Converting between quadrilateral and standard
solution sets in normal surface theory

BENJAMIN A BURTON

Author’s self-archived version
Available from http://www.maths.uq.edu.au/ bab/papers/

The enumeration of normal surfaces is a crucial but very siparation in algo-
rithmic 3—manifold topology. At the heart of this operatisna polytope vertex
enumeration in a high-dimensional space (standard caamteiip  Tollefson’s Q—
theory speeds up this operation by using a much smaller sfppearilateral
coordinates), at the cost of a reduced solution set thattmigihalways be suffi-
cient for our needs. In this paper we present algorithms dowerting between
solution sets in quadrilateral and standard coordinatssa donsequence we ob-
tain a new algorithm for enumerating all standard vertexmadisurfaces, yielding
both the speed of quadrilateral coordinates and the widdicaility of standard
coordinates. Experimentation with the software packagginashows this new
algorithm to be extremely fast in practice, improving spéadlarge cases by
factors from thousands up to millions.

52B55; 57N10, 57N35

1 Introduction

The theory of normal surfaces plays a pivotal role in algorithmic 3—maniégdlogy.
Introduced by Kneserl]7] and further developed by Hakerd(Q, 11], normal sur-
faces feature in key topological algorithms such as unknot recognitién3—sphere
recognition RO, 21, 22], connected sum and JSJ decompositib@],[and testing for
incompressible surface&.

The beauty of normal surface theory is that it allows difficult topologicedsgions to
be transformed into straightforward linear programming problems, yieldirgitigns
that are well-suited for computer implementation. Unfortunately these linegrgm
ming problems can be extremely expensive computationally, which is what restiva
the work described here.

Algorithms that employ normal surface theory typically operate as follows:
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() Begin with a compact 3—manifold triangulation formed frantetrahedra;

(i) Enumerate all vertex normal surfaces within this triangulation, as destrib
below;

(iif) Search through this list for a surface of particular interest (sucanasssential
sphere for the connected sum decomposition algorithm, or an essentitdrdisc
the unknot recognition algorithm).

The linear programming problem (and often the bottleneck for the entireitggr
appears in step (ii). It can be shown that the set of all normal surfaitbg a
triangulation is described by a polytope in a—dimensional vector space; step (i)
then requires us to enumerate the vertices of this polytope. The normatesirf
described by these vertices are caledtex normal surfaces

The trouble with step (i) is that the vertex enumeration algorithm can grow-expo
nentially slow inn; moreover, this growth is unavoidable since the number of vertex
normal surfaces can likewise grow exponentially large. As a result, n@unface
algorithms are (at the present time) unusable for large triangulations.

Nevertheless, it is important to have these algorithms working as well agjgoss
in practice. One significant advance in this regard was made by Tollef&gn [
who showed that in certain cases, normal surface enumeration couldnieeird a
much smaller vector space of dimension. 3This 3—dimensional space is called
guadrilateral coordinatesand the resulting vertex normal surfaces (referred to by
Tollefson asQ—vertex surfacgform the quadrilateral solution setFor comparison,
we refer to the original i-—dimensional space asandard coordinateand its vertex
normal surfaces as tlgtandard solution sett is important to note that these solution
sets are different (in fact we prove in Lem#&that one is essentially a proper subset
of the other).

Practically speaking, quadrilateral coordinates are a significant immenvie—although
the running time remains exponential, experiments show that the enumeratamaiin
surfaces in quadrilateral coordinates runs orders of magnitude thatein standard
coordinates.

However, using quadrilateral coordinates can be problematic from aetiiesd point
of view. In the algorithm overview given earlier, step (iii) requires us tovprthat, if
an interesting surface exists, then it exists as a vertex normal surfacke r&ults are
more difficult to prove in quadrilateral coordinates, largely becaus#iaddecomes
a more complicated operation; in particular, useful properties of swthetare linear
functionals in standard coordinates (such as as Euler characterigicjoalonger
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linear in quadrilateral coordinates. As a result, only a few results appetre
literature to show that quadrilateral coordinates can replace standardircates in
certain topological algorithms.

The purpose of this paper is, in essence, to show that we can havelaiaid eat

it too. That is, we show that we can enumerate vertex normal surfacsgandard
coordinates (thereby avoiding the theoretical problems of quadrilatesadinates) by
first constructing thguadrilateralsolution set and then converting this into the standard
solution set (thus avoiding the performance problems of standard cated)n The
conversion process is not trivial (and indeed forms the bulk of thispapet it is
found to be extremely fast in practice.

The key results in this paper are as follows:

« Algorithm 4.6, which gives a simple procedure for converting the standard
solution set into the quadrilateral solution set;

e Algorithm 5.15 which gives a more complex procedure for converting the
quadrilateral solution set into the standard solution set;

« Algorithm 5.17, which builds on these results to provide a new way of enumerat-
ing all vertex normal surfaces in standard coordinates, by going viaitptadal
coordinates as outlined above.

The final algorithm in this list (Algorithn®.17) is the “end product” of this paper—it
can be dropped into any high-level topological algorithm that requiresrtbmeration

of vertex normal surfaces. Experimentation shows that this new algorithenarders

of magnitude faster than the current state-of-the-art, with consistentvements of

the order of 18-1C° times the speed observed for large cases. Full details can be
found in Sectior®.

The remainder of this paper is structured as follows. Se&iatroduces the theory of
normal surfaces, and defines the standard and quadrilateral soletsoprecisely. In
Section3 we address the ambiguity inherent in quadrilateral coordinates by studying
canonical surfaces and vectors. Sectidrand5 contain the main results, where we
describe the conversion from standard to quadrilateral coordinatiegumrilateral to
standard coordinates respectively. We finish in Se@iaith experimental testing that
shows how well these new algorithms perform in practice.

Because this paper introduces a fair amount of notation, an appendidudedahat
lists the key symbols and where they are defined.

For researchers who wish to perform their own experiments, the thresthigs listed
above have been implemented in version 4.6 of the software pa&lexgeal3, 4].
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2 Normal Surfaces

In this section we provide the essential definitions of normal surfacethiewtud-
ing both Haken'’s original formulation (standard coordinates) and Tollefsnormal
surface Q—theory (quadrilateral coordinates).

We only present what is required to define the standard and quadiist&raon sets.
For a more thorough overview of normal surface theory the readefeiged to [L2];
for further details on quadrilateral coordinates the reader is refeordallefson’s

original paper 25].

Definition 2.1 (Triangulation) Acompact3—manifold triangulationis a finite col-
lection of tetrahedraly, ..., A, where some or all of therdtetrahedron faces are
affinely identified in pairs, and where the resulting topological space isrgact
3—manifold.

We allow different vertices of the same tetrahedron to be identified, anditkemith
edges and faces (some authors refer to such structurpseaslo-triangulation®r
semi-simplicial triangulations Any tetrahedron face that reotidentified with some
other tetrahedron face becomes part of the boundary of this 3—mamifwlds referred
to as aboundary face

Each equivalence class of tetrahedron vertices under these identific&ioalled a
vertex of the triangulatiorlikewise with edges and faces.

It should be noted that, according to this definition, the link of each vertexiarier-
lying 3—manifold must be a disc or a 2—sphere. This rules out the ideal titetians
of Thurston R3]; we discuss the reasons for this decision at the end of this section.

Definition 2.2 (Normal Surface) Lef be a compact 3—manifold triangulation, and
let A be a tetrahedron of . A normal discin A is a properly embedded disc iy
which does not touch any vertices &f, and whose boundary consists of either (i) three
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arcs running across three different faceg\afor (ii) four arcs running across all four
faces of A. We refer to such discs &asanglesandquadrilateralsrespectively.

There are seven differettpesof normal disc in a tetrahedron, defined by the choice
of which tetrahedron edges a disc intersects. These include (i) fouglgitypes, each
surrounding a single vertex @k, and (ii) three quadrilateral types, each separating a
single pair of opposite edges &f. All seven disc types are illustrated in Figuke

Figure 1: The seven different types of normal disc in a tetdabn

An embedded normal surfade the triangulation7 is a properly embedded surface
that intersects each tetrahedrori/ofn a (possibly empty) collection of disjoint normal
discs. Here we allow both disconnected surfaces and the empty surface.

We consider two normal surfacakenticalif they are related by aormal isotopyi.e.,
an ambient isotopy that preserves each simpleX of

We divert briefly to define a particular class of normal surface thatsphayimportant
role in the relationship between standard and quadrilateral coordinates.

Definition 2.3 (Vertex Link) Let7 be a compact 3—manifold triangulation, and let
V be some vertex of . We define thevertex link of \, denoted/(V), to be the normal
surface that appears at the frontier of a small regular neighboudfaédin particular,
£(V) contains one copy of each triangular disc type surroundngnd contains no
other normal discs at all.

Here we follow the nomenclature of Jaco and Rubinst&bj; [in particular, Defini-
tion 2.3is not the same as the combinatorial link in a simplicial complex. Tollefson
refers to vertex links asivial surfaces[25].

Note that Definitior2.1implies that/(V) is a disc or a 2—sphere (according to whether
or notV is on the boundary of the 3—manifold). In the case wHEres a one-vertex
triangulation, the normal surfad€V) contains precisely one copy of every triangular
disc type in the triangulation, and no other normal discs.

At this point the theory of nhormal surfaces moves into linear algebra, evpen we
must choose between the formulation of Haken (standard coordinat@s)l@ison
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(quadrilateral coordinates). In the text that follows we outline both fortioria side
by side.

Definition 2.4 (Vector Representations) L&t be a compact 3—manifold triangula-
tion built from then tetrahedraj,, . . ., A, and letS be an embedded normal surface
in 7.

Consider the individual normal discs that form the surf&ceett; ; denote the number
of triangular discs of the¢th type inA; (j = 1,2, 3,4), and letq; x denote the number
of quadrilateral discs of thkth type inA; (k= 1,2, 3).

Then thestandard vector representatiasf S, denotedv(S), is the h—dimensional
vector

V(S = (ty1,t12,t13,t14, 011,012,013 ;
t21,122,t23,124, 021,022,023 ;
;0n,3 )7

and thequadrilateral vector representatioof S, denotedy(S), is the i—dimensional
vector

a® = (911,012,913 92,1,%2,2,023; ---,0n3)-

When we are working with standard vector representation®th we say we are
working in standard coordinatesLikewise, when working with quadrilateral vector
representations ifR>" we say we are working iquadrilateral coordinates

It turns out that, if we ignore vertex links, then the vector representationsain
enough information to completely reconstruct a normal surface. Thégedue to
Haken [LO] and Tollefson 5], are as follows.

Lemma 2.5 Consider two embedded normal surfaGeandT within some compact
3—manifold triangulation.

e The standard vector representationSandT are equal, that isy(S) = v(T),
if and only if surfacesS andT are identical.

e The quadrilateral vector representationsSodnd T are equal, that isg(S) =
q(T), if and only if (i) S and T are identical, or (ii)S and T differ only by
adding or removing vertex linking components.
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Although every embedded normal surface has a standard and quadrilagetor
representation, there are many vector®A andR>" respectively that do not represent
any normal surface at all. Haket{] and Tollefson 25] completely characterise which
vectors represent embedded normal surfaces, using the con@aphisisible vectors
We build up a definition of this concept now, and then present the fulbcierisation
results of Haken and Tollefson in Theor&xi 0

Definition 2.6 (Standard Matching Equations) L&t be a compact 3—manifold tri-
angulation built from then tetrahedra),, . . ., A, and consider somen#dimensional
vectorv = (tl,l,tl,z,t1,3,t1,4, 01,1, 01,2, 01.3; - - - ,qn73). For each non-boundary fae
of 7 and each edge of the faceF, we obtain an equation as follows.

In essence, our equation states that we must be able to match the normahdises
side of F with the normal discs on the other. To express this formallyAetand
A be the two tetrahedra joined along faEe In each tetrahedror\; and A; there
is precisely one triangle type and one quadrilateral type that meetd-facen arc
parallel toe; let these be described by the coordinafgsandg;p in Aj andtj ¢ and
gj,d in Aj. Our equation is then

ia+0ip=Ttic+ 0
The set of all such equations is called the settahdard matching equatiorfier 7 .

Figure 2: An example of the standard matching equations

Note that if 7 hasf non-boundary faces then there afesBich equations in total; in
particular, if 7 has no boundary at all then there aresdandard matching equations.
Figure 2 shows an illustration of one such equation; here we have one triangle and
one quadrilateral iM\; meeting two triangles im\;, giving tia + gip = 1+ 1) =
(tic+ga=2+0).

Definition 2.7 (Quadrilateral Matching Equations) L&t be a compact 3—manifold
triangulation built from then tetrahedraAq, ..., A, and consider somen3dimen-
sional vectorg = (ql,l, 01,2, 01,3; - - - ,qn,g). For each non-boundary edgef 7', we
obtain an equation as follows.
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Consider the tetrahedra containing edgdhese are arranged in a cycle arounés
illustrated in Figure8. Choose an arbitrary direction around this cycle, and arbitrarily
label the two ends o# asupperandlower.

