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The enumeration of normal surfaces is a crucial but very slowoperation in algo-
rithmic 3–manifold topology. At the heart of this operationis a polytope vertex
enumeration in a high-dimensional space (standard coordinates). Tollefson’s Q–
theory speeds up this operation by using a much smaller space(quadrilateral
coordinates), at the cost of a reduced solution set that might not always be suffi-
cient for our needs. In this paper we present algorithms for converting between
solution sets in quadrilateral and standard coordinates. As a consequence we ob-
tain a new algorithm for enumerating all standard vertex normal surfaces, yielding
both the speed of quadrilateral coordinates and the wider applicability of standard
coordinates. Experimentation with the software packageReginashows this new
algorithm to be extremely fast in practice, improving speedfor large cases by
factors from thousands up to millions.

52B55; 57N10, 57N35

1 Introduction

The theory of normal surfaces plays a pivotal role in algorithmic 3–manifoldtopology.
Introduced by Kneser [17] and further developed by Haken [10, 11], normal sur-
faces feature in key topological algorithms such as unknot recognition [10], 3–sphere
recognition [20, 21, 22], connected sum and JSJ decomposition [16], and testing for
incompressible surfaces [14].

The beauty of normal surface theory is that it allows difficult topological questions to
be transformed into straightforward linear programming problems, yielding algorithms
that are well-suited for computer implementation. Unfortunately these linear program-
ming problems can be extremely expensive computationally, which is what motivates
the work described here.

Algorithms that employ normal surface theory typically operate as follows:
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(i) Begin with a compact 3–manifold triangulation formed fromn tetrahedra;

(ii) Enumerate all vertex normal surfaces within this triangulation, as described
below;

(iii) Search through this list for a surface of particular interest (such asan essential
sphere for the connected sum decomposition algorithm, or an essential discfor
the unknot recognition algorithm).

The linear programming problem (and often the bottleneck for the entire algorithm)
appears in step (ii). It can be shown that the set of all normal surfaceswithin a
triangulation is described by a polytope in a 7n–dimensional vector space; step (ii)
then requires us to enumerate the vertices of this polytope. The normal surfaces
described by these vertices are calledvertex normal surfaces.

The trouble with step (ii) is that the vertex enumeration algorithm can grow expo-
nentially slow inn; moreover, this growth is unavoidable since the number of vertex
normal surfaces can likewise grow exponentially large. As a result, normal surface
algorithms are (at the present time) unusable for large triangulations.

Nevertheless, it is important to have these algorithms working as well as possible
in practice. One significant advance in this regard was made by Tollefson [25],
who showed that in certain cases, normal surface enumeration could be done in a
much smaller vector space of dimension 3n. This 3n–dimensional space is called
quadrilateral coordinates, and the resulting vertex normal surfaces (referred to by
Tollefson asQ–vertex surfaces) form thequadrilateral solution set. For comparison,
we refer to the original 7n–dimensional space asstandard coordinatesand its vertex
normal surfaces as thestandard solution set. It is important to note that these solution
sets are different (in fact we prove in Lemma4.5that one is essentially a proper subset
of the other).

Practically speaking, quadrilateral coordinates are a significant improvement—although
the running time remains exponential, experiments show that the enumeration of normal
surfaces in quadrilateral coordinates runs orders of magnitude fasterthan in standard
coordinates.

However, using quadrilateral coordinates can be problematic from a theoretical point
of view. In the algorithm overview given earlier, step (iii) requires us to prove that, if
an interesting surface exists, then it exists as a vertex normal surface. Such results are
more difficult to prove in quadrilateral coordinates, largely because addition becomes
a more complicated operation; in particular, useful properties of surfaces that are linear
functionals in standard coordinates (such as as Euler characteristic) are no longer
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linear in quadrilateral coordinates. As a result, only a few results appearin the
literature to show that quadrilateral coordinates can replace standard coordinates in
certain topological algorithms.

The purpose of this paper is, in essence, to show that we can have our cake and eat
it too. That is, we show that we can enumerate vertex normal surfaces instandard
coordinates (thereby avoiding the theoretical problems of quadrilateral coordinates) by
first constructing thequadrilateralsolution set and then converting this into the standard
solution set (thus avoiding the performance problems of standard coordinates). The
conversion process is not trivial (and indeed forms the bulk of this paper), but it is
found to be extremely fast in practice.

The key results in this paper are as follows:

• Algorithm 4.6, which gives a simple procedure for converting the standard
solution set into the quadrilateral solution set;

• Algorithm 5.15, which gives a more complex procedure for converting the
quadrilateral solution set into the standard solution set;

• Algorithm 5.17, which builds on these results to provide a new way of enumerat-
ing all vertex normal surfaces in standard coordinates, by going via quadrilateral
coordinates as outlined above.

The final algorithm in this list (Algorithm5.17) is the “end product” of this paper—it
can be dropped into any high-level topological algorithm that requires theenumeration
of vertex normal surfaces. Experimentation shows that this new algorithm runs orders
of magnitude faster than the current state-of-the-art, with consistent improvements of
the order of 103–106 times the speed observed for large cases. Full details can be
found in Section6.

The remainder of this paper is structured as follows. Section2 introduces the theory of
normal surfaces, and defines the standard and quadrilateral solution sets precisely. In
Section3 we address the ambiguity inherent in quadrilateral coordinates by studying
canonical surfaces and vectors. Sections4 and5 contain the main results, where we
describe the conversion from standard to quadrilateral coordinates and quadrilateral to
standard coordinates respectively. We finish in Section6 with experimental testing that
shows how well these new algorithms perform in practice.

Because this paper introduces a fair amount of notation, an appendix is included that
lists the key symbols and where they are defined.

For researchers who wish to perform their own experiments, the three algorithms listed
above have been implemented in version 4.6 of the software packageRegina[3, 4].
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2 Normal Surfaces

In this section we provide the essential definitions of normal surface theory, includ-
ing both Haken’s original formulation (standard coordinates) and Tollefson’s normal
surface Q–theory (quadrilateral coordinates).

We only present what is required to define the standard and quadrilateral solution sets.
For a more thorough overview of normal surface theory the reader is referred to [12];
for further details on quadrilateral coordinates the reader is referredto Tollefson’s
original paper [25].

Definition 2.1 (Triangulation) Acompact3–manifold triangulationis a finite col-
lection of tetrahedra∆1, . . . ,∆n, where some or all of the 4n tetrahedron faces are
affinely identified in pairs, and where the resulting topological space is a compact
3–manifold.

We allow different vertices of the same tetrahedron to be identified, and likewise with
edges and faces (some authors refer to such structures aspseudo-triangulationsor
semi-simplicial triangulations). Any tetrahedron face that isnot identified with some
other tetrahedron face becomes part of the boundary of this 3–manifold,and is referred
to as aboundary face.

Each equivalence class of tetrahedron vertices under these identifications is called a
vertex of the triangulation; likewise with edges and faces.

It should be noted that, according to this definition, the link of each vertex in the under-
lying 3–manifold must be a disc or a 2–sphere. This rules out the ideal triangulations
of Thurston [23]; we discuss the reasons for this decision at the end of this section.

Definition 2.2 (Normal Surface) LetT be a compact 3–manifold triangulation, and
let ∆ be a tetrahedron ofT . A normal discin ∆ is a properly embedded disc in∆
which does not touch any vertices of∆, and whose boundary consists of either (i) three
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arcs running across three different faces of∆, or (ii) four arcs running across all four
faces of∆. We refer to such discs astrianglesandquadrilateralsrespectively.

There are seven differenttypesof normal disc in a tetrahedron, defined by the choice
of which tetrahedron edges a disc intersects. These include (i) four triangle types, each
surrounding a single vertex of∆, and (ii) three quadrilateral types, each separating a
single pair of opposite edges of∆. All seven disc types are illustrated in Figure1.

Figure 1: The seven different types of normal disc in a tetrahedron

An embedded normal surfacein the triangulationT is a properly embedded surface
that intersects each tetrahedron ofT in a (possibly empty) collection of disjoint normal
discs. Here we allow both disconnected surfaces and the empty surface.

We consider two normal surfacesidentical if they are related by anormal isotopy, i.e.,
an ambient isotopy that preserves each simplex ofT .

We divert briefly to define a particular class of normal surface that plays an important
role in the relationship between standard and quadrilateral coordinates.

Definition 2.3 (Vertex Link) LetT be a compact 3–manifold triangulation, and let
V be some vertex ofT . We define thevertex link of V, denotedℓ(V), to be the normal
surface that appears at the frontier of a small regular neighbourhoodof V . In particular,
ℓ(V) contains one copy of each triangular disc type surroundingV , and contains no
other normal discs at all.

Here we follow the nomenclature of Jaco and Rubinstein [15]; in particular, Defini-
tion 2.3 is not the same as the combinatorial link in a simplicial complex. Tollefson
refers to vertex links astrivial surfaces[25].

Note that Definition2.1implies thatℓ(V) is a disc or a 2–sphere (according to whether
or not V is on the boundary of the 3–manifold). In the case whereT is a one-vertex
triangulation, the normal surfaceℓ(V) contains precisely one copy of every triangular
disc type in the triangulation, and no other normal discs.

At this point the theory of normal surfaces moves into linear algebra, whereupon we
must choose between the formulation of Haken (standard coordinates) orTollefson
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(quadrilateral coordinates). In the text that follows we outline both formulations side
by side.

Definition 2.4 (Vector Representations) LetT be a compact 3–manifold triangula-
tion built from then tetrahedra∆1, . . . ,∆n, and letS be an embedded normal surface
in T .

Consider the individual normal discs that form the surfaceS. Let ti,j denote the number
of triangular discs of thej th type in∆i ( j = 1, 2, 3, 4), and letqi,k denote the number
of quadrilateral discs of thekth type in∆i (k = 1, 2, 3).

Then thestandard vector representationof S, denotedv(S), is the 7n–dimensional
vector

v(S) = ( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3 ;

t2,1, t2,2, t2,3, t2,4, q2,1, q2,2, q2,3 ;

. . . , qn,3 ),

and thequadrilateral vector representationof S, denotedq(S), is the 3n–dimensional
vector

q(S) = ( q1,1, q1,2, q1,3 ; q2,1, q2,2, q2,3 ; . . . , qn,3 ).

When we are working with standard vector representations inR7n we say we are
working in standard coordinates. Likewise, when working with quadrilateral vector
representations inR3n we say we are working inquadrilateral coordinates.

It turns out that, if we ignore vertex links, then the vector representationscontain
enough information to completely reconstruct a normal surface. The results, due to
Haken [10] and Tollefson [25], are as follows.

Lemma 2.5 Consider two embedded normal surfacesS andT within some compact
3–manifold triangulation.

• The standard vector representations ofS andT are equal, that is,v(S) = v(T),
if and only if surfacesS andT are identical.

• The quadrilateral vector representations ofS and T are equal, that is,q(S) =

q(T), if and only if (i) S and T are identical, or (ii)S and T differ only by
adding or removing vertex linking components.
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Although every embedded normal surface has a standard and quadrilateral vector
representation, there are many vectors inR7n andR3n respectively that do not represent
any normal surface at all. Haken [10] and Tollefson [25] completely characterise which
vectors represent embedded normal surfaces, using the concept ofadmissible vectors.
We build up a definition of this concept now, and then present the full characterisation
results of Haken and Tollefson in Theorem2.10.

Definition 2.6 (Standard Matching Equations) LetT be a compact 3–manifold tri-
angulation built from then tetrahedra∆1, . . . ,∆n, and consider some 7n–dimensional
vectorv =

(

t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3; . . . , qn,3
)

. For each non-boundary faceF
of T and each edgee of the faceF , we obtain an equation as follows.

In essence, our equation states that we must be able to match the normal discson one
side of F with the normal discs on the other. To express this formally, let∆i and
∆j be the two tetrahedra joined along faceF . In each tetrahedron∆i and ∆j there
is precisely one triangle type and one quadrilateral type that meets faceF in an arc
parallel toe; let these be described by the coordinatesti,a andqi,b in ∆i and tj,c and
qj,d in ∆j . Our equation is then

ti,a + qi,b = tj,c + qj,d.

The set of all such equations is called the set ofstandard matching equationsfor T .

F
e∆i

∆j

Figure 2: An example of the standard matching equations

Note that ifT hasf non-boundary faces then there are 3f such equations in total; in
particular, ifT has no boundary at all then there are 6n standard matching equations.
Figure2 shows an illustration of one such equation; here we have one triangle and
one quadrilateral in∆i meeting two triangles in∆j , giving (ti,a + qi,b = 1 + 1) =

(tj,c + qj,d = 2 + 0).

Definition 2.7 (Quadrilateral Matching Equations) LetT be a compact 3–manifold
triangulation built from then tetrahedra∆1, . . . ,∆n, and consider some 3n–dimen-
sional vectorq =

(

q1,1, q1,2, q1,3; . . . , qn,3
)

. For each non-boundary edgee of T , we
obtain an equation as follows.
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Consider the tetrahedra containing edgee; these are arranged in a cycle arounde as
illustrated in Figure3. Choose an arbitrary direction around this cycle, and arbitrarily
label the two ends ofe asupperandlower.

e

∆i1

∆i2

∆i3

Upper end

Lower end
Upward quadrilaterals Downward quadrilaterals

Direction

Figure 3: Building the quadrilateral matching equations

Within each of these tetrahedra, there are two quadrilateral types that meetedgee: the
upwardquadrilaterals, which rise from the lower end ofe to the upper end as we move
around the cycle, and thedownwardquadrilaterals, which fall in the opposite direction.
These are again illustrated in Figure3.

We can now create an equation from edgee as follows. Let the tetrahedra containing
e be ∆i1, ∆i2, . . . ,∆ik , let the coordinates corresponding to the upward quadrilateral
types beqi1,u1, qi2,u2, . . . , qik,uk , and let the coordinates corresponding to the downward
quadrilateral types beqi1,d1, qi2,d2, . . . , qik,dk . Then we obtain the equation

qi1,u1 + qi2,u2 + . . . + qik,uk = qi1,d1 + qi2,d2 + . . . + qik,dk.

