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Abstract

In three-dimensional computational topology, the theory of

normal surfaces is a tool of great theoretical and practical

significance. Although this theory typically leads to ex-

ponential time algorithms, very little is known about how

these algorithms perform in “typical” scenarios, or how far

the best known theoretical bounds are from the real worst-

case scenarios. Here we study the combinatorial and alge-

braic complexity of normal surfaces from both the theoret-

ical and experimental viewpoints. Theoretically, we obtain

new exponential lower bounds on the worst-case complex-

ities in a variety of settings that are important for practi-

cal computation. Experimentally, we study the worst-case

and average-case complexities over a comprehensive body

of roughly three billion input triangulations. Many of our

lower bounds are the first known exponential lower bounds

in these settings, and experimental evidence suggests that

many of our theoretical lower bounds on worst-case growth

rates may indeed be asymptotically tight.

1 Introduction

In three-dimensional computational topology, many im-
portant problems are solved by exponential-time algo-
rithms: key examples include Haken’s algorithm for
recognising the unknot [13], or breaking down a triangu-
lated 3-manifold into its prime decomposition [17, 18].
This is in contrast to two dimensions in which many
problems are solved in polynomial time, or higher di-
mensions in which important topological problems can
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become undecidable [10, 23].
A common feature of many such three-dimensional

algorithms, and the source of both their solvability and
their exponential running times, is their use of normal
surfaces. In essence, normal surfaces are embedded 2-
dimensional surfaces that intersect the surrounding 3-
dimensional triangulation in a simple fashion. Most
importantly, they describe topological features using
combinatorial data, and are thereby well-suited for
algorithmic enumeration and analysis.

Amongst the most important normal surfaces are
the vertex normal surfaces. These correspond to the
vertices of a high-dimensional polytope (called the pro-
jective solution space), and together they generate the
space of all possible normal surfaces within the input tri-
angulation. Many topological algorithms begin by enu-
merating all vertex normal surfaces in the input trian-
gulation, and for many problems (such as unknot recog-
nition and prime decomposition) this enumeration is in
fact the main bottleneck for the entire algorithm.

One remarkable feature of many algorithms in
three-dimensional computational topology is that, al-
though they have extremely large theoretical worst-case
complexity bounds, they appear to be much easier to
solve in practice than these bounds suggest. For exam-
ple:

• In 1980, Thurston asked if the Weber-Seifert dodec-
ahedral space is Haken (the precise meaning of this
is not important here) [1]. This long-standing ques-
tion became a symbolic benchmark for computa-
tional topology, and was only resolved by computer
proof after 30 years [9]. At the heart of the proof
was an enumeration of all vertex normal surfaces
in an n = 23-tetrahedron triangulation: despite a
prohibitive O(16n × poly(n))-time enumeration al-
gorithm (the best available at the time) and a best
known bound of O(3.303n) vertex normal surfaces
[5], the enumeration ran in just 5 1

2 hours with only
1751 vertex normal surfaces in total.



• The problem of unknot recognition is of particular
interest. Modern derivatives of Haken’s original al-
gorithm [18] have an exponential time complexity
[15], but there is a growing discussion as to whether
a faster algorithm might exist [11, 14]. Certainly
unknot recognition lies in NP [15], and also co-
NP if we assume the generalised Riemann hypothe-
sis [20]; moreover, recent algorithmic developments
based on linear programming now exhibit an ex-
perimental polynomial-time behaviour [6]. Decid-
ing whether unknot recognition has a worst-case
polynomial-time solution is now a major open prob-
lem in computational topology.

This severe gap between theory and practice is
still poorly understood. There appear to be two
causes: (i) the best theoretical complexity bounds are
far from tight; (ii) “pathological” inputs that exhibit
high-complexity behaviour are rare, with “typical” in-
puts often far easier to work with.

Proving such claims mathematically remains ex-
tremely elusive. Obtaining tight complexity bounds re-
quires a deep interaction between topology, normal sur-
faces and polytope theory, and it is difficult to avoid
making very loose estimates in at least one of these
areas. Understanding “typical” behaviour (such as
average- or generic-case complexity) is hampered by our
very limited understanding of random 3-manifold tri-
angulations: even the simple task of generating a ran-
dom 3-manifold triangulation with n tetrahedra has no
known sub-exponential-time solution [26]. In this set-
ting, experimental work plays a crucial role in under-
standing the realistic performance of algorithms, as well
as the innate difficulty of the problems that they aim to
solve.

