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ABSTRACT
Normal surface theory is a central tool in algorithmic three-
dimensional topology, and the enumeration of vertex normal
surfaces is the computational bottleneck in many important
algorithms. However, it is not well understood how the num-
ber of such surfaces grows in relation to the size of the under-
lying triangulation. Here we address this problem in both
theory and practice. In theory, we tighten the exponen-
tial upper bound substantially; furthermore, we construct
pathological triangulations that prove an exponential bound
to be unavoidable. In practice, we undertake a comprehen-
sive analysis of millions of triangulations and find that in
general the number of vertex normal surfaces is remarkably
small, with strong evidence that our pathological triangula-
tions may in fact be the worst case scenarios. This analy-
sis is the first of its kind, and the striking behaviour that
we observe has important implications for the feasibility of
topological algorithms in three dimensions.
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1. INTRODUCTION
Geometric topology is an inherently algorithmic subject,

asking fundamental questions such as the homeomorphism
problem (find an algorithm to determine whether two given
spaces are topologically equivalent) and the identification
problem (find an algorithm that can determine the topo-
logical name and/or structure of a given space). Three-
dimensional topology is of particular interest, since in lower
dimensions such problems become trivial [27], and in higher
dimensions they become unsolvable [25].

Throughout this paper we restrict our attention to closed
3-manifolds. In essence, a closed 3-manifold is a compact
3-dimensional topological space that locally looks like R3

at every point. Much recent progress has been made on
algorithms in 3-manifold topology. For example:

• Rubinstein gave an algorithm in 1992 for recognising
the simplest of all closed 3-manifolds, namely the 3-
sphere [32, 33]; this algorithm has been refined several
times since [8, 19, 34].

• In 1995, Jaco and Tollefson presented an algorithm
for breaking a 3-manifold down into a connected sum
decomposition (essentially a topological“prime decom-
position”) [21].

• Perelman’s proof of the geometrisation conjecture in
2002 finally resolved the general homeomorphism prob-
lem for 3-manifolds, completing a programme initiated
decades earlier by pioneers such as Haken [15] and
Thurston [36]. The full homeomorphism algorithm is
a fusion of diverse and complex components, includ-
ing both the 3-sphere recognition and connected sum
decomposition algorithms above.

A recurring theme in these algorithms (and many others)
is that they rely upon normal surface theory, a tool that
allows us to convert difficult topology problems into simpler
linear programming problems. In particular, we can search
for an interesting surface within a 3-manifold by (i) con-
structing a high-dimensional polytope, (ii) enumerating the
“admissible” vertices of this polytope, and then (iii) testing
each admissible vertex to see whether it encodes the inter-
esting surface that we are searching for.1

The concept of an “interesting surface” depends on the
application at hand. For instance, in the connected sum

1Some other algorithms (such as knot genus [16] and Hee-
gaard genus [24]) replace step (ii) with the more difficult
enumeration of a Hilbert basis for a polyhedral cone, yield-
ing what are known as fundamental surfaces.
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decomposition algorithm we search for embedded spheres
within our 3-manifold; in other algorithms we might search
for non-trivial embedded discs [14] or embedded incompress-
ible surfaces [17]. However, in all of these applications the
high-dimensional polytope and its admissible vertices re-
main the same. That is, the polytope vertex enumeration
problem is a common component for all of these topological
algorithms and many others besides.

Furthermore, this common vertex enumeration problem
is in fact the computational bottleneck for many of these
algorithms [8, 10]. It is therefore important to improve
the efficiency and understand the complexity of this ver-
tex enumeration problem, since any improvements or results
will have a widespread impact on computational 3-manifold
topology as a whole. This impact also extends beyond three
dimensions—for instance, in 4-manifold topology, to under-
stand whether a given triangulation represents a 4-manifold
we require all of the complex machinery of 3-sphere recog-
nition as discussed above.