Lower end

Upward quadrilaterals Downward quadrilaterals

Figure 3: Building the quadrilateral matching equations

Within each of these tetrahedra, there are two quadrilateral types tha¢dyset the
upwardquadrilaterals, which rise from the lower endegtio the upper end as we move
around the cycle, and tldownwardquadrilaterals, which fall in the opposite direction.
These are again illustrated in Figui8e

We can now create an equation from edgas follows. Let the tetrahedra containing

e be A, A, ..., A, let the coordinates corresponding to the upward quadrilateral
types beg;, u,, Gi,ups - - - 5 Uiy, » and let the coordinates corresponding to the downward
quadrilateral types bej, d,, i .dy> - - - » Giy,de- 1heEN We obtain the equation

Qiv,us + Gigu, + -+ -+ Oiue = Gig,dy + Gipydp + - - -+ iy che-

The set of all such equations is called the sequdidrilateral matching equatiorfer
7.

We will see that both the standard and quadrilateral matching equationsémessary
but not sufficient conditions for a non-negative integer vector toasgrt an embedded

normal surface. We still need one more set of constraints, which wesdagifollows.

Definition 2.8 (Quadrilateral Constraints) L&t be a compact 3—manifold triangu-

lation built from then tetrahedraA, ..., A,, and letw be either a Wi—dimensional
vector of the form(ty1,t12,t1,3,t14,01,1,01,2,013; - - -, On3), OF @ f—dimensional
vector of the form(qy,1, 01,2, 01.3; - - -, Gn3) -

Thenw satisfies thequadrilateral constraintsf, for each tetrahedrou;, at most of
one of the quadrilateral coordinatgs;, g > andg; 3 is non-zero.
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The quadrilateral constraints arise because any two quadrilateralderedif types

within the same tetrahedron must intersect, yet embedded normal surfauest c
have self-intersections. We have now gathered enough conditionsefaothplete

characterisation results of Hakeh(] and Tollefson 25|, which we reproduce in

Definition2.9and Theoren?2.10

Definition 2.9 (Admissible Vector) LetZ be a compact 3—manifold triangulation
built from n tetrahedra. A (i or 3n)—dimensional vector is calleadmissiblef (i) its
entries are all non-negative, (ii) it satisfies the (standard or quadalat®atching
equations for7, and (iii) it satisfies the quadrilateral constraints for

Theorem 2.10 Let7T be a compac3—manifold triangulation built fromm tetrahedra,
and letw be a (/n or 3n)—dimensional vector of integers. Thenis the (standard or
quadrilateral) vector representation of an embedded normal surfdcéfiand only if
w is admissible.

Although we can now reduce normal surfaces to vectoi®Thor R3", we still have
infinitely many surfaces to search through if we are seeking an “interéstiméace,
such as an essential 2—sphere or an incompressible surface. Therfglkeries of
definitions, due to Jaco and OertdH], allow us to reduce such searches to finite
problems by restricting our attention to what are knownersex normal surfaces

Definition 2.11 (Projective Solution Space) For any dimensidnwe define the
following regions inRY:

« The non-negative orthant ®is the region inRY in which all coordinates are
non-negative; that i) = {x ¢ RY|x > 0Vi}.

+ Theprojective hyperplane%is the hyperplane ilR? where all coordinates sum
to 1; thatis,J9 = {x ¢ RY| 3 x = 1}.

Note that the intersectio®® N J9 is the unit simplex inRY.

Let 7 be a compact 3—manifold triangulation built framtetrahedra. Thetandard
projective solution spacéor 7, denoted.”(7), is the region inR™ consisting of

all points in O™ N J™" that satisfy the standard matching equations. Likewise, the
quadrilateral projective solution spader 7', denoted.2(7), is the region inR3"
consisting of all points ir03" N J°" that satisfy the quadrilateral matching equations.

Since eachD® N J9 is the unit simplex and the matching equations are both linear and
rational, it follows that the standard and quadrilateral projective solufiaces are
(finite) convex rational polytopes iR™ andR3" respectively.
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It is clear from Theoren®.10that the non-zero vectors IiR™ or R®" that represent
embedded normal surfaces are precisely those positive multiples of poist&Zin or
2(T) that (i) are integer vectors, and (ii) satisfy the quadrilateral constraints

Definition 2.12 (Projective Image) Suppose thaie RY is not the zero vector. We
define theprojective imagef x, denotedx, to be the vectok/ ) x;. In other words,
X is the (unique) multiple ok that lies in the projective hyperplardé.

To avoid complications with vertex links and the empty surface, we define tjexive
image of the zero vector to be the zero vector. Tha0is; 0 (which doesnot lie in
the projective hyperplang).

Let S be an embedded normal surface in some triangulafiorfo keep our notation
clean, we write the projective images of the vector representati(®sand q(S) as
V(S andq(S) respectively.

Definition 2.13 (Vertex Normal Surface) Lef be a compact 3—manifold triangu
lation built from n tetrahedra, and leb be an embedded normal surfacedn We
call S a standard vertex normal surfadgéand only if v(S) (the projective image of
the standard vector representationS)fis a vertex of the polytope” (7). Likewise,
we call S a quadrilateral vertex normal surfacié and only if (S is a vertex of the
polytope 2(7).

Although vertex normal surfaces correspond to vertices of the pregesblution
space, this correspondence does not always work in the other diredtistead we
must restrict our attention to vectors that satisfy the quadrilateral cortstrain

Definition 2.14 (Solution Sets) Le¥ be a compact 3—manifold triangulation built
from n tetrahedra. Thstandard solution sdor 7 is the (finite) set of all vertices of the
polytope.#(7) that satisfy the quadrilateral constraints. Likewise,dhadrilateral
solution sefor 7 is the (finite) set of all vertices of the polytog®(7) that satisfy the
guadrilateral constraints.

The correspondence between solution sets and vertex normal suigauav an im-
mediate consequence of Theor2rhOand the fact that each projective solution space
is a rational polytope:

Corollary 2.15 Let7T be a compacd—manifold triangulation built frorm tetrahedra,
and letw be a (fn or 3n)-dimensional vector. Thew is the projective image of the
vector representation for a (standard or quadrilateral) vertex notrrfate if and only
if w is in the (standard or quadrilateral) solution set.
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We return now to the overview of a “typical normal surface algorithm” agigiin
Sectionl. Such algorithms typically work because we can prove that, if a 3—manifold
triangulation contains an “interesting” surface, then it contains an integegtirex
normal surface Examples of such theorems include:

» Jaco and Oertell] show that, if a closed irreducible 3—manifold triangulation
contains a two-sided incompressible surface, then such a surface aiats
standard vertex normal surface. Jaco and Tollefddh ¢xtend this result to
bounded manifolds, and Tollefso®q] shows that such a surface must also exist
as a quadrilateral vertex normal surface.

» Jaco and Tollefsonlfp] prove similar results for essential spheres in closed 3—
manifolds and essential compression discs in bounded irreducible 3—idanifo
in particular, they show that if such a surface exists then one can be fooongst
the standard vertex normal surfaces. With these results, they build aigsttith
solve problems such as connected sum decomposition, JSJ decompodgition an
unknot recognition.

We can therefore build such an algorithm by constructing the standardchdritpteral
solution set for our triangulation, and then searching through the soldtionse that
scales to an “interesting” normal surface.

The construction of the solution sets is, though finite, an exponentially slosegdure
in the number of tetrahedra The best known algorithm to date is describedinif is
essentially a variant of the double description method of Motzkin el 8], inodified
in several ways to exploit the quadrilateral constraints for greaterdspee lower
memory consumption.

The remainder of this paper is concerned mainly with ¢cbaversionbetween the
standard solution set and the quadrilateral solution set. Upon establisinngrsion
algorithms in both directions (Algorithms6and5.15), we finish with a new algorithm
for constructingthe standard solution set (Algorithinl?) that is orders of magnitude
faster than the current state-of-the-art.

We conclude this section with a brief discussiorid#al triangulations. These trian-
gulations, due to Thursto2], include vertices whose links are neither 2—spheres nor
discs, but rather closed surfaces with genus (such as tori or Kleind)otg removing
these vertices (and only these vertices), we obtain a triangulation of aampact
3—manifold. One of the most well-known ideal triangulations is the two-tetraimed
triangulation of the figure eight knot complement, discussed in detalldn [

Quadrilateral coordinates play a special role in ideal triangulations—tlmy as to
describespun normal surfacesvhich contain infinitely many triangular discs spiralling
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in towards the high-genus vertices. Such surfaces cannot be eafgdsn standard
coordinates at all, which is why we must restrict our attention in this papemtpact
3—manifold triangulations. The reader is referred to Tillma24] for a thorough
overview of spun normal surfaces.

3 Canonical Surfaces and Vectors

Although our eventual goal is to construct algorithms for converting batwtbe
standard and quadrilatersblution setswe begin in this section with the more modest
aim of converting between standard and quadrilatezators

One complication we face is that, whereas vectors in standard coordieatesent
unique normal surfaces, vectors in quadrilateral coordinates dd.aotrfia2.5). We

work around this uniqueness problem by introducing the noticzaaobnical surfaces
andcanonical vectoren standard coordinates. Although this allows us to map vectors
in quadrilateral coordinates to unigeanonicalvectors in standard coordinates and
uniquecanonicalsurfaces, we will find that these maps are not as well-behaved as we
might like them to be.

The structure of this section is as follows. We first define canonicahsesfand
canonical vectors and examine some of their basic properties. Followingetggidy
several additional maps between both surfaces and vectors; amasgstihps are the
quadrilateral projectionz: R™ — R3" and thecanonical extensioa: R3 — R™,
which convert back and forth between vectors in standard and quadallaoordinates.
We finish the section with Algorithr8.12 which shows how these conversions can be
performed in as fast a time complexity as possible.

Throughout this section, we assume that we are working with a compactrisfeida
triangulation7 built from n tetrahedra. We also allow a little flexibility with our
notation: the expressiof(V) will be used to refer to both the vertex linking surface
surroundingV (as presented in Definitic&3) and also its standard vector representa-
tion in R™M.

Definition 3.1 (Canonical Normal Surface) Aanonical normal surface the tri-
angulation7 is an embedded normal surface that does not contain any vertex linking
components.

The purpose of this definition is to resolve the ambiguities inherent in quadailate
coordinates. In particular, it gives us the following uniqueness ptigsewhich follow
immediately from Lemm&.5and Theoren2.10
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Lemma 3.2 Let S andT be canonical normal surfaces within the triangulatibn
Then the quadrilateral vector representatiorS ahdT are equal, that i)(S) = q(T),
if and only if surfacesS andT are identical.

Lemma 3.3 Letw be a3n—dimensional vector of integers. Thens the quadrilateral
vector representation of a canonical normal surfacg ifhand only if w is admissible.
Moreover, this canonical normal surface is unique.

Instead of thinking of canonical surfaces as having no vertex links, ameircstead
think of them as surfaces where it is impossiblegmovea vertex link. With this in
mind, we extend the concept from surfaces to vectors as follows.

Definition 3.4 (Canonical Vector) Letv be any vector inR™ (i.e., in standard
coordinates). We callv a canonical vectorf and only if (i) all triangular coordinates
of w are non-negative, but (ii) if we subtraet(V) for any e > 0 and any vertex link
£(V) then some triangular coordinate wfmust become negative.

In other words, for each vertex of the triangulation7 , the following property must
hold. Lett; j,,ti,,,-- -t b€ the coordinates iw corresponding to the triangular
normal discs surroundiny. Then all oft;, j,,t,,, ..., are atleast zero, and at
least one of these coordinateeiualto zero.

Essentially this definition states that (i) mightbe admissible (having non-negative
triangular coordinates), but (iiy — e/(V) canneverbe admissible.

We have already established two bijections between surfaces and vdttesen?.10
shows a bijection between embedded normal surfaces and admissible reetges

in R™, and Lemma3.3 shows a bijection between canonical normal surfaces and
admissible integer vectors IR®". We can now extend this list with a bijection between
canonical normal surfaces and admissitaeonicalinteger vectors iR ™.

Lemma 3.5 The standard vector representation of a canonical normal surface is a
canonical vector ilR™. Conversely, every admissible canonical integer vect®’th
is the standard vector representation of a (unique) canonical nornfetesu

Proof This result follows immediately from Theoreth10 by observing that, if an
admissibléntegervectorw € R is not canonical, then all of the triangular coordinates
surrounding some verteX are> 1, and sow = /(V) +w’ for some other admissible
integer vectomw’ . O
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We can observe that, if we restrict our attention to admissible integer vetttersye
have bijections between (i) canonical vectors in standard coordinatesasonical
surfaces, and (ii) vectors in quadrilateral coordinates and cananidaktes. It follows
then that we must have a bijection between canonical vectors in standadinzies
and vectors in quadrilateral coordinates; thatasmethod for converting between
coordinate systemd&Ne develop this idea further in Definitidh10

Although the “canonical” property gives us uniqueness results andtibijscthat

we did not have before, it is not particularly well-behaved. In partigutas clear
from Definition 3.4 that this property is preserved under scalar multiplication but not
necessarily under addition. However, we can salvage the situation a litdemgsthe
following result.

Lemma 3.6 If w € R™ is a canonical vector then soJXsv for any A > 0. Likewise,
if w € R™ is anadmissiblecanonical vector then so isw for any A > 0. Finally, if
w = X +y for admissible vectorsi, x,y € R™ andw is canonical then so ase and

y.