In this paper we focus our attention on the problem
of enumerating all vertex normal surfaces within a
given n-tetrahedron input triangulation: as mentioned
earlier, this is a central component—and often the main
bottleneck—of many algorithms in computational 3-
manifold topology. Enumeration algorithms are still
evolving [6, 8], and they are often hand-tailored to
a particular topological problem of interest. For this
reason we do not focus on the complexity of any specific
algorithm, but instead we study two aspects of normal
surface theory that affect and constrain all of these
algorithms:

• Combinatorial complexity: We study the total
number of vertex normal surfaces within the input
triangulation T , which we denote by σ(T ). This is
our main quantity of interest. It yields an imme-
diate lower bound for the time complexity of any
enumeration algorithm, since it determines the out-

put size.1 Moreover, σ(T ) also factors into upper
bounds, since modern enumeration algorithms are
designed to run faster in situations where σ(T ) is
small [8].2

• Algebraic complexity: As detailed in Section 2,
each normal surface is described by a non-negative
integer vector in R7n (or in some settings, R3n).
We investigate the maximum coordinate of this
vector of any vertex normal surface within the
input triangulation T , which we denote by κ(T ).
This quantity is important for the implementation
of enumeration algorithms, since it affects whether
we can work with fast native machine integer types
or whether we must fall back to significantly more
expensive arbitrary-precision integer arithmetic [8].
Moreover, κ(T ) features in algorithms that extend
or even avoid the enumeration problem:

– Some algorithms, such as recognising small
Seifert fibred spaces [27], require the complete
enumeration of not just vertex normal surfaces
but a much larger “lattice” of normal surfaces
whose size is a function of κ(T ).

– Some algorithms, such as determining the
crosscap number of a knot [7], avoid ver-
tex enumeration entirely by solving an inte-
ger program instead; here the bounds on κ(T )
feature as coefficients in the integer program,
and directly affect whether the program can
be solved using off-the-shelf integer program-
ming software.

In summary, by focusing our attention on the
quantities σ(T ) and κ(T ), we learn not only about the
behaviour of current enumeration algorithms, but also
about the intrinsic limits and behaviour of the problem
that they seek to solve.

We approach these combinatorial and algebraic
quantities σ(T ) and κ(T ) through both theory and ex-
periment. Theoretically, we construct infinite “patho-
logical” families of triangulations in Section 3 that es-
tablish exponential lower bounds on the worst-case sce-
nario for both σ(T ) and κ(T ). Experimentally, we ex-
amine both the worst case and average case behaviour
of these quantities in Section 4, using a comprehensive
census of billions of input triangulations.

Such results are highly important for practitioners
in three-dimensional computational topology, particu-
larly given the exponential nature of many key algo-

1Specifically, since each vertex normal surface can be described

in O(n) space [15], the output size is O(σ(T )× n).
2The tree traversal enumeration algorithm (the current state

of the art) has running time O(4nσ(T )× poly(n)).
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rithms. Despite this, just one preliminary study of this
type appears in the literature [3]. This scarcity of re-
sults has two causes:

(i) The lack of large, comprehensive censuses of both
“typical” and “atypical” triangulations.

There are many censuses of 3-manifold triangu-
lations in the literature, but these typically fo-
cus on well-structured triangulations with special
properties (such as minimal triangulations, or irre-
ducible manifolds). Such triangulations are often
easy to work with [17], and offer little insight into
an algorithm’s worst-case (or even average-case)
behaviour.

It is only recently that large, comprehensive bodies
of census data have been developed to study all
triangulations of a given input size [3, 4]. By using
such censuses for our experimental data, we ensure
that we identify pathological cases, and also gain
a clear understanding of how common or rare they
are.

(ii) The intense computation required to study normal
surfaces with such large bodies of data.

Normal surface enumeration algorithms have en-
joyed significant advances in recent years, and
modern algorithms now run many orders of mag-
nitude faster than their earlier counterparts [6, 8].
The experimental work in this paper required sev-
eral years of combined CPU time, and without re-
cent algorithmic advances [2, 4, 6] this work would
not have been possible.