In general, polytope vertex enumeration is difficult. The
general problem is known to be NP-hard [12, 22], and the
range of available algorithms is matched by a range of patho-
logical cases that exploit their weaknesses [2]. However, in
our context we have two advantages:

• We are not dealing with an arbitrary polytope, but
rather one that derives from the machinery of normal
surface theory; this polytope is known as the projec-
tive solution space. Such polytopes have additional
constraints on their dimensions and the equalities and
inequalities that define them.

• We do not need to enumerate all vertices of the poly-
tope, but only the admissible vertices. These are the
vertices that satisfy an additional family of non-linear
constraints, known as the quadrilateral constraints.

These contextual advantages can be exploited in vertex
enumeration algorithms with great success; see [7, 8, 9, 37]
for details. Nevertheless, the enumeration problem remains
a difficult one. In particular, Agol et al. [1] show that de-
termining knot genus—yet another problem that employs
normal surface theory—is in fact NP-complete.

In this paper we concern ourselves with the complexity
of the enumeration problem. More specifically, we focus on
the number of admissible vertices of the projective solution
space, which we denote by σ. This quantity is important for
the following reasons:

• The admissible vertex count σ gives a lower bound for
the time complexity of vertex enumeration. Moreover,
for the quadrilateral-to-standard conversion algorithm
(a key component of the current state-of-the-art enu-
meration algorithm), there is strong evidence to sug-
gest that the running time is in fact a low-degree poly-
nomial in σ [7].

• Each admissible vertex corresponds to a surface in our
3-manifold upon which we must run some subsequent
test. For some problems (such as Hakenness testing
[10, 17]) this test is extremely expensive, and so the
number of admissible vertices becomes a critical factor
in the overall time complexity.

The input for a typical normal surface algorithm is a 3-
manifold triangulation, formed from n tetrahedra by joining

their 4n faces together in pairs. We call n the size of the
triangulation; not only does n represent the complexity of
the input, but both the dimension and the number of facets
of the projective solution space are linear in n.

The growth of σ as a function of n is currently not well
understood. The only general theoretical bound in the liter-
ature is σ ≤ 128n, proven by Hass et al. [16]; in the special
case of a one-vertex triangulation this has been improved to
σ ∈ O(15n) [9]. Very little is known about the growth of
σ in practice, though initial observations suggest that σ is
in fact far smaller [7]. For example, in the proof that the
Weber-Seifert dodecahedral space is non-Haken (one of the
first significant computer proofs to employ normal surface
theory), a “typical” triangulation of size n = 23 is found to
generate just σ = 1751 admissible vertices [10].

In this paper we shed more light on the growth of σ, in-
cluding new theoretical bounds and comprehensive practical
experimentation. Following a brief outline of normal surface
theory in Section 2, we present the following results:

• In Section 3 we show that σ ∈ O(φ7n), where φ is
the golden ratio (1 +

√
5)/2. This tightens the general

theoretical bound on σ from 128n to just over O(29n).
We prove this by extending McMullen’s upper bound
theorem [31] to show that any convex polytope with k
facets must have O(φk) vertices.

We push this bound from the other direction in Sec-
tion 4 by constructing an infinite family of 3-manifold
triangulations for which σ = 17n/4 + n/4. This yields
the first known family for which σ is exponential in n,
and disproves an earlier conjecture of the author that
σ ∈ O(2n). By extending this family to all n > 5 we
show that any theoretical upper bound must grow at
least as fast as Ω(17n/4) ' Ω(2.03n).

• In Section 5 we build a comprehensive census of all
3-manifold triangulations of size n ≤ 9, and measure σ
for each of the ∼ 150 million triangulations that ensue.
We find a remarkably slow growth rate—for n > 5
the worst cases are precisely the infinite family above,
suggesting that the lower limit of Ω(17n/4) ' Ω(2.03n)
may in fact be tight. In the average case the mean σ
appears to grow even slower, with an apparent growth
rate of less than φn and a final mean of just σ ' 78.49
for n = 9.

This analysis is the first of its kind, primarily because
the complex algorithms and software required for such
a comprehensive study did not exist until very recently
[5, 7]. Previous censuses have focused on restricted
classes of triangulations (such as minimal triangula-
tions of irreducible or hyperbolic manifolds [5, 11, 26,
30]), and previous measurements of σ have been for
isolated or ad-hoc collections of cases [7, 10, 28].