The set of all such equations is called the set ofquadrilateral matching equationsfor
T .

We will see that both the standard and quadrilateral matching equations formnecessary
but not sufficient conditions for a non-negative integer vector to represent an embedded
normal surface. We still need one more set of constraints, which we define as follows.

Definition 2.8 (Quadrilateral Constraints) LetT be a compact 3–manifold triangu-
lation built from then tetrahedra∆1, . . . ,∆n, and letw be either a 7n–dimensional
vector of the form

(

t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3; . . . , qn,3
)

, or a 3n–dimensional
vector of the form

(

q1,1, q1,2, q1,3; . . . , qn,3
)

.

Then w satisfies thequadrilateral constraintsif, for each tetrahedron∆i , at most of
one of the quadrilateral coordinatesqi,1, qi,2 andqi,3 is non-zero.
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The quadrilateral constraints arise because any two quadrilaterals of different types
within the same tetrahedron must intersect, yet embedded normal surfaces cannot
have self-intersections. We have now gathered enough conditions for the complete
characterisation results of Haken [10] and Tollefson [25], which we reproduce in
Definition2.9and Theorem2.10.

Definition 2.9 (Admissible Vector) LetT be a compact 3–manifold triangulation
built from n tetrahedra. A (7n or 3n)–dimensional vector is calledadmissibleif (i) its
entries are all non-negative, (ii) it satisfies the (standard or quadrilateral) matching
equations forT , and (iii) it satisfies the quadrilateral constraints forT .

Theorem 2.10 Let T be a compact3–manifold triangulation built fromn tetrahedra,
and letw be a (7n or 3n)–dimensional vector of integers. Thenw is the (standard or
quadrilateral) vector representation of an embedded normal surface inT if and only if
w is admissible.

Although we can now reduce normal surfaces to vectors inR7n or R3n, we still have
infinitely many surfaces to search through if we are seeking an “interesting” surface,
such as an essential 2–sphere or an incompressible surface. The following series of
definitions, due to Jaco and Oertel [14], allow us to reduce such searches to finite
problems by restricting our attention to what are known asvertex normal surfaces.

Definition 2.11 (Projective Solution Space) For any dimensiond, we define the
following regions inRd :

• The non-negative orthant Od is the region inRd in which all coordinates are
non-negative; that is,Od = {x ∈ Rd | xi ≥ 0 ∀i}.

• Theprojective hyperplane Jd is the hyperplane inRd where all coordinates sum
to 1; that is,Jd = {x ∈ Rd | ∑ xi = 1}.

Note that the intersectionOd ∩ Jd is the unit simplex inRd .

Let T be a compact 3–manifold triangulation built fromn tetrahedra. Thestandard
projective solution spacefor T , denotedS (T ), is the region inR7n consisting of
all points in O7n ∩ J7n that satisfy the standard matching equations. Likewise, the
quadrilateral projective solution spacefor T , denotedQ(T ), is the region inR3n

consisting of all points inO3n ∩ J3n that satisfy the quadrilateral matching equations.

Since eachOd ∩ Jd is the unit simplex and the matching equations are both linear and
rational, it follows that the standard and quadrilateral projective solution spaces are
(finite) convex rational polytopes inR7n andR3n respectively.
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It is clear from Theorem2.10that the non-zero vectors inR7n or R3n that represent
embedded normal surfaces are precisely those positive multiples of points inS (T ) or
Q(T ) that (i) are integer vectors, and (ii) satisfy the quadrilateral constraints.

Definition 2.12 (Projective Image) Suppose thatx ∈ Rd is not the zero vector. We
define theprojective imageof x, denotedx, to be the vectorx/

∑

xi . In other words,
x is the (unique) multiple ofx that lies in the projective hyperplaneJd .

To avoid complications with vertex links and the empty surface, we define the projective
image of the zero vector to be the zero vector. That is,0 = 0 (which doesnot lie in
the projective hyperplaneJd).

Let S be an embedded normal surface in some triangulationT . To keep our notation
clean, we write the projective images of the vector representationsv(S) and q(S) as
v(S) andq(S) respectively.

Definition 2.13 (Vertex Normal Surface) LetT be a compact 3–manifold triangu-
lation built from n tetrahedra, and letS be an embedded normal surface inT . We
call S a standard vertex normal surfaceif and only if v(S) (the projective image of
the standard vector representation ofS) is a vertex of the polytopeS (T ). Likewise,
we call S a quadrilateral vertex normal surfaceif and only if q(S) is a vertex of the
polytopeQ(T ).

Although vertex normal surfaces correspond to vertices of the projective solution
space, this correspondence does not always work in the other direction. Instead we
must restrict our attention to vectors that satisfy the quadrilateral constraints.

Definition 2.14 (Solution Sets) LetT be a compact 3–manifold triangulation built
from n tetrahedra. Thestandard solution setfor T is the (finite) set of all vertices of the
polytopeS (T ) that satisfy the quadrilateral constraints. Likewise, thequadrilateral
solution setfor T is the (finite) set of all vertices of the polytopeQ(T ) that satisfy the
quadrilateral constraints.

The correspondence between solution sets and vertex normal surfaces is now an im-
mediate consequence of Theorem2.10and the fact that each projective solution space
is a rational polytope:

Corollary 2.15 Let T be a compact3–manifold triangulation built fromn tetrahedra,
and letw be a (7n or 3n)–dimensional vector. Thenw is the projective image of the
vector representation for a (standard or quadrilateral) vertex normal surface if and only
if w is in the (standard or quadrilateral) solution set.
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We return now to the overview of a “typical normal surface algorithm” as given in
Section1. Such algorithms typically work because we can prove that, if a 3–manifold
triangulation contains an “interesting” surface, then it contains an interesting vertex
normal surface. Examples of such theorems include:

• Jaco and Oertel [14] show that, if a closed irreducible 3–manifold triangulation
contains a two-sided incompressible surface, then such a surface existsas a
standard vertex normal surface. Jaco and Tollefson [16] extend this result to
bounded manifolds, and Tollefson [25] shows that such a surface must also exist
as a quadrilateral vertex normal surface.

• Jaco and Tollefson [16] prove similar results for essential spheres in closed 3–
manifolds and essential compression discs in bounded irreducible 3–manifolds;
in particular, they show that if such a surface exists then one can be found amongst
the standard vertex normal surfaces. With these results, they build algorithms to
solve problems such as connected sum decomposition, JSJ decomposition and
unknot recognition.

We can therefore build such an algorithm by constructing the standard or quadrilateral
solution set for our triangulation, and then searching through the solutionsfor one that
scales to an “interesting” normal surface.

The construction of the solution sets is, though finite, an exponentially slow procedure
in the number of tetrahedran. The best known algorithm to date is described in [6]; it is
essentially a variant of the double description method of Motzkin et al. [19], modified
in several ways to exploit the quadrilateral constraints for greater speed and lower
memory consumption.

The remainder of this paper is concerned mainly with theconversionbetween the
standard solution set and the quadrilateral solution set. Upon establishing conversion
algorithms in both directions (Algorithms4.6and5.15), we finish with a new algorithm
for constructingthe standard solution set (Algorithm5.17) that is orders of magnitude
faster than the current state-of-the-art.

We conclude this section with a brief discussion ofideal triangulations. These trian-
gulations, due to Thurston [23], include vertices whose links are neither 2–spheres nor
discs, but rather closed surfaces with genus (such as tori or Klein bottles). By removing
these vertices (and only these vertices), we obtain a triangulation of a non-compact
3–manifold. One of the most well-known ideal triangulations is the two-tetrahedron
triangulation of the figure eight knot complement, discussed in detail in [18].

Quadrilateral coordinates play a special role in ideal triangulations—they allow us to
describespun normal surfaces, which contain infinitely many triangular discs spiralling
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in towards the high-genus vertices. Such surfaces cannot be represented in standard
coordinates at all, which is why we must restrict our attention in this paper to compact
3–manifold triangulations. The reader is referred to Tillmann [24] for a thorough
overview of spun normal surfaces.

3 Canonical Surfaces and Vectors

Although our eventual goal is to construct algorithms for converting between the
standard and quadrilateralsolution sets, we begin in this section with the more modest
aim of converting between standard and quadrilateralvectors.

One complication we face is that, whereas vectors in standard coordinates represent
unique normal surfaces, vectors in quadrilateral coordinates do not (Lemma2.5). We
work around this uniqueness problem by introducing the notion ofcanonical surfaces
andcanonical vectorsin standard coordinates. Although this allows us to map vectors
in quadrilateral coordinates to uniquecanonicalvectors in standard coordinates and
uniquecanonicalsurfaces, we will find that these maps are not as well-behaved as we
might like them to be.

The structure of this section is as follows. We first define canonical surfaces and
canonical vectors and examine some of their basic properties. Following thiswe study
several additional maps between both surfaces and vectors; amongst these maps are the
quadrilateral projectionπ : R7n → R3n and thecanonical extensionε : R3n → R7n,
which convert back and forth between vectors in standard and quadrilateral coordinates.
We finish the section with Algorithm3.12, which shows how these conversions can be
performed in as fast a time complexity as possible.

Throughout this section, we assume that we are working with a compact 3–manifold
triangulationT built from n tetrahedra. We also allow a little flexibility with our
notation: the expressionℓ(V) will be used to refer to both the vertex linking surface
surroundingV (as presented in Definition2.3) and also its standard vector representa-
tion in R7n.

Definition 3.1 (Canonical Normal Surface) Acanonical normal surfacein the tri-
angulationT is an embedded normal surface that does not contain any vertex linking
components.

The purpose of this definition is to resolve the ambiguities inherent in quadrilateral
coordinates. In particular, it gives us the following uniqueness properties, which follow
immediately from Lemma2.5and Theorem2.10:
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Lemma 3.2 Let S and T be canonical normal surfaces within the triangulationT .
Then the quadrilateral vector representations ofSandT are equal, that is,q(S) = q(T),
if and only if surfacesS andT are identical.

Lemma 3.3 Let w be a3n–dimensional vector of integers. Thenw is the quadrilateral
vector representation of a canonical normal surface inT if and only if w is admissible.
Moreover, this canonical normal surface is unique.

Instead of thinking of canonical surfaces as having no vertex links, we can instead
think of them as surfaces where it is impossible toremovea vertex link. With this in
mind, we extend the concept from surfaces to vectors as follows.

Definition 3.4 (Canonical Vector) Letw be any vector inR7n (i.e., in standard
coordinates). We callw a canonical vectorif and only if (i) all triangular coordinates
of w are non-negative, but (ii) if we subtractǫℓ(V) for any ǫ > 0 and any vertex link
ℓ(V) then some triangular coordinate ofw must become negative.

In other words, for each vertexV of the triangulationT , the following property must
hold. Let ti1,j1, ti2,j2, . . . , tik,jk be the coordinates inw corresponding to the triangular
normal discs surroundingV . Then all of ti1,j1, ti2,j2, . . . , tik,jk are at least zero, and at
least one of these coordinates isequalto zero.

Essentially this definition states that (i)w might be admissible (having non-negative
triangular coordinates), but (ii)w − ǫℓ(V) canneverbe admissible.

We have already established two bijections between surfaces and vectors: Theorem2.10
shows a bijection between embedded normal surfaces and admissible integervectors
in R7n, and Lemma3.3 shows a bijection between canonical normal surfaces and
admissible integer vectors inR3n. We can now extend this list with a bijection between
canonical normal surfaces and admissiblecanonicalinteger vectors inR7n.

Lemma 3.5 The standard vector representation of a canonical normal surface is a
canonical vector inR7n. Conversely, every admissible canonical integer vector inR7n

is the standard vector representation of a (unique) canonical normal surface.

Proof This result follows immediately from Theorem2.10by observing that, if an
admissibleintegervectorw ∈ R7n is not canonical, then all of the triangular coordinates
surrounding some vertexV are≥ 1, and sow = ℓ(V) + w′ for some other admissible
integer vectorw′ .
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We can observe that, if we restrict our attention to admissible integer vectors,then we
have bijections between (i) canonical vectors in standard coordinates and canonical
surfaces, and (ii) vectors in quadrilateral coordinates and canonicalsurfaces. It follows
then that we must have a bijection between canonical vectors in standard coordinates
and vectors in quadrilateral coordinates; that is,a method for converting between
coordinate systems. We develop this idea further in Definition3.10.

Although the “canonical” property gives us uniqueness results and bijections that
we did not have before, it is not particularly well-behaved. In particular, it is clear
from Definition3.4 that this property is preserved under scalar multiplication but not
necessarily under addition. However, we can salvage the situation a little as seen in the
following result.

Lemma 3.6 If w ∈ R7n is a canonical vector then so isλw for anyλ > 0. Likewise,
if w ∈ R7n is anadmissiblecanonical vector then so isλw for any λ > 0. Finally, if
w = x + y for admissible vectorsw, x, y ∈ R7n andw is canonical then so arex and
y.

Proof This follows immediately from Definition3.4 and the fact that the matching
equations are invariant under scalar multiplication.

We proceed now to define several mappings that express the relationships between
canonical surfaces, non-canonical surfaces, vectors in standard coordinates and vectors
in quadrilateral coordinates. Lemma3.11 summarises the interplay between these
relationships. We begin by presenting notation for the domains and ranges of these
functions.

Notation 3.7 Let S denote the set of all embedded normal surfaces (up to normal
isotopy), and letSc ⊂ S denote the set of all canonical normal surfaces. LetR7n

a and
R3n

a denote the set of all admissible vectors in7n and3n dimensions respectively, and
let R7n

a,c ⊂ R7n
a denote the set of all admissible canonical vectors in7n dimensions.

Likewise, letZ7n
a andZ3n

a denote the set of all admissible integer vectors in7n and3n
dimensions respectively, and letZ7n

a,c ⊂ Z7n
a denote the set of all admissible canonical

integer vectors in7n dimensions.

It follows then that standard vector representation is a bijectionv : S → Z7n
a that

takes the subsetSc ⊂ S to the subsetZ7n
a,c ⊂ Z7n

a . Likewise, quadrilateral vector
representation is a many-to-one functionq : S → Z3n

a that becomes a bijection when
restricted toSc.
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Definition 3.8 (Represented Surface) Letw be an admissible integer vector inR7n.
Then therepresented surfaceof w, denotedσv(w), is the unique embedded normal
surface with standard vector representationw (as noted in Theorem2.10). Thus
σv : Z7n

a → S is the inverse function tov : S → Z7n
a .