The preliminary study in [3] examines only the
combinatorial complexity σ(T ), and works with a data
set of roughly 150 million triangulations of closed 3-
manifolds. The study in this paper is significantly
richer, both in scope and detail:

• We examine the algebraic complexity κ(T ) in ad-
dition to the combinatorial complexity σ(T );

• We work with a comprehensive data set of almost
three billion triangulations, spanning both closed
manifolds (which are important for algorithms such
as prime decomposition) and bounded manifolds
(which are important for knot algorithms);

• We also examine these quantities in “optimised”
settings that arise in practical computation—in
particular, one vertex triangulations (a common
optimisation used in many topological algorithms),
and the restricted problem of enumerating only ver-
tex normal discs (which is important for unknot

recognition, or testing surfaces for incompressibil-
ity).

Our pathological families yield the first known ex-
plicit exponential lower bounds on worst-case com-
plexity for the computationally important settings of
bounded triangulations, closed 1-vertex triangulations,
and normal discs. In many settings our pathological
families match the experimental worst-case growth rates
precisely, and we conjecture that the resulting exponen-
tial bounds are in fact exact.

Of related note is a result of Hass et al. [16], who
establish an exponential lower bound on the worst-case
complexity of a triangulated disc spanned by the unknot
in R3 (this has particular relevance for the complexity
of unknot recognition). Their result operates under
stricter geometric constraints, and it is not yet known
how it translates to the more flexible setting of normal
surfaces.

We emphasise again that our experimental data sets
use exhaustive censuses of all possible input triangula-
tions below a given size. This paper introduces the first
such census of bounded 3-manifold triangulations in the
literature, totalling over 20 billion triangulations of size
n ≤ 9.

We use exhaustive censuses because there is no
known efficient algorithm for randomly sampling large
triangulations [12, 26], and although there are other
methods for generating random 3-manifolds [12, 22],
nothing is known about the bias of the resulting sample
of triangulations. As a result, although our census is
large, the triangulations it contains are all relatively
small. Nevertheless, there are strong reasons to believe
that our experimental results are indicative of behaviour
for larger inputs; we discuss this further in Section 5.

2 Preliminaries

By a triangulation T , we mean a collection of n abstract
tetrahedra ∆i = i(0123), 1 ≤ i ≤ n, some or all of whose
faces are affinely identified or “glued together” in pairs;
here (0123) refers to the four vertices of tetrahedron
∆i. As a consequence of these face gluings, many
tetrahedron edges may become identified together; we
refer to the result as a single edge of the triangulation,
and likewise with vertices. The gluings must be in
a way that no edge is identified with itself in reverse
as a result. Moreover, each tetrahedron face must be
identified with one and only one partner (we call these
internal faces), or with nothing at all (we call these
boundary faces). The set of boundary faces is called the
boundary of the triangulation and denoted by ∂T . If
∂T = ∅ then T is called a closed triangulation, otherwise
it is said to be bounded. Not all triangulations (closed
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Figure 1: Normal triangles and quadrilaterals within a tetrahedron.

or bounded) represent 3-manifolds. However, unless
otherwise specified, this is true for all triangulations
presented in this paper.

Throughout this article, the gluings of the triangles
are given by a bijection of their vertices i(abc) 7→ j(def)
where the symbol i(abc) denotes triangle (abc) from
tetrahedron i and the order of the vertices determines
the gluing. A triangulation as defined above is some-
times referred to as generalised triangulation; these are
more general and flexible than simplicial complexes. An
important case is a 1-vertex triangulation, in which all
tetrahedron vertices become identified together.

The face pairing graph of a triangulation T is
the multigraph whose nodes represent tetrahedra, and
whose arcs represent pairs of tetrahedron faces that
are glued together. A face pairing graph may contain
loops (if two faces of the same tetrahedron are glued
together), and/or multiple edges (if two tetrahedra are
joined together along more than one face). See Figure
2 for examples.

A properly embedded surface in T is a surface s ⊆
T with no self-intersections, and whose boundary lies
entirely within ∂T . A normal surface in T is a properly
embedded surface that meets each tetrahedron ∆ of T
in a disjoint collection of triangles and quadrilaterals,
each running between distinct edges of ∆, as illustrated
in Figure 1. There are four triangle types and three
quadrilateral types in ∆ according to which edges they
meet. Within each tetrahedron there may be several
triangles or quadrilaterals of any given type; collectively
these are referred to as normal pieces. The intersection
of a normal piece of a tetrahedron with one of its
faces is called normal arc; each face has three arc types
according to which two edges of the face an arc meets.