Throughout this paper we work with Haken’s original for-
mulation of normal surface theory [14, 15]. Tollefson defines
an alternative formulation called quadrilateral coordinates
[37], which is only applicable for some problems but where
the polytope becomes much simpler. In quadrilateral coordi-
nates an upper bound of σ ≤ 4n can be obtained through an
analysis of zero sets [9], but again the growth rate is found to
be significantly slower in practice. We address quadrilateral
coordinates in detail in the full version of this paper.
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2. PRELIMINARIES
Throughout this paper we assume that we are working

with a 3-manifold triangulation of size n. By this we mean a
collection of n tetrahedra, some of whose 4n faces are affinely
identified (or “glued together”) in pairs so that the resulting
topological space is a 3-manifold (possibly with boundary).
If all 4n faces are identified in 2n pairs then we obtain a
closed 3-manifold; otherwise we obtain a triangulation with
boundary, and the unidentified faces become boundary faces.
Unless otherwise specified, all triangulations in this paper
are of closed 3-manifolds.

There is no need for a 3-manifold triangulation to be
rigidly embedded in some larger space—tetrahedra can be
“bent” or “stretched”. Moreover, we allow multiple vertices
of the same tetrahedron to be identified as a result of our face
gluings, and likewise with edges. This allows us to build tri-
angulations using very few tetrahedra, which becomes useful
for computation.

Figure 1: A 3-manifold triangulation and an embed-
ded normal surface

To illustrate, the upper diagram of Figure 1 shows a tri-
angulation of the product space S2 × S1 using just n = 2
tetrahedra—the back two faces of each tetrahedron are iden-
tified with a twist, and the front two faces of the left tetra-
hedron are identified directly with the front two faces of the
right tetrahedron. All eight vertices become identified to-
gether, and the 12 edges become identified in three distinct
classes (represented in the diagram by three different types
of arrowhead). We say that the resulting triangulation has
one vertex and three edges.

Normal surfaces were introduced by Kneser [23], and fur-
ther developed by Haken [14, 15] for use in algorithms. A
normal surface is a 2-dimensional surface embedded within
a 3-manifold triangulation that meets each tetrahedron in a
(possibly empty) collection of triangles and/or quadrilater-
als, as illustrated in Figure 2. For example, a normal sur-
face within our S2 × S1 triangulation is shown in the lower
diagram of Figure 1; as a consequence of the tetrahedron
gluings, the six triangles and quadrilaterals join together to
form a 2-dimensional sphere.

There are four distinct types of triangle and three distinct
types of quadrilateral within each tetrahedron (defined by
which edges of the tetrahedron they meet). The vector rep-
resentation of a normal surface is a collection of 7n integers
counting the number of pieces of each type in each tetrahe-
dron; from this vector in R7n we can completely reconstruct

Figure 2: Normal triangles and quadrilaterals within
a tetrahedron

the original surface. We treat surfaces and their vectors in-
terchangeably (so, for instance, “adding” two surfaces means
adding their two vectors and reconstructing a new surface
from the result).

An early result of Haken is a set of necessary and suffi-
cient conditions for a vector to represent a normal surface:
(i) all coordinates must be non-negative; (ii) the vector must
satisfy a set of linear homogeneous equations (the match-
ing equations); and (iii) there can be at most one non-zero
quadrilateral coordinate corresponding to each tetrahedron
(the quadrilateral constraints). Vectors that satisfy all of
these conditions are called admissible.

Jaco and Oertel [17] define the projective solution space to
be the polytope in R7n obtained as a cross-section of the cone
defined by (i) and (ii) above. A vertex normal surface lies
on an extremal ray of this cone and is not a multiple of some
smaller surface. The vertex normal surfaces are in bijection
with the admissible vertices of the projective solution space;
we let σ denote the number of vertex normal surfaces, and
we call σ the admissible vertex count.