Proof This follows immediately from Definitior8.4 and the fact that the matching
equations are invariant under scalar multiplication. |

We proceed now to define several mappings that express the relat®stipeen
canonical surfaces, non-canonical surfaces, vectors in sthodardinates and vectors
in quadrilateral coordinates. Lemn®ll summarises the interplay between these
relationships. We begin by presenting notation for the domains and rahgjesse
functions.

Notation 3.7 Let S denote the set of all embedded normal surfaces (up to normal
isotopy), and leS. C S denote the set of all canonical normal surfaces. Rt and

R3" denote the set of all admissible vectordmand3n dimensions respectively, and
let ]RZ{‘C c RI" denote the set of all admissible canonical vectorgrindimensions.
Likewise, IetZZl” andZﬁ” denote the set of all admissible integer vectorgrirand3n
dimensions respectively, and @grc c 7" denote the set of all admissible canonical
integer vectors ir'n dimensions.

It follows then that standard vector representation is a bijectiors — Z" that
takes the subsef; C S to the subse%;f‘c C ZIh. Likewise, quadrilateral vector
representation is a many-to-one functign S — Z2" that becomes a bijection when
restricted toSc.



Converting between quadrilateral and standard solutiots se 15

Definition 3.8 (Represented Surface) Letbe an admissible integer vectorRf".
Then therepresented surfacef w, denotedo,(w), is the unique embedded normal
surface with standard vector representatien(as noted in Theorer2.10. Thus
oy ZM — S is the inverse function te: S — 7.

Likewise, letw be an admissible integer vectorR¥". Then therepresented surface

of w, denotedsq(w), is the unique canonical normal surface with quadrilateral vector
representatiomw (as noted in Lemma.3). Thusog: 73" — S, is the inverse function

to the restrictiong: S¢ — Z3".

Definition 3.9 (Canonical Part) LeS be an embedded normal surface within the
triangulationZ. The canonical partof S, denotedxg(S), is the canonical normal
surface obtained by removing all vertex linking components f@nt follows that kg

is a functionks: S — S¢ whose restriction t&. is the identity.

Similarly, let w be any vector inR”. The canonical partof w, denoteds,(w), is
the unique canonical vector that can be obtained froioy adding and/or subtracting
scalar multiples of vertex links. It follows that, if we restrict our attention to adihie
vectors, theny is a functions,: R7" — RZT. whose restriction &7} is the identity.

The canonical part of a vecter € R™ can be constructed as follows. Let the vertices
ofthe triangulation b&/1, . . . , Vi, and for eachi let A\; be the minimum of all triangular
coordinates inw that correspond to triangular normal discs surroundifigso w is
canonical if and only if ever\j = 0). Thenxy(W) =w — A14(V1) — ... — Amf(Vm).

We now come to the point of defining conversion functions between veotstandard
coordinates and vectors in quadrilateral coordinates.

Definition 3.10 (Projection and Extension) Let € R™ be any vector in standard
coordinates; recall that thenTcoordinates ofw correspond to 8 quadrilateral disc
types and 4 triangular disc types. Theguadrilateral projectionof w, denotedr(w),
is defined to be the vector iR®" consisting of only the 8 quadrilateral coordinates
for w. That is, if

W = (ty1,t12,t13,t14, Q11,012,013 ;
121,122,123, 124, Q2,1,02,2, 02,3 ;

m

,Qn,S) S ]R 9

then
(W) = (011,012,013 G21,02.2, G235 - -+, Gn3) € R
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Conversely, leww € R3" be any admissible vector in quadrilateral coordinates. The
canonical extensioof w, denoted:(w), is defined to be the unique admissible canon-
ical vector in]Ri;[‘C whose quadrilateral projection 8.

It follows that, if we restrict our attention to admissible canonical vectors) the
quadrilateral projectionr : RZJ‘C — R3" is the inverse function to the canonical exten-
sione: R3" — RZL.

It does need to be shown that canonical extension is well-defined; théuaisfor

any admissiblev € R3" there is a unique admissible canonigak R;?C for which

m(X) = w. Lemmata3.3 and3.5together show this to be true in the integers; since
admissibility and canonicity are invariant under positive scalar multiplication this is
also true in the rationals, and because the matching equations are ratidialezin

this fact extends to the reals.

Quadrilateral projection and canonical extension are true “convefsiwtions”, in

the sense that i is any embedded normal surface themapsv(S) — q(9), and if

Sis also canonical then mapsq(S) — v(S). The advantage of the broader definition
above is thatr ande can also be applied to rational and real vectors, which means that
we can use them to convert not just vector representations of ssitfatealso arbitrary
admissible points within the projective solution spaces.

This brings us to the end of our list of mappings. To conclude this sectiotriwg
these mappings together and show how they interact (Le®uhd, and then we
describe how the conversiomsande can be performed in as fast a time complexity
as possible (Algorithn3.12).

Ov
S ZP ——R"
v |
|
q LI
|
Ks 73 ——R3N | Ky
N |
q N\
N
g [SEEAN
‘ v 7 hY\ \I;
n ( 5 n
SC o Za,c Ra,c
\

Figure 4: A commutative diagram of mappings

Lemma 3.11 Consider Figurel, which shows the interactions between the maps
q, oy, 0q, Ks, ky, ™ @nde. Note that some of these maps appear twice—once in their
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full generality, and once when restricted to canonical surfaces aongecAll of the
unnamed hooked arrows in this diagram are inclusion maps. Then the fajléadts
are true:

(i) Figure4is a commutative diagram.

(if) All double arrows in this diagram represent inverse functions. Tlakiofes the
pairv,oy: S = Z[", their canonical restrictions,o,: Sc = Z.%, the pair
d,0q: Sc = Z3", and the pairr,e: R, = R3".

(i) Of the three vector-to-vector mapsr( ¢ and ry), only = is linear* The
remaining maps andk, preserve scalar multiplication (that &\w) = Ae(w)
and ky(AwW) = Ary(W) for A > 0), but they need not preserve addition. The
non-linear maps andx, are drawn in the diagram with dotted lines.

Proof These observations are all straightforward consequences of thametkfini-
tions, and we do not recount the details here. The one additional atiservequired
is that vertex linking surfaces only contain triangular discs, which is ghyks = q
andr o ky = 7 (Sinceq andr ignore triangular discs entirely). O

Note that some of the maps described by Len®rid are more general than Figude
indicates. In particular, botlr and x, are defined on all "—dimensional vectors,
admissible or not. The commutative relationship «, = 7 still holds in this more
general setting, but we do not worry about this here.

We return now to the two key conversion functions: the quadrilateral gtioje
71 R™ — R and the canonical extension R3" — R[%. It is clear how to
computer(w) quickly (just drop all triangular coordinates from), but it is less clear
how to computes(w) quickly.

A simple algorithm for computing(w) might run as follows. Given a quadrilateral
vectorw € R3", we solve the standard matching equations using typical methods of
linear algebra to obtain a matching set of triangular coordinates (there witiamg
solutions but any one will do), and then we apply to make the resulting vector in
R canonical.

However, this algorithm is slow—to solve the standard matching equationsegsqu
O(n) time for a simple implementation, though more sophisticated solvers can improve

!By “linear”, we only require here that(Ax + py) = Aw(x) + pn(y) for A\, x > 0. Thisis
because the domairis,” and R7", are not closed under multiplication by< 0.
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upon this a little? It turns out that for the specific problem of computingv) we can
do much better, as seen in the following result.

Algorithm 3.12 Letw € R3" be any admissible vector in quadrilateral coordinates.
Then the following algorithm computes the canonical extens(w), and does so in
O(n) time.

We begin by constructing a vector

X = (ty1,t12,t13,t14, 01,1, 01,2, 01,3 ;
t21,122,103,124, 021,022,023 ;
m
’ Qn,3 ) eR

whose quadrilateral coordinatgs are copied directly fromv, and whose triangular
coordinateg; ; are initially unknown. Then, for each vert&kof the triangulatiori
we perform the following steps:

1. Choose anarbitrary triangular disc type surroundfingnd set the corresponding
triangular coordinate of to zero.

2. Run through all triangular disc types surroundiigising a depth-first search,
beginning at the disc type chosen in step 1 above. By “depth-firstiseave
mean that after visiting some triangular disc type, we recursively visit the thre
adjacent triangular disc types in turn (ignoring those that have been visited
already).

Each time we visit a triangular disc type, we set the corresponding triangular
coordinate ofx as follows. Suppose we are visiting the triangular disc type
corresponding to coordinatg,, having just come from the (adjacent) triangular
disc type corresponding to coordindfg. Then one of the standard matching
equations forT is of the formti o + O p = tjc + Qj,4. Since we already have
values fott; ¢, ¢ , andqj 4, we can use this matching equation to set the unknown
coordinatet , accordingly.

3. Once this depth-first search is complete, we have values assignetianglllar
coordinates ok surroundingV. Let A be the minimum of these triangular
coordinates; we now subtrast(V) from Xx.

2\We can improve upor®(n®) by exploiting the sparseness and rationality of the stahda
matching equations; see for instance thé@(n>®) iterative algorithm of Eberly et al8].

3Adjacentin the sense of the standard matching equations: two adjdisertypes sit within
adjacent tetrahedra, and their boundary arcs within thexemmtetrahedron face are parallel.
Refer to Figure? for an illustration.
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Proof First we note that the algorithm is well-defined; in particular, that each depth
first search in step 2 runs to completion (that is, we visit every triangulartgjze
surroundingV). This follows immediately from the fact that each vertex lié(K) is
connected.

Our next task is to prove the algorithm correct. Consider step 1, whergetvan
arbitrary triangular coordinate surrounding vertéxo zero. Suppose instead that we
set this coordinate ta. By examining the form of the standard matching equations
in step 2, we see that thisu would propagate through every triangular disc type
surroundingV; in other words, by the end of step 2 we would have added an extra
1l(V) to the solutionx. However, this would then cause us to subtract an gxt(¥)

from x in step 3. Thereforéhe value given to the first triangular coordinate in step 1
does not affect the final solution

Sincee(w) is known to satisfy the standard matching equations, and since the only
coordinate assignment in our algorithm that dnesuse the standard matching equa-
tions (step 1) turns out to be irrelevant, it follows thxat =(w). That is, the algorithm

is correct.

Finally, we observe that the algorithm runs@{n) time. Each of the B8 triangular

disc types in7 is visited precisely once in steps 1 and 2; moreover, for each disc
type there is a small constant number of adjacencies (three) to examinalowsf
that, assuming we are careful with our implementdtighe time complexity of this
algorithm is indeedD(n). ad

As a final observationgs must construct a vector of lengtm by definition, which
means tha&nyalgorithm for computing:(w) must run in at leasD(n) time. Therefore
the O(n) time complexity of Algorithm3.12is the fastest time complexity possible.

4 The Easy Direction: Standard to Quadrilateral

At this point we are ready to build algorithms for converting between the atdrahd
guadrilaterabolution setslIn this section we consider the simpler direction: converting
the standard solution set into the quadrilateral solution set.

“For instance, when visiting a disc type in step 2, we do notcsetiirough all other disc
types to find which are adjacent; instead we compute thisnmdtion directly in constant time.
Likewise, we do not run through all disc typesin for steps 1 and 3 when we only require
those surrounding a single vertsk
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We begin by proving some necessary and sufficient conditions forxvedemal
surfaces (Lemmaté 1and4.3). We then show that the canonical part of evguadri-
lateral vertex normal surface is alsostandardvertex normal surface (Lemnéb),
and use this as the basis for our standard-to-quadrilateral convatgmithm (Algo-
rithm 4.6).

Once again, we assume throughout this section that we are working wittm@aco
3—manifold triangulatior?” built from n tetrahedra.

Lemma 4.1 Let S be an embedded normal surfacelinfor whichv(S) # 0. If S

is a standard vertex normal surface, then whene(@ = «u + Sw for admissible
vectorsu,w € R™ and constants., 3 > 0, it must be true that both andw are
multiples ofv(S). Conversely, ifS is not a standard vertex normal surface, then
there exist embedded normal surfac¢ésand W and rationalso, 5 > 0 for which
V(S = av(U) + 5 v(W) but where neithey(U) norv(W) are multiples of(S).

Moreover, these statements are also true in quadrilateral coordinates, wireplace
“standard”v(-) andR™ with “quadrilateral”,q(-) andR3" respectively.

In essence, we are taking a basic fact about polytope vertices anthgttbat it holds

true even when we restrict our attentiorattmissiblesectors within the polytope. Note

that the two statements of this lemma are not exactly converse; instead each is a little
stronger than the converse of the other, making them slightly easier to dapdoion.

Proof The proofs are identical in standard and quadrilateral coordinates; viwe
consider standard coordinates only.

SupposeS is a standard vertex normal surface. Then the given conditiom and w
follows immediately from the fact thai(S) is a vertex of the polytope” (7).

On the other hand, suppose ti&it not a standard vertex normal surface. TRE is
not a vertex of the polytope”(7"), and so we can find rational vectarsw € . (7)
on opposite sides of(S); that is,u, w # v(S) and %(u +w) =V(S).

