
Informatics Olympiads:

Challenges in Programming and Algorithm Design

Benjamin A. Burton

Department of Mathematics, SMGS
RMIT University,

GPO Box 2476V, Melbourne, VIC 3001,
Email: bab@debian.org

Author’s self-archived version
Available from http://www.maths.uq.edu.au/~bab/papers/

Abstract

The International Olympiad in Informatics is a world-
wide contest for high school students, with a strong
focus on creativity and ingenuity in algorithm design.
Here we describe the activities in Australia that sup-
port and complement this contest, including a range
of programming competitions, more accessible pen-
and-paper competitions, and other enrichment and
training activities. Sample problems are included,
along with suggestions for becoming involved.

1 Introduction

The International Olympiad in Informatics (IOI) is a
prestigious international competition for high school
students in programming and algorithm design. Cre-
ated in 1989 in Bulgaria under the leadership of Petar
Kenderov, it now boasts delegations and guests from
around 90 different countries.

Students sit the IOI on an individual basis, and are
given ten hours to solve six problems. The contest is a
programming competition, in the sense that students
submit programs which are then run through a variety
of test scenarios and judged accordingly. However,
the difficulty lies not so much in the programming
but rather the design of the underlying algorithms.

Australia first entered the IOI in 1992, and became
a regular participant in 1999. With a growing sup-
port base from academics, teachers and ex-students,
a rich national programme is developing to support
and complement the IOI.

The primary focus of this paper is to introduce
the various activities that form the Australian pro-
gramme. Section 2 presents an overview of these
activities. In Section 3 we focus in detail on writ-
ten competitions, a more accessible alternative that
involves multiple choice and short answer problems,
and in Section 4 we return to a detailed discussion of
programming competitions. Broader activities within
the Asia-Pacific region are discussed in Section 5, and
Section 6 closes with suggestions for how teachers and
students can become involved.

2 The Australian Programme

Like its sister programme in mathematics, the Aus-
tralian informatics olympiad programme currently

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Thirty-First Australasian Computer Sci-
ence Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 74, Gillian Dobbie and Bernard Mans, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

runs under the auspices of the Australian Mathemat-
ics Trust. Although the initial motivation for this
programme was the annual selection and training of
the Australian IOI team, it has since grown to provide
enrichment for a wider range of high school students
nationwide. Activities include:

• The Australian Informatics Competition (AIC):
This is the most widely accessible activity, since
it involves no programming at all. Held annu-
ally in May, it offers students a range of multiple
choice and short answer questions that encourage
algorithmic thinking in puzzle-like settings. The
AIC and some sample problems are discussed in
detail in Section 3.

The AIC first ran in 2005, and has grown to over
3000 participants in 2007.

• The Australian Informatics Olympiad (AIO):
The AIO is a true programming contest, and acts
as the first round of selection in working towards
an IOI team. Although the problems are nec-
essarily simple, many of them retain a focus on
algorithm design even at this early stage. See
Section 4 for details and sample problems.

The AIO has run since 1998. Numbers in this
contest are typically much lower, with around 80
participants in 2007.

• The School of Excellence: The top twelve en-
trants from the AIO are invited to a live-in “pro-
gramming boot camp” at the Australian Na-
tional University in December, where they are
given ten days of lectures, labs, contests and
other activities. The school is intensive, and
students typically emerge exhausted but full of
ideas.

• Invitational Contests: The participants from the
School of Excellence are invited to sit additional
contests in February and March, including the
French-Australian contest discussed in Section 5.
These contests push the standard closer to IOI
level, and (unlike the AIO) do not shy away from
“required knowledge” such as graph theory and
dynamic programming.

• The Team Selection School: Based on the invita-
tional contests, a final eight students are invited
to a second training school at Macquarie Univer-
sity. Where the focus of the December school is
on teaching new material, the focus of this April
school is on using this material in creative and
unusual ways to solve problems of IOI difficulty.
At the end of this school a final team of four
members is chosen to represent Australia at the
coming IOI.



• The International Olympiad: The four team
members are individually mentored for the fol-
lowing 3–4 months. In August they meet for a fi-
nal short but intense training school, after which
they head directly overseas for the IOI.

Online materials are available through the national
training site all year round (http://orac.amt.edu.
au/aioc/train/), and a series of books to comple-
ment these materials is currently under development.