The enumeration of vertex normal surfaces is a critical
component—and often the computational bottleneck—for
many important topological algorithms. This is because one
can often prove that, if an interesting surface exists (such as
an incompressible surface or an essential sphere), then one
must appear as a vertex normal surface. See Hass et al. [16]
for a more detailed introduction to normal surface theory
and its role in computational topology.

3. THEORETICAL BOUNDS
As noted in the introduction, the best bound known to

date for the admissible vertex count is σ ≤ 128n, proven by
Hass et al. [16]. We begin by tightening this exponential
bound as follows:

Theorem 1. Let φ = (1 +
√

5)/2. Then the admissible
vertex count σ is bounded above by O(φ7n) ' O(29.03n).

We prove this through a simple extension of McMullen’s
upper bound theorem [31]. McMullen gives a tight bound on
the number of vertices for a convex polytope with k facets
and d dimensions; we extend this here to a loose bound that
covers all possible dimensions.

Lemma 2. Let F0 = 0, F1 = 1, F2 = 1, . . . represent the
Fibonacci sequence, where Fi+2 = Fi+1 + Fi. Then for any
k ≥ 3, a convex polytope with precisely k facets has ≤ Fk+1

vertices.

Proof. Suppose the polytope P is d-dimensional with
precisely k facets. Then McMullen’s theorem (taken in dual
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∆1 ∆2

Triangular pillow

Figure 3: The two-tetrahedron triangular pillow at the centre of a 4-block
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for suitable integers a, b, and for odd d it can be rewritten
as 2

(
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a

)
for a suitable integer a.

We now claim that
(
k−a
a

)
≤ Fk for any k, a with k ≥ 1.

This is easily established for k = 1, 2, and the full claim
follows from the inductive step

(
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a

)
=
(
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a

)
+
(
k−1−a
a−1

)
=(

(k−1)−a
a

)
+
(
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≤ Fk−1 + Fk−2 = Fk.

From here our lemma is straightforward. If d is even then
the number of vertices of P is at most

(
k−a
a

)
+
(
(k−2)−b

b

)
≤

Fk + Fk−2 ≤ Fk + Fk−1 = Fk+1, and if d is odd then the
number of vertices is at most 2

(
(k−1)−a

a

)
≤ 2Fk−1 ≤ Fk +

Fk−1 = Fk+1.

Unlike McMullen’s result, Lemma 2 is not tight. Never-
theless, it gives us a very good3 asymptotic upper bound of
O(φk), which is enough to prove our main theorem.

Proof of Theorem 1. The facets of the projective solu-
tion space in R7n are defined by the 7n inequalities x1 ≥ 0,
. . . , x7n ≥ 0, and so there are at most 7n facets in to-
tal. Lemma 2 then shows that the projective solution space
has at most F7n+1 vertices, and so σ ≤ F7n+1. Using
the standard formula Fk = bφk/

√
5 + 1

2
c it follows that

σ ∈ O(φ7n).

It is interesting to note that Theorem 1 makes no use
of admissibility—this suggests that, although the bound of
φ7n is a strong improvement on 128n, this bound is still
very loose. We confirm this through experimentation in Sec-
tion 5. Although we only consider closed 3-manifolds in this
paper, it should be noted that Theorem 1 and its proof ap-
ply equally well to triangulations with boundary, and also
to the ideal triangulations of Thurston [35].

4. EXTREME CASES
Having tightened the upper bound from above, we now

turn our attention to limiting the upper bound from below.

2This is the number of facets of the cyclic d-dimensional
polytope with k vertices [13].
3Experimentation shows that this asymptotic upper bound
of φk ' 1.618k is close to optimal. If we maximise equa-
tion (1) over all d for each k = 100, . . . , 200, the maximum
grows at a rate of approximately 1.613k.

We do this by building pathological triangulations for which
σ ∈ Θ(17n/4) ' Θ(2.03n). This growth rate shows that
an exponential upper bound on σ is unavoidable, and fur-
thermore disproves an earlier conjecture of the author that
σ ∈ O(2n).

We begin by describing 4-blocks, which are small build-
ing blocks that appear repeatedly throughout our triangu-
lations. Using these building blocks, we then construct the
family of pathological triangulations X1,X2, . . ..

