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Using Regina to experiment and compute
with 3-manifold triangulations and normal surfaces

Benjamin A. Burton∗

1 Introduction

Three-dimensional topology is a fertile ground for algorithmic problems. Prominent amongst these are decision
problems (e.g., recognising the unknot, or testing whether two triangulated 3-manifolds are homeomorphic);
decomposition problems (e.g., decomposing a triangulated 3-manifold into a connected sum of prime 3-manifolds);
and recognition problems (e.g., “naming” the 3-manifold described by a given triangulation).

In three dimensions, such problems typically have highly complex and inefficient solutions—running times are
often exponential or super-exponential, and implementations are often major endeavours developed over many
years (if they exist at all). This is in contrast to dimension two, where many such problems are easily solved in
small polynomial time, and dimensions ≥ 4, where such problems can become undecidable [8, 19].

Regina [2, 6] is a software package for 3-manifold topologists and knot theorists. It aims to provide powerful
algorithms and heuristics to assist with decision, decomposition and recognition problems; more broadly, it
includes a range of facilities for the study and manipulation of 3-manifold triangulations. It offers rich support
for normal surface theory, a major algorithmic framework that recurs throughout 3-manifold topology.

Regina is now 13 years old, with over 175 000 lines of source code. It is released under the GNU General
Public License, and contributions from the research community are welcome. It adheres to the following broad
development principles, in order of precedence:

1. Correctness: Having correct output is critical, particularly since one of Regina’s key applications is in
computer proofs. For example, it uses arbitrary precision integer arithmetic where it cannot be proven
unnecessary, and the API documentation makes thorough use of preconditions and postconditions.

2. Generality: Algorithms operate in the broadest possible scenarios (within reason), and do not require
preconditions that cannot be easily tested. For instance, unknot recognition runs correctly for both bounded
and ideal triangulations, and even when the input triangulation is not known to be a knot complement.

3. Speed: Because many of its algorithms run in exponential or super-exponential time, speed is crucial.
Regina makes use of sophisticated algorithms and heuristics that, whilst adhering to the constraints of
correctness and generality, make it practical for real topological problems.

Regina has featured in a number of topological applications. One recent example is the resolution of Thurston’s
30-year old question of whether the Weber-Seifert dodecahedral space is non-Haken [7], using a computer proof
that is the cumulation of several decades of theoretical and algorithmic developments by many different authors.

2 Overview of Regina

Regina is multi-platform, and offers a drag-and-drop installer for MacOS, an MSI-based installer for Windows,
and ready-made packages for several GNU/Linux distributions. It is thoroughly documented, and stores its data
files in a compressed XML format. Regina provides three levels of user interface:

• a full graphical user interface, based on the Qt framework [20];

• a scripting interface based on Python, which can interact with the graphical interface or be used a stand-
alone Python module;

• a programmers’ interface offering native access to Regina’s mathematical core through a C++ shared library.
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There are facilities to help new users learn their way around, including an illustrated users’ handbook, context-
sensitive “what’s this?” help, and sample data files that can be opened through the File −→Open Example menu.

Regina’s core strengths are in working with triangulations, normal surfaces and angle structures. It only
offers basic support for hyperbolic geometries, for which the software packages SnapPea [27] and its successor
SnapPy [9] are more suitable. Regina includes implementations of high-level decision and decomposition algo-
rithms, including the only known full implementations of 3-sphere recognition and connected sum decomposition.

For the remainder of this paper we give a short outline of Regina’s core features. For a more comprehensive
list, see http://regina.sourceforge.net/docs/featureset.html.

3 Triangulations

The most basic object in Regina is a 3-manifold triangulation. Regina does not restrict itself to simplicial
complexes; instead it uses generalised triangulations, a more general notion that can represent a rich array of
3-manifolds using very few tetrahedra.

Specifically, a triangulation is formed from n tetrahedra by affinely identifying (or “gluing”) some or all of
their 4n faces in pairs. A face is allowed to be identified with another face of the same tetrahedron. It is possible
that several edges of a single tetrahedron may be identified together as a consequence of the face gluings, and
likewise for vertices. It is common to work with one-vertex triangulations, in which all vertices of all tetrahedra
become identified as a single point.

