
A mathematician reflecting on the

International Olympiad in Informatics

Benjamin A. Burton∗

Author’s self-archived version
Available from http://www.maths.uq.edu.au/~bab/papers/

Abstract

In July 2013, students from 80–90 countries will descend upon Australia to take
part in the International Olympiad in Informatics (IOI). On the surface the IOI is
a computer programming competition, but in fact it involves a great deal of both
mathematical technique and mathematical creativity. In this short article we introduce
the readers to the IOI and the mathematics within.

1 Introducing the IOI

The International Olympiad in Informatics (IOI) is one of the five broad-brush Science
Olympiads for high school students, which also cover Biology, Chemistry, Physics, and of
course Mathematics. Founded in 1989 under the auspices of UNESCO, the IOI is one of
the youngest Science Olympiads, but it has grown quickly to now include over 80 countries,
making it the second-largest (behind only Mathematics).

Despite “informatics” being roughly synonymous with computer science, the IOI has
always had strong associations with mathematicians. Locally, the Australian team is
trained by the Australian Mathematics Trust, and all of Australia’s team leaders over the
past decade have been trained mathematicians.1 Internationally, the first IOI was organ-
ised by Petar Kenderov, a highly-respected Bulgarian mathematician, and it is common
to find fellow mathematicians amongst the myriad of team leaders and deputies.

It was recently announced that Australia will host IOI 2013, with the event to be held
at The University of Queensland in partnership with the Australian Mathematics Trust.
This is a great honour for both the mathematics and computer science communities in
Australia, and readers will doubtless hear more about the event as it draws nearer. In
the meantime, this short article aims to (i) introduce the IOI to readers with whom it is
unfamiliar, and (ii) illustrate the mathematics that runs throughout the competition.

∗School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia.
E-mail: bab@maths.uq.edu.au

1Robbie Gates (1999–2000) holds a PhD in category theory, the author (2001–2008) holds a PhD in
geometry and topology, and Bernard Blackham (2009–) holds a BCM with a major in pure mathematics.

1



2 The structure of the IOI

At its core, the IOI is about algorithm design and computer programming. To solve an
IOI task, students must design an algorithm that is both correct and efficient. They must
then code this algorithm into a computer program, which they submit at the end of the
contest for judging.

Algorithm design has a long history in mathematics—consider for instance Euclid’s
algorithm to find the greatest common divisor, a clever and extremely fast algorithm
designed thousands of years ago and still in common use today. For a more modern
example, the author, Rubinstein and Tillmann have recently resolved an old topological
conjecture [3]; although this is a theoretical result, it would not have been possible without
significant work on efficient algorithms to support the underlying computations.

Although entry-level competitions in this field might focus more on computer program-
ming (particularly where high school students have little algorithmic training), the focus
of the IOI lies squarely on algorithms—tasks are chosen to avoid excessive amounts of
coding, and a good student will typically spend much of the contest designing algorithms
on pen and paper. During training, students will often deem a task “solved” once they
find a suitable algorithm, without having touched the computer at all. In a sense, com-
puter programming acts as the means of communicating a solution in the IOI, much as a
written proof does in the International Mathematical Olympiad. This has both benefits
and drawbacks, as discussed further in [1].

The format of the IOI is as follows. Students sit two five-hour exams in front of a
computer, each with 3–4 tasks to solve. A sample task is illustrated in Figure 1, taken
from the inaugural Asia-Pacific Informatics Olympiad. Here we see the typical components
of an IOI task: a description of a mathematical problem with some surrounding story,
descriptions of the input and output requirements for the student’s computer program,
bounds on the size of the input, and limits on the program’s running time and/or memory
usage. Figure 1 is merely a brief summary of the full task description, which can be
downloaded from http://apio.olympiad.org/.

Evaluation of IOI solutions is also done by computer. The judges prepare an official
data set, consisting of input files ranging from small to large, and from simple to patholog-
ical. For each input file, a student scores points if their program gives the correct output
within the given time and memory limits. In this way, students with optimal algorithms
will score 100%, and students with correct but slow algorithms will score partial marks
according to which input files their programs can solve within the time limit.

It is essential that the official data set be constructed carefully, and contest organisers
typically put a great deal of time into ensuring that the spread of cases is fair, thorough
and discriminates well. Computer evaluation also has benefits and drawbacks [1, 5, 7],
and the IOI community is continually seeking ways to improve the experience.

Not all IOI tasks follow the general format illustrated in Figure 1. Other examples
include output-only tasks (where students are given all of the judges’ input files and they
must generate their output “offline”), or interactive tasks (where students’ algorithms
must interact with software provided by the judges). See [9] for details and examples.

2



Task: “Backup”

Asia-Pacific Informatics Olympiad 2007 (by Mathias Hiron)

You are given the locations of n office buildings along a single road, and you wish
to join these buildings in pairs with network cables so that the offices can back up
each others’ data. You are only able to lay k cables (thereby pairing off 2k buildings
in total, with the remaining n− 2k buildings left isolated).