Definition (4-block). A 4-block is a triangulation with
boundary, built from the four tetrahedra ∆1,∆2,∆3,∆4 us-
ing the following construction.

We begin by folding together two faces of ∆1, and then
wrapping ∆2 around the remaining two faces as illustrated in
Figure 3. This forms a triangular pillow with three vertices,
three boundary edges, two internal edges, and two boundary
faces.

Next we fold together two faces of ∆3 and two faces of
∆4, as illustrated in the leftmost column of Figure 4. To
finish, we join the pillow to both ∆3 and ∆4 as illustrated
in the central column of Figure 4—the upper face A1B1A2

of the pillow is glued to the lower face A3B2A3 of ∆3, and
the lower face A1B1A2 of the pillow is glued to the upper
face A4B3A4 of ∆4.

The final result is shown in the rightmost column of Fig-
ure 4, with three boundary vertices and one internal vertex.
The triangular pillow is buried in the middle of this struc-
ture, wrapped around the internal vertex; for simplicity the
two edges inside the pillow are not shown.

Definition (Pathological triangulation Xk). For each inte-
ger k ≥ 1, the pathological triangulation Xk is constructed
from n = 4k tetrahedra in the following manner.

From these 4k tetrahedra we build k distinct 4-blocks,
labelled B1, . . . ,Bk. Within each 4-block Bi we label the
three boundary vertices Pi, Qi, Ri, where Pi sits between
both boundary triangles as illustrated in Figure 5.

For each i = 1, . . . , k we join blocks Bi and Bi+1 as follows
(where Bk+1 is taken to mean B1). Triangle PiPiRi is joined
to triangle Qi+1Pi+1Pi+1; note that this is “twisted”, not a
direct gluing, since it maps Pi ↔ Qi+1 and Pi+1 ↔ Ri.
There are in fact two ways this gluing can be performed
(one a reflection of the other); we resolve this ambiguity
by orienting each block consistently, and then choosing the
gluing that preserves orientation.

An effect of these gluings is to identify all of the Pi, Qi

and Ri to a single vertex, so that Xk has k + 1 vertices in
total (counting also the k internal vertices from each original
block).

It is not clear that each Xk is a 3-manifold triangulation
(in particular, that Xk looks like R3 in the vicinity of each
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A1A1

A2

A2

A3

A4

B1

B1

B2

B3

∆3

∆4

Initial pieces Gluing instructions

Final 4-block

A1 ≡ A2 ≡ A3 ≡ A4

B1 ≡ B2 ≡ B3

Figure 4: Building a 4-block from two tetrahedra and a triangular pillow

B1 B2 B3 Bk

Q1 Q2 Q3 Qk

P1 P2 P3 Pk

R1 R2 R3 Rk

Figure 5: Building the pathological triangulation Xk from k distinct 4-blocks

vertex). The following sequence of results proves this by
showing that every Xk is in fact a triangulation of the 3-
sphere.

Lemma 3. A 4-block is a triangulation of the 3-ball (i.e.,
the solid 3-dimensional ball), with a boundary consisting of
two triangles in the formation shown in Figure 6.

X

Y

Z

Triangle XYX

Triangle XZX

Figure 6: A 3-ball whose boundary consists of two
triangles

Proof. This is evident from the construction in Figure 4.
It can also be verified computationally using the software
package Regina [3], which implements 3-sphere and 3-ball
recognition [4].

Lemma 4. Let T1 and T2 each be triangulations of the 3-
ball with boundaries in the formation shown in Figure 6. If

we identify one boundary triangle of T1 with one boundary
triangle of T2 under any of the six possible identifications,
the result is always another triangulation of the 3-ball with
boundary in the formation shown in Figure 6.

Lemma 5. Let T be a triangulation of the 3-ball with
boundary in the formation shown in Figure 6. If we identify
the two boundary triangles under any of the three possible
orientation-preserving identifications, the result is always a
closed 3-manifold triangulation of the 3-sphere.