Counting the number of pieces of each type for a
normal surface s gives rise to a 7-tuple per tetrahedron
of T and hence a 7n-tuple of non-negative integers
describing s as a point in R7n

≥0, called its normal
coordinates. Such a point must satisfy a set of linear
homogeneous matching equations (one for each arc type
of each internal face). These equations are necessary but
not sufficient: the normal coordinates must also satisfy a
set of combinatorial constraints called the quadrilateral
constraints, which we discuss further in the journal
version of this paper.

The solution set to the matching equations in R7n
≥0

is a polyhedral cone (the cross-section polytope of this
cone is also known as the projective solution space). A
vertex normal surface is one whose normal coordinates
lie on an extremal ray of this polyhedral cone and,
in addition, its normal coordinates are minimal for
all integer points on this ray. Thus, there are only
finitely many such vertex normal surfaces; every normal
surface can then be expressed as a positive rational
linear combination of these surfaces just like every
point in a polyhedral cone is a positive rational linear
combination of points on its extremal rays. This is why,
when enumerating normal surfaces in a triangulation,
we typically just consider the finite set of vertex normal
surfaces.

3 Theoretical lower bounds

Here we establish lower bounds for the worst-case values
of σ(T ) and κ(T ), i.e., the maximum possible σ(T )
or κ(T ) for an n-tetrahedron triangulation T . Recall
that σ(T ) measures the combinatorial complexity (the
number of vertex normal surfaces within T ), and that
κ(T ) measures the algebraic complexity (the maximum
coordinate of any vertex normal surface of T ).

Few such results are known: there are no explicit
lower bounds on the worst-case κ(T ) in the literature,
and the only explicit lower bound on the worst-case
σ(T ) is given by a family of closed triangulations with
σ(T ) ∈ Θ(17n/4) ' Θ(2.03n) [3]. In this section, we give
new exponential lower bounds for σ(T ) and κ(T ) in a
variety of settings that hold particular relevance for key
algorithms in computational geometry and topology.
We sketch the main constructions and results here; see
the journal version for detailed proofs.

3.1 Closed triangulations with many normal
surfaces Important 3-manifold algorithms such as
prime decomposition often begin by converting the in-
put triangulation to a 1-vertex triangulation, where-
upon the subsequent processing becomes significantly
easier [17]. The Θ(2.03n) family of [3] is not of this
type (each triangulation has n+1 vertices), which raises
the question of how such bounds behave in a 1-vertex
setting:

Theorem 3.1. There is a family An, n ≥ 1, of closed
1-vertex triangulations with n tetrahedra and σ(An) =
2n vertex normal surfaces.
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Figure 2: Face pairing graphs of the binomial family
A6, triangulation G, the path family P6, the bounded
family B4, triangulation E , and the closed family C7.

We call these triangulations binomial triangula-
tions, because more precisely they have

(
n
k

)
vertex nor-

mal surfaces of genus k for each k = 0, . . . , n (whereby
σ(An) =

∑(
n
k

)
= 2n). We construct each An from n

tetrahedra ∆1, . . . ,∆n in the following manner.
We begin by folding together two faces of the same

tetrahedron ∆i = i(0123) by the gluing i(012) 7→ i(013)
for i = 1, ..., n. Then we identify tetrahedra ∆i and
∆i+1 by i(123) 7→ (i + 1)(230) (where ∆n+1 = ∆1).
These gluings identify all the vertices to a single vertex,
therefore An is a 1-vertex triangulation. See Figure 2
for a picture of the face pairing graph of An for n = 6.
It can be shown that each An is a closed 1-vertex
triangulation of the 3-sphere (see the journal version
of this article for the details).

To see why σ(An) = 2n, we observe that in each
tetrahedron there are two normal “subsurfaces” which
are compatible with any other normal surface of the
triangulation. One of these adds genus to the overall
surface and the other does not. We show that the
vertex normal surfaces are precisely combinations of
these subsurfaces, whereby the binomial coefficients and
2n growth rate easily follow.

Remark. Experimentation suggests that this family
An might in fact yield a tight upper bound for closed
1-vertex triangulations; see Section 4 for details.