We show that bothu andw satisfy the quadrilateral constraints as follows. Without
loss of generality, suppose thatdoesnot satisfy the quadrilateral constraints. Then,
sinceV(S) does, there must be some quadrilateral coordingtehat is zero inv(S)

but strictly positive inu. It follows that this coordinate is negative w, contradicting
the claim thatw € .(7) (recall that.#(7) lies in the non-negative orthant).

Therefore bothu and w are rational vectors in”(7) that satisfy the quadrilateral
constraints. It follows from Theorei10that we can find embedded normal surfaces
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U and W for which v(U) = u and v(W) = w, whereupon we find that(S) =
av(U) + gv(W) for «, 8 > 0 but neitherv(U) nor v(W) is a multiple ofv(S). O

Note that Lemmat.1 has slightly different implications in standard and quadrilateral
coordinates. For instance, the conditiofs) # 0 requires the surfac& to be non-
empty, butq(S) # 0 requires thatS is not a union of vertex links. Other differences
arise regarding scalar multiplication. For example, for certain types of isems
surfaceS, we have that/(U) is an integer multiple of/(S) if and only if the surfaceJ
consists of zero or more copies 8f On the other handy(U) is an integer multiple of
q(S if and only if U consists of zero or more copies 8fwith possibly some vertex
links added or subtracted.

Our next result allows us to identify vertex normal surfaces basedyparewhich
coordinates are zero and which are non-zero.

Definition 4.2 (Domination) Letx andy be vectors irRY. We say thak dominates
y if, whenever a coordinate is zero, the corresponding coordingtas zero also. We
say thatx strictly dominatesy if (i) x dominatesy, and (ii) there is some coordinate
y; that is zero for which the corresponding coordingté non-zero.

For instance, irR® the vector (05, 3) strictly dominates (®, 0), the vectors (10, 2)
and (30,1) both dominate each other (but not strictly), and neither o2,®) or
(7,0,4) dominates the other.

When discussing domination we us@ndX interchangeably, since boihandx have
zero coordinates in the same positions.

Lemma 4.3 LetS be an embedded normal surfacelirfor whichv(S) # 0. If Sisa
standard vertex normal surface, then whenay8y dominatesi for some admissible
vectoru € R™, it must be true thati is a multiple ofv(S). Conversely, ifS is not a
standard vertex normal surface, then there is some standard vertealrsanfacel
for which v(S) strictly dominatess/(U).

Moreover, these statements are also true in quadrilateral coordinatas, wereplace
“standard” v(-) andR™ with “quadrilateral”,q(-) andR3" respectively.

As in Lemmad.1, each half of this lemma is a stronger version of the converse of the
other. While this makes the statement of the lemma a little less transparent, it also
makes both halves easier to use in practice (as we will see later in this section).
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Proof Again the proofs in standard and quadrilateral coordinates are idertea;
we consider only standard coordinates.

Suppose thabis a standard vertex normal surface and t{& dominatesu for some
admissibleu € R™. If u = 0 thenu is clearly a multiple ofv(S), so assume that
u 0. Letw = v(S + ¢(v(S — u) for some smalk > 0; that is,w is an extension
of the line joiningu andv(S), just beyondv(S).

Because/(S) andu satisfy the standard matching equations, so doeBecause/(9
dominatesu, we can keep the coordinateswinon-negative by choosingsufficiently
small. Finally, because(S) satisfies the quadrilateral constraints andéhtroduces
no new non-zero coordinates, it follows thatsatisfies the quadrilateral constraints
also. Thereforav is an admissible vector. Since {Le)v(S) = w + eu, we have from
Lemma4.1thatu is a multiple ofv(S).

Now suppose tha$ is not a standard vertex normal surface. Eebe the minimal-
dimensional face of the polytop#’(7") containingv(S), and letu be any vertex of.
We aim to show thatt = v(U) for some standard vertex normal surfdde and that
V(9 strictly dominatesu.

Consider any coordinate that is zerov(B); without loss of generality let this be
(though it could equally well be a triangular coordinate). The hyperptpne- 0 is a
supporting hyperplane fo#”(7), and since it containg(S) it must contain the entire
minimal-dimensional fac&. Therefore the coordinatg ; is zero at every vertex of
F, includingu.

Running through all such coordinates, we see thats dominated byv(S); this
domination also shows thatsatisfies the quadrilateral constraints. Since our polytope
is rational andu is a vertex it follows thau = v(U) for some standard vertex normal
surfaceU.

Finally, because is not a standard vertex normal surface we ha{® £ u; the first
part of this lemma then shows thatcannot dominat&(S), which means that must
be strictly dominated bw(S). ad

One simple but useful consequence of Lenth&is the following.

Corollary 4.4 Every standard vertex normal surfacednis either (i) canonical, or
(ii) consists of one or more copies of the link of a single verted of Moreover, the
link of a single vertex ofl is always a standard vertex normal surface.
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Proof Let S be a standard vertex normal surfaceZin and suppose thée® is not
canonical. TherS contains at least one vertex linking component; let this be the link
¢(V). It follows that v(S) = ¢(V) + u for some non-negativea € R™. Thusv(S
dominate(V), and from Lemma.3we have thav(S) is a multiple of the vertex link
oV).

Now consider a single vertex link(V). If this vertex link is not a standard vertex
normal surface, then from Lemm&3 there is some non-empty embedded normal
surfaceU for which ¢(V) strictly dominates/(U). Thus the surfac& contains only
triangular discs surrounding the vert®x and moreover at least one such triangular
disc type does not appear bh at all.

By following the standard matching equations around the vértese find that, because
sometriangular coordinate surrounding is zero inv(U), thenall such coordinates
must be zero irv(U). ThusU is the empty surface, giving a contradiction. a

We proceed now to the key result that underpins the standard-toHgieid conver-
sion algorithm.

Lemma 4.5 The canonical part of every quadrilateral vertex normal surface is
also a standard vertex normal surfacdin

Proof Let S be a quadrilateral vertex normal surface, and suppose that theicainon
part x5(S) is nota standard vertex normal surface. Then from Lendniathere exist
embedded normal surfacelsandW wherev(xs(S) = av(U) + gv(W) for o, 3 > 0
and where neithev(U) nor v(W) is a rational multiple of/(xs(S)). Because:s(S) is
canonical, it follows from Lemma&.6that bothU andW are canonical also.

Using the fact that the quadrilateral projectianis linear and thatr - v = q
(Lemmag3.11), it follows that the analogous relationshigxs(S) = a q(U) + 5 q(W)
must hold in quadrilateral coordinates. Singe ks = (, this simplifies toq(S) =

aq(U) + 5q(W).

Finally, becauses is a quadrilateral vertex normal surface, Lem#héa shows that

both q(U) and gq(W) must be rational multiples of(S = q(xs(S). Since the

canonical extension preserves scalar multiplication and] = v on canonical surfaces
(Lemma3.11again), this implies that botk(U) and v(W) are rational multiples of
V(ks(9)), a contradiction. ad

We close this section with our first algorithm for converting between solutist s
the conversion from the standard solution set to the quadrilateral solwionTéis
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is the easier direction in all respects—the algorithm is conceptually simple (&e us
Lemma4.5to find potential solutions and Lemnda3 to verify them), it is simple to
implement, and it has a guaranteed small polynomial running’t{miich is unusual

for vertex enumeration problems).

Algorithm 4.6 Suppose we are given the standard solution set for the triangulation
T, and that this standard solution set consists okthectorsv, . ..,vx € R™. Then

the following algorithm computes the quadrilateral solution setlforand does so in
O(nk?) time.

1. Compute the quadrilateral projectiong/1), . .., m(vk),; recall that this merely
involves removing the triangular coordinates from each vector. Thraay amy
zero vectors that result, and label the remaining non-zero vegtors. ,Q €
R3",

2. Begin with an empty list of vectolls. Foreach = 1,... K, test whether the
vectord; dominates any othey; for i # j. If not, insert the projective imagg
into the listL.

3. Once step 2 is complete, the listholds the complete quadrilateral solution set
for T .

Proof Our firsttask is to prove the algorithm correct. We approach this by (yistp
that every member of the quadrilateral solution set does appear in thédirlal and
then (ii) showing that any other vector does not appear in the findl list

+ Supposev € R3" is a member of the quadrilateral solution set for Thenw
is non-zero, and furthermoke = q(S) = q(ks(S)) for some quadrilateral vertex
normal surfaceS. From Lemmad.5, k4(9 is also astandardvertex normal
surface, and s@(xs(9) is a member of the standard solution set. Therefore
V(ks(S) = v; for somei, whereupon Lemma&.11gives usw = G(xrs(S) =
m(V(ks(9)) = m(vi). Thatis,w appears in step 1 a8 = q; for somei’.
Suppose now thatr does not appear in the final list This can only be because
gy dominatesyj, for somej’ # i’. From step 1 we know thaij; = m(v;) for
some vectow; # v; in the standard solution set. Moreover, neithiemnor v;
is a multiple of a vertex link (otherwisg;: or g would be zero); therefore
Corollary 4.4 shows that bottv; andv; are canonical, and sa = ¢(q;) and

°Of course this must be polynomial in not justbut also the size of the input, i.e., the

standard solution set. There are families of triangulation which the standard solution set is
known to have size exponential in see p] for some examples.
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Becausen;; dominatesy, it follows from Lemma4.3that q; is a multiple of
g Sincee preserves scalar multiplication; = £(q;/) is also a multiple of
vj = (). Finally, sincev; andv; both belong to the standard solution set,
their coordinates must both sum to one and we obtaia v;, a contradiction.

+ Suppose now thav € R3" is nota member of the quadrilateral solution set for
7. From Lemmad.3there is some quadrilateral vertex normal surfacéor
which w strictly dominategj(U), and from the previous argument the projective
imageq(U) appears in step 1 as somge. This domination ensures that is
tossed away in step 2, and so does not appear in the final list

We see then thdt contains precisely the quadrilateral solution setToas claimed.
Note that step 2 ensures thiatcontains no duplicate vectors (i.e., tHatis a “true
set”); otherwise each would dominate the other. We finish by observingathat
vector operations tak®(n) time and that steps 1 and 2 requidék) and O(k?) vector
operations respectively, giving a running time@gnk?) in total. O

5 The Hard Direction: Quadrilateral to Standard

We come now to our second conversion algorithm for solution sets: theskzion
from the quadrilateral solution set to the standard solution set. Although tthig is
more difficult conversion, with a messy implementation and a worst-case extiain
running time, it is ultimately the more useful. In particular:

|t gives us genuinely new surfaces, which Lem#nashows is not true in the
reverse direction. This means that we can potentially learn new information
about the underlying triangulation and 3—manifold.

It forms the basis for a newnumerationalgorithm to generate the standard
solution set, which runs orders of magnitude faster than the currentodttie-
art.

We begin with some prerequisite tools in Sectlmf, where we introduce some ad-
ditional vector maps and then discuss polyhedral cones and their interadtiothe
guadrilateral constraints. Following this, Sect®b@is devoted to presenting and prov-
ing the quadrilateral-to-standard solution set conversion algorithm (dhgots.15).
We finish in Sectiorb.3with a brief discussion of time complexity (Conjectr€.6
and the new enumeration algorithm described above (Algor8Hi). As discussed
back in the introduction, this final enumeration algorithm is the real “endyatdd
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of this paper, and we devote all of Sectiério testing its performance in a practical
setting.

As before, we assume throughout this section that we are working withmgaux
3—manifold triangulatior?” built from n tetrahedra.

5.1 Vector Maps and Polyhedral Cones

To present and prove the quadrilateral-to-standard conversionitaigofAlgorithm
5.15, we need to call upon two new families of vector maps, both of which involee th
vertices of the triangulatio .

Definition 5.1 (Partial Canonical Part) Let the verticesbfbe labelledvy, . .., Vm,
and letw be any vector irR™. For eachi = 1,...,m, theith partial canonical part
of w is denotedm\(,i)(w) and is defined as follows. Let € R be the largest scalar
for which all of the coordinates off — A\¢(V;) that correspond to triangular disc types
surroundingV; are non-negative. Then we defirf (W) = w — M(V}).

Essentially/-a\(,i)(w) is a “restricted” canonical part af where we only allow copies of
the vertex link¢(V;) to be added or subtracted. It is simple to see that applying this
procedure to all vertices gives the usual canonical parthat is,x, = n\(,l) 0...0 m\(,m) .

Like xy, the partial mapsc\(,i) are not linear but do preserve scalar multiplication.

Definition 5.2 (Truncation) Let the vertices oI be labelledVs,...,Vny, and let
w be any vector inR™. For eachi = 0,..., m, theith truncationof w is denoted
7i(w), and is defined as follows. We first locate all coordinatewsithat correspond
to triangular disc types surrounding the vertidgss, . . ., V. Thenr(w) is obtained
from w by setting each of these coordinates to zero.

For convenience, iS5 C R™ is any set of vectors then we lef(S) denote the corre-
sponding set ofth truncations; that is;;(S) = {n(w) |w € S}.

The 0th truncatiorrp(w) is most severe, setting all triangular coordinatewito zero.
At the other extreme, theth truncation has no effect whatsoever, with(w) = w.
Each truncation map is linear, and it is clear that 7; = 7min(,j). Note that truncation
does not preserve admissibility, singgéw) might not satisfy the standard matching
equations even ifv does.