Proof. Both of these results are essentially properties
of 3-manifolds, not their underlying triangulations—if they
hold for any selection of triangulations T1, T2, T then they
must hold for all such selections. We verify these results
using Regina by choosing 4-blocks for our triangulations and
testing all six/three possible identifications.

Since each Xk is built by joining together 4-blocks along
boundary triangles in an orientation-preserving fashion, the
following result follows immediately from Lemmata 3–5.

Corollary 6. For each k ≥ 1, Xk is a closed 3-manifold
triangulation of the 3-sphere.

We turn our attention now to counting the vertex normal
surfaces for each triangulation Xk. Recalling that k = n/4,
the following result shows that for these pathological trian-
gulations we have σ ∈ Θ(17n/4) ' Θ(2.03n).
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Lemma 7. For each k ≥ 1, Xk has precisely σ = 17k + k
vertex normal surfaces.

Proof. Consider a single 4-block with boundary vertices
labelled P,Q,R as before, and let S denote the internal ver-
tex. Define α, β and γ to be small loops on the 4-block
boundary surrounding P , Q and R respectively, as illus-
trated in Figure 7.

P

Q R
S

α

β γ

Figure 7: The curves α, β, γ on the boundary of a
4-block

Using the software package Regina, we can construct the
projective solution space for this 4-block. There are 17 ad-
missible vertices in total, corresponding to 17 vertex normal
surfaces: one with empty boundary, and 16 whose boundary
consists of some combination of α, β and γ. These surfaces
are summarised in Table 1, and we label them a,b, . . . ,q as
shown.

It is important to note that a,b, . . . ,q are all compatible;
that is, no combination of their vectors can ever violate the
quadrilateral constraints.4 This is an unusual but extremely
helpful state of affairs, since we can effectively ignore the
quadrilateral constraints from here onwards.

Now consider the entire set of 4-blocks B1, . . . ,Bk. Let
ai,bi, . . . ,qi denote the corresponding surfaces in Bi, and
let αi, βi, γi denote the corresponding boundary curves. Any
normal surface in Xk is a union of normal surfaces in the
individual blocks B1, . . . ,Bk, and hence can be expressed as

(λ1,1 a1 + . . .+ λ1,17 q1) + . . .+ (λk,1 ak + . . .+ λk,17 qk)

for some family of constants λ1,1, . . . , λk,17 ≥ 0. In this
form, it can be shown5 that the matching equations for Xk

reduce to the following statement:

There is some non-negative µ ∈ R such that, for
every i, the sum λi,1 ai+ . . .+λi,17 qi has bound-
ary µαi + µβi + µγi.

In other words, the portion of the overall surface within each
4-block Bi must have boundary µαi + µβi + µγi, where µ is
independent of i.

Return now to a single 4-block with admissible vertices
a, . . . ,q, and let λ1 a + . . . + λ17 q be some point in the
projective solution space for this 4-block. We can ensure
that the corresponding surface has boundary of the form
µα+µβ+µγ by imposing the linear constraints depicted in
Table 2 (where each line of these constraints corresponds to
a section of the Boundary column in Table 1).

This has the effect of intersecting the original projective
solution space for the 4-block with two new hyperplanes.
A standard application of the filtered double description

4This is because, within each tetrahedron, we observe that
two of the three quadrilateral types never appear anywhere
amongst the surfaces a,b, . . . ,q.
5The argument uses the facts that curves αi, βi, γi surround
vertices Pi, Qi, Ri respectively, and that all of these vertices
are identified together in the overall triangulation Xk.

method [9] shows that the resulting polytope has 18 admis-
sible vertices, described by the following 18 normal surfaces:
the original a with no boundary, and 17 new surfaces6 all
with boundary α + β + γ. Within each block Bi, we label
these 17 new surfaces vi,1, . . . ,vi,17.

Given the formulation of the matching equations above,
it follows that the normal surfaces in Xk are described com-
pletely by the linear combinations

ρ1,1 v1,1 + . . .+ ρk,17 vk,17 + η1a1 + . . .+ ηkak,

where each ρi,j , ηi ≥ 0 and where
∑

j ρ1,j =
∑

j ρ2,j =

. . . =
∑

j ρk,j . The full projective solution space for Xk

therefore has 17k + k admissible vertices, corresponding to
the k surfaces a1, . . . ,ak and the 17k combinations v1,j1 +
v2,j2 + . . .+ vk,jk for j1, j2, . . . , jk ∈ {1, . . . , 17}.