Your task is to decide which buildings to join so that you use the smallest possible
total length of cable. You must join 2k distinct buildings (i.e., you cannot have more
than one cable running out of a single building).

10 30 40 60 100
Length of cable (metres)Distance along road (metres)

EDCBAEDCBA

2020

For instance, consider the n = 5 buildings on the road above, and suppose you are
able to lay k = 2 cables. The best option is to join A–B and C–D, giving a total
length of 20 + 20 = 40 m of cable as illustrated on the right hand side.

Input and output: The input to your program will be the integers n and k,
followed by the locations of each of the n buildings along the road. Your output
should be the smallest possible total length of cable that you can use.

Limits: The input will satisfy 2 ≤ n ≤ 100 000 and 1 ≤ k ≤ n
2 . Your program must

run within 1 second, and may use up to 32 Mb of memory.

Figure 1: A task from the Asia-Pacific Informatics Olympiad

3 The mathematics of algorithm design

To solve an IOI task can require a great deal of mathematical skill. This includes not only
working with mathematical concepts (such as combinatorics, geometry, graph theory and
recurrence relations), but also creative application of mathematical techniques (such as
case analysis, complexity analysis, invariant analysis, and of course proof and disproof).

We shall not attempt to discuss the full range of relevant mathematical concepts and
techniques in this short article; instead see [1] for an overview or [10] for a detailed syllabus.
Here we simply offer an illustration, namely the solution to the task Backup from Figure 1.

3.1 A brute force solution

A simple “brute force” algorithm might be to run through all possible ways in which the 2k
cables could be laid, and choose the layout with the smallest total length. However, there
is a very large number of possibilities to consider. We can reduce this number through
the following observation (proof left to the reader):

Lemma 1. In the optimal solution, every cable must join two adjacent buildings.

Although this helps, it does not help nearly enough. Even with Lemma 1, there are
still

(
n−k

k

)
choices of cables to consider (exercise!). With just n = 100 and k = 25 this gives

around 5× 1019 possibilities, which a modern computer could not process in a millennium

3



(let alone a second). The maximal case n = 100 000 simply does not bear thinking about.
Clearly we must find a more clever solution.

3.2 A dynamic programming solution

It often helps to decompose a large problem into a family of smaller, similar problems.
With this in mind, let f(b, c) denote the shortest possible cable length if we restrict our
attention to the first b buildings and lay precisely c cables (where 0 ≤ b ≤ n and 0 ≤ c ≤ b

2).
The final solution that we seek is f(n, k), and at the other end of the spectrum we clearly
have f(b, 0) = 0 for all b. Unfortunately we know little about the values in between.

Our challenge then is to find a recurrence relation that links together the different
values f(b, c), so that we can find our solution by incrementally computing values of
f(b, c) for all b, c. This is an example of a technique known as dynamic programming.
With a little thought we arrive at the following formula:

Lemma 2. Suppose that 1 ≤ c ≤ b
2 . Then f(b, c) is the smaller of D + f(b− 2, c− 1) and

f(b− 1, c), where D is the distance between the (b− 1)th and bth buildings.

Why does this hold? If the bth building has a cable attached, then by Lemma 1 this
cable goes to building b−1 with length D, and we are left to lay the remaining c−1 cables
amongst the first b− 2 buildings. If the bth building does not have a cable attached, then
we must lay all c cables amongst the first b− 1 buildings.

Our algorithm is now to compute f(2, 1), . . . , f(n, 1), then f(4, 2), . . . , f(n, 2) and so
on, each time using Lemma 2 for the computation. Eventually we arrive at f(n, k) and
the algorithm is complete.

This is certainly faster than brute force, but is it fast enough? Our algorithm requires
(roughly) up to nk computations. For n = 100 and k = 25 this total is 2 500, which fits
easily within one second. However, for our maximal case n = 100 000 and k = 50 000 we
have up to 5 billion computations, which is still too much to squeeze into our time limit.2

We must do better still.

3.3 Fixing the greedy solution

It is tempting to try a greedy solution, where we repeatedly lay the shortest allowable cable
until all k cables have been used. A little experimentation shows this to be incorrect—in
the Figure 1 example, for instance, laying the shortest cable B–C (10 m) would then force
us to lay the much longer cable D–E (40 m), giving a suboptimal solution with 50 m of
cable in total.

However, what if we allow ourselves to undo a bad decision? That is, we lay the
shortest possible cable but also create a method for removing it later on. Further thinking
along these lines leads to the following observation:

Lemma 3. Suppose we have not yet laid any cables, and that the shortest possible cable
runs from building b to b + 1. If the optimal solution does not lay this cable, then it must
lay two cables immediately on either side (i.e., from b− 1 to b and from b + 1 to b + 2).

2These numbers might seem arbitrary, but with experience students quickly gain an order-of-magnitude
feel for how many computations can fit into one second. A rough figure nowadays is around 50 million.

4



We prove this by showing that, if we do not lay both cables on either side, then we
can swap some cable in our solution for a shorter cable (yielding a contradiction). Again
the details are left for the reader.