In general it is impossible to undo truncations precisely. However, forisgible
vectors the errors are controllable, as seen in the following result.
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Lemma 5.3 Consider any two admissible vectotsy € R™. If 1i_1(X) = 7i_1(y),
thenti(xX) = 7i(y) + pl(V;) for someu € R.

Proof Becauser_; does not affect any quadrilateral coordinates, we hay@ =
w(y). With Lemma3.11we can convert this inta,(x) = xy(y), whereupon the result
is a simple consequence of Definiti8re. m|

For the remainder of this section we focus on polyhedral cones. Thessed heavily
in the proof of Algorithm5.15 and we concentrate in particular on their interaction
with the quadrilateral constraints.

Definition 5.4 (Polyhedral Cone) Apolyhedral conein RY is an intersection of
finitely many closed half-spaceskitf', all of whose bounding hyperplanes pass through
the origin.

A pointed polyhedral cona RY is a polyhedral cone ifR? for which the origin is
an extreme point. Equivalently, it is a polyhedral coneRif that has a supporting
hyperplane meeting it only at the origin.

Itis clear that every polyhedral cor@is convex and closed under non-negative scalar
multiplication (that is X,y € C implies Ax + uy € C for all A\, x > 0). An example

of a polyhedral cone that is not pointed is the infinite priéme R3|xy,x, > 0},

for which any supporting hyperplane containigmust also contain the entire line
X1 =X = 0.

Figure 5: A pointed polyhedral cone with five basis vectors

Definition 5.5 (Basis) LetS be any set of vectors iRY. By abasisfor S, we mean
a subset of vectorB C S for which
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(i) every vector ofS can be expressed as a non-negative linear combination of
vectors inB;

(i) if any vector is removed fronB then property (i) no longer holds.
It is straightforward to see that we can replace (ii) with the equivalenigrty

(ii”) no vector inB can be expressed as a non-negative linear combination of the
others.

Although our definition of a basis is designed with polyhedral cones in mind, it
deliberately broad; this is because we will need to apply it not only to pohghednes
but also to non-convex sets, such as skeni-admissible part® be defined shortly.
Note that for general setS, property (i) does not work in reverse—there might well
be non-negative linear combinations of vector8ithat are not elements of the s&t

For a pointed polyhedral corg, the vectors in a basis correspond to the edges of the
cone; these edges are also knowm@semal rayof C. Figure5 illustrates a pointed
polyhedral coneC with a supporting hyperplankl as described by Definitiob.4;

the five points marked in black together form a basis@or The basis for a pointed
polyhedral cone is essentially unique and can be used to reconstrectibeas noted

by the following well known results.

Lemma 5.6 Every polyhedral con€ has a finite basis. Moreover, & andB' are
both bases for pointedpolyhedral conéC, then there is a one-to-one correspondence
betweerB andB' that takes each vector to a positive scalar multiple of itself.

Lemma5.7 LetB c RY be a finite set of vectors for which

(i) no element oB can be expressed as a non-negative linear combination of the
others;

(i) there is some hyperplanid c RY passing througl® for which every vector
of B lies strictly to the same side &f (in particular, none of these vectors lie
within H ).

Then the set of all non-negative linear combinations of vectoB forms a pointed
polyhedral cone withB as its basis.

Some pairs of basis vectors adjacent in the sense that the corresponding edges of
the cone are joined by two-dimensional fa€em Figure5 above, adjacent pairs of
basis vectors are marked by dotted lines. We define adjacency formatijlass.

®Note that the only one-dimensional faces of a polyhedrabcme its extremal rays, i.e.,
rays of the form{Ab| A > 0} whereb is a basis vector.
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Definition 5.8 (Adjacency) Letb andb’ be two distinct basis vectors for a pointed
polyhedral coneC. We defineb andb’ to beadjacentif the smallest-dimensional face
of C containing bothb andb’ has dimension two.

Bases of polyhedral cones provide a very limited form of uniquenesnwdking
non-negative linear combinations, as seen in the following simple lemma.

Lemma5.9 LetB = {by,...,bx} be a basis for a pointed polyhedral cobe- RY.

If someb, € B can be written as a non-negative linear combination of basis vectors
(thatis,by = > \ib; where all\;i > 0), then this linear combination must be the trivial

b, =b,. Thatis,A\r =1 andXj =0 fori #r.

Proof Suppose we have some non-negative linear combindtjor- > A\ib;. |If

Ar < 1 then we obtairb, as a non-negative linear combination of the other basis
vectorsb; (i # r), in violation of Definition5.5. Therefore)\; > 1, and we can
subtractb, to obtain0 as a non-negative linear combinatior= Y \b;.

Since our cone is pointed, it has a supporting hyperpkrier which 0 € H but every
b; lies strictly to one side oH. The only way to obtain this with non-negatiwe is to
setevery\/ = 0, showing our original linear combination to be the trivial= b,. 0O

The uniqueness in Lemnt&9 is limited in the sense that it only holds whén is

a basis vector. In general, an arbitrary paine C might well be expressible as a
non-negative linear combination of basis vectors in several differagswEven for
basis elements, it should be noted that Lenfn®scan fail for non-pointed cones.

An even weaker form of uniqueness exists for combinations of adjheesig vectors,
and indeed can be used to completely characterise adjacency as follows.

Lemma5.10 LetB = {bs,...,bx} be a basis for a pointed polyhedral cdbe- R,
Two distinct basis vectotts;, bs € B are adjacent if and only if, whenevgb, 4+ nbs =
> Aibi for p,m, Ai > 0, we must have\; = 0 for everyi #r,s.

In other wordsh, andbg are adjacentif and only if any non-negative linear combination
of basis vector®, andbg canonly be expressed as a non-negative linear combination
of basis vectord, andbs.

Proof To prove this we use two equivalent characterisations of faces fohedigl
coneg, both of which are described by Brendsté

"Although these characterisations are equivalent for pplg$ and polyhedra, they are not
equivalent for general convex sets.
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(@ AsetF C CisafaceofCifandonlyif F=C, F=0,orF =CnH for
some supporting hyperplaré;

(b) AsetF C Cis a face ofC if and only if (i) F is convex, and (ii) whenever
the open line segmenx,(y) contains a point ir for somex,y € C, the entire
closed line segmenk]y] liesin F.

We also note that every face of a polyhedral cone (and thus eveppdium hyperplane
above) must pass through the origin.

Suppose the basis vectdss and bs are adjacent, and thatb, + nbs = > A\ib; for
somepu,n, Ai > 0. Let F be the smallest-dimensional face Gfcontaining bothb;,
and bg; since F is two-dimensional, it cannot contain any other basis vebtoior

i #£r1,S.

Using (a) above, we can write = C N H for some supporting hyperplaré passing
through the origin. We see that andbg lie in H and every other basis vector lies
strictly to one side oH, whereupon our non-negative linear combination must have
Ai = 0 for everyi #r,s.

Suppose now that the basis vectésand bs are not adjacent. Le& be the two-
dimensional plane passing through bs and the origin; the non-adjacency lof and

bs shows thatG cannot be a face o€. Therefore, by (b) above, there are points
X,y € C for which (x,y) meetsG but [x,y] Z G.

Letz € (X,y) N G. Because € G we can writez = ub; + nbs for someu,n > 0.
On the other hand, we can also wrizeas a non-trivial convex combination &fand
y. Since k,y] ¢ G at least one ok andy cannot be expressed purely in termspf
andbs, and we obtaire = pb, + nbs = > Ajb; where every\; > 0 and some\; > 0
fori#r,s. ad

There are other characterisations of adjacency, such as the algatmtaiombinatorial
conditions described by Fukuda and Prod@jh However, Lemma.10will be more
useful to us when we come to the proof of Algorittnis

The double description methodlevised by Motzkin et al.19] and improved upon

by other authors since, is a standard algorithm for inductively convettisgt of
half-spaces that define a polyhedral cone into a basis for this same Tha&louble
description method plays an important role in the standard enumeration of Inorma
surfaces; the reader is referred®for both theoretical and practical details. Although
we do not explicitly call upon the double description method here, we do regne

of its core components, which is the following result.
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Lemma 5.11 Let C c RY be a pointed polyhedral cone with baSisand letH be

a half-space defined by the linear inequakily= {x € R%|x -h > 0}. Then the
intersectionC N H is also a pointed polyhedral cone, and we can compute a basis for
CnNH as follows.

Partition the basi8 into setsy = {b € B|b-h=0},S; = {beB|b-h >0} and
S ={beB|b-h<0}. Thenabasis fo€E NH is

SOUS+U{(u-h)w—(w-h)u uecsS,andwec S_, }

(u-h) —(w-h) u,w are adjacent basis vectors@©f

x-h>0

Figure 6: Intersecting a pointed polyhedral cone with a nali+r$pace

This procedure is illustrated in Figufe For further details on the double description
method (including Lemm&.11), the reader is referred to the excellent overview by
Fukuda and Prodor9].

When we come to proving Algorithrs.15 we will need to work with restricted
portions of polyhedral cones that satisfy the quadrilateral constraliis. motivates
the following definition.

Definition 5.12 (Semi-Admissible Part) Consider any set of vect8rs R™". The
semi-admissible paf S, denoteda(S), is the subset of all vectors i8 that satisfy
the quadrilateral constraints.

We call this thesemiadmissible part because we deliberately make no mention of
non-negativity or the matching equations. This is essential—in AlgorBiid we

deal with vectors that satisfy the quadrilateral constraints but that canregative
coordinates, and in the corresponding proof we teketruncations of these vectors
which can break the matching equations.
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It is important to note that the semi-admissible part of a polyhedral éney well
be non-convex, and so might not be a polyhedral cone in itself. Netesgt$a(C)
remains closed under non-negative scalar multiplication.

The following result shows that, for “sufficiently non-negative” pointgalyhedral
conesC, bases forIC and bases for(C) are tightly related.

Lemma 5.13 Let C be a pointed polyhedral cone R™ where, for everyx € C,
the quadrilateral coordinates wfare all non-negative. B is a basis forC, then the
semi-admissible pait(B) forms a basis for(C). Conversely, every basis for(C)
can be expressed in the form{B) whereB is a basis forC.

Proof Suppose thaB = {bs,..., bk} is a basis forC.

e SinceB is a basis it is clear that every € «(C) C C can be expressed as
X = > Aibi with all A\j > 0. Furthermore, if\; > 0 for any b; that doesnot
satisfy the quadrilateral constraints, the non-negativity conditio€ @nsures
that x = Ajb; 4 ... cannot satisfy the quadrilateral constraints either. Thus
X = > Ajbj is actually a non-negative linear combination of vectora(B).

» Since no element dB can be expressed as a non-negative linear combination of
the others, the same must be truex¢B) C B.

It follows by Definition5.5that «(B) is a basis for(C).

Conversely, leB’ be a basis fory(C), and letB = {bs, ..., bk} be some basis fo€.
For eachb; € a(B), we modify B as follows.

« SinceB' is a basis for(C), we can expresb; as a non-negative linear combi-
nation of elements d8’; we mark this linear combination§ for later reference.
BecauseB is a basis foIC, we can expandx) to a non-negative linear combi-
nation of elements oB. Thus we obtairb; = > \jb; for \; > 0.

However, Lemmd.9 shows that the only such linear combination carbbe-

bi. Since all linear combinations are non-negative, it follows that the first
linear combination4) must likewise consist only of positive multiples bof; in
particular, we must havgb; € B’ for somep > 0. We now replacéy; with

pbi in B; itis clear thatB remains a basis foC.

By following this procedure for each; € «(B), we obtain a basi® for C that
satisfiesB’ O «(B). However, from the first part of this lemma(B) is also a basis
for a(C). Therefore any additional vectors Bf would be redundant, and so we have
B’ = «(B). O
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We conclude our brief study of polyhedral cones with an example of a admissible
part and its basis that we have seen before. The following observatimaimmediate
consequences of the relevant definitions and Lerfrha

Example 5.14 LetC c R be the set of all vectors whose entries are all non-negative
and which satisfy the standard matching equations for the trianguldtiohenC

is a pointed polyhedral cone, the standard projective solution spd@e is a finite
cross-section of this cone (taken along the projective hyper@dédneand the vertices

of the polytope#(T) form a basis forC. Furthermoren(C) = R[" (the set of all
admissible vectors iiR™), and the standard solution set forms a basisi@).

5.2 The Main Conversion Algorithm

We are now ready to present the quadrilateral-to-standard solutioorsetrsion al-
gorithm in full detail. The algorithm relies on the numbering of standard d¢oate
positions—here we number coordinate positiong,1..,7n according to Defini-
tion 2.4, so that positions i7+ {1,2, 3,4} correspond to triangular coordinates and
positions 7+ {5, 6, 0} correspond to quadrilateral coordinates. For an arbitrary vector
w € R we use the common notation wherelsyc R denotes the coordinate of

in the ith position.

Roughly speaking, the algorithm operates as follows. GivemtherticesVy,...,Vn

of the triangulation, we inductively build lists of vectotg,L1,...,Ln. Each list

L, generates all admissible vectors that can be formed by (i) combining vectors
from the quadrilateral solution set and then (ii) addiorgsubtractingvertex links
L(\V1), ..., £(V). In particular, the initial listLg is the quadrilateral solution set, and
(after appropriate scaling) the final list, becomes the standard solution set.