The pathological triangulations X1,X2, . . . cover all sizes
of the form n = 4k. We can generalise this construction to
include n = 4k + 1, 4k + 2 and 4k + 3 by replacing one of
our 4-blocks with a single “exceptional” block. The general
constructions and analyses are detailed in the full version of
this paper, and the results are summarised in the following
theorem.

Theorem 8. For every positive n 6= 1, 2, 3, 5, there exists
a closed 3-manifold triangulation of size n whose admissible
vertex count is as follows:

n = 4k (k ≥ 1) =⇒ σ = 17k + k
n = 4k + 1 (k ≥ 2) =⇒ σ = 581 · 17k−2 + k + 1
n = 4k + 2 (k ≥ 1) =⇒ σ = 69 · 17k−1 + k
n = 4k + 3 (k ≥ 1) =⇒ σ = 141 · 17k−1 + k + 2

(2)

Lemma 7 proves this result for the first case n = 4k. For
an extra measure of verification, equation (2) has been con-
firmed numerically for all n ≤ 14 by building the relevant
triangulations and using Regina to enumerate all vertex nor-
mal surfaces.

The main result of this section is the following limit on any
upper bound for σ, which follows immediately from Theo-
rem 8. Moreover, as we discover in the following section,
there is reason to believe that this may in fact give the tight-
est possible asymptotic bound.

Corollary 9. Any upper bound for the admissible vertex
count σ must grow at a rate of at least Ω(17n/4) ' Ω(2.03n).

5. PRACTICAL GROWTH
We turn now to a comprehensive study of the admissible

vertex count σ for real 3-manifold triangulations. The basis
of this study is a complete census of all closed 3-manifold
triangulations of size n ≤ 9. This is a significant under-
taking, and such a census has never been compiled before;
the paper [5] details some of the sophisticated algorithms
involved.

The result is a collection of 149 676 922 triangulations,
each counted once up to isomorphism (a relabelling of tetra-
hedra and their vertices). It is worth noting that within
this large collection of triangulations there is a much smaller

6These are the six surfaces (c+g, d+ f , or j)+(b or l), the
five surfaces c+d+ (b, e, l, m, or n), and the six surfaces
c + i, c + p, d + h, d + o, k and q.

6



Label Boundary Description
a — Small sphere around internal vertex S
b α Small disc around boundary vertex P
c β Small disc around boundary vertex Q
d γ Small disc around boundary vertex R
e α Tube from P to S, closed around S
f β Tube from Q to S, closed around S
g γ Tube from R to S, closed around S
h α+ β Tube from P to Q via S, open at both ends
i α + γ Tube from P to R via S, open at both ends
j β + γ Tube from Q to R via S, open at both ends
k α+ β + γ Forked tube joining all of P,Q,R via S, open at all three ends
l α Surface b with large “balloon” disc attached inside the pillow
m α Surface b with punctured torus attached inside the pillow
n α Surface e with punctured torus attached inside the pillow
o α+ β Surface h with punctured torus attached inside the pillow
p α + γ Surface i with punctured torus attached inside the pillow
q α+ β + γ Surface k with punctured torus attached inside the pillow

Table 1: The 17 vertex normal surfaces within a 4-block

λ2 + λ5 + λ8 + λ9 + λ11 + λ12 + λ13 + λ14 + λ15 + λ16 + λ17

= λ3 + λ6 + λ8 + λ10 + λ11 + λ15 + λ17

= λ4 + λ7 + λ9 + λ10 + λ11 + λ16 + λ17

Table 2: Ensuring a boundary of the form µα+ µβ + µγ within a single 4-block

number of distinct 3-manifolds, as indicated by the 3-mani-
fold census data of Martelli and Petronio [26] and the author
[5].