3 Written Competitions

It was noted in the introduction that the AIO—an
entry level programming contest—has extremely low
participation each year. Whilst there may be many
reasons behind this, it is highly probable that the
following factors contribute:

• Programming contests are difficult for schools
to run. A typical mathematics contest requires
nothing more than a desk and a pen. In contrast,
a programming contest requires a computer for
every student, appropriate software (compilers
and debuggers), and a supervisor who can deal
with technical problems if they arise.

• Programming contests require students who can
write computer programs. In a mathematics con-
test, any student can follow their nose and scrib-
ble ideas down. In a programming contest—
certainly the traditional type in which programs
are scored according to their behaviour—a stu-
dent cannot score any points (or even have their
submissions judged) unless they can create a run-
ning program in a relatively short period of time.

For these reasons it was decided to complement
the programming contests with a written contest, in
the hope that this written contest might have broader
appeal. The result was the Australian Informatics
Competition, which has run annually since 2005.

Dungeon

(Australian Informatics Competition 2005, Intermediate)

A token (marked ‘X’ in the diagram) is in a maze. You
may move the token around according to the following
rule: in each move the token may travel any distance
either horizontally or vertically, but it cannot pass over
or stop on a shaded square.

For example, from its starting position the token could
travel either one square right, one square down, two
squares down or three squares down in a single move.
To reach any other square would require more than one
move.

What is the minimum number of moves that you need to
ensure that the token can reach any white square from
its starting position?

(A) 8 (B) 9 (C) 10 (D) 11 (E) 12

Figure 1: The problem “Dungeon”

Lost

(Australian Informatics Competition 2007, Intermediate)

You are wandering through the desert with a map, which
shows the desert as an (x, y) coordinate plane. You begin
your journey at (0, 0) facing north. In your hands are
directions to an oasis, written as a sequence of letters.
The possible letters are:

• F, indicating that you should walk forwards one kilo-
metre in the direction you are currently facing;

• L, indicating that you should turn 90◦ to the left;

• R, indicating that you should turn 90◦ to the right.

Alas, the directions contain a critical mistake—one of the
right hand turns has been deleted. Fortunately your map
also shows the coordinates of the oasis, and so you hope
to use this information to work out where the missing
right hand turn should be.

For example, suppose the directions are R F L F F F and
the oasis is at (2, 2). The first diagram below illustrates
this path, which ends at the incorrect location (1, 3).

(2,2) (2,2)

(1,3)

21 3

1

2

3

x

y

21 3

1

2

3

x

y

R F L F F F R F L F F R F

With some thought it can be seen that the directions
should be R F L F F R F. That is, the missing right hand
turn takes place just before the final walk forwards, as
shown in the second diagram above.

Each scenario below lists a series of directions, followed
by the location of the oasis. For each scenario, how many
letters appear before the missing R must be inserted?

1. R F F L F L F F F R F F −→ (3, 3)

2.
R F F L F R F F L F F L F L F R F F R

F F L F L F R F R F F R F L F F L F
−→ (5, 5)

3.
R F F F L F F R F F F R F R F F R F F F F

F F L F F L F F F L F L F F F F F L F F
−→ (8, 8)

Figure 2: The problem “Lost”

Although the AIC is styled as an informatics com-
petition, AIC questions almost never use any code or
pseudocode, and only a minority describe any explicit
algorithm. Most problems pose some form of puzzle
which, in order to be solved correctly, requires stu-
dents to devise some type of informal algorithm in
their heads.

An example from the first AIC is Dungeon, de-
scribed in Figure 1. Although the problem can be
solved by ad-hoc trials and guesses, it is faster and
more reliable to work systematically outwards from
the token, identifying all the squares that are one
move away, then two moves away, and so on. Essen-
tially the student who has never seen programming
is encouraged to informally conduct a breadth-first
search.

As well as multiple choice problems, the AIC con-
tains a number of “algorithmic problems”. An ex-
ample is Lost, seen in Figure 2. Each algorithmic
problem contains a task description followed by three
scenarios, each of which can be solved with an inte-
ger in the range 0–999. The first scenario is typically
small and easy to solve in an ad-hoc fashion, whereas
the third is typically large and requires a systematic



algorithm to solve quickly. The hope is that, as stu-
dents attempt the simpler scenarios, they develop a
feel for the problem and a systematic method that
will allow them to tackle the larger cases.