Likewise, letw be an admissible integer vector inR3n. Then therepresented surface
of w, denotedσq(w), is the unique canonical normal surface with quadrilateral vector
representationw (as noted in Lemma3.3). Thusσq : Z3n

a → Sc is the inverse function
to the restrictionq : Sc → Z3n

a .

Definition 3.9 (Canonical Part) LetS be an embedded normal surface within the
triangulationT . The canonical partof S, denotedκs(S), is the canonical normal
surface obtained by removing all vertex linking components fromS. It follows thatκs

is a functionκs : S → Sc whose restriction toSc is the identity.

Similarly, let w be any vector inR7n. Thecanonical partof w, denotedκv(w), is
the unique canonical vector that can be obtained fromw by adding and/or subtracting
scalar multiples of vertex links. It follows that, if we restrict our attention to admissible
vectors, thenκv is a functionκv : R7n

a → R7n
a,c whose restriction toR7n

a,c is the identity.

The canonical part of a vectorw ∈ R7n can be constructed as follows. Let the vertices
of the triangulation beV1, . . . , Vm, and for eachi let λi be the minimum of all triangular
coordinates inw that correspond to triangular normal discs surroundingVi (so w is
canonical if and only if everyλi = 0). Thenκv(w) = w − λ1ℓ(V1) − . . . − λmℓ(Vm).

We now come to the point of defining conversion functions between vectorsin standard
coordinates and vectors in quadrilateral coordinates.

Definition 3.10 (Projection and Extension) Letw ∈ R7n be any vector in standard
coordinates; recall that the 7n coordinates ofw correspond to 3n quadrilateral disc
types and 4n triangular disc types. Thequadrilateral projectionof w, denotedπ(w),
is defined to be the vector inR3n consisting of only the 3n quadrilateral coordinates
for w. That is, if

w = ( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3 ;

t2,1, t2,2, t2,3, t2,4, q2,1, q2,2, q2,3 ;

. . . , qn,3 ) ∈ R7n,

then
π(w) = ( q1,1, q1,2, q1,3 ; q2,1, q2,2, q2,3 ; . . . , qn,3 ) ∈ R3n.
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Conversely, letw ∈ R3n
a be any admissible vector in quadrilateral coordinates. The

canonical extensionof w, denotedε(w), is defined to be the unique admissible canon-
ical vector inR7n

a,c whose quadrilateral projection isw.

It follows that, if we restrict our attention to admissible canonical vectors, then the
quadrilateral projectionπ : R7n

a,c → R3n
a is the inverse function to the canonical exten-

sion ε : R3n
a → R7n

a,c.

It does need to be shown that canonical extension is well-defined; that is, that for
any admissiblew ∈ R3n

a there is a unique admissible canonicalx ∈ R7n
a,c for which

π(x) = w. Lemmata3.3 and3.5 together show this to be true in the integers; since
admissibility and canonicity are invariant under positive scalar multiplication this is
also true in the rationals, and because the matching equations are rational and linear
this fact extends to the reals.

Quadrilateral projection and canonical extension are true “conversionfunctions”, in
the sense that ifS is any embedded normal surface thenπ mapsv(S) 7→ q(S), and if
S is also canonical thenε mapsq(S) 7→ v(S). The advantage of the broader definition
above is thatπ andε can also be applied to rational and real vectors, which means that
we can use them to convert not just vector representations of surfaces but also arbitrary
admissible points within the projective solution spaces.

This brings us to the end of our list of mappings. To conclude this section, webring
these mappings together and show how they interact (Lemma3.11), and then we
describe how the conversionsπ andε can be performed in as fast a time complexity
as possible (Algorithm3.12).
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Figure 4: A commutative diagram of mappings

Lemma 3.11 Consider Figure4, which shows the interactions between the mapsv,
q, σv, σq, κs, κv, π andε. Note that some of these maps appear twice—once in their
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full generality, and once when restricted to canonical surfaces or vectors. All of the
unnamed hooked arrows in this diagram are inclusion maps. Then the following facts
are true:

(i) Figure4 is a commutative diagram.

(ii) All double arrows in this diagram represent inverse functions. This includes the
pair v, σv : S ⇋ Z7n

a , their canonical restrictionsv, σv : Sc ⇋ Z7n
a,c, the pair

q, σq : Sc ⇋ Z3n
a , and the pairπ, ε : R7n

a,c ⇋ R3n
a .

(iii) Of the three vector-to-vector maps (π , ε and κv), only π is linear.1 The
remaining mapsε andκv preserve scalar multiplication (that is,ε(λw) = λε(w)
and κv(λw) = λκv(w) for λ ≥ 0), but they need not preserve addition. The
non-linear mapsε andκv are drawn in the diagram with dotted lines.

Proof These observations are all straightforward consequences of the relevant defini-
tions, and we do not recount the details here. The one additional observation required
is that vertex linking surfaces only contain triangular discs, which is whyq ◦ κs = q
andπ ◦ κv = π (sinceq andπ ignore triangular discs entirely).

Note that some of the maps described by Lemma3.11are more general than Figure4
indicates. In particular, bothπ and κv are defined on all 7n–dimensional vectors,
admissible or not. The commutative relationshipπ ◦ κv = π still holds in this more
general setting, but we do not worry about this here.

We return now to the two key conversion functions: the quadrilateral projection
π : R7n → R3n and the canonical extensionε : R3n

a → R7n
a,c. It is clear how to

computeπ(w) quickly (just drop all triangular coordinates fromw), but it is less clear
how to computeε(w) quickly.

A simple algorithm for computingε(w) might run as follows. Given a quadrilateral
vector w ∈ R3n

a , we solve the standard matching equations using typical methods of
linear algebra to obtain a matching set of triangular coordinates (there will bemany
solutions but any one will do), and then we applyκv to make the resulting vector in
R7n canonical.

However, this algorithm is slow—to solve the standard matching equations requires
O(n3) time for a simple implementation, though more sophisticated solvers can improve

1By “linear”, we only require here thatπ(λx + µy) = λπ(x) + µπ(y) for λ, µ ≥ 0. This is
because the domainsR7n

a andR7n
a,c are not closed under multiplication byλ < 0.
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upon this a little.2 It turns out that for the specific problem of computingε(w) we can
do much better, as seen in the following result.

Algorithm 3.12 Let w ∈ R3n
a be any admissible vector in quadrilateral coordinates.

Then the following algorithm computes the canonical extensionε(w), and does so in
O(n) time.

We begin by constructing a vector

x = ( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3 ;

t2,1, t2,2, t2,3, t2,4, q2,1, q2,2, q2,3 ;

. . . , qn,3 ) ∈ R7n

whose quadrilateral coordinatesqi,j are copied directly fromw, and whose triangular
coordinatesti,j are initially unknown. Then, for each vertexV of the triangulationT ,
we perform the following steps:

1. Choose an arbitrary triangular disc type surroundingV , and set the corresponding
triangular coordinate ofx to zero.

2. Run through all triangular disc types surroundingV using a depth-first search,
beginning at the disc type chosen in step 1 above. By “depth-first search”, we
mean that after visiting some triangular disc type, we recursively visit the three
adjacent3 triangular disc types in turn (ignoring those that have been visited
already).
Each time we visit a triangular disc type, we set the corresponding triangular
coordinate ofx as follows. Suppose we are visiting the triangular disc type
corresponding to coordinateti,a, having just come from the (adjacent) triangular
disc type corresponding to coordinatetj,c. Then one of the standard matching
equations forT is of the form ti,a + qi,b = tj,c + qj,d . Since we already have
values fortj,c, qi,b andqj,d , we can use this matching equation to set the unknown
coordinateti,a accordingly.

3. Once this depth-first search is complete, we have values assigned to alltriangular
coordinates ofx surroundingV . Let λ be the minimum of these triangular
coordinates; we now subtractλℓ(V) from x.

2We can improve uponO(n3) by exploiting the sparseness and rationality of the standard
matching equations; see for instance the≃ O(n2.5) iterative algorithm of Eberly et al. [8].

3Adjacentin the sense of the standard matching equations: two adjacent disc types sit within
adjacent tetrahedra, and their boundary arcs within the common tetrahedron face are parallel.
Refer to Figure2 for an illustration.
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Proof First we note that the algorithm is well-defined; in particular, that each depth-
first search in step 2 runs to completion (that is, we visit every triangular disc type
surroundingV). This follows immediately from the fact that each vertex linkℓ(V) is
connected.

Our next task is to prove the algorithm correct. Consider step 1, where weset an
arbitrary triangular coordinate surrounding vertexV to zero. Suppose instead that we
set this coordinate toµ. By examining the form of the standard matching equations
in step 2, we see that this+µ would propagate through every triangular disc type
surroundingV ; in other words, by the end of step 2 we would have added an extra
µℓ(V) to the solutionx. However, this would then cause us to subtract an extraµℓ(V)
from x in step 3. Thereforethe value given to the first triangular coordinate in step 1
does not affect the final solutionx.

Sinceε(w) is known to satisfy the standard matching equations, and since the only
coordinate assignment in our algorithm that doesnot use the standard matching equa-
tions (step 1) turns out to be irrelevant, it follows thatx = ε(w). That is, the algorithm
is correct.

Finally, we observe that the algorithm runs inO(n) time. Each of the 3n triangular
disc types inT is visited precisely once in steps 1 and 2; moreover, for each disc
type there is a small constant number of adjacencies (three) to examine. It follows
that, assuming we are careful with our implementation4, the time complexity of this
algorithm is indeedO(n).

As a final observation,ε must construct a vector of length 7n by definition, which
means thatanyalgorithm for computingε(w) must run in at leastO(n) time. Therefore
the O(n) time complexity of Algorithm3.12is the fastest time complexity possible.

4 The Easy Direction: Standard to Quadrilateral

At this point we are ready to build algorithms for converting between the standard and
quadrilateralsolution sets. In this section we consider the simpler direction: converting
the standard solution set into the quadrilateral solution set.

4For instance, when visiting a disc type in step 2, we do not search through all other disc
types to find which are adjacent; instead we compute this information directly in constant time.
Likewise, we do not run through all disc types inT for steps 1 and 3 when we only require
those surrounding a single vertexV .



20 Benjamin A Burton

We begin by proving some necessary and sufficient conditions for vertex normal
surfaces (Lemmata4.1and4.3). We then show that the canonical part of everyquadri-
lateral vertex normal surface is also astandardvertex normal surface (Lemma4.5),
and use this as the basis for our standard-to-quadrilateral conversionalgorithm (Algo-
rithm 4.6).

Once again, we assume throughout this section that we are working with a compact
3–manifold triangulationT built from n tetrahedra.

Lemma 4.1 Let S be an embedded normal surface inT for which v(S) 6= 0. If S
is a standard vertex normal surface, then wheneverv(S) = α u + β w for admissible
vectorsu, w ∈ R7n and constantsα, β > 0, it must be true that bothu and w are
multiples of v(S). Conversely, ifS is not a standard vertex normal surface, then
there exist embedded normal surfacesU and W and rationalsα, β > 0 for which
v(S) = α v(U) + β v(W) but where neitherv(U) nor v(W) are multiples ofv(S).

Moreover, these statements are also true in quadrilateral coordinates, where we replace
“standard”,v(·) andR7n with “quadrilateral”,q(·) andR3n respectively.

In essence, we are taking a basic fact about polytope vertices and showing that it holds
true even when we restrict our attention toadmissiblevectors within the polytope. Note
that the two statements of this lemma are not exactly converse; instead each is a little
stronger than the converse of the other, making them slightly easier to exploitlater on.

Proof The proofs are identical in standard and quadrilateral coordinates; here we
consider standard coordinates only.

SupposeS is a standard vertex normal surface. Then the given condition onu andw
follows immediately from the fact thatv(S) is a vertex of the polytopeS (T ).

On the other hand, suppose thatS is not a standard vertex normal surface. Thenv(S) is
not a vertex of the polytopeS (T ), and so we can find rational vectorsu, w ∈ S (T )
on opposite sides ofv(S); that is,u, w 6= v(S) and 1

2(u + w) = v(S).

We show that bothu and w satisfy the quadrilateral constraints as follows. Without
loss of generality, suppose thatu doesnot satisfy the quadrilateral constraints. Then,
sincev(S) does, there must be some quadrilateral coordinateqi,j that is zero inv(S)
but strictly positive inu. It follows that this coordinate is negative inw, contradicting
the claim thatw ∈ S (T ) (recall thatS (T ) lies in the non-negative orthant).

Therefore bothu and w are rational vectors inS (T ) that satisfy the quadrilateral
constraints. It follows from Theorem2.10that we can find embedded normal surfaces
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U and W for which v(U) = u and v(W) = w, whereupon we find thatv(S) =

α v(U) + β v(W) for α, β > 0 but neitherv(U) nor v(W) is a multiple ofv(S).

Note that Lemma4.1 has slightly different implications in standard and quadrilateral
coordinates. For instance, the conditionv(S) 6= 0 requires the surfaceS to be non-
empty, butq(S) 6= 0 requires thatS is not a union of vertex links. Other differences
arise regarding scalar multiplication. For example, for certain types of two-sided
surfaceS, we have thatv(U) is an integer multiple ofv(S) if and only if the surfaceU
consists of zero or more copies ofS. On the other hand,q(U) is an integer multiple of
q(S) if and only if U consists of zero or more copies ofS with possibly some vertex
links added or subtracted.

Our next result allows us to identify vertex normal surfaces based purely on which
coordinates are zero and which are non-zero.

Definition 4.2 (Domination) Letx andy be vectors inRd . We say thatx dominates
y if, whenever a coordinatexi is zero, the corresponding coordinateyi is zero also. We
say thatx strictly dominatesy if (i) x dominatesy, and (ii) there is some coordinate
yi that is zero for which the corresponding coordinatexi is non-zero.