3.2 Bounded triangulations with many normal
surfaces The number of vertex normal surfaces in a
bounded triangulation has a direct impact on algo-
rithms such as unknot recognition and incompressibility
testing [18]. Here we give the first explicit exponential

∆k

Gk−1 Gk−1

Figure 3: Attaching two copies of Gk−1 to the tetrahe-
dron ∆.

lower bound on the worst-case growth rate of this quan-
tity. The proof is based on a general construction prin-
ciple (Lemma 3.1) which, for an arbitrary bounded tri-
angulation G0 satisfying certain weak constraints, uses
a recursive squaring argument to obtain a family of tri-
angulations {Gk} with Ω(βn) vertex normal surfaces,
where the exponential base β is derived from G0. By
choosing a suitable starting triangulation G0, we obtain
the explicit base β ' 2.3715 (Corollary 3.1).

For both unknot recognition and incompressibility
testing, we can improve the underlying algorithms by
only considering vertex normal discs (vertex normal
surfaces that are topologically trivial). In Theorem 3.2
we show that this restricted quantity is also worst-case
exponential: we build a family of triangulations with
Θ(2n) vertex normal discs.

Lemma 3.1. Suppose G0 is a bounded triangulation with
n0 tetrahedra, f0 is a boundary face of G0 such that not
all vertices of f0 are identified in G0, and c0 is one of
the three normal arc types on f0. If there are α0 vertex
normal surfaces in G0 that meet f0 in at least one arc
of type c0 but in no other normal arc types, then G0 can
be extended to a family of triangulations {Gk} in which
the number of vertex normal surfaces grows at a rate of

Ω(βn), where β = α
1/(n0+1)
0 .

In the proof (for a detailed proof see the journal
version), we recursively construct Gk by joining two
copies of Gk−1 to an additional tetrahedron ∆k along
their faces fk−1 (see Figure 3). Suppose there are αk−1

vertex normal surfaces in Gk−1 that meet fk−1 in only
arcs of type ck−1. For each pair of such surfaces in
the two copies of Gk−1, we can combine these surfaces
in a way that extends through ∆k to meet one of the
free faces fk of ∆k in just one chosen normal arc type
ck, and this extension yields a vertex normal surface
of Gk. There are α2

k−1 such pairings, and therefore
αk ≥ α2

k−1 such vertex normal surfaces of Gk. This
recurrence yields the final growth rate of Ω(βn) where

β = α
1/(n0+1)
0 . We need the assumption that not all

vertices of the boundary face f0 are identified in G0 to
show that each triangulation Gk represents a bounded
3-manifold.
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Figure 4: Left: construction of the 1-tetrahedron triangulation of LST(1, 2, 3). Right: the meridian disc d1 which
is a 6-gon with 1 normal quad, 2 normal triangles and a maximum of 3 edge intersections.

Corollary 3.1. There is a triangulation G = G0 that
is the starting point of a family of bounded triangula-
tions {Gk}, k ≥ 0, with nk = 12 · 2k − 1 tetrahedra and
σ(Gk) ≥ 2.3715nk .

We prove this using Lemma 3.1 by choosing a
starting triangulation G = G0 with n0 = 11 tetrahedra
and a choice of face f0 and arc type c0 with α0 = 31 643
corresponding vertex normal surfaces. This yields a
growth rate of Ω(βn) with β = 31 6431/12 ' 2.3715.
The face pairing graph of G is shown in Figure 2; for a
detailed construction see the journal version.

For our final result, we construct the path triangu-
lation Pn from n tetrahedra ∆i = i(0123), i = 1, ..., n,
by joining tetrahedra ∆i and ∆i+1 by the map i(012) 7→
(i+1)(013). It can be shown that each Pn is a bounded
triangulation whose underlying 3-manifold is the 3-ball
(for details see the journal version).

Theorem 3.2. For each n ≥ 1, Pn has 2n+1 +
(n+1)(n+2)

2 ∈ Θ(2n) vertex normal discs.

We prove this by obtaining explicit recurrences for
the number of vertex normal surfaces with different
normal arcs based on the matching equations. We have
essentially two choices for each normal arc, and either
a triangle or quadrilateral can be added to the previous
triangulation giving the Θ(2n) growth rate. Again, see
the journal version for details.

3.3 Lower bounds for the size of normal co-
ordinates Here we give exponential lower bounds on
the worst-case algebraic complexity κ(T ). Our bounds
follow a Fibonacci growth rate of Ω([(1 +

√
5)/2]n) '

Ω(1.618)n. Understanding the worst-case κ(T ) is im-
portant for improving the time and space complexity
of normal surface enumeration algorithms due to a bet-
ter handling of the integer arithmetic involved (see Sec-
tion 1).