Although written contests in computer science are
relatively rare in comparison to programming con-
tests, examples can be certainly be found elsewhere.
One prominent example is the Lithuanian Beaver con-
test, which like the AIC encourages algorithmic think-
ing without explicitly requiring an understanding of
computer programming (Dagienė 2006).

For a more detailed discussion of the AIC and ad-
ditional sample problems, the reader is referred to
Clark (2006).

4 Programming Competitions

Whilst written competitions can offer a highly acces-
sible introduction to algorithms, the core activities of
the Australian olympiad programme revolve around
programming competitions.

The competitions offered in the Australian pro-
gramme typically follow the model of the interna-
tional olympiad. Students are given a large amount of
time to solve a small number of tasks, each of which
requires them to write a computer program. Each
task describes the precise problem to solve, offers a
simple text format for reading input scenarios and
writing corresponding solutions, and sets time and/or
memory limits within which the program must run.

A typical task of this type is Mansion, illustrated
in Figure 3. Problems in the international olympiad
are of course more difficult; worked examples are dis-
cussed by Horváth et al. (2002) and Burton (2007),
and a comprehensive list of past IOI problems can
be found at the IOI secretariat (http://olympiads.
win.tue.nl/ioi/).

Readers might be familiar with tasks of this type
from university programming contests, such as the
ACM International Collegiate Programming Con-
test or the TopCoder contests. The International
Olympiad in Informatics differs from these contests
in the following ways:

• IOI tasks are graded on a sliding scale from 0 to
100, instead of an all-or-nothing pass or fail. This
allows a range of scores for solutions of varying
sophistication and efficiency.

• IOI tasks are extremely difficult to solve com-
pletely, since the running time and memory con-
straints for programs are often very tight. Whilst
it might be straightforward to write a correct but
inefficient solution that scores partial marks, it
is often a significant achievement to score full
marks for an IOI task.

• Students do not race each other. What matters
is not when they submit each program, but only
how it performs. This encourages stronger stu-
dents to take their time in implementing sophis-
ticated algorithms, in the hope of passing even
the most difficult test scenarios.

Of course different styles of contest have different
strengths. For instance, the all-or-nothing scoring for
the ACM and TopCoder contests places a strong em-
phasis on rigour, whereas the extreme running time
and memory constraints of IOI problems place the fo-
cus squarely on creative algorithm design. A more de-
tailed comparison of different programming contests
is given by Cormack et al. (2006).

At the national level, the Australian Informatics
Olympiad is intended as an entry-level programming
contest for students with little or no formal training.

Mansion

(Australian Informatics Olympiad 2007, Intermediate Q2)

You wish to build a mansion beside a long road. The far
side of the road is filled with n houses, each containing
a given number of people. Your mansion is as long as w

houses combined. Your task is to position the mansion so
that as many people as possible live across the road from
you.

For instance, consider the road illustrated below, with
n = 7 and w = 4. Here the seven houses contain 3, 2,
5, 1, 4, 1 and 3 people respectively. The first diagram
places the mansion across from 2+5+1+4 = 12 people,
whereas the second diagram places it across from 5 + 1 +
4+1 = 11 people. Indeed, of all the possible locations for
the mansion, the largest possible number of people living
across the road is 12.

3 2 5 1 4 1 3 3 2 5 1 4 1 3

Input: Your program must read its input from the file
manin.txt. The first line of this file will give the integers
n and w, and the following n lines will give the number
of people living in each house.

Output: Your program must write its output to the file
manout.txt. This file must give the largest possible num-
ber of people living across from the mansion.

Limits: Your program must run within 1 second. The
input integers are guaranteed to lie in the range 1 ≤ w ≤
n ≤ 100 000.

Sample Input and Output: The sample input and
output files below correspond to the example given above.

manin.txt:

7 4

3

2

5

1

4

1

3

manout.txt:

12

Figure 3: The problem “Mansion”

At this level the scores are more likely to reflect the
nuts and bolts of computer programming; as men-
tioned in Section 3, merely asking for correct running
code is a relatively high bar for entry at the high
school level.