Each inductive step that transforrhg into L, is based on the double description
method, though complications arise because we do not have access tt faeefu
structures of the underlying polyhedral cones. As we constructlesddhy we essen-

tially ignore all triangular coordinates around the subsequent vertices . . ., Vi,
though we do maintain the standard matching equations at all times. This selective
ignorance is expressed in the proof through the truncation funeticend is resolved

in the algorithm itself by taking the partial canonical pai’l) when the need arises.

Algorithm 5.15 Suppose we are given the quadrilateral solution set for the triangu-
lation T , and that this quadrilateral solution set consists oktlvectorsqy, . ..,Qk €
R3". Then the following algorithm computes the standard solution sef for
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Letthe vertices of beVs, . ..,Vm. We construct lists of vectots, L1, ..., Ly € R™
as follows8

1. Fill the list Lo with the canonical extensiongqy),...,c(qk) € R™, using
Algorithm 3.12to perform the computations.

2. Create a set of coordinate positidds- {1,2,...,7n} and initialise this to the
set of all quadrilateral coordinate positions, so that
C=1{5,6,7,121314, ..., Tn—2,7n—1,7n}.
This setwill grow as the algorithm runs, eventually expanding to §ilo2, . . ., 7n}.
3. Foreachr =1,2 ... m,fill the list L, as follows.
(a) For each vectax € L,_1, insert the partial canonical patf’(x) into L, .
(b) Insert the negative vertex link{(Vy) into L, .
(c) LetT, C {1,2,...,7n} bethe set of all coordinate positions corresponding
to triangular disc types in the vertex lirtkV;); that is, T, = {p| {(Vi)p #
0}. For each positiop € T,, perform the following steps.
(i) Partition the listL, into three listsS), S andS_ according to the
sign of thepth coordinate. Specifically, l&& = {x € L, | x, = 0},
Sy ={xel|x>0}andS_ = {xe L |x <O0}.
(i) Create a new temporary li§f = S U S, .
(iii) Run through all pairs of vectorns € S, andw € S_ that satisfy both
of the following conditions:

— u andw together satisfy the quadrilateral constraints. Thatis, for
each tetrahedron; of T, at least two of the three quadrilateral
coordinates for\; are zero in botlu andw simultaneously.

— Thereis novectar ¢ L, othertharu andw for which, whenever
a coordinate positiomn € C satisfies bothy; = 0 andw; = 0,
thenz = 0 also.

For each such pair, insert the vectagw — wpu) /(Up — Wp) into the
temporary listL’. Note that this vector is the point where the line
joining u andw meets the hyperplang € R™ | x, = 0}.

(iv) Empty out the lisL, and refill it with the vectors i’, and insert the
coordinate positiom into the setC.

8\We use set notation with these lists because, as we see irothfethey contain no duplicate
vectors. We call them lists here because the implementasinhappily treat them as such; in
particular, there is no need to explicitly check for dupigsawhen we insert vectors into lists
as the algorithm progresses.
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(d) Finish the list by inserting the positive vertex lib/;) into L.

Suppose that the very last list, consists of th&' vectorsvy,...,vi € R™. Then
the standard solution set fa@r consists of thé projective imagesy, ...,V .

Before we embark on a proof that this algorithm is correct, there are pdaws worth
noting.

e Unlike the previous algorithms in this paper, the statement of AlgorBhbs
does not include a time complexity. This is because the algorithm can grow
exponentially slow with respect to the size of the input.

For examples of this exponential growth the reader is referred]tonfhich
describes the solution sets for thetetrahedrorwisted layered loopa highly
symmetric triangulation of the quotient spaB&/Qq,. In these examples the
guadrilateral solution set has sign), whereas the standard solution set has
size ©(¢" for ¢ = (1 + /5)/2. Thus the size of the output is exponential in
the size of the input, and so the running time of any conversion algorithm must
be at least this bad.

On the other hand, it is possible—and indeed quite plausible—that the running
time of Algorithm 5.15is polynomial in the size of theutput For further
discussion, see Conjectusel6later in this section.

e Step 3(c) bears a resemblance to the double description method of Motzkin
et al. [L9]. As discussed earlier, this is nho accident—in a sense, within each
iteration of step 3 we create a new pointed polyhedral cone and then eatamer
its admissible extreme rays. The differences appear in the processiaiy®f p
ue S andw € S_, where we deviate from the usual double description
method in the constraints anandw.

* As presented, Algorithn®.15 requires exact arithmetic on rational numbers,
which may be undesirable in practice for reasons of performance or impleme
tation. We can avoid this by observing that throughout steps 1-3 we pkatee
any vectorx with any multiple Ax (A > 0) without changing the final solution
set. This means that we can work entirely within the integers by rescalingsecto
appropriately.

Proof of Algorithm 5.15 This is a lengthy proof, consisting of two nested inductions
corresponding to the two nested loops of steps 3 and 3(c). We therpfibiis proof

°Here we use the standard notation for complexity wher®by indicates an asymptotic
upper bound an®(-) indicates an asymptotically tight bound.
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into six parts: I-lll to establish the outer induction, and IV-VI to establishither
induction. The road map for parts I-Ill is given below. Because therimuiction
sits within part I, we delay the road map for parts IV=VI until then.

Our outer induction proves a statement about the finishedUists . , L. In order to
make this statement, we define the spag¢efor eachr =0, ..., mto be

k r .
Ai>0Viellk

1 G = { X= Aie(qi (Vi = '
(1) T 2 ie(gi) + jzllij Vi) X, > 0%p e 1.7n
Thatis, .« consists of all non-negative vectorsii" that can be expressed as (i) a non-
negative linear combination of the originklvectors from the quadrilateral solution
set, plus (i) arbitrary positiver negativemultiples of the firstr vertex links1® Our
key inductive claim relates the spacg to the listL; as follows:

Claim: Once the list L is fully constructed, it consists only of admissible
vectors. Furthermore, the truncatian(L,) is a basis for the semi-admissible
part o7 (<)) (*)

Our outer induction now proceeds according to the following plan.

Road map for parts I-III:
I. Show that &) is true forr = 0;

[I. Show that if (x) is true forr =i — 1 wherei > 0 then &) is also true
forr =1i;
lll.  Show that if (x) is true forr = m then Algorithm5.15is correct.

Because part Il is significantly more complex than the others (in particutamtains
the inner induction), we shall subvert the natural order of things aativdéh parts |
and IlI first.

—Part | —

We begin with part |, where we must prove)(for r = 0. Note thatey can be written
more simply as

K .
_ _ A Ai >0Viellk,
= {X_;A'g(q')‘ %, > 0Vp € 1.7n }

101t can be shown that eacty; is a pointed polyhedral cone, though we do not need this fact
here.
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Furthermore, because eaeft);) is admissible the constrainkg > 0 are redundant,
and so% is merely the set of all non-negative linear combinations(qt), . . . , (Qk).
Because truncation is lineaty(=) is likewise the set of all non-negative linear com-
binations ofro(£(q1)), - - -, 70((gk)) . Noting that neithery nor ¢ affects quadrilateral
coordinates, we can make the following observations:

+ Suppose that some(c(q;)) € R™ could be expressed as a linear combination
of the others. Restricting our attention to quadrilateral coorditatesuld
therefore give somg; € R3" as a linear combination of the others, in violation
of Lemma4.1

* Since the vectorsy(e(q;)) are all non-zero vectors with non-negative coordi-
nates, they all lie to the same side of the hyperplang, = 0.

It follows from Lemmab.7 that 7o(<%) is a pointed polyhedral cone withy(Lo)

as its basis. Moreover, since eaghsatisfies the quadrilateral constraints we have
a(mo(Lo)) = 7o(Lo), and so by Lemmd.13 mp(Lo) is a basis fora(mp(e)) also.
Finally, it is clear from construction that every vectorlig is admissible.

— Part Il —

We now jump straight to part Ill, where we can ignore truncations entiretyabser,
is the identity map. We assume therefore thgtis a basis fora(«/,), and our task
is to prove from this that the projective images of the vectoris,rtogether form the
standard solution set faf .

The key observation here is that the semi-admissibleda@st,) is simply R.", the set
of all admissible vectors in standard coordinates. To see this:

» Every vector ina(e/y) has non-negative coordinates by definitiondaf,, and
satisfies the quadrilateral constraints by definitiomofMoreover, since every
e(gi) and /(V;) satisfies the standard matching equations, so does every vector
in o). Thusa(em) C R,

+ Let x € R/". By Definition 2.11, the quadrilateral projectiom(x) can be
expressed as a non-negative combination of vertices of the quaditilptera
jective solution space?(7). More specifically,7(x) can be expressed as a
non-negative combination afdmissiblevertices of.2(7), since otherwiser(x)
would not satisfy the quadrilateral constraints. Therefo(e) = > \iq; for
some); > 0.

“More precisely, applying the linear map Note thatr o 79 o € = ¢, the identity map.
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By chasing maps around the commutative diagram in Le@rhkand recalling
that 7 is linear ands preserves scalar multiplication, we subsequently derive
the equationsy(x) = v (3 Aie(di)) . That is,x is a non-negative linear com-
bination ofz(q;) plus some arbitrary linear combination of vertex links. Hence
X € a(%y), and we hav®R!" C a(y).

From here part Il is straightforward. We know thia#, is a basis forR/" = o),
and from Examplé.14we know that the standard solution set is a basigY also.
ExpressingR /" as the semi-admissible part of a pointed polyhedral cone (Exabriple
again), we can combine Lemmaie6 and5.13to show that the basis fat(.<y) is
unigue up to scalar multiplication. It follows that once we take projective imabes
list L, and the standard solution set are identical.

—Partll —

All that remains is part Il, the inductive step. Suppose we are constguittenlist L,

for somer > 0. Our outer inductive hypothesis is that the list 1 consists only of
admissible vectors and that_1(L,_1) is a basis fora(rr_1(«%4_1)). Our task is to
prove that, once the lidt, is complete, it too consists only of admissible vectors with
the truncationr; (L) forming a basis for (7, (<%)).

To show this, we must dig into the construction of the listand perform a nevwnner
induction over the constructive loop in step 3(c) of the algorithm. Suppodisthe 1

consists of the vectorsy, . . ., a. For every set of coordinate positioRs we define a
new space
t A > 0Vie 1.t
(2) Bp = {X= Z N (@) = put(Ve) | e >0,
i=1 Xp >0VpeP

Essentially,Zp is constructed by taking non-negative linear combinations of (i) the
rth partial canonical parts of vectorslin_1, and (ii) the negative vertex link-¢(V,).
Note that we relax our insistence on non-negative coordinates—venteép may
include negative coordinates, as long as these only occur at coorpositiens outside
the setP.

Our inner inductive claim is the following. It should be read as a loop inaatizat
applies before and after each positipa T, is processed in step 3(c) of Algorithsrl 5
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Claim: Every vectox in the partially-constructed list Lsatisfies both the
standard matching equations and the quadrilateral constraints, and has a
least one coordinate position @ T, for which % < 0. Furthermore, the
truncation 7+ (%c) is a pointed polyhedral cone, and the truncatigL,)
forms a basis for the semi-admissible paft (%c)). (1)

Note that both the list, and the se€ continue to change as step 3(c) iterates through
each positionp € T,. Our claim is that they both change together in a way that
maintains the truth of{().

The remainder of this proof proceeds according to the following plane@gain, the
context for this plan is that we are currently constructing thellisin ther th iteration
of step 3 of the algorithm.

Road map for parts IV-VI:
IV. Show that ) is true when we first reach step 3(c);
V. Show that, when processing some T, in step 3(c), if {) is true be-
fore running step 3(c)(i) thert{ is still true after running step 3(c)(iv);
VI. Show that, if (}) is true after the loop in step 3(c) finishes, thenis
true at the end of step 3(d).

In other words, parts IV and V constitute an inner induction to establish tneaness

of the invariant () throughout the construction of the list. Part VI then uses this
invariant to prove the outer inductive claim)( concluding part Il and the proof of
Algorithm 5.15

Throughout parts IV-VI we continue to assume the outer inductive hggaththat
is, thatL,_; consists of the admissible vectoass, ..., a;, and that the truncation
Tr—1(Lr—1) forms a basis forv(rr_1(2%—1)).

—Part IV —

We begin our inner induction with part 1V, at the point where we first nestep 3(c).
At this point in the algorithm, the relevant variables take the following values:

e L, consists of/e\(,r)(al), R n\(,r)(at) and the negative vertex link /(V;);

« C consists of all quadrilateral coordinate positions, as well as the triangular
coordinate positions in sefg, ..., T; 1.

Our task is to show that the claim)holds true for these values bf andC.

It is clear from construction that every € L, has at least one coordinate position
p € T, for which x, < 0. Moreover, since the outer inductive hypothesis shows that
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every g is admissible, we can see that (i) evetye L, satisfies both the standard
matching equations and the quadrilateral constraints, and that (ii) the angicates
in any X € L, that might be negative are those in positiopsc T,. Noting that
T, N C = 0, the constraink, > 0Vp € C in equation ) is therefore redundant in this
case, and we simply have

t
€) Be = {x = is{d (@) — prl(Ve)
i=1

A >0Vieldt,
pr >0 '

It remains to show that;(%c) is a pointed polyhedral cone, and thafL,) forms a
basis fora(r (%c)).