For instance, inR3 the vector (0, 5, 3) strictly dominates (0, 2, 0), the vectors (1, 0, 2)
and (3, 0, 1) both dominate each other (but not strictly), and neither of (0, 2, 5) or
(7, 0, 4) dominates the other.

When discussing domination we usex andx interchangeably, since bothx andx have
zero coordinates in the same positions.

Lemma 4.3 Let Sbe an embedded normal surface inT for which v(S) 6= 0. If S is a
standard vertex normal surface, then wheneverv(S) dominatesu for some admissible
vectoru ∈ R7n, it must be true thatu is a multiple ofv(S). Conversely, ifS is not a
standard vertex normal surface, then there is some standard vertex normal surfaceU
for which v(S) strictly dominatesv(U).

Moreover, these statements are also true in quadrilateral coordinates, where we replace
“standard”,v(·) andR7n with “quadrilateral”,q(·) andR3n respectively.

As in Lemma4.1, each half of this lemma is a stronger version of the converse of the
other. While this makes the statement of the lemma a little less transparent, it also
makes both halves easier to use in practice (as we will see later in this section).
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Proof Again the proofs in standard and quadrilateral coordinates are identical;here
we consider only standard coordinates.

Suppose thatS is a standard vertex normal surface and thatv(S) dominatesu for some
admissibleu ∈ R7n. If u = 0 then u is clearly a multiple ofv(S), so assume that
u 6= 0. Let w = v(S) + ǫ(v(S) − u) for some smallǫ > 0; that is,w is an extension
of the line joiningu andv(S), just beyondv(S).

Becausev(S) andu satisfy the standard matching equations, so doesw. Becausev(S)
dominatesu, we can keep the coordinates ofw non-negative by choosingǫ sufficiently
small. Finally, becausev(S) satisfies the quadrilateral constraints andu introduces
no new non-zero coordinates, it follows thatw satisfies the quadrilateral constraints
also. Thereforew is an admissible vector. Since (1+ ǫ)v(S) = w + ǫu, we have from
Lemma4.1that u is a multiple ofv(S).

Now suppose thatS is not a standard vertex normal surface. LetF be the minimal-
dimensional face of the polytopeS (T ) containingv(S), and letu be any vertex ofF .
We aim to show thatu = v(U) for some standard vertex normal surfaceU , and that
v(S) strictly dominatesu.

Consider any coordinate that is zero inv(S); without loss of generality let this beqi,j

(though it could equally well be a triangular coordinate). The hyperplaneqi,j = 0 is a
supporting hyperplane forS (T ), and since it containsv(S) it must contain the entire
minimal-dimensional faceF . Therefore the coordinateqi,j is zero at every vertex of
F , includingu.

Running through all such coordinates, we see thatu is dominated byv(S); this
domination also shows thatu satisfies the quadrilateral constraints. Since our polytope
is rational andu is a vertex it follows thatu = v(U) for some standard vertex normal
surfaceU .

Finally, becauseS is not a standard vertex normal surface we havev(S) 6= u; the first
part of this lemma then shows thatu cannot dominatev(S), which means thatu must
bestrictly dominated byv(S).

One simple but useful consequence of Lemma4.3 is the following.

Corollary 4.4 Every standard vertex normal surface inT is either (i) canonical, or
(ii) consists of one or more copies of the link of a single vertex ofT . Moreover, the
link of a single vertex ofT is always a standard vertex normal surface.
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Proof Let S be a standard vertex normal surface inT , and suppose thatS is not
canonical. ThenS contains at least one vertex linking component; let this be the link
ℓ(V). It follows that v(S) = ℓ(V) + u for some non-negativeu ∈ R7n. Thus v(S)
dominatesℓ(V), and from Lemma4.3we have thatv(S) is a multiple of the vertex link
ℓ(V).

Now consider a single vertex linkℓ(V). If this vertex link is not a standard vertex
normal surface, then from Lemma4.3 there is some non-empty embedded normal
surfaceU for which ℓ(V) strictly dominatesv(U). Thus the surfaceU contains only
triangular discs surrounding the vertexV , and moreover at least one such triangular
disc type does not appear inU at all.

By following the standard matching equations around the vertexV we find that, because
sometriangular coordinate surroundingV is zero inv(U), thenall such coordinates
must be zero inv(U). ThusU is the empty surface, giving a contradiction.

We proceed now to the key result that underpins the standard-to-quadrilateral conver-
sion algorithm.

Lemma 4.5 The canonical part of every quadrilateral vertex normal surface inT is
also a standard vertex normal surface inT .

Proof Let S be a quadrilateral vertex normal surface, and suppose that the canonical
part κs(S) is not a standard vertex normal surface. Then from Lemma4.1, there exist
embedded normal surfacesU andW wherev(κs(S)) = α v(U) + β v(W) for α, β > 0
and where neitherv(U) nor v(W) is a rational multiple ofv(κs(S)). Becauseκs(S) is
canonical, it follows from Lemma3.6that bothU andW are canonical also.

Using the fact that the quadrilateral projectionπ is linear and thatπ · v = q
(Lemma3.11), it follows that the analogous relationshipq(κs(S)) = α q(U) + β q(W)
must hold in quadrilateral coordinates. Sinceq · κs = q, this simplifies toq(S) =

α q(U) + β q(W).

Finally, becauseS is a quadrilateral vertex normal surface, Lemma4.1 shows that
both q(U) and q(W) must be rational multiples ofq(S) = q(κs(S)). Since the
canonical extensionε preserves scalar multiplication andε·q = v on canonical surfaces
(Lemma3.11again), this implies that bothv(U) and v(W) are rational multiples of
v(κs(S)), a contradiction.

We close this section with our first algorithm for converting between solution sets:
the conversion from the standard solution set to the quadrilateral solution set. This
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is the easier direction in all respects—the algorithm is conceptually simple (we use
Lemma4.5 to find potential solutions and Lemma4.3 to verify them), it is simple to
implement, and it has a guaranteed small polynomial running time5 (which is unusual
for vertex enumeration problems).

Algorithm 4.6 Suppose we are given the standard solution set for the triangulation
T , and that this standard solution set consists of thek vectorsv1, . . . , vk ∈ R7n. Then
the following algorithm computes the quadrilateral solution set forT , and does so in
O(nk2) time.

1. Compute the quadrilateral projectionsπ(v1), . . . , π(vk); recall that this merely
involves removing the triangular coordinates from each vector. Throw away any
zero vectors that result, and label the remaining non-zero vectorsq1, . . . , qk′ ∈
R3n.

2. Begin with an empty list of vectorsL. For eachi = 1, . . . , k′ , test whether the
vectorqi dominates any otherqj for i 6= j . If not, insert the projective imageqi

into the listL.

3. Once step 2 is complete, the listL holds the complete quadrilateral solution set
for T .

Proof Our first task is to prove the algorithm correct. We approach this by (i) showing
that every member of the quadrilateral solution set does appear in the finallist L, and
then (ii) showing that any other vector does not appear in the final listL.

• Supposew ∈ R3n is a member of the quadrilateral solution set forT . Thenw
is non-zero, and furthermorew = q(S) = q(κs(S)) for some quadrilateral vertex
normal surfaceS. From Lemma4.5, κs(S) is also astandardvertex normal
surface, and sov(κs(S)) is a member of the standard solution set. Therefore
v(κs(S)) = vi for some i , whereupon Lemma3.11 gives usw = q(κs(S)) =

π(v(κs(S))) = π(vi). That is,w appears in step 1 asw = qi′ for somei′ .
Suppose now thatw does not appear in the final listL. This can only be because
qi′ dominatesqj′ for somej′ 6= i′ . From step 1 we know thatqj′ = π(vj) for
some vectorvj 6= vi in the standard solution set. Moreover, neithervi nor vj

is a multiple of a vertex link (otherwiseqi′ or qj′ would be zero); therefore
Corollary4.4 shows that bothvi and vj are canonical, and sovi = ε(qi′) and
vj = ε(qj′).

5Of course this must be polynomial in not justn but also the size of the input, i.e., the
standard solution set. There are families of triangulations for which the standard solution set is
known to have size exponential inn; see [5] for some examples.
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Becauseqi′ dominatesqj′ , it follows from Lemma4.3 that qj′ is a multiple of
qi′ . Sinceε preserves scalar multiplication,vi = ε(qi′) is also a multiple of
vj = ε(qj′). Finally, sincevi and vj both belong to the standard solution set,
their coordinates must both sum to one and we obtainvi = vj , a contradiction.

• Suppose now thatw ∈ R3n is nota member of the quadrilateral solution set for
T . From Lemma4.3 there is some quadrilateral vertex normal surfaceU for
which w strictly dominatesq(U), and from the previous argument the projective
imageq(U) appears in step 1 as someqj′ . This domination ensures thatw is
tossed away in step 2, and so does not appear in the final listL.

We see then thatL contains precisely the quadrilateral solution set forT as claimed.
Note that step 2 ensures thatL contains no duplicate vectors (i.e., thatL is a “true
set”); otherwise each would dominate the other. We finish by observing thatall
vector operations takeO(n) time and that steps 1 and 2 requireO(k) andO(k2) vector
operations respectively, giving a running time ofO(nk2) in total.

5 The Hard Direction: Quadrilateral to Standard

We come now to our second conversion algorithm for solution sets: the conversion
from the quadrilateral solution set to the standard solution set. Although this isthe
more difficult conversion, with a messy implementation and a worst-case exponential
running time, it is ultimately the more useful. In particular:

• It gives us genuinely new surfaces, which Lemma4.5 shows is not true in the
reverse direction. This means that we can potentially learn new information
about the underlying triangulation and 3–manifold.

• It forms the basis for a newenumerationalgorithm to generate the standard
solution set, which runs orders of magnitude faster than the current state-of-the-
art.

We begin with some prerequisite tools in Section5.1, where we introduce some ad-
ditional vector maps and then discuss polyhedral cones and their interaction with the
quadrilateral constraints. Following this, Section5.2is devoted to presenting and prov-
ing the quadrilateral-to-standard solution set conversion algorithm (Algorithm 5.15).
We finish in Section5.3with a brief discussion of time complexity (Conjecture5.16)
and the new enumeration algorithm described above (Algorithm5.17). As discussed
back in the introduction, this final enumeration algorithm is the real “end product”
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of this paper, and we devote all of Section6 to testing its performance in a practical
setting.

As before, we assume throughout this section that we are working with a compact
3–manifold triangulationT built from n tetrahedra.

5.1 Vector Maps and Polyhedral Cones

To present and prove the quadrilateral-to-standard conversion algorithm (Algorithm
5.15), we need to call upon two new families of vector maps, both of which involve the
vertices of the triangulationT .

Definition 5.1 (Partial Canonical Part) Let the vertices ofT be labelledV1, . . . , Vm,
and letw be any vector inR7n. For eachi = 1, . . . , m, the ith partial canonical part
of w is denotedκ(i)

v (w) and is defined as follows. Letλ ∈ R be the largest scalar
for which all of the coordinates ofw − λℓ(Vi) that correspond to triangular disc types
surroundingVi are non-negative. Then we defineκ(i)

v (w) = w − λℓ(Vi).

Essentiallyκ(i)
v (w) is a “restricted” canonical part ofw where we only allow copies of

the vertex linkℓ(Vi) to be added or subtracted. It is simple to see that applying this
procedure to all vertices gives the usual canonical partκv, that is,κv = κ(1)

v ◦ . . .◦κ(m)
v .

Like κv, the partial mapsκ(i)
v are not linear but do preserve scalar multiplication.

Definition 5.2 (Truncation) Let the vertices ofT be labelledV1, . . . , Vm, and let
w be any vector inR7n. For eachi = 0, . . . , m, the ith truncationof w is denoted
τi(w), and is defined as follows. We first locate all coordinates inw that correspond
to triangular disc types surrounding the verticesVi+1, . . . , Vm. Thenτi(w) is obtained
from w by setting each of these coordinates to zero.

For convenience, ifS⊆ R7n is any set of vectors then we letτi(S) denote the corre-
sponding set ofi th truncations; that is,τi(S) = {τi(w) |w ∈ S}.

The 0th truncationτ0(w) is most severe, setting all triangular coordinates inw to zero.
At the other extreme, themth truncation has no effect whatsoever, withτm(w) = w.
Each truncation map is linear, and it is clear thatτi ◦ τj = τmin(i,j) . Note that truncation
does not preserve admissibility, sinceτi(w) might not satisfy the standard matching
equations even ifw does.

In general it is impossible to undo truncations precisely. However, for admissible
vectors the errors are controllable, as seen in the following result.
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Lemma 5.3 Consider any two admissible vectorsx, y ∈ R7n. If τi−1(x) = τi−1(y),
thenτi(x) = τi(y) + µℓ(Vi) for someµ ∈ R.

Proof Becauseτi−1 does not affect any quadrilateral coordinates, we haveπ(x) =

π(y). With Lemma3.11we can convert this intoκv(x) = κv(y), whereupon the result
is a simple consequence of Definition3.9.

For the remainder of this section we focus on polyhedral cones. These are used heavily
in the proof of Algorithm5.15, and we concentrate in particular on their interaction
with the quadrilateral constraints.

Definition 5.4 (Polyhedral Cone) Apolyhedral conein Rd is an intersection of
finitely many closed half-spaces inRd , all of whose bounding hyperplanes pass through
the origin.

A pointed polyhedral conein Rd is a polyhedral cone inRd for which the origin is
an extreme point. Equivalently, it is a polyhedral cone inRd that has a supporting
hyperplane meeting it only at the origin.

It is clear that every polyhedral coneC is convex and closed under non-negative scalar
multiplication (that is,x, y ∈ C implies λx + µy ∈ C for all λ, µ ≥ 0). An example
of a polyhedral cone that is not pointed is the infinite prism{x ∈ R3 | x1, x2 ≥ 0},
for which any supporting hyperplane containing0 must also contain the entire line
x1 = x2 = 0.

C

H

0

Figure 5: A pointed polyhedral cone with five basis vectors

Definition 5.5 (Basis) LetS be any set of vectors inRd . By abasisfor S, we mean
a subset of vectorsB ⊂ S for which
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(i) every vector ofS can be expressed as a non-negative linear combination of
vectors inB;

(ii) if any vector is removed fromB then property (i) no longer holds.