Nevertheless, most problems in the AIO retain a
focus on algorithm design. The challenge for the prob-
lem setters is to find accessible problems, where (i) the
“obvious” algorithm is not necessarily the best, but
(ii) good students with no formal training can be ex-
pected to find optimal algorithms through insight and
creative thinking.

The problem Mansion (Figure 3) offers an example
from the 2007 AIO. Essentially the problems asks,
given an array of length n, for the continuous sub-
array of length w with the largest possible sum.

A simple algorithm might loop through all possi-
ble starting points, and for each starting point loop
again to sum the w elements of the sub-array. Whilst
correct, this algorithm runs in quadratic time and is
too slow to score 100% (in the AIO such a solution
scored 70%).

This algorithm can be improved as follows. We
retain the outer loop through all possible starting



points, but we avoid the inner loop by using a sliding
window. As we move from one starting point to the
next, we adjust the sum by subtracting the one ele-
ment that has been lost and adding the one element
that has been gained. The resulting algorithm runs
in linear time, and is fast enough to score 100%.

It is pleasing to note that, of the AIO entrants who
obtained correct or almost correct solutions to this
problem, 18 used the linear algorithm and 21 used
the quadratic algorithm. This suggests that the opti-
mal solution was indeed non-obvious but nevertheless
accessible, as the problem setters had hoped.

Figure 4 describes Restaurants, a more difficult
problem from the 2007 AIO. Whereas the challenge
in Mansion is efficiency, the challenge in Restaurants
is correctness.

Restaurants

(Australian Informatics Olympiad 2007, Senior Q3)

You are faced with the unenviable task of organising din-
ner for an international conference. Several countries are
represented at the conference, each with a given number
of delegates. You have also identified several restaurants
in the neighbourhood, each with a different number of
seats.

In order to break down international barriers, you can-
not seat two people from the same country at the same
restaurant. Your task is to find an arrangement that seats
as many people as possible.

As an example. suppose there are three countries with
4, 3 and 3 delegates respectively, and three restaurants
with 5, 2 and 3 seats respectively. You can seat most
of the delegates by placing one delegate from the second
country and one delegate from the third country in every
restaurant, and by placing two delegates from the first
country in the first and third restaurants. This leaves
two delegates without dinner, which is the best you can
do.

Input: Your program must read its input from the file
restin.txt. The first line of this file will give the number
of countries, and the second line will give the number of
delegates from each country. Likewise, the third line will
give the number of restaurants, and the fourth (and final)
line will give the number of seats in each restaurant.

Output: Your program must write its output to the file
restout.txt. This file must give the smallest possible
number of delegates who cannot be seated.

Limits: Your program must run within 1 second. There
will be at most 5000 countries and 5000 restaurants.

Sample Input and Output: The sample input and
output files below correspond to the example described
above.

restin.txt:

3

4 3 3

3

5 2 3

restout.txt:

2

Figure 4: The problem “Restaurants”

Most of the students who attempted this problem
adopted some type of greedy approach, and indeed
the official solution is greedy (for each country, seat
its delegates in order from the restaurant with the
most empty seats to the restaurant with the fewest).

The difficulty is that not all greedy approaches are
correct. For instance, some students adopted a sim-
ilar approach but began with the largest restaurant
instead of the emptiest; this works with the sample
input and output, but does not work for more com-
plex scenarios. In the end, 16 of the 27 students who

attempted this problem scored 100%.
It is worth pausing to consider the ways in which

this and other programming contests are judged. In
particular, because solutions are judged entirely by
their behaviour, students with partial or buggy imple-
mentations can score zero, even if they have derived
the correct algorithm. In some cases (particularly in
the IOI), good students may deliberately choose to
submit an inefficient solution to avoid the risk of bugs
that comes with more complex code.

This style of judging also raises pedagogical issues.
Judging purely by behaviour does little to encourage
good programming habits, and does not develop the
communication skills that are crucial for teamwork
and research in later life. This latter issue is explicitly
addressed at the Australian training schools, where
participants regularly present their algorithms to the
other students and analyse them in a group setting.

The limitations of the current judging style are
well understood, and the international community is
actively engaged in finding ways to address them.
Cormack et al. (2006) and Opmanis (2006) discuss
the issues in depth and offer some concrete sugges-
tions for improvement, and Burton (2007) examines
them in the context of human-evaluated mathemat-
ics competitions. The IOI itself is actively evolving to
find the right balance between competition, education
and encouragement.

