2
4121 -4 3

8 6

Figure 7: The problem Utopia Divided from IOI 2002

10

0 and then runs to the points 8, —2, —8 and 3, which matches the signs +, —, —, +
as required.

Certainly the one-dimensional problem is simpler to think about than the original
two-dimensional version. More importantly, the one-dimensional solution is easily
generalised to two dimensions—arbitrarily choose n of your integers to be x coordi-
nates and the remaining n integers to be y coordinates, solve the problems in the x
and y dimensions independently, and then combine the x and y solutions to obtain
your final n two-dimensional steps.

. Broad plan: After some thought one can formulate a broad strategy, which is to use
larger numbers to change between + and — sides of the number line, and to use
smaller numbers to stay on the same side of the number line. Indeed this is what
we see in the example above—the smallest integer 6 is used when the path must run
through the — side twice in a row, and the largest integers 10 and 11 are used when
the path must change from + to — and from — to + respectively.

It then makes sense to split the sequence of integers into “large numbers” and “small
numbers” (just how many large and small numbers you need depends upon how
many times you must change sides). Whenever you need to change sides, you pull
an integer from your large set; otherwise you pull an integer from your small set.

An important factor to consider in this plan is the order in which you use the large
and small numbers. With some thought it can be seen that the large numbers should
be used in order from smallest to largest, and the small numbers should be used in
order from largest to smallest. This ensures that, as your position becomes more
erratic over time, the large numbers are still large enough to change sides, and the
small numbers are still small enough to avoid changing sides.

. Details and proofs: Some important details still remain to be filled in; this we leave
to the reader. In particular, when using a small number, the decision of whether to
add or subtract requires some care.

Moreover, once the algorithm is complete, it is not immediately clear that it works
for all possible inputs—some proofs are required. One approach is to place upper
and lower bounds upon the kth point along the path, and prove these bounds using
induction on k. The details can be found in [10].

As mentioned earlier, this was a difficult IOI problem—it received the lowest average
score of all six problems in IOI 2002 (and in the author’s opinion, IOI 2002 was one
of the most difficult IOIs of recent years). Nevertheless, like the solutions to so many
mathematics problems, the algorithm is simple and sensible once seen. It is the process of
identifying the algorithm and proving it correct that creates so much enjoyable frustration
during the competition.

3 Benefits and Challenges

As discussed in Section 1, informatics olympiad problems are often mathematical in nature,
with regard to both the content and the skills that they require. In the author’s view,
an informatics olympiad can indeed be viewed as a type of mathematics competition, in
which solutions are communicated through code (computer programs) instead of the more
traditional written answers.

11

With this in mind, it is useful to examine both the benefits that informatics olympiads
offer over traditional mathematics competitions, and the difficulties that they present.
We spread our discussion across three broad areas: enjoyment and accessibility, skills and
learning, and judging.

The points made here merely reflect the author’s own opinion and experiences; there
are of course many variants of both mathematics and informatics competitions with their
own different strengths and weaknesses. Readers are heartily encouraged to participate
themselves and come to their own conclusions!

3.1 Enjoyment and Accessibility

Here we examine the ways in which students are encouraged to participate in different
competitions, and the barriers that prevent them from doing so.

On the positive side, many students enjoy working with computers and find computer
programming to be fun. In this way, informatics competitions can expose them to math-
ematical ideas using what is already a hobby—although the students are not explicitly
setting out to study mathematics (which some of them might not even enjoy at school),
they nevertheless develop what are essentially mathematical skills and ideas.

Likewise, a number of students are afraid of writing mathematical proofs. In an infor-
matics olympiad they only need to submit computer programs, which for some students
are rather less onerous to write—computer programs are concrete things that students
can build, run, test and tinker with. Nevertheless, as problems become harder students
must develop the underlying skills of proof and counterexample, in order to distinguish
between algorithms that feel correct and algorithms that are correct.

On the negative side, there are some very clear barriers to involvement in informatics
olympiads. The first (and highest) barrier is that students cannot participate unless they
can write a working computer program from scratch within a few hours. Unfortunately
this alone rules out many bright and otherwise eager students. Another barrier is the
fact that informatics olympiads are difficult for schools to run—they require computers,
compilers and sometimes network access. In general informatics olympiads cause far more
trouble for teachers than a mathematics competition where all a student needs is a desk
and an exam paper. Recent moves have been made by countries such as Lithuania [8] and
Australia [5, 6] to work around these problems by offering multiple-choice competitions
that test algorithmic skills in a pen-and-paper setting.?

3.2 Skills and Learning

Although competitions are intended to be fun, they are also intended to be educational.
Here we examine the skills that students discover and develop from participating in such
competitions.

A strong advantage of informatics competitions is that they expose students to fields
that in many countries are rarely taught in secondary schools. Certainly in Australia,
schools tend to focus on using computers as a tool—courses in computer programming
are less common, and even then they tend to focus on translating ready-made algorithms
from English into computer code. The design of algorithms is almost never discussed.

A positive side-effect of automated judging is that informatics olympiad problems are
often well suited for self-learning. Several countries have online training sites [4, 11], where

2Both contests are now offered outside their countries of origin; see [2] and [3] for details.

12

students can attempt problems, submit their solutions for instant evaluation and refine
them accordingly. Even without online resources, students can critique their solutions by
designing test cases to feed into their own programs.

Informatics olympiads also develop a sense of rigour, even in the easiest problems. This
comes through the hard fact that students cannot score any points without a running
program—even with slow or naive algorithms, a certain attention to detail is required.
Combined with the fact that official data sets typically include pathological cases, students
learn early on that rigour is important.3

A clear deficiency in informatics olympiads is that they do not develop communication
skills. Whereas mathematics students must learn to write clear and precise proofs, infor-
matics olympiad students write computer programs that might never be read by another
human. Bad coding habits are easy to develop in such an environment.