It is straightforward to see that we can replace (ii) with the equivalent property

(ii ′ ) no vector inB can be expressed as a non-negative linear combination of the
others.

Although our definition of a basis is designed with polyhedral cones in mind, itis
deliberately broad; this is because we will need to apply it not only to polyhedral cones
but also to non-convex sets, such as thesemi-admissible partsto be defined shortly.
Note that for general setsS, property (i) does not work in reverse—there might well
be non-negative linear combinations of vectors inB that are not elements of the setS.

For a pointed polyhedral coneC, the vectors in a basis correspond to the edges of the
cone; these edges are also known asextremal raysof C. Figure5 illustrates a pointed
polyhedral coneC with a supporting hyperplaneH as described by Definition5.4;
the five points marked in black together form a basis forC. The basis for a pointed
polyhedral cone is essentially unique and can be used to reconstruct thecone, as noted
by the following well known results.

Lemma 5.6 Every polyhedral coneC has a finite basis. Moreover, ifB and B′ are
both bases for apointedpolyhedral coneC, then there is a one-to-one correspondence
betweenB andB′ that takes each vector to a positive scalar multiple of itself.

Lemma 5.7 Let B ⊂ Rd be a finite set of vectors for which

(i) no element ofB can be expressed as a non-negative linear combination of the
others;

(ii) there is some hyperplaneH ⊂ Rd passing through0 for which every vector
of B lies strictly to the same side ofH (in particular, none of these vectors lie
within H ).

Then the set of all non-negative linear combinations of vectors inB forms a pointed
polyhedral cone withB as its basis.

Some pairs of basis vectors areadjacent, in the sense that the corresponding edges of
the cone are joined by two-dimensional faces.6 In Figure5 above, adjacent pairs of
basis vectors are marked by dotted lines. We define adjacency formally as follows.

6Note that the only one-dimensional faces of a polyhedral cone are its extremal rays, i.e.,
rays of the form{λb |λ > 0} whereb is a basis vector.
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Definition 5.8 (Adjacency) Letb andb′ be two distinct basis vectors for a pointed
polyhedral coneC. We defineb andb′ to beadjacentif the smallest-dimensional face
of C containing bothb andb′ has dimension two.

Bases of polyhedral cones provide a very limited form of uniqueness when taking
non-negative linear combinations, as seen in the following simple lemma.

Lemma 5.9 Let B = {b1, . . . , bk} be a basis for a pointed polyhedral coneC ⊂ Rd .
If some br ∈ B can be written as a non-negative linear combination of basis vectors
(that is,br =

∑

λibi where allλi ≥ 0), then this linear combination must be the trivial
br = br . That is,λr = 1 andλi = 0 for i 6= r .

Proof Suppose we have some non-negative linear combinationbr =
∑

λibi . If
λr < 1 then we obtainbr as a non-negative linear combination of the other basis
vectorsbi ( i 6= r ), in violation of Definition5.5. Thereforeλr ≥ 1, and we can
subtractbr to obtain0 as a non-negative linear combination0 =

∑

λ′
ibi .

Since our cone is pointed, it has a supporting hyperplaneH for which 0 ∈ H but every
bi lies strictly to one side ofH . The only way to obtain this with non-negativeλ′

i is to
set everyλ′

i = 0, showing our original linear combination to be the trivialbr = br .

The uniqueness in Lemma5.9 is limited in the sense that it only holds whenbr is
a basis vector. In general, an arbitrary pointx ∈ C might well be expressible as a
non-negative linear combination of basis vectors in several different ways. Even for
basis elements, it should be noted that Lemma5.9can fail for non-pointed cones.

An even weaker form of uniqueness exists for combinations of adjacentbasis vectors,
and indeed can be used to completely characterise adjacency as follows.

Lemma 5.10 Let B = {b1, . . . , bk} be a basis for a pointed polyhedral coneC ⊂ Rd .
Two distinct basis vectorsbr , bs ∈ B are adjacent if and only if, wheneverµbr +ηbs =
∑

λibi for µ, η, λi ≥ 0, we must haveλi = 0 for every i 6= r, s.

In other words,br andbs are adjacent if and only if any non-negative linear combination
of basis vectorsbr andbs canonlybe expressed as a non-negative linear combination
of basis vectorsbr andbs.

Proof To prove this we use two equivalent characterisations of faces for polyhedral
cones7, both of which are described by Brøndsted [2]:

7Although these characterisations are equivalent for polytopes and polyhedra, they are not
equivalent for general convex sets.
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(a) A setF ⊆ C is a face ofC if and only if F = C, F = ∅, or F = C ∩ H for
some supporting hyperplaneH ;

(b) A set F ⊆ C is a face ofC if and only if (i) F is convex, and (ii) whenever
the open line segment (x, y) contains a point inF for somex, y ∈ C, the entire
closed line segment [x, y] lies in F .

We also note that every face of a polyhedral cone (and thus every supporting hyperplane
above) must pass through the origin.

Suppose the basis vectorsbr and bs are adjacent, and thatµbr + ηbs =
∑

λibi for
someµ, η, λi ≥ 0. Let F be the smallest-dimensional face ofC containing bothbr

and bs; sinceF is two-dimensional, it cannot contain any other basis vectorbi for
i 6= r, s.

Using (a) above, we can writeF = C∩ H for some supporting hyperplaneH passing
through the origin. We see thatbr and bs lie in H and every other basis vector lies
strictly to one side ofH , whereupon our non-negative linear combination must have
λi = 0 for everyi 6= r, s.

Suppose now that the basis vectorsbr and bs are not adjacent. LetG be the two-
dimensional plane passing throughbr , bs and the origin; the non-adjacency ofbr and
bs shows thatG cannot be a face ofC. Therefore, by (b) above, there are points
x, y ∈ C for which (x, y) meetsG but [x, y] * G.

Let z ∈ (x, y) ∩ G. Becausez ∈ G we can writez = µbr + ηbs for someµ, η ≥ 0.
On the other hand, we can also writez as a non-trivial convex combination ofx and
y. Since [x, y] * G at least one ofx andy cannot be expressed purely in terms ofbr

andbs, and we obtainz = µbr + ηbs =
∑

λibi where everyλi ≥ 0 and someλi > 0
for i 6= r, s.

There are other characterisations of adjacency, such as the algebraicand combinatorial
conditions described by Fukuda and Prodon [9]. However, Lemma5.10will be more
useful to us when we come to the proof of Algorithm5.15.

The double description method, devised by Motzkin et al. [19] and improved upon
by other authors since, is a standard algorithm for inductively convertinga set of
half-spaces that define a polyhedral cone into a basis for this same cone. The double
description method plays an important role in the standard enumeration of normal
surfaces; the reader is referred to [6] for both theoretical and practical details. Although
we do not explicitly call upon the double description method here, we do rely on one
of its core components, which is the following result.
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Lemma 5.11 Let C ⊂ Rd be a pointed polyhedral cone with basisB, and letH be
a half-space defined by the linear inequalityH = {x ∈ Rd | x · h ≥ 0}. Then the
intersectionC ∩ H is also a pointed polyhedral cone, and we can compute a basis for
C∩ H as follows.

Partition the basisB into setsS0 = {b ∈ B |b · h = 0}, S+ = {b ∈ B |b · h > 0} and
S− = {b ∈ B |b · h < 0}. Then a basis forC∩ H is

S0 ∪ S+ ∪
{

(u · h)w − (w · h)u
(u · h) − (w · h)

∣

∣

∣

∣

u ∈ S+ andw ∈ S−,

u, w are adjacent basis vectors ofC

}

.

0

S0

S+

S−

H

x · h ≥ 0

Figure 6: Intersecting a pointed polyhedral cone with a new half-space

This procedure is illustrated in Figure6. For further details on the double description
method (including Lemma5.11), the reader is referred to the excellent overview by
Fukuda and Prodon [9].

When we come to proving Algorithm5.15, we will need to work with restricted
portions of polyhedral cones that satisfy the quadrilateral constraints.This motivates
the following definition.

Definition 5.12 (Semi-Admissible Part) Consider any set of vectorsS⊆ R7n. The
semi-admissible partof S, denotedα(S), is the subset of all vectors inS that satisfy
the quadrilateral constraints.

We call this thesemi-admissible part because we deliberately make no mention of
non-negativity or the matching equations. This is essential—in Algorithm5.15 we
deal with vectors that satisfy the quadrilateral constraints but that can have negative
coordinates, and in the corresponding proof we takei th truncations of these vectors
which can break the matching equations.
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It is important to note that the semi-admissible part of a polyhedral coneC may well
be non-convex, and so might not be a polyhedral cone in itself. Nevertheless,α(C)
remains closed under non-negative scalar multiplication.

The following result shows that, for “sufficiently non-negative” pointedpolyhedral
conesC, bases forC and bases forα(C) are tightly related.

Lemma 5.13 Let C be a pointed polyhedral cone inR7n where, for everyx ∈ C,
the quadrilateral coordinates ofx are all non-negative. IfB is a basis forC, then the
semi-admissible partα(B) forms a basis forα(C). Conversely, every basis forα(C)
can be expressed in the formα(B) whereB is a basis forC.

Proof Suppose thatB = {b1, . . . , bk} is a basis forC.

• Since B is a basis it is clear that everyx ∈ α(C) ⊆ C can be expressed as
x =

∑

λibi with all λi ≥ 0. Furthermore, ifλi > 0 for any bi that doesnot
satisfy the quadrilateral constraints, the non-negativity condition onC ensures
that x = λibi + . . . cannot satisfy the quadrilateral constraints either. Thus
x =

∑

λibi is actually a non-negative linear combination of vectors inα(B).

• Since no element ofB can be expressed as a non-negative linear combination of
the others, the same must be true ofα(B) ⊆ B.

It follows by Definition5.5that α(B) is a basis forα(C).

Conversely, letB′ be a basis forα(C), and letB = {b1, . . . , bk} be some basis forC.
For eachbi ∈ α(B), we modifyB as follows.

• SinceB′ is a basis forα(C), we can expressbi as a non-negative linear combi-
nation of elements ofB′ ; we mark this linear combination (⋆) for later reference.
BecauseB is a basis forC, we can expand (⋆) to a non-negative linear combi-
nation of elements ofB. Thus we obtainbi =

∑

λjbj for λj ≥ 0.
However, Lemma5.9shows that the only such linear combination can bebi =

bi . Since all linear combinations are non-negative, it follows that the first
linear combination (⋆) must likewise consist only of positive multiples ofbi ; in
particular, we must haveµbi ∈ B′ for someµ > 0. We now replacebi with
µbi in B; it is clear thatB remains a basis forC.

By following this procedure for eachbi ∈ α(B), we obtain a basisB for C that
satisfiesB′ ⊇ α(B). However, from the first part of this lemmaα(B) is also a basis
for α(C). Therefore any additional vectors inB′ would be redundant, and so we have
B′ = α(B).
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We conclude our brief study of polyhedral cones with an example of a semi-admissible
part and its basis that we have seen before. The following observationsare all immediate
consequences of the relevant definitions and Lemma5.13.

Example 5.14 Let C ⊂ R7n be the set of all vectors whose entries are all non-negative
and which satisfy the standard matching equations for the triangulationT . Then C
is a pointed polyhedral cone, the standard projective solution spaceS (T ) is a finite
cross-section of this cone (taken along the projective hyperplaneJ7n), and the vertices
of the polytopeS (T ) form a basis forC. Furthermore,α(C) = R7n

a (the set of all
admissible vectors inR7n), and the standard solution set forms a basis forα(C).

5.2 The Main Conversion Algorithm

We are now ready to present the quadrilateral-to-standard solution set conversion al-
gorithm in full detail. The algorithm relies on the numbering of standard coordinate
positions—here we number coordinate positions 1, 2, . . . , 7n according to Defini-
tion 2.4, so that positions 7i + {1, 2, 3, 4} correspond to triangular coordinates and
positions 7i +{5, 6, 0} correspond to quadrilateral coordinates. For an arbitrary vector
w ∈ R7n, we use the common notation wherebywi ∈ R denotes the coordinate ofw
in the i th position.

Roughly speaking, the algorithm operates as follows. Given them verticesV1, . . . , Vm

of the triangulation, we inductively build lists of vectorsL0, L1, . . . , Lm. Each list
Lr generates all admissible vectors that can be formed by (i) combining vectors
from the quadrilateral solution set and then (ii) addingor subtractingvertex links
ℓ(V1), . . . , ℓ(Vr ). In particular, the initial listL0 is the quadrilateral solution set, and
(after appropriate scaling) the final listLm becomes the standard solution set.

Each inductive step that transformsLr into Lr+1 is based on the double description
method, though complications arise because we do not have access to the full facet
structures of the underlying polyhedral cones. As we construct eachlist Lr we essen-
tially ignore all triangular coordinates around the subsequent verticesVr+1, . . . , Vm,
though we do maintain the standard matching equations at all times. This selective
ignorance is expressed in the proof through the truncation functionτr , and is resolved
in the algorithm itself by taking the partial canonical partκ(r)

v when the need arises.

Algorithm 5.15 Suppose we are given the quadrilateral solution set for the triangu-
lation T , and that this quadrilateral solution set consists of thek vectorsq1, . . . , qk ∈
R3n. Then the following algorithm computes the standard solution set forT .
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Let the vertices ofT beV1, . . . , Vm. We construct lists of vectorsL0, L1, . . . , Lm ⊂ R7n

as follows.8

1. Fill the list L0 with the canonical extensionsε(q1), . . . , ε(qk) ∈ R7n, using
Algorithm 3.12to perform the computations.

2. Create a set of coordinate positionsC ⊆ {1, 2, . . . , 7n} and initialise this to the
set of all quadrilateral coordinate positions, so that

C = {5, 6, 7, 12, 13, 14, . . . , 7n− 2, 7n− 1, 7n}.
This set will grow as the algorithm runs, eventually expanding to all of{1, 2, . . . , 7n}.

3. For eachr = 1, 2, . . . , m, fill the list Lr as follows.

(a) For each vectorx ∈ Lr−1, insert the partial canonical partκ(r)
v (x) into Lr .