Figure 1 illustrates a two-tetrahedron triangulation of the real projective space RP 3. The two tetrahedra are
labelled 0 and 1, and the four vertices of each tetrahedron are labelled 0, 1, 2 and 3. Faces 012 and 013 of
tetrahedron 0 are joined directly to faces 012 and 013 of tetrahedron 1, creating a solid ball; then faces 023 and
123 of tetrahedron 0 are joined to faces 132 and 032 of tetrahedron 1, effectively gluing the top of the ball to the
bottom of the ball with a 180◦ twist.
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Figure 1: A triangulation of the real projective space RP 3

All of this information can be encoded in a table of face gluings, which is how Regina represents triangulations:

Tetrahedron Face 012 Face 013 Face 023 Face 123

0 1 (012) 1 (013) 1 (132) 1 (032)
1 0 (012) 0 (013) 0 (132) 0 (032)

Consider the cell in the row for tetrahedron t and the column for face abc. If this cell contains u (xyz ), this
indicates that face abc of tetrahedron t is identified with face xyz of tetrahedron u, using the affine gluing that
maps vertices a, b and c of tetrahedron t to vertices x, y and z of tetrahedron u respectively.

For any vertex V of a triangulation, the link of V is defined as the frontier of a small regular neighbourhood of
V . It is often useful to think of vertex links as triangulated 2-dimensional surfaces, formed by inserting a small
triangle into each corner of each tetrahedron, and then joining together triangles from adjacent tetrahedra along
their edges. This mirrors the traditional concept of a link in a simplicial complex, but is modified to support the
generalised triangulations that we use in Regina.

The triangulation above of RP 3 is a closed triangulation, because it represents a closed 3-manifold; in a closed
triangulation, every vertex link is a 2-sphere. Regina can also work with bounded triangulations, where one
or more tetrahedron faces are not glued to anything; these unglued faces together form the boundary of the
resulting 3-manifold. In a bounded triangulation, every vertex link is either a 2-sphere or a disc. The following
table describes a one-tetrahedron triangulation of the solid torus B2 × S1, whose boundary consists of two
triangles (faces 023 and 123 of tetrahedron 0) that together form a 2-dimensional torus:

Tetrahedron Face 012 Face 013 Face 023 Face 123

0 0 (301) 0 (120)

Regina can also work with ideal triangulations. These are triangulations in which vertex links can be higher-
genus closed surfaces (such as tori or Klein bottles). Ideal triangulations can represent non-compact 3-manifolds
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(by deleting the vertices), or compact bounded 3-manifolds (by truncating the vertices). The following table
shows Thurston’s famous ideal triangulation of the figure eight knot complement [24]; this triangulation has one
vertex, whose link is the torus surrounding the figure eight knot in S3.

Tetrahedron Face 012 Face 013 Face 023 Face 123

0 1 (210) 1 (031) 1 (231) 1 (302)
1 0 (210) 0 (031) 0 (231) 0 (302)

There are some triangulations that Regina cannot work with. It will not allow vertex links to be bounded
surfaces other than discs (so annulus or punctured torus links are bad, for instance), and it will not allow an
edge to be identified with itself in reverse. Any triangulation with such a feature will be marked as invalid.

Users may enter tetrahedron gluings directly; however, Regina can also create triangulations in other ways,
such as importing from SnapPea [27] or other file formats, building “pre-packaged” constructions such as layered
lens spaces or Seifert fibred spaces, or accessing large censuses that hold tens of thousands of triangulations of
various types.

Regina can also reconstruct triangulations from isomorphism signatures [5]. These are short pieces of text
that completely encode a triangulation; for instance, the example triangulation of RP 3 above is described by
the isomorphism signature cPcbbbahh. A feature of isomorphism signatures is that two triangulations are
combinatorially isomorphic (i.e., related by a relabelling of tetrahedra and/or their vertices) if and only if their
isomorphism signatures are the same. Note that, as a consequence, reconstructing a triangulation from its
isomorphism signature may yield a differently-labelled (but isomorphic) copy of the original.

There are many ways to study a 3-manifold triangulation using Regina. At a high level, Regina offers decom-
position and recognition routines, including: exact algorithms for 3-sphere recognition, 3-ball recognition and
connected sum decomposition (these are always conclusive and correct); heuristic combinatorial algorithms for
recognising much larger families of manifolds such as Seifert fibred spaces, surface bundles and graph manifolds
(these “recognise” the structure of the triangulation, and will often be inconclusive); and routines from the
SnapPea kernel [27] for computing volumes of hyperbolic manifolds. At a lower level, Regina can compute in-
variants of the underlying 3-manifold (such as homology, fundamental group and Turaev-Viro invariants), as well
as combinatorial properties of the specific triangulation (such as computing the 0, 1 and 2-skeleta, or searching
for common combinatorial “building blocks” within a triangulation).