For each of these ∼ 150 million triangulations we enumer-
ate all vertex normal surfaces using the algorithms described
in [7, 9]. The resulting admissible vertex counts σ are sum-
marised in Table 3. All computations were performed using
the software package Regina [3, 4].

Size (n) Number of Admissible vertex count (σ)
triangulations Mean Std dev Min Max

1 4 2.00 0.71 1 3
2 17 3.94 1.39 2 7
3 81 5.49 1.97 2 11
4 577 8.80 3.38 2 18
5 5 184 13.34 5.49 4 36
6 57 753 20.76 9.21 4 70
7 722 765 32.17 15.29 4 144
8 9 787 509 50.20 25.52 4 291
9 139 103 032 78.49 42.51 4 584

Table 3: Summary of admissible vertex counts for
all triangulations (n ≤ 9)

The figures that we see are remarkably small. For n =
9 tetrahedra, although Theorem 1 places the theoretical
bound at ' O(29n), we have just 584 vertex normal sur-
faces in the worst case. The mean admissible vertex count
for n = 9 is much smaller again, evaluated at just 78.49. The
full distribution of all admissible vertex counts for n = 9 is
shown in the upper graph of Figure 8.

Indeed, our pathological triangulations X1,X2 represent
the worst cases for n = 4, 8 respectively, giving the maxi-
mum observed values of σ = 171 +1 = 18 and σ = 172 +2 =
291. More generally, the pathological triangulations of The-
orem 8 give the maximum cases in our census wherever they
are defined (i.e., n 6= 1, 2, 3, 5). This leads us to the following
general conjecture:

Conjecture 1. For every positive n 6= 1, 2, 3, 5, equa-
tion (2) gives a tight upper bound on the admissible vertex

count σ. As a consequence, we have σ ∈ O(17n/4).

The growth rate of σ for n = 1, . . . , 9 is illustrated in
the lower graph of Figure 8 (note that the vertical axis is
plotted on a log scale). The growth rate of the maximum

σ is roughly 17n/4 ' 2.03n as suggested above; the growth
rate of the average σ is in the range 1.5n to 1.6n. This is just
below the Fibonacci growth rate of φn ' 1.62n. Indeed, if
we let σn denote the mean admissible vertex count amongst
all triangulations of size n, we find that σn < σn−1 + σn−2

throughout our census. This leads us to our next general
conjecture:

Conjecture 2. For every n ≥ 3, the mean admissible
vertex count σn satisfies the relation σn < σn−1 +σn−2. As
a consequence, σn is bounded above by O(φn) where φ =
(1 +

√
5)/2.

In particular, our census analysis gives us the following
computational result:

Theorem 10. Conjectures 1 and 2 are true for n ≤ 9.

6. CONCLUSIONS
We have pushed the theoretical bounds on the admissible

vertex count σ from both directions, and we have shown
through an exhaustive study of ∼ 150 million triangulations
that σ is surprisingly small in practice. We close with a brief
discussion of the implications of this study.

Most importantly, it suggests that topological algorithms
that employ normal surfaces might not be as infeasible as
theory suggests. Hints of this have already been seen with
the quadrilateral-to-standard conversion algorithm for nor-
mal surfaces [7], which (against theoretical expectations) ap-
pears to have a running time polynomial in its output size.

7



Figure 8: Aggregate results for admissible vertex
counts

In many fields, a census for size n ≤ 9 might not seem
large enough for drawing conclusions and conjectures. How-
ever, there is evidence elsewhere to suggest that 3-manifold
triangulations are flexible enough for important patterns to
establish themselves for very low n. For example, the pa-
pers [6, 29] discuss several combinatorial patterns for n ≤ 6;
these patterns have later been found to generalise well for
larger n [5, 26], and some are now proven in general [18, 20].

Finally, it is clear from this practical study that the theo-
retical bounds on σ still have much room for improvement.
One possible direction is to incorporate the quadrilateral
constraints directly into McMullen’s theorem. This is diffi-
cult because the quadrilateral constraints break convexity,
but the outcome may be significantly closer to the O(17n/4)
that we see in practice.
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