(b) Insert the negative vertex link−ℓ(Vr ) into Lr .

(c) Let Tr ⊂ {1, 2, . . . , 7n} be the set of all coordinate positions corresponding
to triangular disc types in the vertex linkℓ(Vr ); that is,Tr = {p | ℓ(Vr )p 6=
0}. For each positionp ∈ Tr , perform the following steps.

(i) Partition the listLr into three listsS0, S+ and S− according to the
sign of thepth coordinate. Specifically, letS0 = {x ∈ Lr | xp = 0},
S+ = {x ∈ Lr | xp > 0} andS− = {x ∈ Lr | xp < 0}.

(ii) Create a new temporary listL′ = S0 ∪ S+ .

(iii) Run through all pairs of vectorsu ∈ S+ andw ∈ S− that satisfy both
of the following conditions:

– u andw together satisfy the quadrilateral constraints. That is, for
each tetrahedron∆i of T , at least two of the three quadrilateral
coordinates for∆i are zero in bothu andw simultaneously.

– There is no vectorz ∈ Lr other thanu andw for which, whenever
a coordinate positioni ∈ C satisfies bothui = 0 and wi = 0,
thenzi = 0 also.

For each such pair, insert the vector(upw − wpu)/(up − wp) into the
temporary listL′ . Note that this vector is the point where the line
joining u andw meets the hyperplane{x ∈ R7n | xp = 0}.

(iv) Empty out the listLr and refill it with the vectors inL′ , and insert the
coordinate positionp into the setC.

8We use set notation with these lists because, as we see in the proof, they contain no duplicate
vectors. We call them lists here because the implementationcan happily treat them as such; in
particular, there is no need to explicitly check for duplicates when we insert vectors into lists
as the algorithm progresses.
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(d) Finish the list by inserting the positive vertex linkℓ(Vr ) into Lr .

Suppose that the very last listLm consists of thek′ vectorsv1, . . . , vk′ ∈ R7n. Then
the standard solution set forT consists of thek′ projective imagesv1, . . . , vk′ .

Before we embark on a proof that this algorithm is correct, there are a fewpoints worth
noting.

• Unlike the previous algorithms in this paper, the statement of Algorithm5.15
does not include a time complexity. This is because the algorithm can grow
exponentially slow with respect to the size of the input.
For examples of this exponential growth the reader is referred to [5], which
describes the solution sets for then–tetrahedrontwisted layered loop, a highly
symmetric triangulation of the quotient spaceS3/Q4n. In these examples the
quadrilateral solution set has sizeΘ(n), whereas the standard solution set has
sizeΘ(φn) for φ = (1 +

√
5)/2. Thus the size of the output is exponential in

the size of the input, and so the running time of any conversion algorithm must
be at least this bad.9

On the other hand, it is possible—and indeed quite plausible—that the running
time of Algorithm 5.15 is polynomial in the size of theoutput. For further
discussion, see Conjecture5.16later in this section.

• Step 3(c) bears a resemblance to the double description method of Motzkin
et al. [19]. As discussed earlier, this is no accident—in a sense, within each
iteration of step 3 we create a new pointed polyhedral cone and then enumerate
its admissible extreme rays. The differences appear in the processing of pairs
u ∈ S+ and w ∈ S− , where we deviate from the usual double description
method in the constraints onu andw.

• As presented, Algorithm5.15 requires exact arithmetic on rational numbers,
which may be undesirable in practice for reasons of performance or implemen-
tation. We can avoid this by observing that throughout steps 1–3 we can replace
any vectorx with any multipleλx (λ > 0) without changing the final solution
set. This means that we can work entirely within the integers by rescaling vectors
appropriately.

Proof of Algorithm 5.15 This is a lengthy proof, consisting of two nested inductions
corresponding to the two nested loops of steps 3 and 3(c). We therefore split this proof

9Here we use the standard notation for complexity wherebyO(·) indicates an asymptotic
upper bound andΘ(·) indicates an asymptotically tight bound.
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into six parts: I–III to establish the outer induction, and IV–VI to establish theinner
induction. The road map for parts I–III is given below. Because the inner induction
sits within part II, we delay the road map for parts IV–VI until then.

Our outer induction proves a statement about the finished listsL0, . . . , Lm. In order to
make this statement, we define the spaceAr for eachr = 0, . . . , m to be

(1) Ar =







x =

k
∑

i=1

λiε(qi) +

r
∑

j=1

µjℓ(Vj)

∣

∣

∣

∣

∣

∣

λi ≥ 0 ∀i ∈ 1..k,
xp ≥ 0 ∀p ∈ 1..7n







.

That is,Ar consists of all non-negative vectors inR7n that can be expressed as (i) a non-
negative linear combination of the originalk vectors from the quadrilateral solution
set, plus (ii) arbitrary positiveor negativemultiples of the firstr vertex links.10 Our
key inductive claim relates the spaceAr to the listLr as follows:

Claim: Once the list Lr is fully constructed, it consists only of admissible
vectors. Furthermore, the truncationτr (Lr ) is a basis for the semi-admissible
part α(τr (Ar )). (⋆)

Our outer induction now proceeds according to the following plan.

Road map for parts I–III:
I. Show that (⋆) is true forr = 0;

II. Show that if (⋆) is true forr = i − 1 wherei > 0 then (⋆) is also true
for r = i ;

III. Show that if (⋆) is true forr = m then Algorithm5.15is correct.

Because part II is significantly more complex than the others (in particular, itcontains
the inner induction), we shall subvert the natural order of things and deal with parts I
and III first.

— Part I —

We begin with part I, where we must prove (⋆) for r = 0. Note thatA0 can be written
more simply as

A0 =

{

x =

k
∑

i=1

λiε(qi)

∣

∣

∣

∣

∣

λi ≥ 0 ∀i ∈ 1..k,
xp ≥ 0 ∀p ∈ 1..7n

}

.

10It can be shown that eachAr is a pointed polyhedral cone, though we do not need this fact
here.
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Furthermore, because eachε(qi) is admissible the constraintsxp ≥ 0 are redundant,
and soA0 is merely the set of all non-negative linear combinations ofε(q1), . . . , ε(qk).
Because truncation is linear,τ0(A0) is likewise the set of all non-negative linear com-
binations ofτ0(ε(q1)), . . . , τ0(ε(qk)). Noting that neitherτ0 nor ε affects quadrilateral
coordinates, we can make the following observations:

• Suppose that someτ0(ε(qi)) ∈ R7n could be expressed as a linear combination
of the others. Restricting our attention to quadrilateral coordinates11 would
therefore give someqi ∈ R3n as a linear combination of the others, in violation
of Lemma4.1.

• Since the vectorsτ0(ε(qi)) are all non-zero vectors with non-negative coordi-
nates, they all lie to the same side of the hyperplane

∑

xp = 0.

It follows from Lemma5.7 that τ0(A0) is a pointed polyhedral cone withτ0(L0)
as its basis. Moreover, since eachqi satisfies the quadrilateral constraints we have
α(τ0(L0)) = τ0(L0), and so by Lemma5.13 τ0(L0) is a basis forα(τ0(A0)) also.
Finally, it is clear from construction that every vector inL0 is admissible.

— Part III —

We now jump straight to part III, where we can ignore truncations entirely becauseτm

is the identity map. We assume therefore thatLm is a basis forα(Am), and our task
is to prove from this that the projective images of the vectors inLm together form the
standard solution set forT .

The key observation here is that the semi-admissible partα(Am) is simplyR7n
a , the set

of all admissible vectors in standard coordinates. To see this:

• Every vector inα(Am) has non-negative coordinates by definition ofAm, and
satisfies the quadrilateral constraints by definition ofα. Moreover, since every
ε(qi) and ℓ(Vj) satisfies the standard matching equations, so does every vector
in α(Am). Thusα(Am) ⊆ R7n

a .

• Let x ∈ R7n
a . By Definition 2.11, the quadrilateral projectionπ(x) can be

expressed as a non-negative combination of vertices of the quadrilateral pro-
jective solution spaceQ(T ). More specifically,π(x) can be expressed as a
non-negative combination ofadmissiblevertices ofQ(T ), since otherwiseπ(x)
would not satisfy the quadrilateral constraints. Thereforeπ(x) =

∑

λiqi for
someλi ≥ 0.

11More precisely, applying the linear mapπ . Note thatπ ◦ τ0 ◦ ε = ι, the identity map.
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By chasing maps around the commutative diagram in Lemma3.11and recalling
that π is linear andε preserves scalar multiplication, we subsequently derive
the equationκv(x) = κv

(
∑

λiε(qi)
)

. That is,x is a non-negative linear com-
bination ofε(qi) plus some arbitrary linear combination of vertex links. Hence
x ∈ α(Am), and we haveR7n

a ⊆ α(Am).

From here part III is straightforward. We know thatLm is a basis forR7n
a = α(Am),

and from Example5.14we know that the standard solution set is a basis forR7n
a also.

ExpressingR7n
a as the semi-admissible part of a pointed polyhedral cone (Example5.14

again), we can combine Lemmata5.6 and5.13 to show that the basis forα(Am) is
unique up to scalar multiplication. It follows that once we take projective images, the
list Lm and the standard solution set are identical.

— Part II —

All that remains is part II, the inductive step. Suppose we are constructing the listLr

for somer > 0. Our outer inductive hypothesis is that the listLr−1 consists only of
admissible vectors and thatτr−1(Lr−1) is a basis forα(τr−1(Ar−1)). Our task is to
prove that, once the listLr is complete, it too consists only of admissible vectors with
the truncationτr (Lr ) forming a basis forα(τr (Ar )).

To show this, we must dig into the construction of the listLr and perform a newinner
induction over the constructive loop in step 3(c) of the algorithm. Suppose thelist Lr−1

consists of the vectorsa1, . . . , at . For every set of coordinate positionsP, we define a
new space

(2) BP =







x =

t
∑

i=1

λiκ
(r)
v (ai) − µrℓ(Vr )

∣

∣

∣

∣

∣

∣

λi ≥ 0 ∀i ∈ 1..t,
µr ≥ 0,

xp ≥ 0 ∀p ∈ P







.

Essentially,BP is constructed by taking non-negative linear combinations of (i) the
r th partial canonical parts of vectors inLr−1, and (ii) the negative vertex link−ℓ(Vr ).
Note that we relax our insistence on non-negative coordinates—vectorsin BP may
include negative coordinates, as long as these only occur at coordinatepositions outside
the setP.

Our inner inductive claim is the following. It should be read as a loop invariant that
applies before and after each positionp ∈ Tr is processed in step 3(c) of Algorithm5.15.
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Claim: Every vectorx in the partially-constructed list Lr satisfies both the
standard matching equations and the quadrilateral constraints, and has at
least one coordinate position p∈ Tr for which xp ≤ 0. Furthermore, the
truncation τr (BC) is a pointed polyhedral cone, and the truncationτr (Lr )
forms a basis for the semi-admissible partα(τr (BC)). (†)

Note that both the listLr and the setC continue to change as step 3(c) iterates through
each positionp ∈ Tr . Our claim is that they both change together in a way that
maintains the truth of (†).

The remainder of this proof proceeds according to the following plan. Once again, the
context for this plan is that we are currently constructing the listLr in the r th iteration
of step 3 of the algorithm.

Road map for parts IV–VI:
IV. Show that (†) is true when we first reach step 3(c);

V. Show that, when processing somep ∈ Tr in step 3(c), if (†) is true be-
fore running step 3(c)(i) then (†) is still true after running step 3(c)(iv);

VI. Show that, if (†) is true after the loop in step 3(c) finishes, then (⋆) is
true at the end of step 3(d).

In other words, parts IV and V constitute an inner induction to establish the correctness
of the invariant (†) throughout the construction of the listLr . Part VI then uses this
invariant to prove the outer inductive claim (⋆), concluding part II and the proof of
Algorithm 5.15.

Throughout parts IV–VI we continue to assume the outer inductive hypothesis; that
is, that Lr−1 consists of the admissible vectorsa1, . . . , at , and that the truncation
τr−1(Lr−1) forms a basis forα(τr−1(Ar−1)).

— Part IV —

We begin our inner induction with part IV, at the point where we first reach step 3(c).
At this point in the algorithm, the relevant variables take the following values:

• Lr consists ofκ(r)
v (a1), . . . , κ(r)

v (at) and the negative vertex link−ℓ(Vr );

• C consists of all quadrilateral coordinate positions, as well as the triangular
coordinate positions in setsT1, . . . , Tr−1.

Our task is to show that the claim (†) holds true for these values ofLr andC.

It is clear from construction that everyx ∈ Lr has at least one coordinate position
p ∈ Tr for which xp ≤ 0. Moreover, since the outer inductive hypothesis shows that



40 Benjamin A Burton

every ai is admissible, we can see that (i) everyx ∈ Lr satisfies both the standard
matching equations and the quadrilateral constraints, and that (ii) the only coordinates
in any x ∈ Lr that might be negative are those in positionsp ∈ Tr . Noting that
Tr ∩C = ∅, the constraintxp ≥ 0 ∀p ∈ C in equation (2) is therefore redundant in this
case, and we simply have

(3) BC =

{

x =

t
∑

i=1

λiκ
(r)
v (ai) − µrℓ(Vr )

∣

∣

∣

∣

∣

λi ≥ 0 ∀i ∈ 1..t,
µr ≥ 0

}

.

It remains to show thatτr (BC) is a pointed polyhedral cone, and thatτr (Lr ) forms a
basis forα(τr (BC)).

From (3) it is clear thatBC is the set of all non-negative linear combinations of vectors
in Lr , and thusτr (BC) is the set of all non-negative linear combinations of vectors in
τr (Lr ). We now focus on establishing the conditions of Lemma5.7for the list τr (Lr ).