To obtain such lower bounds, we first construct a
family of bounded triangulations, each containing a ver-
tex normal disc with coordinates growing exponentially

in the number of tetrahedra. We then close the bounded
family using a constant number of additional tetrahe-
dra so that the vertex normal surface with exponential
coordinates is preserved. In this way, we are able to
construct two families of triangulations, bounded and
closed, with Fibonacci type growth rates for κ(T ).

The key objects of the construction are so-called
layered solid tori [17]. These are parameterised trian-
gulations of the solid torus: the layered solid torus de-
noted LST(a, b, a + b) has as its boundary a triangu-
lation of the torus with exactly three boundary edges,
such that the meridian disc (the unique disc of the solid
torus meeting the boundary in a non-contractible closed
curve) intersects the boundary edges in a, b and a + b
points.

Layered solid tori are very common tools when con-
structing triangulations of a given type of 3-manifold
(see [19, 21, 25] for more about constructing 3-
manifolds). The most prominent example of a lay-
ered solid torus, the one tetrahedron triangulation of
LST(1, 2, 3), is shown in Figure 4.

Theorem 3.3. There is a family Bn of bounded 1-
vertex triangulations with n tetrahedra, where Bn con-
tains a vertex normal disc dn with maximum coordinate
Fn+1, where Fk denotes the k-th Fibonacci number.

The family Bn consists of layered solid tori of type
LST(Fn+1,Fn+2,Fn+3) and each vertex normal surface
dn is the corresponding meridian disc. See the journal
version for details of the proof.

The key idea for the construction of a closed family
Cn of n-tetrahedron triangulations containing a vertex
normal surface with exponentially growing coordinates
is to find a small m-tetrahedron triangulation E with
the same boundary as the family of layered solid tori
Bn acting like a type of plug. By this we mean that E
contains a normal surface intersecting ∂E in the same
way as dn intersects ∂Bn for all n ≥ 1. This gives rise to
a vertex normal surface in Cn with maximum coordinate
greater than or equal to Fn+1. Since m is constant,
this gives the same asymptotic lower bound on κ(T ) for
closed triangulations as for bounded triangulations.
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Input size n Closed Closed and 1-vertex Bounded

1 4 3 3
2 17 12 17
3 81 63 156
4 577 433 2 308
5 5 184 3 961 45 046
6 57 753 43 584 995 920
7 722 765 538 409 25 225 447
8 9 787 509 7 148 483 695 134 018
9 139 103 032 99 450 500 19 933 661 871
10 2 046 869 999 1 430 396 979

Total n ≤ 10: 2 196 546 921 n ≤ 10: 1 537 582 427 n ≤ 8: 721 402 915
n ≤ 9: 20 655 064 786

Table 1: The number of 3-manifold triangulations in the census

∂E ∂E

Figure 5: Intersection of s (left) and t (right) with ∂E

Remark. [The triangulation E ] There is a 4-
tetrahedron bounded triangulation E with ∂E = ∂Bm
for all m which contains two vertex normal surfaces s
and t that can be combined into a normal surface inter-
secting ∂E in the same pattern as dm. The face pairing
graph of E is shown in Figure 2, and the intersection
of s and t with its boundary ∂E is shown in Figure 5.
A detailed description of E can be found in the journal
version.

Theorem 3.4. There is a family Cn of closed 1-vertex
triangulations with n tetrahedra, n ≥ 5, each containing
a vertex normal surface with maximum coordinate at
least Fn−3 if n ≡ 2 mod 3 or at least 2 Fn−3 otherwise.

As outlined above, we construct Cn by gluing Bn−4

and E along their boundary tori. If n ≡ 2 mod 3,
the meridian disc dn−4 glued to a combination of s
and t yields a vertex normal projective plane or, if
n ≡ 0, 1 mod 3, twice dn−4 with a combination of s
and t yields a vertex normal sphere; the maximum
coordinates are then as stated. See the journal version
for details.

We note that the vertex normal sphere from above
(in the case n ≡ 0, 1 mod 3) is the only non-vertex
linking normal sphere in Cn. Detecting these normal
surface types is one of the key tasks in important 3-
manifold problems such as prime decomposition. Hence,
the family Cn is an example for a case where, in order
to prove the existence of such a normal sphere, dealing

with exponentially large normal coordinates cannot be
avoided. This is a hint towards the conjecture that these
problems are intrinsically hard to solve using normal
surface enumeration methods.