From @) itis clear that%c is the set of all non-negative linear combinations of vectors
in Ly, and thusr; (%c) is the set of all non-negative linear combinations of vectors in
7r(Ly). We now focus on establishing the conditions of LenBné&for the list i (L;).

(i) Suppose that some vector in(L;) can be written as a non-negative linear
combination of the other vectors in(L;). Taking the linear mapy_; and
recalling thatrw 1 o 7+ = 77_1, it follows that the corresponding vector in
7r_1(L;) can be written as the same non-negative linear combination of the other
vectors inTy_1(Ly).

For eachx(a) € L, we haver_1(x(a)) = 7_1(a), and for—£(V;) € L;

we haver; _1(—4(V;)) = 0. Thusr_1(L;) consists of the basis_1(L;_1)
combined with the zero vector, and so the only possible non-negative linear
combination inr_1(L;) is the trivial combinatiorr; _1(—£(V,)) = 0. It follows

that our original non-negative linear combination if(L;) must have been
7(—£(V;)) = 0, a contradiction.

(i) We aim now to construct a hyperplaiec R for which every vector in (L)
lies strictly to the same side ¢i. To do this, we define the temporary vector
u = 7v_1(1). That is,u contains 1 in all quadrilateral coordinate positions
as well as the triangle positions € Ty U... U T;_1, and contains 0 in the
remaining triangle positionp € T, U ... U Tyy. Recall also that the vertex link
£(V;) contains 1 in all triangle positiong € T;, and contains 0 in all other
triangle and quadrilateral positions.
Define the constants

g=minfu (@)} and h=max{e(v) - 7(x{(@))]} .

Sincer;_1(L;_1) is a basis of non-negative vectors and Tr(ﬁ\(/r)(aj)) =u-
7r—1(&), itis clear thatg > 0. Furthermore, from the definition (m‘vr) and the
fact that/(V;) - 7+ (x (@&)) = ¢(V;) - (&) itis clear thath > 0.
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Let H be the hyperplanéx € R™|(h+ 1)u - x = g4(V;) - x}. We show now
that every element of;(L;) lies strictly to the same side ¢f. By definition of
g andh, if x = 7 (x{(@)) € = (L) then we havel{+ 1)u - x > (h+ 1)g >
gh > g/(Vy) - x. Finally, if x = 7r(—£4(V})) € 7(L;) then this simplifies to
x = —£(V;),and so i+ 1)u-x = 0 > g/(V,)-X. ThereforeH is the hyperplane
that we require.

It follows from Lemmab.7 that 7 (%c) is a pointed polyhedral cone with(L,) as
its basis. Finally, since everg is admissible it is clear that every vector afL;)
satisfies the quadrilateral constraints; ths; (L)) = 7+(L;), and Lemmd.13shows
that 7+ (L,) is a basis for(7 (%c)) also.

— PartV—

We come now to part V, the main inductive step for the inner induction. Here we
assume thatf() holds before running step 3(c)(i); our task is to show thas(ill holds
after running step 3(c)(iv).
Throughout this part, we assume that we are building thellistand that we are
currently processing some coordinate posifoa T,;. We use the following notation:

e L, andC denote thenitial states of these variables, before step 3(c)(i).

* S, S; andS_ are as defined in Algorithi.15 that is,S = {x € L, | xp = O},

S; ={xeL|x>0}andS_ = {x €L/ |x < O0}.
« L’ denotes the final state of the list after step 3(c)(iv). In other words,

ueS;andwe S,
UpW — Wpu | u,w together satisfy the quad. constraints,
Up—Wp | #z € Li\{u,w} for which '
(feCu{p}andu=w; =0) =2z =0

4) L' =SUS, U

In addition, we note that the final state of the €at simply Cu{p}. We can therefore
assume claimi() exactly as written, and our task is to prove the following:

() Everyx € L’ satisfies both the standard matching equations and the quadrilateral
constraints, and has at least one coordinate positienT, for which Xy < 0;

(b) The truncationr (%cyypy) is @ pointed polyhedral cone;
(c) The truncatiorry(L') forms a basis for(7i (Zcu(py)) -

Claim (a) is straightforward; these properties are already known toéédrall vectors
in S,S:,S. C Ly, anditis clear by construction that they also hold for vectors new to
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L’. In particular,x, = O for each new vectox = (UpW — Wpu)/(Up — Wp). Claim (b)
is also straightforward, since equatid) §hows thatr (%cuyp)) is the intersection of
the pointed polyhedral cong(#c) with the half-spaceg, > 0. We therefore focus
our efforts on proving (c), that is, thaf(L’) forms a basis for(7(%cup)) -

We know from () that L, forms a basis fow(7(%4c)), wherer:(%4c) is a pointed
polyhedral cone. From Lemnm&13 there is a basi$/ for (%) for which L, =
a(M). As noted earlier, the final polyhedral cong(%cyyp) is simply 7+(%c)
intersected with the half-spacg > 0; our plan is to use this fact to convevk into a
basis forr (Zcuqpy) and then a basis fok(7 (%cyypy)), Which we will see is simply
the final listL’.

To convertM into a basis forr (%c ), we call upon the regular double description
method. Just aM is a superset of,, we define the superselidp = {m € M |m, =
0} D9, My ={meM|m >0} >OS  andM_ ={meM|m <0} OS_.
Lemmab.11then shows that the following is a basis fa(%cypy) = 7(%c) N
{x|% > 0}:
M’ = Mo UM, U {“PW‘Wp“
Up — Wp

ue M, andw e M_,
u, w are adjacent basis vectorsin{%c) | -

Using Lemmab.13and the observation that, > 0 > wj, a corresponding basis for
the semi-admissible patt(r (Zcu(py)) is

LW — Well ueSyandw e S,
a(M) = SHUS, U H u, w together satisfy the quad. constraints,.
P 7P | u,w are adjacent basis vectorsi{%c)

Consider the following claim, which we will prove shortly.

Claim: Supposes andw are basis vectors for; (%c) that together satisfy
the quadrilateral constraints. Theamandw are adjacent if and only if there
isnoz € M\{u,w} for which, whenever € C and 4 = w; = 0, we must
have z= 0. (%)

If this is true, then our basis far(r (Zc(py)) can be rewritten as

ueSyandw e S,
UpW — WpU | u,w together satisfy the quad. constraintg,
Up— W, | #z € M\{u,w} for which '
(ifeCanduyy=w;=0)=27z=0

aM)=SUS, U

BecauseC contains all quadrilateral positions, we can chaage M\{u, w} in the
final condition above t@ € L,\{u,w}. Furthermore, becausg,w, # 0 we can
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changei € C in this same condition td € C U {p}. The equation then becomes
identical to @), and we see that our basigM’) is indeed the final list.’.

The only thing now remaining for part V is to prove the claig).( We do this using
Lemmab.10

Suppose that andw arenotadjacent basis vectors #(%c). By Lemmab.10there is
somex € 7;(%4c) and some coefficients, , Aj > 0 forwhichx = pu+nw = > Ajbj,
where eachb; is a basis vector for;(%c) and where); > 0 for someb; # u,w.
Because theth coordinate of every basis vector is hon-negative for everyC, it
follows that whenevet; = w; = 0 fori € C we must havelgj); = 0 also. Therefore
b; satisfies the conditions far as specified inx).

Suppose now that andw areadjacent basis vectorsin(%c) that together satisfy the
guadrilateral constraints, and thais some different basis vector for which, whenever
i € Candu; = w; = 0, we haveg; = 0 also. We show that this leads to a contradiction.

Letx = u+&w where{ > O ischosensothat, < 0, and lety = x—ez for some smalll

e > 0. If y € (%c) then we can express= ) Aibj, where each\; > 0 and each

bi is a basis vector for; (%c). This gives ux = u+ {w = ez + > Aibj, whereupon
Lemmab5.10shows thatu andw cannot be adjacent, giving us the contradiction that
we seek.

It remains to prove thay € 7(%c). The condition ore ensures that for sufficiently
smalle > 0 we havey; > 0 for all i € C, so all we need to show is thgtcan be
expressed as a linear combinatips-= > )\m\(,r)(a;) — uel(Vy) for Ai, pur > 0.

From @) all vectors in%¢ satisfy the standard matching equations. Sinéea linear
combination of vectors in;(%c), it follows thaty = 7(y’) for somey’ € R that
also satisfies the standard matching equations. Because) for all i € C we see
that bothy andy’ satisfy the quadrilateral constraints, and tat- >, ¢i4(Vi) is a
non-negative vector for some coefficiedts. . ., (m € R. Thereforey’ + > Gil(Vi)

is admissible.

It follows that w(y’ + >, Gl(Vi)) = 7(Y) € R3" can be expressed as a non-
negative linear combination of vectors in the quadrilateral solution set, @fas
equation {) we see thatr_1(y’ + Y, Gl(Vi)) = 7-1(Y)) € Tr—1(o%_1). Using
the quadrilateral constraints fgf we then obtainr; _1(y') € a(rr—1(«%4_1)), and so
Tr1(y) = Yo Nimr_1(&) for somely, ..., A > 0.

Becausey’ is admissible, Lemm&.3 shows that the only error we can introduce
by replacingr_1 with 7 is a multiple of the vertex link/(V,). Thereforey =
(y) = Si_i Nim(@) + pl(Vy) for some coefficienty € R. Since the partial
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canonical partﬁ;\(,r) only adds or subtracts multiples é€V;), we can rewrite this as
y = Z}Zl )\in\(,r)(n(a;)) + p/0(V;). Finally, because we chose andy to satisfy
Yo < X < 0 we must have:’ < 0, and equation?) shows thaty € 7(%c) as
required.

— Part VI —

Moving to the final part VI, we now assume tha) folds at the end of step 3(c) of the
algorithm; our task then is to prove that)(holds at the end of step 3(d).

At this stage of the algorithm, the s€tcontains all positionp € T, (amongst others).
Consider anyx € %¢c. We know thatx can be expressed as a non-negative vector
minus 1 ¢(V;), but we also know that, > 0 forallp € C O T,. It follows that every

X € ¢ is a non-negative vector, and so in this case we can wfteas

A > 0Vi e 1.t
,U'I’ Z 07

t
(5) Be = {x =Y Nirl(@) — prl(Ve)
i=1 Xp>0Vpe l.7n

That is, we can replace the specific conditign> 0 Vp € C with the more general
conditionx, > 0Vp € 1..7n.

We pick off the easy part ofx) first. From (f) we know that after step 3(c) every
X € L, satisfies both the standard matching equations and the quadrilateral icdsistra
and from §) every x € L; is a non-negative vector also. Thug consists only of
admissible vectors, and inserting the vertex link in step 3(d) does not etihisgact.

It remains to prove that, (L;) forms a basis for (7 (<%)). We do this directly through
Definition5.5.

(i) At the end of step 3(c) of the algorithm, we know fror) that 7 (L;) forms
a basis fora(r(%c)). It follows that 7 (L) € a(rr(%c)), and that every
x € a(m(%c)) can be expressed as a non-negative linear combination of vectors
in 7+(L;). We aim to show the same for everye a(r(<%4)) at the end of
step 3(d).
It can be seen from the definition af; that

o = {x=a+pl(Vy)|ac o_1andx, > 0Vp e 1..7n}, and hence
a(r(er)) = {(x=a+ pl(Vy)|ac a(r(4-1)) andx, > 0Vp € 1..7n}.

We now call upon the outer inductive hypothesis; in particular, the fadt tha
Tr—1(Lr_1) is a basis fora(rr_1(<%_1)). Combining this with Lemm&.3 to
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(ii)

replacer; _1 with 7, our equation becomes

t ) .
a(m( ) = a <{x = 3 wm(a) + i) o ovetm }) .

Finally, using equations) and the fact thate" only ever adds or subtracts
copies of/(V,), we obtain

a(me () = {b+ pl(Vy) |b € a(ri(%c)) andy > 0.

Thatis,a (7 (%)) consists of all non-negative linear combinations of (a) vectors
in a(r (%)), and (b) the vertex link/(V;). It follows from (1) that, once
we insert the vertex link intd.; in step 3(d) of the algorithm, we know that
7r(Lr) C a(rr (%)) and that everyx € a(rr (%)) can be expressed as a non-
negative linear combination of vectorsip(L,).