We therefore begin our algorithm by choosing the shortest possible cable; suppose this
runs from building b to b + 1 as before. We are now free to lay a cable anywhere within
the range 1, . . . , b− 1 or within the range b + 2, . . . , n. In addition, we are free to replace
our original cable with two cables joining b− 1 to b and b + 1 to b + 2.

With some creative rearrangement of our diagram, we can make this look like a new
version of the original problem. Remove buildings b and b+1, and squeeze the surrounding
buildings together so that b− 1 and b + 2 are separated by a gap of size Db−1,b−Db,b+1 +
Db+1,b+2 (where Di,j is the old distance between buildings i and j). If we ever try to lay
a cable across this new “artificial” gap, we remember that in reality we must delete the
old cable from b to b + 1 and replace it with two on either side. The full rearrangement
operation is illustrated below, where we begin by choosing the 10 m cable B–C.

(20 − 10 + 20)
40201020

Gaps between buildings (metres)

D EAEDCBA

4030

Our new diagram now looks like another empty road, but with only n − 2 buildings
and k − 1 cables to lay. We continue choosing the shortest possible cable and adjusting
our diagram until all k cables have been laid, whereupon we have our final solution.

Returning to our example, the shortest gap on this new road is the 30 m gap A–D. We
lay this “artificial” cable, which entails replacing the old B–C with both A–B and C–D.
With no more cables to lay, we have a final (and optimal) solution of total length 40 m.

But what of running time? Our algorithm takes k iterations, each of which requires
us to find the shortest possible cable and then adjust the diagram accordingly. This can
be made faster if we store the gaps between buildings, not the locations of the buildings
themselves. Using techniques from computer science, we store the gaps in a priority queue
where each find-and-adjust operation has worst-case running time proportional to log2 n.
The entire algorithm then has running time proportional to k log2 n, which for k = 50 000
and n = 100 000 is under a million, fitting comfortably within our one second time limit.

4 Further reading

Australia has a well-established programme of events leading up to the IOI; this pro-
gramme is detailed by the author in [2]. On the international front, Cormack et al. [5]
give more detailed descriptions of the IOI and related competitions.

Skiena and Revilla [8] offer a problem-filled book aimed specifically at students training
for the IOI and related contests. For this year’s 20th anniversary of the IOI, Verhoeff [9]
has published a paper covering the history and evolution of IOI tasks over the years.

For high school students with no training in programming or algorithm design, the
Australian Informatics Competition [4] and the Beaver Contest [6] are accessible entry-
level events that aim to encourage and develop algorithmic thinking.

Anyone with interest is welcome to try their hand at solving IOI-style problems (and
easier problems also!) on the Australian training site at http://orac.amt.edu.au/aioc/
train/, or the USACO training site at http://www.usaco.org/. The official IOI website
is http://www.ioinformatics.org/.

5



References

[1] Benjamin A. Burton, Informatics olympiads: Approaching mathematics through code, Math-
ematics Competitions 20 (2007), no. 2, 29–51.

[2] , Informatics olympiads: Challenges in programming and algorithm design, Thirty-
First Australasian Computer Science Conference (ACSC 2008) (Wollongong, NSW, Australia)
(Gillian Dobbie and Bernard Mans, eds.), CRPIT, vol. 74, ACS, 2008, pp. 9–13.

[3] Benjamin A. Burton, J. Hyam Rubinstein, and Stephan Tillmann, The Weber-Seifert dodec-
ahedral space is non-Haken, Preprint, arXiv:0909.4625, September 2009.

[4] David Clark, The 2005 Australian Informatics Competition, The Australian Mathematics
Teacher 62 (2006), no. 1, 30–35.

[5] Gordon Cormack, Ian Munro, Troy Vasiga, and Graeme Kemkes, Structure, scoring and
purpose of computing competitions, Informatics in Education 5 (2006), no. 1, 15–36.

[6] Valentina Dagienė, Information technology contests—introduction to computer science in an
attractive way, Informatics in Education 5 (2006), no. 1, 37–46.

[7] Mārtiņš Opmanis, Some ways to improve olympiads in informatics, Informatics in Education
5 (2006), no. 1, 113–124.

[8] Steven S. Skiena and Miguel A. Revilla, Programming challenges: The programming contest
training manual, Springer, New York, 2003.

[9] Tom Verhoeff, 20 years of IOI competition tasks, Olympiads in Informatics 3 (2009), 149–166.

[10] Tom Verhoeff, Gyula Horváth, Krzysztof Diks, and Gordon Cormack, A proposal for an IOI
syllabus, Teaching Mathematics and Computer Science 4 (2006), no. 1, 193–216, current
version maintained by Michal Forǐsek at http://people.ksp.sk/~misof/ioi-syllabus/.

Benjamin Burton has been involved with the Informatics Olympiad
since Australia became a regular participant a decade ago. He cur-
rently sits on the international scientific committee that guides and
oversees the IOI, and will chair the host scientific team when the
Olympiad comes to Brisbane in 2013. He finds the IOI a stimulating
counterpoint to his mathematics research in computational geometry
and topology at the University of Queensland.

6