5 Regional Activities

To complement the national programme, it is valu-
able for students to engage in international competi-
tion and cooperation. Not only does this give them
stronger experience in competition, but it also en-
hances the sense of camaraderie and helps them feel
part of a wider community.

The IOI itself is a pinnacle of international com-
petition, but with teams of four it can only be offered
to a handful of students. To complement this, the re-
gional and international communities have developed
several smaller events that allow a greater depth of
students to participate.

The first such event to appear on the Australian
calendar was the French-Australian Regional Infor-
matics Olympiad (http://www.fario.org/). This
began in 2004 as a collaborative effort between Aus-
tralia and France, and works well because the stu-
dents of both countries have comparable skills. The
contest has broader interest however, and each year
a handful of students from other countries enter as
unofficial participants.

More recently, the Asia-Pacific region has formed
a new contest in the lead-up to the IOI. The in-
augural Asia-Pacific Informatics Olympiad (http://
www.apio.olympiad.org/) was hosted by Australia
in 2007, with over 350 participants from 14 delega-
tions. With Thailand and India lined up to host in
2008 and 2009, the contest is set to become a regular
event on the regional calendar.

In addition to competitions, there is also collab-
oration in training between different countries. The
Australian team met with the French in 2007 for a fi-
nal week of joint training before the IOI, and two New
Zealand students joined the Australians for the 2007
School of Excellence. At the teaching level, France
and Australia regularly share problems and discuss
training methods, and at IOI 2007 there was a mini-
conference at which a diverse group of team leaders
shared ideas and experiences.



6 Becoming Involved

For anyone eager to become involved in the pro-
gramme as a teacher or a student, there are several
excellent resources for learning more about program-
ming contests.

Skiena et al. (2003) have written a superb book
that focuses specifically on programming contests
such as the IOI. It is very readable, contains a wealth
of problems, and covers not only algorithms but also
the practical issues of writing code in a contest envi-
ronment.

Many countries have their own training sites,
through which students can teach themselves in their
own time. An excellent example is the USACO site
(http://www.usaco.org/), which offers problems,
reading notes and contest advice. The Australian
site (http://orac.amt.edu.au/aioc/train/) in-
cludes all past AIO, French-Australian and Asia-
Pacific papers. Both sites allow students to submit
solutions with instant feedback, and are open to par-
ticipants worldwide.

At the level of the IOI, Verhoeff et al. (2006) have
proposed a “syllabus” of topics that might be covered.
This list is currently under active discussion within
the IOI community.

Interested people are also encouraged to contact
their national organisation for information on lo-
cal contests and training materials. The IOI secre-
tariat (http://olympiads.win.tue.nl/ioi/) main-
tains a list of these organisations, alongside a wealth
of archival material on the IOI and related competi-
tions.

The Australian organisation can be reached
through the author of this paper, who currently holds
the role of Director of Training. The Australian
Mathematics Trust, which oversees and administers
the programme, can be reached through its Execu-
tive Director Peter Taylor at pjt@olympiad.org.

References

Burton, B. (2007), ‘Informatics olympiads: Ap-
proaching mathematics through code’, Mathemat-
ics Competitions 20(2) 29–51.

Clark, D. (2006), ‘The 2005 Australian Informat-
ics Competition’, The Australian Mathematics
Teacher 62(1) 30–35.

Cormack, G., Munro, I., Vasiga, T. & Kemkes, G.
(2006), ‘Structure, Scoring and Purpose of Com-
puting Competitions’, Informatics in Education
5(1) 15–36.

Dagienė, V. (2006), ‘Information technology con-
tests — introduction to computer science in an at-
tractive way’, Informatics in Education 5(1) 37–46.

Horváth, G. & Verhoeff, T. (2002), ‘Finding the me-
dian under IOI conditions’, Informatics in Educa-
tion 1 73–92.

Opmanis, M. (2006), ‘Some Ways to Improve Olym-
piads in Informatics’, Informatics in Education
5(1) 113–124.

Skiena, S. S. & Revilla, M. A. (2003), Program-
ming challenges: The programming contest training
manual, Springer.

Verhoeff, T., Horváth, G., Diks, K. & Cormack, G.
(2006), ‘A proposal for an IOI syllabus’, Teaching
Mathematics and Computer Science 4(1) 193–216.