(i) Suppose that some vector inτr (Lr ) can be written as a non-negative linear
combination of the other vectors inτr (Lr ). Taking the linear mapτr−1 and
recalling thatτr−1 ◦ τr = τr−1, it follows that the corresponding vector in
τr−1(Lr ) can be written as the same non-negative linear combination of the other
vectors inτr−1(Lr ).
For eachκ(r)

v (ai) ∈ Lr we haveτr−1(κ(r)
v (ai)) = τr−1(ai), and for−ℓ(Vr ) ∈ Lr

we haveτr−1(−ℓ(Vr )) = 0. Thus τr−1(Lr ) consists of the basisτr−1(Lr−1)
combined with the zero vector, and so the only possible non-negative linear
combination inτr−1(Lr ) is the trivial combinationτr−1(−ℓ(Vr )) = 0. It follows
that our original non-negative linear combination inτr (Lr ) must have been
τr (−ℓ(Vr )) = 0, a contradiction.

(ii) We aim now to construct a hyperplaneH ⊂ R7n for which every vector inτr (Lr )
lies strictly to the same side ofH . To do this, we define the temporary vector
u = τr−1(1). That is, u contains 1 in all quadrilateral coordinate positions
as well as the triangle positionsp ∈ T1 ∪ . . . ∪ Tr−1, and contains 0 in the
remaining triangle positionsp ∈ Tr ∪ . . . ∪ Tm. Recall also that the vertex link
ℓ(Vr ) contains 1 in all triangle positionsp ∈ Tr , and contains 0 in all other
triangle and quadrilateral positions.
Define the constants

g =
t

min
i=1

{

u · τr (κ
(r)
v (ai))

}

and h =
t

max
i=1

{

ℓ(Vr ) · τr (κ
(r)
v (ai))

}

.

Since τr−1(Lr−1) is a basis of non-negative vectors andu · τr (κ
(r)
v (ai)) = u ·

τr−1(ai), it is clear thatg > 0. Furthermore, from the definition ofκ(r)
v and the

fact thatℓ(Vr ) · τr (κ
(r)
v (ai)) = ℓ(Vr ) · κ(r)

v (ai) it is clear thath ≥ 0.
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Let H be the hyperplane{x ∈ R7n | (h + 1)u · x = gℓ(Vr ) · x}. We show now
that every element ofτr (Lr ) lies strictly to the same side ofH . By definition of
g and h, if x = τr (κ

(r)
v (ai)) ∈ τr (Lr ) then we have (h + 1)u · x ≥ (h + 1)g >

g h ≥ gℓ(Vr ) · x. Finally, if x = τr (−ℓ(Vr )) ∈ τr (Lr ) then this simplifies to
x = −ℓ(Vr ), and so (h+1)u ·x = 0 > gℓ(Vr ) ·x. ThereforeH is the hyperplane
that we require.

It follows from Lemma5.7 that τr (BC) is a pointed polyhedral cone withτr (Lr ) as
its basis. Finally, since everyai is admissible it is clear that every vector ofτr (Lr )
satisfies the quadrilateral constraints; thusα(τr (Lr )) = τr (Lr ), and Lemma5.13shows
that τr (Lr ) is a basis forα(τr (BC)) also.

— Part V —

We come now to part V, the main inductive step for the inner induction. Here we
assume that (†) holds before running step 3(c)(i); our task is to show that (†) still holds
after running step 3(c)(iv).

Throughout this part, we assume that we are building the listLr , and that we are
currently processing some coordinate positionp ∈ Tr . We use the following notation:

• Lr andC denote theinitial states of these variables, before step 3(c)(i).

• S0, S+ andS− are as defined in Algorithm5.15; that is,S0 = {x ∈ Lr | xp = 0},
S+ = {x ∈ Lr | xp > 0} andS− = {x ∈ Lr | xp < 0}.

• L′ denotes the final state of the list after step 3(c)(iv). In other words,

(4) L′
= S0∪S+∪















upw − wpu
up − wp

∣

∣

∣

∣

∣

∣

∣

∣

u ∈ S+ andw ∈ S−,

u, w together satisfy the quad. constraints,
∄z ∈ Lr\{u, w} for which
(

i ∈ C∪ {p} andui = wi = 0
)

⇒ zi = 0















.

In addition, we note that the final state of the setC is simplyC∪{p}. We can therefore
assume claim (†) exactly as written, and our task is to prove the following:

(a) Everyx ∈ L′ satisfies both the standard matching equations and the quadrilateral
constraints, and has at least one coordinate positionp′ ∈ Tr for which xp′ ≤ 0;

(b) The truncationτr (BC∪{p}) is a pointed polyhedral cone;

(c) The truncationτr (L′) forms a basis forα(τr (BC∪{p})).

Claim (a) is straightforward; these properties are already known to be true for all vectors
in S0, S+, S− ⊆ Lr , and it is clear by construction that they also hold for vectors new to
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L′ . In particular,xp = 0 for each new vectorx = (upw − wpu)/(up − wp). Claim (b)
is also straightforward, since equation (2) shows thatτr (BC∪{p}) is the intersection of
the pointed polyhedral coneτr (BC) with the half-spacexp ≥ 0. We therefore focus
our efforts on proving (c), that is, thatτr (L′) forms a basis forα(τr (BC∪{p})).

We know from (†) that Lr forms a basis forα(τr (BC)), whereτr (BC) is a pointed
polyhedral cone. From Lemma5.13, there is a basisM for τr (BC) for which Lr =

α(M). As noted earlier, the final polyhedral coneτr (BC∪{p}) is simply τr (BC)
intersected with the half-spacexp ≥ 0; our plan is to use this fact to convertM into a
basis forτr (BC∪{p}) and then a basis forα(τr (BC∪{p})), which we will see is simply
the final listL′ .

To convertM into a basis forτr (BC∪{p}), we call upon the regular double description
method. Just asM is a superset ofLr , we define the supersetsM0 = {m ∈ M |mp =

0} ⊇ S0, M+ = {m ∈ M |mp > 0} ⊇ S+ and M− = {m ∈ M |mp < 0} ⊇ S− .
Lemma5.11 then shows that the following is a basis forτr (BC∪{p}) = τr (BC) ∩
{x | xp ≥ 0}:

M′
= M0 ∪ M+ ∪

{

upw − wpu
up − wp

∣

∣

∣

∣

u ∈ M+ andw ∈ M−,

u, w are adjacent basis vectors inτr (BC)

}

.

Using Lemma5.13and the observation thatup > 0 > wp, a corresponding basis for
the semi-admissible partα(τr (BC∪{p})) is

α(M′) = S0 ∪ S+ ∪







upw − wpu
up − wp

∣

∣

∣

∣

∣

∣

u ∈ S+ andw ∈ S−,

u, w together satisfy the quad. constraints,
u, w are adjacent basis vectors inτr (BC)







.

Consider the following claim, which we will prove shortly.

Claim: Supposeu and w are basis vectors forτr (BC) that together satisfy
the quadrilateral constraints. Thenu andw are adjacent if and only if there
is no z ∈ M\{u, w} for which, whenever i∈ C and ui = wi = 0, we must
have zi = 0. (¸)

If this is true, then our basis forα(τr (BC∪{p})) can be rewritten as

α(M′) = S0 ∪ S+ ∪















upw − wpu
up − wp

∣

∣

∣

∣

∣

∣

∣

∣

u ∈ S+ andw ∈ S−,

u, w together satisfy the quad. constraints,
∄z ∈ M\{u, w} for which

(i ∈ C andui = wi = 0) ⇒ zi = 0















.

BecauseC contains all quadrilateral positions, we can changez ∈ M\{u, w} in the
final condition above toz ∈ Lr\{u, w}. Furthermore, becauseup, wp 6= 0 we can
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changei ∈ C in this same condition toi ∈ C ∪ {p}. The equation then becomes
identical to (4), and we see that our basisα(M′) is indeed the final listL′ .

The only thing now remaining for part V is to prove the claim (¸). We do this using
Lemma5.10.

Suppose thatu andw arenotadjacent basis vectors inτr (BC). By Lemma5.10there is
somex ∈ τr (BC) and some coefficientsµ, η, λj ≥ 0 for whichx = µu+ηw =

∑

λjbj ,
where eachbj is a basis vector forτr (BC) and whereλj > 0 for somebj 6= u, w.
Because thei th coordinate of every basis vector is non-negative for everyi ∈ C, it
follows that wheneverui = wi = 0 for i ∈ C we must have (bj)i = 0 also. Therefore
bj satisfies the conditions forz as specified in (̧).

Suppose now thatu andw areadjacent basis vectors inτr (BC) that together satisfy the
quadrilateral constraints, and thatz is some different basis vector for which, whenever
i ∈ C andui = wi = 0, we havezi = 0 also. We show that this leads to a contradiction.

Let x = u+ξw whereξ > 0 is chosen so thatxp < 0, and lety = x−ǫz for some small
ǫ > 0. If y ∈ τr (BC) then we can expressy =

∑

λibi , where eachλi ≥ 0 and each
bi is a basis vector forτr (BC). This gives usx = u + ξw = ǫz+

∑

λibi , whereupon
Lemma5.10shows thatu andw cannot be adjacent, giving us the contradiction that
we seek.

It remains to prove thaty ∈ τr (BC). The condition onz ensures that for sufficiently
small ǫ > 0 we haveyi ≥ 0 for all i ∈ C, so all we need to show is thaty can be
expressed as a linear combinationy =

∑

i λiκ
(r)
v (ai) − µrℓ(Vr ) for λi , µr ≥ 0.

From (2) all vectors inBC satisfy the standard matching equations. Sincey is a linear
combination of vectors inτr (BC), it follows that y = τr (y′) for somey′ ∈ R7n that
also satisfies the standard matching equations. Becauseyi ≥ 0 for all i ∈ C we see
that bothy andy′ satisfy the quadrilateral constraints, and thaty′ +

∑m
i=r ζiℓ(Vi) is a

non-negative vector for some coefficientsζr , . . . , ζm ∈ R. Thereforey′ +
∑m

i=r ζiℓ(Vi)
is admissible.

It follows that π(y′ +
∑m

i=r ζiℓ(Vi)) = π(y′) ∈ R3n can be expressed as a non-
negative linear combination of vectors in the quadrilateral solution set, and so from
equation (1) we see thatτr−1(y′ +

∑m
i=r ζiℓ(Vi)) = τr−1(y′) ∈ τr−1(Ar−1). Using

the quadrilateral constraints fory′ we then obtainτr−1(y′) ∈ α(τr−1(Ar−1)), and so
τr−1(y′) =

∑t
i=1 λiτr−1(ai) for someλ1, . . . , λt ≥ 0.

Becausey′ is admissible, Lemma5.3 shows that the only error we can introduce
by replacingτr−1 with τr is a multiple of the vertex linkℓ(Vr ). Thereforey =

τr (y′) =
∑t

i=1 λiτr (ai) + µℓ(Vr ) for some coefficientµ ∈ R. Since the partial
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canonical partκ(r)
v only adds or subtracts multiples ofℓ(Vr ), we can rewrite this as

y =
∑t

i=1 λiκ
(r)
v (τr (ai)) + µ′ℓ(Vr ). Finally, because we chosex and y to satisfy

yp ≤ xp < 0 we must haveµ′ < 0, and equation (2) shows thaty ∈ τr (BC) as
required.

— Part VI —

Moving to the final part VI, we now assume that (†) holds at the end of step 3(c) of the
algorithm; our task then is to prove that (⋆) holds at the end of step 3(d).

At this stage of the algorithm, the setC contains all positionsp ∈ Tr (amongst others).
Consider anyx ∈ BC . We know thatx can be expressed as a non-negative vector
minusµrℓ(Vr ), but we also know thatxp ≥ 0 for all p ∈ C ⊇ Tr . It follows that every
x ∈ BC is a non-negative vector, and so in this case we can writeBC as

(5) BC =







x =

t
∑

i=1

λiκ
(r)
v (ai) − µrℓ(Vr )

∣

∣

∣

∣

∣

∣

λi ≥ 0 ∀i ∈ 1..t,
µr ≥ 0,

xp ≥ 0 ∀p ∈ 1..7n







.

That is, we can replace the specific conditionxp ≥ 0 ∀p ∈ C with the more general
conditionxp ≥ 0 ∀p ∈ 1..7n.

We pick off the easy part of (⋆) first. From (†) we know that after step 3(c) every
x ∈ Lr satisfies both the standard matching equations and the quadrilateral constraints,
and from (5) every x ∈ Lr is a non-negative vector also. ThusLr consists only of
admissible vectors, and inserting the vertex link in step 3(d) does not change this fact.

It remains to prove thatτr (Lr ) forms a basis forα(τr (Ar )). We do this directly through
Definition5.5.

(i) At the end of step 3(c) of the algorithm, we know from (†) that τr (Lr ) forms
a basis forα(τr (BC)). It follows that τr (Lr ) ⊆ α(τr (BC)), and that every
x ∈ α(τr (BC)) can be expressed as a non-negative linear combination of vectors
in τr (Lr ). We aim to show the same for everyx ∈ α(τr (Ar )) at the end of
step 3(d).
It can be seen from the definition ofAr that

Ar = {x = a + µℓ(Vr ) |a ∈ Ar−1 andxp ≥ 0 ∀p ∈ 1..7n}, and hence

α(τr (Ar )) = {x = a + µℓ(Vr ) |a ∈ α(τr (Ar−1)) andxp ≥ 0 ∀p ∈ 1..7n}.

We now call upon the outer inductive hypothesis; in particular, the fact that
τr−1(Lr−1) is a basis forα(τr−1(Ar−1)). Combining this with Lemma5.3 to
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replaceτr−1 with τr , our equation becomes

α(τr (Ar )) = α

({

x =

t
∑

i=1

λiτr (ai) + µℓ(Vr )

∣

∣

∣

∣

λi ≥ 0 ∀i ∈ 1..t,
xp ≥ 0 ∀p ∈ 1..7n

})

.

Finally, using equation (5) and the fact thatκ(r)
v only ever adds or subtracts

copies ofℓ(Vr ), we obtain

α(τr (Ar )) = {b + µℓ(Vr ) |b ∈ α(τr (BC)) andµ ≥ 0}.

That is,α(τr (Ar )) consists of all non-negative linear combinations of (a) vectors
in α(τr (BC)), and (b) the vertex linkℓ(Vr ). It follows from (†) that, once
we insert the vertex link intoLr in step 3(d) of the algorithm, we know that
τr (Lr ) ⊆ α(τr (Ar )) and that everyx ∈ α(τr (Ar )) can be expressed as a non-
negative linear combination of vectors inτr (Lr ).