Another problem is that, since solutions are judged by their behaviour alone, one
cannot distinguish between a student who guesses at a correct algorithm and a student
who is able to prove it correct. For harder problems guesswork becomes less profitable,
but for simpler problems it can be difficult to convince students of the merits of proof
when their intuition serves them well.

3.3 Judging

Competitions are, when it comes to the bottom line, competitive. In our final point we
examine the ways in which students are graded and ranked in different competitions.

On the plus side, weaker students in informatics competitions can still obtain re-
spectable partial marks even if they cannot find a perfect algorithm. For instance, students
could still code up the brute force or greedy solutions to Polygon Game (Section 2.1) for
a portion of the available marks.

On the other hand, a significant drawback is that students cannot score any marks
without a running program. A student who has found the perfect algorithm but who is
having trouble writing the code will score nothing for her ideas.

In a similar vein, the marking is extremely sensitive to bugs in students’ programs.
A perfect algorithm whose implementation has a small bug might only score 10% of the
marks because this bug happens to affect 90% of the official test cases. It is extremely
difficult to design official data sets that minimise this sensitivity but still subject good
students to the expected level of scrutiny.

As a result of these sensitivities, exam technique is arguably more important in an
informatics olympiad than it should be. In particular, students who have found a perfect
algorithm might be tempted to code up a less efficient algorithm simply because the
coding will be quicker or less error-prone. There has been recent activity within the 101
community to work around these problems (see [7] and [12] for examples), but there is
still a long way to go.

3In some events such as the ACM contest [1], students score no points at all unless their programs
pass every official test case. Whilst this might seem harsh, it puts an extreme focus on rigour that has
left a lasting impression on this author from his university days, and that has undeniably benefited his
subsequent research into mathematical algorithm design.

13

4

For

Getting Involved

students eager to become involved in the informatics olympiad programme, there are

a number of avenues to explore.

e Books: Steven Skiena and Miguel Revilla have written an excellent book [13] specif-
ically geared towards programming competitions such as the IOI. The book is very
readable and full of problems, and includes outlines of the most prominent compe-
titions in the appendix.

e Online resources: As discussed in Section 3, several countries have produced online
training sites through which students can teach themselves. The USACO site [11] is
an excellent resource with problems, reading notes and contest tips. The Australian
site [4] is also open to students worldwide.

e National contacts: Students are encouraged to contact their national organisations
for local contests and training resources. The IOI secretariat [16] has links to na-
tional organisations, as well as archives of past IOI problems and resources for other
olympiads such as the IMO.

Informatics olympiads are often seen as belonging purely to the domain of computer

science. However, when seen from a mathematical point of view, they offer new challenges
and activities that complement traditional mathematics competitions. Certainly the au-
thor, trained and employed as a mathematician, has gained a great deal of pleasure from

his

involvement in informatics competitions; it is hoped that other teachers and students

might likewise discover this pleasure for themselves.

References

[1] ACM ICPC, ACM International Collegiate Programming Contest website, http://
acm.baylor.edu/acmicpc/, accessed September 2006.

[2] Australian Mathematics Trust, Australian Informatics Competition website, http://
www.amt.edu.au/aic.html, accessed June 2007.

[3] Beaver Organising Committee, Information technology contest “Beaver”, http://
www.emokykla.lt/bebras/7news, accessed July 2007.

[4] Benjamin Burton, Bernard Blackham, Peter Hawkins, et al., Australian informatics
training site, http://orac.amt.edu.au/aioc/train/, accessed June 2007.

[5] David Clark, Testing programming skills with multiple choice questions, Informatics
in Education 3 (2004), no. 2, 161-178.

[6] David Clark, The 2005 Australian Informatics Competition, The Australian Mathe-
matics Teacher 62 (2006), no. 1, 30-35.

[7] Gordon Cormack, Ian Munro, Troy Vasiga, and Graeme Kemkes, Structure, scoring

and purpose of computing competitions, Informatics in Education 5 (2006), no. 1,
15-36.

14

[8] Valentina Dagiene, Information technology contests—introduction to computer sci-
ence in an attractive way, Informatics in Education 5 (2006), no. 1, 37-46.

[9] Gyula Horvath and Tom Verhoeff, Finding the median under 101 conditions, Infor-
matics in Education 1 (2002), 73-92.

[10] IOTI 2002 Host Scientific Committee (ed.), IOI 2002 competition: Yong-In, Korea,
Available from http://olympiads.win.tue.nl/ioi/i0i2002/contest/, 2002.

[11] Rob Kolstad et al., USA Computing Olympiad website, http://www.usaco.org/,
accessed June 2007.

[12] Martins Opmanis, Some ways to improve olympiads in informatics, Informatics in
Education 5 (2006), no. 1, 113-124.

[13] Steven S. Skiena and Miguel A. Revilla, Programming challenges: The programming
contest training manual, Springer, New York, 2003.

[14] TopCoder, Inc., TopCoder website, http://wuw.topcoder . com/, accessed September
2006.

[15] J. H. van Lint and R. M. Wilson, A course in combinatorics, Cambridge Univ. Press,
Cambridge, 1992.

[16] Tom Verhoeff et al., IOI secretariat, http://olympiads.win.tue.nl/ioi/, accessed
September 2006.

[17] Tom Verhoeff, Gyula Horvath, Krzysztof Diks, and Gordon Cormack, A proposal
for an 101 syllabus, Teaching Mathematics and Computer Science 4 (2006), no. 1,
193-216.

Benjamin A. Burton

Department of Mathematics, SMGS, RMIT University
GPO Box 2476V, Melbourne, VIC 3001, Australia
(bab@debian.org)

15