Regina can also modify triangulations. Operations include local moves such as bistellar flips and edge collapses,
and global operations such as barycentric subdivision, boundary coning and vertex truncation. A frequently-
used operation is simplification, in which Regina uses a range of heuristic techniques to retriangulate the given
3-manifold using as few tetrahedra as it can.

4 Normal surfaces

One of Regina’s core strengths is its ability to enumerate and work with normal surfaces. A normal surface in a
3-manifold triangulation T is a properly embedded surface in T that meets each tetrahedron of T in a (possibly
empty) collection of disjoint curvilinear triangles and quadrilaterals, as illustrated in Figure 2.

Figure 2: Normal triangles and quadrilaterals in a tetrahedron

Normal surfaces were introduced by Kneser [16] and developed by Haken for use in algorithms [11]. One
of their key benefits is that they give significant insights into the structure of the underlying 3-manifold. For
instance, any triangulation of RP 3 (as in Figure 1) will contain a normal one-sided projective plane, and any
triangulation of the solid torus (i.e., the unknot complement) will contain a normal non-separating compressing
disc.

Properties such as this make normal surfaces a powerful tool for high-level recognition and decomposition rou-
tines in 3-manifold topology and knot theory. For example, they are central to algorithms for unknot recognition
(where one searches for a normal disc that the unknot bounds) [11], connected sum decomposition (where one
searches for normal 2-spheres that separates prime factors) [14], 3-sphere recognition [22], Hakenness testing [13],
and many more.
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Let T be a 3-manifold triangulation with n tetrahedra. Any normal surface in T can be described as an integer
vector in R7n, whose elements count the number of triangles and quadrilaterals of each type in each tetrahedron.
Specifically, for each tetrahedron ∆ there are four triangle coordinates that count how many triangles sit within
each of the four corners of ∆, and three quadrilateral coordinates that count how many quadrilaterals pass through
∆ in each of the three possible directions. Figure 3 illustrates all seven types of triangle and quadrilateral in ∆.

Figure 3: The seven triangle and quadrilateral types within a tetrahedron

An integer vector x ∈ R7n represents a normal surface in T if and only if: (i) x ≥ 0; (ii) Ax = 0 for a sparse
matrix A of matching equations derived from T ; and (iii) x satisfies the quadrilateral constraints, which require
that at most one quadrilateral coordinate within each tetrahedron can be non-zero. Conditions (i) and (ii) map
out a polyhedral cone in R7n, called the normal surface solution cone; condition (iii) then maps out a (typically
non-convex) union of faces of this cone.

A normal surface whose vector lies on an extreme ray of the normal surface solution cone is called a vertex
normal surface, and a normal surface whose vector lies in the Hilbert basis of this cone is called a fundamental
normal surface. For many high-level algorithms (including all of those mentioned earlier), it can be shown that
important surfaces—if they exist—can be found as vertex normal surfaces (or for some more difficult algorithms,
fundamental normal surfaces). For instance, in any triangulation of a non-prime 3-manifold M, there is some
vertex normal 2-sphere that separates M into a connected sum of non-trivial factors. The basic procedure
then for a typical high-level algorithm is to enumerate all vertex normal surfaces (or for some problems, all
fundamental normal surfaces), and then run some problem-specific test or procedure over each.

Regina comes with heavily optimised algorithms for enumerating all vertex normal surfaces [3] or fundamental
normal surfaces [4] in a triangulation. It can enumerate and/or view surfaces in a number of coordinate systems,
including standard coordinates in R7n (as outlined above), quadrilateral coordinates in R3n [26] (where we consider
only the quadrilaterals in each tetrahedron), and edge weight space in Re (where we count the intersections with
each of the e edges of the triangulation). It can also work with octagonal almost normal surfaces [23] (used in
3-sphere recognition, where we allow a single octagonal piece), and spun normal surfaces [25] (used with ideal
triangulations, where we allow infinitely many triangles spinning in towards a vertex).

Regina offers several ways to analyse normal surfaces, both “at a glance” and in detail. It also supports the
key operations of cutting a triangulation open along a normal surface and retriangulating, or crushing a surface
to a point (in the Jaco-Rubinstein sense [14], where there may be additional changes in topology but which can
be controlled and detected).