4 Experimental behaviour

We turn now to an experimental study of the combina-
torial and algebraic complexities of vertex normal sur-
faces. Our experimental data consists of all closed 3-
manifold triangulations with n ≤ 10 tetrahedra, and all
bounded 3-manifold triangulations with n ≤ 8 tetrahe-
dra (each appearing precisely once up to relabelling).
As shown in Table 1, this yields almost 3 billion
triangulations in total (2 196 546 921 + 721 402 915 =
2 917 949 836). We also extract the ∼ 1.5 billion 1-
vertex triangulations from the closed census for addi-
tional study.

Generating exhaustive censuses of all possible in-
puts requires sophisticated algorithms and significant
computational resources. The n ≤ 10-tetrahedron
census of all closed triangulations first appeared in
[4] (which also describes some of the underlying algo-
rithms). The n ≤ 8-tetrahedron census of all bounded
triangulations is new to this paper. Moreover, we have
constructed this bounded census for n = 9, with over
20 billion triangulations; however, we only use n ≤ 8
for our experiments because the subsequent analysis of
normal surfaces for n = 9 remains out of our computa-
tional reach (for n = 8 this analysis already consumed
years of CPU time).

Table 2 summarises our experimental results, and
gives worst-case and average-case measurements (la-
belled Max and Avg respectively) for the quantities
σ(T ) and κ(T ) in our various settings. Each measure-
ment is taken over the relevant census of triangulations
from Table 1. The Closed and Bounded columns re-
fer to all closed or bounded triangulations respectively;
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Input Combinatorial complexity σ(T ) Algebraic complexity κ(T )
size n Closed Closed 1-vertex Bounded Bounded, discs Closed Bounded

Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg

1 3 2.0 2 1.7 7 5.0 7 4.0 1 1.0 1 1.0
2 7 3.9 4 3.3 14 8.2 14 5.2 2 1.2 2 1.3
3 11 5.5 8 4.9 35 14.0 27 7.0 3 1.5 3 1.7
4 18 8.8 16 7.8 85 31.3 69 11.6 4 1.8 6 2.5
5 36 13.3 32 12.0 236 69.5 176 20.2 7 2.1 12 3.4
6 70 20.8 64 18.6 688 152.6 440 34.8 10 2.3 20 4.3
7 144 32.2 128 28.8 1943 376.6 1109 61.7 16 2.6 36 5.8
8 291 50.2 256 44.7 5725 947.4 2768 112.4 26 2.9 65 7.5
9 584 78.5 512 69.4 42 3.2
10 1175 123.2 1024 108.2 68 3.6

Growth 2.03n 1.56n 2n 1.56n 2.73n 2.23n 2.45n 1.69n 1.62n 1.14n 1.81n 1.34n

Table 2: Experimental worst-case and average-case results

Combinatorial complexity σ(T ) Algebraic complexity κ(T )
Lower Experimental Upper Lower Experimental Upper
bound growth bound bound growth bound

Closed Ω(2.03n) ←− O(14.556n) Ω(1.62n) ←− O(3.17n)
Closed 1-vertex Ω(2n) ←− O(4.852n) Ω(1.62n) ←− O(3.17n)
Bounded Ω(2.37n) ' 2.73n O(64n) Ω(1.62n) ' 1.82n O(31.63n)
Bounded, discs only Ω(2n) ' 2.45n O(64n) Ω(1.62n) ←− O(31.63n)

Table 3: Summary of worst-case theoretical and experimental results

in the Closed 1-vertex column we restrict our attention
to 1-vertex triangulations of closed manifolds, and in
the Bounded, discs column we only count vertex nor-
mal discs (not all vertex normal surfaces). We have also
measured the algebraic complexity κ(T ) in the 1-vertex
and discs-only settings, but we omit the details due to
space constraints; see the journal version of this paper
for the details.

The final row of Table 2 gives a “best estimate”
of the exponential growth rate of each quantity with
respect to n (we just list the base of the exponential,
ignoring any coefficients or polynomial factors). Most
growth rates are estimated by linear regression3, though
for cases where the worst cases matches a known family
of triangulations (see below) we give the corresponding
known rate.

We can make some broad observations from Table 2:

• The average-case scenarios grow at a significantly
slower rate than the worst-case scenarios, some-
times astonishingly so. This is consistent with
past observations in which “typical” triangulations
exhibit significantly smaller complexity properties
than expected (see Section 1).