(ii) We now show that, after step 3(d) of the algorithm, no vector inτr (Lr ) can be
expressed as a non-negative linear combination of the others. LetL′

r be the list
Lr as it was immediately after step 3(c) (that is, without the vertex link); from (†)
we know this property is true forτr (L′

r ). Denote the vectors inL′
r asb1, . . . , bq.

Suppose that some vector inτr (Lr ) can be expressed as a non-negative linear
combination of the others. Because the listτr (Lr ) contains only the basis
elementsτr (b1), . . . , τr (bq) and the vertex linkℓ(Vr ), our expression must be of
one of the following two types:

• τr (bi) =
∑

j 6=i λjτr (bj) + µℓ(Vr ) for λj ≥ 0 andµ > 0. That is, the vertex
link ℓ(Vr ) appears as a non-empty part of this linear combination.

Becausebi is a non-negative vector, the clausexp ≤ 0 in (†) implies that
κv(bi) = bi . However, because everybj is also a non-negative vector, the
presence of the vertex link on the right hand side above implies that

κv





∑

j 6=i

λjτr (bj) + µℓ(Vr )



 6=
∑

j 6=i

λjτr (bj) + µℓ(Vr ).

That is,κv(bi) 6= bi , giving us a contradiction.

• ℓ(Vr ) =
∑

j λjτr (bj) for λj ≥ 0. That is, the vertex linkℓ(Vr ) can be
expressed as a non-negative linear combination of truncated vectors inL′

r .

Since allbj are non-negative, everybj that features in this linear combi-
nation must have all its quadrilateral coordinates equal to zero. Each such
bj is also admissible, whereupon Lemma3.11can be used to show it is a
non-negative combination of vertex links. More precisely, non-negativity



46 Benjamin A Burton

again shows that each correspondingτr (bj) must be a multiple of the single
vertex link ℓ(Vr ). However, this yields the expressionτr (bj) = µℓ(Vr ),
which we have shown above to be impossible.

This concludes the requirements for Definition5.5, whereupon we see thatτr (Lr ) must
form a basis forα(τr (Ar )). Indeed, this also concludes part VI, and therefore the entire
proof of Algorithm5.15.

5.3 Time Complexity and the Enumeration Algorithm

We now return to the issue of time complexity, which was raised briefly following
the statement of the quadrilateral-to-standard solution set conversion algorithm (Al-
gorithm 5.15). It has already been noted that this conversion algorithm can grow
exponentially slow in the size of the input; it is also seen in [6] that the enumeration
algorithms for the standard and quadrilateral solution set suffer from thesame problem.

We have already discussed examples where the size of the standard solution set is
exponential inn (punishing the enumeration algorithm) and also exponential in the
size of the quadrilateral solution set (punishing the conversion algorithm).However,
this is not our worst problem. The intermediate lists that are created by these algorithms
can potentially grow exponentially large with respect to both the inputandthe output,
leading to situations where both the standard and quadrilateral solution set are very
small, yet the enumeration algorithms take a very long time to run.

The root of the problem lies in the double description method, upon which the enu-
meration algorithms are built. Using Lemma5.11, the double description method
inductively builds a series of lists, the last of which becomes the standard orquadrilat-
eral solution set. It is well known that the double description method can suffer from
a combinatorial explosion, where the intermediate lists can grow exponentially large
before shrinking back down to what might be a very small output set. See [1, 9] for
discussions of how this combinatorial explosion can be tamed in general, and[6] for
techniques specific to normal surface enumeration.

Because the quadrilateral-to-standard conversion algorithm incorporates aspects of the
double description method, one should expect it to suffer from the same problems.
However, empirical evidence suggests that it does not—in Section6 we find that the
intermediate lists in Algorithm5.15appearnot to explode in size (never growing larger
than 11

2 times the output size), and that the total running time for conversion appears
to be negligible in comparison to enumeration. In light of these observations, we put
forward the following proposal.



Converting between quadrilateral and standard solution sets 47

Conjecture 5.16 The time complexity of Algorithm5.15 is at worst polynomial in
the size of the output. That is, the running time is at most a polynomial function ofn
(the number of tetrahedra) andk′ (the size of the standard solution set).

More specifically, it seems reasonable to believe based on experimental evidence
that the intermediate lists for Algorithm5.15 are at worst linear ink′ , from which
Conjecture5.16would follow as an immediate consequence. A possible cause could
be the highly structured ways in which the intermediate polyhedral conesAr andBC

are formed in the proof of Algorithm5.15.

We finish this section with the new enumeration algorithm that was promised in the in-
troduction and again at the beginning of Section5. Specifically, we use Algorithm5.15
as a key component in a new algorithm for enumerating the standard solution set. As
discussed in the introduction, the enumeration problem has great practicalsignificance
in normal surface theory but suffers from the feasibility problems of an exponential
running time. In this context, the new algorithm below is a significant improvement—
we find in Section6 that for large cases it runs thousands and even millions of times
faster than the current state-of-the-art.

This current state-of-the-art is described in [6]; essentially we begin with the double
description method of Motzkin et al. [19], apply the filtering techniques of Letscher,
and then incorporate a range of further improvements that exploit specialproperties of
the normal surface enumeration problem. We refer to this modified double description
method asdirect enumeration.

Our new enumeration algorithm combines direct enumeration with Algorithm5.15,
and runs as follows.

Algorithm 5.17 To compute the standard solution set for the triangulationT , we can
use the following algorithm.

1. Use direct enumeration to compute the quadrilateral solution set forT .

2. Use Algorithm5.15 to convert this quadrilateral solution set into the standard
solution set forT .

We expect this algorithm to perform well—although the direct enumeration in quadri-
lateral coordinates (step 1) remains exponentially slow, in practice it runs many orders
of magnitude faster than a direct enumeration in standard coordinates [6]. Following
this, the quadrilateral-to-standard conversion (step 2) is found to run extremely quickly,
as discussed above.

All that remains is to test these claims in practice, which brings us to the final section
of this paper.
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6 Measuring Performance

To conclude this paper we measure the performance of our new algorithms through a
series of practical tests. These tests involve running both old and new algorithms over
500 different triangulations, taking a variety of measurements along the way.

The triangulations chosen for these tests are the first 500 orientable triangulations from
the Hodgson–Weeks closed hyperbolic census [13]; their sizes range from 9 to 25
tetrahedra. All computations were performed on a single 2.3 GHz AMD Opteron pro-
cessor using the software packageRegina[3, 4]. There are alternative implementations
of normal surface enumeration available, notably theFXrayssoftware by Culler and
Dunfield [7]; we useReginahere because, with the improvements of [6], it is found
in the author’s experience to have the greater efficiency in both time and memory for
large triangulations.12

Our first tests compare running times for the new enumeration algorithm in standard
coordinates (Algorithm5.17) against the old state-of-the-art (the modified double
description method of [6], referred to earlier as “direct enumeration”). The following
observations can be made:

• Figure7 plots new running times directly against old running times, with one
point for each of the 500 triangulations. Both axes use a log scale, since running
times for both algorithms are spread out across several orders of magnitude. The
diagonal lines are guides to illustrate the magnitude of the improvements.
It is immediately clear that the new algorithm is faster, and significantly so.
The weakest improvement is still over 10 times the speed, and the strongest
is over 2 000 000 times. Roughly speaking, the largest cases experiencethe
greatest improvements (which is what we hope for). Some additional points
worth noting:

– The resolution of the timer is 0.01 seconds. This explains the long horizon-
tal clumps in the bottom-left corner of the graph—here the new algorithm
runs in literally the smallest times that can be measured. An error factor
of 0.005 seconds has been added to all measurements to compensate for
cases where the time is measured to be zero.

– Whilst the new algorithm ran to completion for all 500 triangulations, the
old algorithm did not. Eight cases were terminated after 30 days of running

12This observation concerns direct enumeration (prior to this paper). As seen in the following
graphs, the new algorithms developed in this paper are significantly more efficient again.
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Figure 7: Comparing the old direct enumeration against the new Algorithm5.17

time; these are the eight points at the rightmost end of the plot. This early
termination underestimates the improvements due to the new algorithm;
the real improvements might well be orders of magnitude larger again.

• In Figure8 we plot the improvement factor (the old running time divided by the
new running time) against both the input size and the output size (the size of the
quadrilateral and standard solution sets respectively).

Figure 8: Speed improvement factors for the new Algorithm5.17

One striking observation is how small the solution sets are, given that the tri-
angulations range fromn = 9 to n = 25 tetrahedra and that the sizes of the
solution sets can grow exponentially inn. We examine this effect in greater
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detail in [5].
If we focus on cases with unusually large input and output sets—those points
that escape the dense clouds at the left of each plot—we find again that the
improvements are particularly strong. Amongst the triangulations with input
size> 100 the improvement factors range from over 4 000 to over 2 000 000.
Likewise, with the exception of just one triangulation, those with output size
> 500 have improvements ranging from over 2 000 to over 2 000 000. The lone
exception has output size 1 141 and an improvement factor of 37.

Our final tests examine the feasibility of Conjecture5.16. Recall that this conjecture
states that the running time for the quadrilateral-to-standard solution set conversion
algorithm (Algorithm5.15) is at worst polynomial in the size of the output. For this to
occur we must avoid the combinatorial explosion in the sizes of the intermediate lists
L0, L1, . . . , Lm.

Figure9 measures the extent of this combinatorial explosion. Specifically, for each
triangulation we measure the size of themaximallist divided by the size of thefinal
list—if we have a combinatorial explosion we expect this ratio to be very large,and
if not then we expect it to remain close to one. We then bin these measurements into
small ranges and plot the resulting frequencies in a histogram (so in each of the three
plots, the sum of the heights of the bars is always 500). We take these measurements
not only for Algorithm5.15but also for the old direct enumeration algorithm in both
quadrilateral and standard coordinates.

Figure 9: The combinatorial explosion for enumeration and conversion algorithms

What we see is exactly what we hope for. With the old direct enumeration algorithms,
the maximal list can grow to hundreds of times the output size (and perhaps larger,
recalling that for the eight worst cases the direct enumeration in standardcoordinates
was prematurely terminated after 30 days). For Algorithm5.15 this ratio is never
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greater than3
2 . That is, the behaviour we see is consistent with the intermediate lists

being bounded by alinear function of the output size.

Figure 10 tests our conjecture more directly by plotting the running time of Algo-
rithm 5.15against the output sizek′ (the size of the standard solution set). Once again,
both axes use a log scale so that the data points are more evenly distributed.

Figure 10: The running time for Algorithm5.15as a function of output size

It is reasonable to ignore all points where the running time is under 0.1 seconds,
since the clock resolution is only 0.01 seconds (once again we see horizontal bands of
points where the running times are the smallest that can be measured). Not only does
the clock resolution introduce large relative errors for these points, butthey are also
highly susceptible to what would otherwise be negligible tasks, such as initialising data
structures at the beginning of the algorithm, or extracting algebraic information from
the triangulation.

Focusing our attention therefore on the points with time> 0.1 s (or equivalently, with
output size> 500), we find that the points follow what appears to be a straight line. If
t is the running time, this corresponds to an equation of the form logt = α logk′ + β ,
or equivalently,t ∝ k′α . That is, the time does indeed appear polynomial in the output
sizek′ .

We can measure the degree of this polynomial by performing a linear regression. This
regression is indicated by the dashed line in Figure10; its equation is approximately

log t = 2.4729× logk′ − 18.5016.
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That is, the running time appears to be a little undert ∝ k′2.5. The adjusted correlation
coefficient for this regression isr ≃ 0.96, indicating an extremely good linear fit.

Note thatt ∝ k′2.5 is quite reasonable, given the structure of Algorithm5.15. If we
assume that each listLi has sizeO(k′), then each inductive stepLi → Li+1 involves
at leastO(k′2) iterations through the innermost loop (running through allu ∈ S+ and
w ∈ S− ). This inner loop can in turn takeO(k′) time as it tests for adjacency by
searching for an appropriatez ∈ Lr ; however, Fukuda and Prodon [9] note that such
searches often terminate early, and our additional test on the quadrilateral constraints
means that many such searches can be avoided entirely. We therefore expect an average
running time of betweenO(k′2) andO(k′3), which is precisely what we see.

One might observe that we have neglected the number of tetrahedran entirely in this
empirical discussion of Conjecture5.16. Of coursen features implicitly in the size of
the output, since each vector in the standard solution set has dimension 7n. We focus
on k′ here because it spans several orders of magnitude, ranging from 17to 16 106; in
contrast,n merely ranges from 9 to 25. Since the size of the standard solution set can
grow exponentially inn (and this is also found to be true in the average case [5]), it is
reasonable to expectk′ to become the dominating factor in the running time.

Appendix: Notation

Throughout this paper we introduce a number of symbols that are used in the statements
and proofs of results. For convenience, the following tables list the key symbols and
where they are defined.

Sets and Vector Spaces:

Symbol Meaning Point of definition
Od Non-negative orthant Definition2.11
Jd Projective hyperplane
S (T ) Standard projective solution space
Q(T ) Quadrilateral projective solution space
S All embedded normal surfaces Notation3.7
Sc All canonical embedded normal surfaces
R7n

a , R3n
a Admissible vectors inR7n or R3n

Z7n
a , Z3n

a Admissible integer vectors inZ7n or Z3n

R7n
a,c, Z7n

a,c Admissible canonical vectors inR7n or Z7n

Ar , BC Used for loop invariants in Algorithm5.15 Equations (1) and (2)
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Maps:

Symbol Meaning Point of definition
ℓ(·) Vertex link (surface or vector) Definition2.3
v(·), q(·) Vector representation Definition2.4
· , v(·), q(·) Projective image Definition2.12
σv(·), σq(·) Represented surface Definition3.8
κs(·), κv(·) Canonical part (surface or vector)Definition3.9
π(·) Quadrilateral projection Definition3.10
ε(·) Canonical extension Definition3.10
κ(i)

v (·) Partial canonical part Definition5.1
τi(·) Truncation Definition5.2
α(·) Semi-admissible part Definition5.12
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