5 Angle structures

In addition to normal surfaces, Regina can also enumerate and analyse angle structures on a triangulation. An
angle structure on a 3-manifold triangulation T assigns non-negative internal dihedral angles to each edge of
each tetrahedron of T , so that (i) opposite edges of a tetrahedron are assigned the same angle; (ii) all angles in
a tetrahedron sum to 2π; and (iii) all angles around any internal edge of T likewise sum to 2π (see Figure 4).
Such structures are often called semi-angle structures [15], to distinguish them from strict angle structures in
which all angles are strictly positive.
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Figure 4: The conditions for an angle structure on a triangulation

Angle structures were introduced by Casson and further developed by Lackenby and Rivin [17, 21], and are
a simpler (but weaker) combinatorial analogue of a complete hyperbolic structure. Some angle structures are
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of particular interest: these include taut angle structures in which every angle is precisely 0 or π (representing
“flattened” tetrahedra) [12, 18], and veering structures which are taut angle structures with powerful combina-
torial constraints [1, 12]. Veering structures, and in some settings taut angle structures, can yield strict angle
structures [12, 15], which in turn can point the way towards building a complete hyperbolic structure on T [10].

Regina can construct and analyse angle structures on a 3-manifold triangulation T . Specifically, conditions
(i)–(iii) map out a polytope in R3n, where n is the number of tetrahedra; the vertices of this polytope—called
vertex angle structures—then generate all possible angle structures on T . Regina can enumerate all vertex angle
structures, or (optionally) only taut angle structures, and can detect veering structures when they are present.

6 Scripting in Python

Regina offers a powerful scripting facility, whereby most of the C++ classes and functions in its mathematical
engine are made available through a dedicated Python module. Python is a popular scripting language that
is easy to write and easy to read, and the Python module in Regina makes it easy to quickly prototype new
algorithms, run tests over large bodies of census data, or perform complex tasks that would be cumbersome
through a point-and-click interface.

Users can access Regina’s Python module in two ways:

• by opening a Python console from within the graphical user interface, which allows users to directly study
and/or modify data in the current working file;

• by starting the command-line program regina-python, which brings up a standalone Python prompt.

Users can also run their own Python scripts directly via regina-python, embed scripts within data files as
script packets, or write their own libraries of frequently-used routines that will be loaded automatically each time
a Regina Python session is started.

The following sample Python session constructs the triangulation of RP 3 from Section 3, prints its first
homology group, enumerates all vertex normal surfaces, and then locates and prints the coordinates of the
vectors that represent vertex normal projective planes.

bab@rosemary:~$ regina-python

Regina 4.92

Software for 3-manifold topology and normal surface theory

Copyright (c) 1999-2012, The Regina development team

>>> tri = NTriangulation()

>>> t0 = tri.newTetrahedron()

>>> t1 = tri.newTetrahedron()

>>> t0.joinTo(0, t1, NPerm4(1,0,3,2)) # Glues 0 (123) -> 1 (032)

>>> t0.joinTo(1, t1, NPerm4(1,0,3,2)) # Glues 0 (023) -> 1 (132)

>>> t0.joinTo(2, t1, NPerm4(0,1,2,3)) # Glues 0 (013) -> 1 (013)

>>> t0.joinTo(3, t1, NPerm4(0,1,2,3)) # Glues 0 (012) -> 1 (012)

>>> print tri.getHomologyH1()

Z_2

>>> s = NNormalSurfaceList.enumerate(tri, NNormalSurfaceList.STANDARD, 1)

>>> print s

5 vertex normal surfaces (Standard normal (tri-quad))

>>> for i in range(s.getNumberOfSurfaces()):

... if s.getSurface(i).getEulerCharacteristic() == 1:

... print s.getSurface(i)

...

0 0 0 0 ; 0 1 0 || 0 0 0 0 ; 0 1 0

0 0 0 0 ; 0 0 1 || 0 0 0 0 ; 0 0 1

>>>

7 Future development

Regina continues to enjoy active development and regular releases. The developers are currently working towards
a major version 5.0 release, which will also work with triangulated 4-manifolds and normal hypersurfaces (much
of this code is already running and well-tested in the development repository).
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Users are encouraged to contribute code and offer feedback. For information on new releases, interested parties
are welcome to subscribe to the low-traffic mailing list regina-announce@lists.sourceforge.net.
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