3Specifically, we take a weighted linear regression of log σ or

log κ as a function of n. The weights are taken to be 1, . . . , n, in
order to limit the influence of anomalous small cases.

• For closed manifolds, 1-vertex triangulations only
give a very slight improvement: the worst case
drops from the Θ(17n/4) ' Θ(2.03n) family de-
scribed in [3] down to the Θ(2n) family of Theo-
rem 3.1. The closeness of these results is surprising,
since the theoretical bounds on σ(T ) for 1-vertex
triangulations are much smaller than the general
bounds (see below), and algorithms for working
with them are often much simpler [17].

• Bounded triangulations exhibit higher complexity
properties than their closed counterparts. For
the combinatorial complexity σ(T ) this discrep-
ancy is very pronounced—even the average case for
bounded triangulations is well above the worst case
for closed triangulations. This is again consistent
with past experiences in working with normal sur-
face algorithms [9]. Restricting our attention to
normal discs (e.g., for unknot recognition) does al-
leviate this problem somewhat.

Table 3 compares the experimental behaviour of
the worst-case σ(T ) against its best known theoretical
lower and upper bounds (here “lower bounds” refers to
families of pathological triangulations with the highest
known growth rate of σ(T ), such as those constructed
in Section 3).

Regarding σ(T ): the lower bound of Θ(17n/4) '
Θ(2.03n) is known from [3], and the remaining three
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lower bounds are new to this paper (Theorem 3.1,
Corollary 3.1 and Theorem 3.2). The first two upper
bounds are taken from [5]; the final two O(64n) bounds
are well known but do not appear in the literature (for a
proof we refer to the journal version). Regarding κ(T ):
all four lower bounds of Θ([(1 +

√
5)/2]n) ' Θ(1.62n)

are new to this paper (Theorems 3.3 and 3.4), and all
four upper bounds are taken from [8].

Here we see that the experimental growth rates
are much closer to the lower bounds than the upper
bounds; in particular, an arrow (←−) indicates that the
experimental worst-case growth rate is identical to the
best lower bound (up to a constant factor). This invites
the following conjectures:

Conjecture 4.1. For closed triangulations, the maxi-
mum number of vertex normal surfaces σ(T ) for any
given n grows at an asymptotic rate of Θ(17n/4) '
Θ(2.03n), and for closed 1-vertex triangulations this re-
duces to Θ(2n).

For closed triangulations as well as closed 1-vertex
triangulations, the maximum coordinate of any vertex
normal surface κ(T ) for any given n grows at an
asymptotic rate of Θ([(1 +

√
5)/2]n) ' Θ(1.62n). For

bounded triangulations, the maximum coordinate of any
vertex normal disc for any given n likewise grows at an
asymptotic rate of Θ([(1 +

√
5)/2]n) ' Θ(1.62n).

For closed 1-vertex triangulations, our experimental
data gives an even stronger result:

Theorem 4.1. For closed 1-vertex triangulations, the
maximum number of vertex normal surfaces σ(T ) for
any given n ≤ 10 is precisely 2n, and is attained by the
binomial triangulations An as described in Section 3.1.

Conjecture 4.2. Theorem 4.1 is true for all positive
integers n.

5 Discussion

As noted in the introduction, although we consider
close to 3 billion distinct triangulations, they are all
relatively small with less than or equal to 10 tetrahedra.
Despite this, there are reasons to believe that our
experimental results might generalise. Because we
allow more flexible triangulations (not just simplicial
complexes), this census contains a rich diversity of 3-
manifolds (including 5114 distinct closed P2-irreducible
manifolds [4, 24]). Moreover, several of the patterns
that we see in Table 2 (in particular Theorem 4.1) are
established early on and are remarkably consistent.

As an exception, in the case of arbitrarily bounded
manifolds, a greater number of tetrahedra seems to
allow a better choice for the starting triangulation G0

in Lemma 3.1 in order to obtain a higher exponential
base.

As seen in Table 3, there is still a long way to go
before lower bounds and upper bounds on worst-case
complexities converge. Not only does this paper pro-
duce the first explicit lower bounds in several computa-
tionally important settings, but it also gives strong ex-
perimental evidence that these lower bounds are close
to (or even exactly) tight. This suggests that it is now
the upper bounds that require significant improvement,
inviting new directions of research with a rich interplay
between topology, polytopes and complexity theory.
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