We now show that, after step 3(d) of the algorithm, no vectorifi.,) can be
expressed as a non-negative linear combination of the otherd.] bt the list

L, asitwas immediately after step 3(c) (thatis, without the vertex link); frpyn (
we know this property is true for (L;). Denote the vectors ib; asby, . .., bq.
Suppose that some vector #(L;) can be expressed as a non-negative linear
combination of the others. Because the lig{L;) contains only the basis
elementsr; (by), ..., 7v(bg) and the vertex link(V;), our expression must be of
one of the following two types:

e (b)) = Z#i Ajr(0) + pf(Vy) for \j > 0 andp > 0. That s, the vertex
link ¢(V;) appears as a non-empty part of this linear combination.
Becauseb; is a non-negative vector, the clauge< 0 in (f) implies that

rv(bi) = bj. However, because eveby is also a non-negative vector, the
presence of the vertex link on the right hand side above implies that

v | AT () + pl(Ve) | # D Aje(By) + (Vi)
j#i j#i
That is, ky(bi) # b, giving us a contradiction.

e UVy) = Zj Aitr(bj) for Aj > 0. That is, the vertex link'(V,) can be
expressed as a non-negative linear combination of truncated vectdrs in
Since allb; are non-negative, evety; that features in this linear combi-
nation must have all its quadrilateral coordinates equal to zero. Eabh suc
bj is also admissible, whereupon Lem®d 1can be used to show it is a
non-negative combination of vertex links. More precisely, non-neggativ
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again shows that each correspondin(p;) must be a multiple of the single
vertex link /(Vy). However, this yields the expressiop(b;) = pl(V;),
which we have shown above to be impossible.

This concludes the requirements for DefinitmB, whereupon we see that(L;) must
form a basis fon (7 (). Indeed, this also concludes part VI, and therefore the entire
proof of Algorithm5.15 m|

5.3 Time Complexity and the Enumeration Algorithm

We now return to the issue of time complexity, which was raised briefly following
the statement of the quadrilateral-to-standard solution set conversiantlaiygAl-
gorithm 5.15. It has already been noted that this conversion algorithm can grow
exponentially slow in the size of the input; it is also seenghthat the enumeration
algorithms for the standard and quadrilateral solution set suffer frosatine problem.

We have already discussed examples where the size of the standardnsséitis
exponential inn (punishing the enumeration algorithm) and also exponential in the
size of the quadrilateral solution set (punishing the conversion algorithimyvever,

this is not our worst problem. The intermediate lists that are created by figesi¢hans

can potentially grow exponentially large with respect to both the iapdthe output,
leading to situations where both the standard and quadrilateral solutionesetrs
small, yet the enumeration algorithms take a very long time to run.

The root of the problem lies in the double description method, upon whichrilre e
meration algorithms are built. Using Lemngall the double description method
inductively builds a series of lists, the last of which becomes the standgrehdrilat-
eral solution set. It is well known that the double description method caarduéim

a combinatorial explosion, where the intermediate lists can grow exponentiaé la
before shrinking back down to what might be a very small output set. 5&# for
discussions of how this combinatorial explosion can be tamed in generdl6jafad
techniques specific to normal surface enumeration.

Because the quadrilateral-to-standard conversion algorithm incees@spects of the
double description method, one should expect it to suffer from the saaixdeprs.
However, empirical evidence suggests that it does not—in Se6tiva find that the
intermediate lists in Algorithns.15appeanotto explode in size (never growing larger
than J% times the output size), and that the total running time for conversion appears
to be negligible in comparison to enumeration. In light of these observatianputv
forward the following proposal.
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Conjecture 5.16 The time complexity of Algorithnb.15is at worst polynomial in
the size of the output. That is, the running time is at most a polynomial function of
(the number of tetrahedra) akl(the size of the standard solution set).

More specifically, it seems reasonable to believe based on experimeidaehey
that the intermediate lists for Algorithf.15 are at worst linear irk’, from which
Conjectures.16would follow as an immediate consequence. A possible cause could
be the highly structured ways in which the intermediate polyhedral cofemnd %¢

are formed in the proof of Algorithrb.15

We finish this section with the new enumeration algorithm that was promised in the in-
troduction and again at the beginning of Sectorspecifically, we use Algorithr.15

as a key component in a new algorithm for enumerating the standard soletioAss
discussed in the introduction, the enumeration problem has great praajicificance

in normal surface theory but suffers from the feasibility problems ofxaoeential
running time. In this context, the new algorithm below is a significant improvement—
we find in Sectiorb that for large cases it runs thousands and even millions of times
faster than the current state-of-the-art.

This current state-of-the-art is described &; [essentially we begin with the double
description method of Motzkin et al19], apply the filtering techniques of Letscher,
and then incorporate a range of further improvements that exploit speojarties of
the normal surface enumeration problem. We refer to this modified doulddmtemn
method aglirect enumeration

Our new enumeration algorithm combines direct enumeration with Algor&tif
and runs as follows.

Algorithm 5.17 To compute the standard solution set for the trianguldfionve can
use the following algorithm.

1. Use direct enumeration to compute the quadrilateral solution sét.for

2. Use Algorithm5.15to convert this quadrilateral solution set into the standard
solution set forT .

We expect this algorithm to perform well—although the direct enumerationadriu
lateral coordinates (step 1) remains exponentially slow, in practice it rung anders
of magnitude faster than a direct enumeration in standard coordirtesdllowing

this, the quadrilateral-to-standard conversion (step 2) is found to teemesly quickly,
as discussed above.

All that remains is to test these claims in practice, which brings us to the fin#bisec
of this paper.
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6 Measuring Performance

To conclude this paper we measure the performance of our new algorithoogtha
series of practical tests. These tests involve running both old and nevitlahg® over
500 different triangulations, taking a variety of measurements along the way

The triangulations chosen for these tests are the first 500 orientablegtogs from
the Hodgson—Weeks closed hyperbolic cendi8; [their sizes range from 9 to 25
tetrahedra. All computations were performed on a single 2.3 GHz AMD Opiam
cessor using the software packdggina 3, 4]. There are alternative implementations
of normal surface enumeration available, notably Fixeays software by Culler and
Dunfield [7]; we useReginahere because, with the improvements @jf ft is found

in the author’s experience to have the greater efficiency in both time and méonor
large triangulations?

Ouir first tests compare running times for the new enumeration algorithm inasthnd
coordinates (Algorithmb.17) against the old state-of-the-art (the modified double
description method off], referred to earlier as “direct enumeration”). The following
observations can be made:

* Figure7 plots new running times directly against old running times, with one
point for each of the 500 triangulations. Both axes use a log scale, sincasg
times for both algorithms are spread out across several orders of nagnithe
diagonal lines are guides to illustrate the magnitude of the improvements.
It is immediately clear that the new algorithm is faster, and significantly so.
The weakest improvement is still over 10 times the speed, and the strongest
is over 2000000 times. Roughly speaking, the largest cases expetience
greatest improvements (which is what we hope for). Some additional points
worth noting:

— Theresolution of the timeris @1 seconds. This explains the long horizon-
tal clumps in the bottom-left corner of the graph—here the new algorithm
runs in literally the smallest times that can be measured. An error factor
of 0.005 seconds has been added to all measurements to compensate for
cases where the time is measured to be zero.

— Whilst the new algorithm ran to completion for all 500 triangulations, the
old algorithm did not. Eight cases were terminated after 30 days of running

12This observation concerns direct enumeration (prior ®phiper). As seen in the following
graphs, the new algorithms developed in this paper arefiignily more efficient again.
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Running times for old and new enumeration algorithms
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Figure 7: Comparing the old direct enumeration against éve Algorithm5.17

time; these are the eight points at the rightmost end of the plot. This early
termination underestimates the improvements due to the new algorithm;
the real improvements might well be orders of magnitude larger again.

* In Figure8 we plot the improvement factor (the old running time divided by the
new running time) against both the input size and the output size (the size of th
gquadrilateral and standard solution sets respectively).

Improvements vs input size Improvements vs output size
o © o
2 °g
= I o
5 o 5 2 o o
o o k3] o ©O
i 5 ..8 % o e}
[o% - o
7 7 o °
3 o
& :Q; R
(e}
o
10 20 50 100 200 500 30 100 300 1000 3000 10000
Size of quad solution set Size of std solution set

Figure 8: Speed improvement factors for the new Algorithiti/

One striking observation is how small the solution sets are, given that the tri-
angulations range from = 9 to n = 25 tetrahedra and that the sizes of the
solution sets can grow exponentially m We examine this effect in greater
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detail in [5].

If we focus on cases with unusually large input and output sets—thadaspo
that escape the dense clouds at the left of each plot—we find again that the
improvements are particularly strong. Amongst the triangulations with input
size > 100 the improvement factors range from over 4000 to over 2000 000.
Likewise, with the exception of just one triangulation, those with output size
> 500 have improvements ranging from over 2 000 to over 2000 000. Tke lon
exception has output size 1141 and an improvement factor of 37.

Our final tests examine the feasibility of Conject&:&6 Recall that this conjecture
states that the running time for the quadrilateral-to-standard solution setre@mm
algorithm (Algorithm5.15 is at worst polynomial in the size of the output. For this to
occur we must avoid the combinatorial explosion in the sizes of the intermediate lis

Lo, L1, ..., Lm.

Figure 9 measures the extent of this combinatorial explosion. Specifically, for each
triangulation we measure the size of timaximallist divided by the size of théinal
list—if we have a combinatorial explosion we expect this ratio to be very lage,

if not then we expect it to remain close to one. We then bin these measurentents in
small ranges and plot the resulting frequencies in a histogram (so in éduhthree
plots, the sum of the heights of the bars is always 500). We take theseneraasiis

not only for Algorithm5.15but also for the old direct enumeration algorithm in both
guadrilateral and standard coordinates.
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Figure 9: The combinatorial explosion for enumeration amaversion algorithms

What we see is exactly what we hope for. With the old direct enumerationitilgs,
the maximal list can grow to hundreds of times the output size (and perhaes, lar
recalling that for the eight worst cases the direct enumeration in standardinates
was prematurely terminated after 30 days). For Algorithrb5 this ratio is never
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greater tharg. That is, the behaviour we see is consistent with the intermediate lists
being bounded by Bnear function of the output size.

Figure 10 tests our conjecture more directly by plotting the running time of Algo-
rithm 5.15against the output sizé (the size of the standard solution set). Once again,
both axes use a log scale so that the data points are more evenly distributed.
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Figure 10: The running time for Algorithfs.15as a function of output size

It is reasonable to ignore all points where the running time is undkrséconds,
since the clock resolution is only@L seconds (once again we see horizontal bands of
points where the running times are the smallest that can be measured).l\Ndoes

the clock resolution introduce large relative errors for these pointsthieytare also
highly susceptible to what would otherwise be negligible tasks, such as initiptiaia
structures at the beginning of the algorithm, or extracting algebraic informftion

the triangulation.

Focusing our attention therefore on the points with timé.1 s (or equivalently, with
output size> 500), we find that the points follow what appears to be a straight line. If
t is the running time, this corresponds to an equation of the fornh4ogq logk’ + 3,

or equivalentlyt oc K“. That is, the time does indeed appear polynomial in the output
sizek'.

We can measure the degree of this polynomial by performing a linear ségmned his
regression is indicated by the dashed line in Fidiigts equation is approximately

logt = 2.4729x logk’ — 185016



52 Benjamin A Burton

That is, the running time appears to be a little underk’>®. The adjusted correlation
coefficient for this regression is~ 0.96, indicating an extremely good linear fit.

Note thatt o« k’2° is quite reasonable, given the structure of AlgoritBrh5 If we
assume that each ligf has sizeO(K’), then each inductive step — L, involves
at leastO(k’?) iterations through the innermost loop (running throughuadt S, and
w € S_). This inner loop can in turn tak®(k') time as it tests for adjacency by
searching for an appropriatee L;; however, Fukuda and Prodo8] [note that such
searches often terminate early, and our additional test on the quadtitiessraints
means that many such searches can be avoided entirely. We thergfeceaxaverage
running time of betwee®(k’?) and O(k’®), which is precisely what we see.

One might observe that we have neglected the number of tetrahesirtrely in this
empirical discussion of Conjectufel6 Of coursen features implicitly in the size of

the output, since each vector in the standard solution set has dimemsi®defocus

on k' here because it spans several orders of magnitude, ranging freal67.06; in
contrast,n merely ranges from 9 to 25. Since the size of the standard solution set can
grow exponentially im (and this is also found to be true in the average c8heif is
reasonable to expekt to become the dominating factor in the running time.

Appendix: Notation

Throughout this paper we introduce a number of symbols that are useddtatements
and proofs of results. For convenience, the following tables list the keNpsls and
where they are defined.

Sets and Vector Spaces:

Symbol | Meaning Point of definition
o Non-negative orthant Definition2.11

Jd Projective hyperplane

L(T) Standard projective solution space

2(7) Quadrilateral projective solution space

S All embedded normal surfaces Notation3.7

Sc All canonical embedded normal surfaces

RI", R3" | Admissible vectors iR or R3"

Zn, 73" | Admissible integer vectors i or Z3"

R2%, Z{% | Admissible canonical vectors " or 2

“, Be Used for loop invariants in Algorithrs.15 | Equations {) and @)
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Maps:
Symbol Meaning Point of definition
110 Vertex link (surface or vector) Definition2.3
v(-), q() Vector representation Definition2.4
=, V(-),q() | Projective image Definition2.12
ov(-), oq(-) | Represented surface Definition 3.8
ks(+), kv(-) | Canonical part (surface or vector)Definition 3.9
() Quadrilateral projection Definition 3.10
e() Canonical extension Definition 3.10
n\(,i)(-) Partial canonical part Definition5.1
7i(+) Truncation Definition 5.2
al’) Semi-admissible part Definition5.12
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