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Abstract. To enumerate 3-manifold triangulations with a given prop-
erty, one typically begins with a set of potential face pairing graphs (also
known as dual 1-skeletons), and then attempts to flesh each graph out
into full triangulations using an exponential-time enumeration. However,
asymptotically most graphs do not result in any 3-manifold triangula-
tion, which leads to significant “wasted time” in topological enumeration
algorithms. Here we give a new algorithm to determine whether a given
face pairing graph supports any 3-manifold triangulation, and show this
to be fixed parameter tractable in the treewidth of the graph.

We extend this result to a “meta-theorem” by defining a broad class of
properties of triangulations, each with a corresponding fixed parameter
tractable existence algorithm. We explicitly implement this algorithm in
the most generic setting, and we identify heuristics that in practice are
seen to mitigate the large constants that so often occur in parameterised
complexity, highlighting the practicality of our techniques.

1 Introduction

In combinatorial topology, a triangulated 3-manifold involves abstract tetrahedra
whose faces are identified or “glued” in pairs. Many research questions involve
looking for a triangulated manifold which fits certain requirements, or is patho-
logically bad for certain algorithms, or breaks some conjecture. One invaluable
tool for such tasks is an exhaustive census of triangulated 3-manifolds.

The first of these was the census of cusped hyperbolic 3-manifold triangula-
tions on < 5 tetrahedra by Hildebrand and Weeks [18] in 1989, later extended
to <9 tetrahedra [8,12,27]. Another much-used example is the census of closed
orientable prime minimal triangulations of < 6 tetrahedra by Matveev [24], later
extended to < 12 tetrahedra [22, 23].

In all of these prior works, the authors enumerate all triangulated manifolds
on n tetrahedra by first enumerating all 4-regular multigraphs on n nodes (very
fast), and then for each graph G essentially modelling every possible triangula-
tion with G as its dual graph (very slow). If any such triangulation built from
G is the triangulation of a 3-manifold, we say that G is admissible. If G admits
a 3-manifold triangulation with some particular property p, we say that G is
p-admissible.

*Supported by the Australian Research Council (DP1094516, DP110101104).

Author’s self-archived version
Available from http://www.maths.uq.edu.au/ bab/papers/



Using state-of-the-art public software [9], generating such a census on 12
tetrahedra takes 1967 CPU-days, of which over 1588 CPU-days is spent analysing
non-admissible graphs. Indeed, for a typical census on < 10 tetrahedra, less than
1% of 4-regular graphs are admissible [7]. Moreover, Dunfield and Thurston [17]
show that the probability of a random 4-regular graph being admissible tends
toward zero as the size of the graph increases. Clearly an efficient method of
determining whether a given graph is admissible could have significant effect on
the (often enormous) running time required to generating such a census.

We use parameterized complexity [16] to address this issue. A problem is fized
parameter tractable if, when some parameter of the input is fixed, the problem
can be solved in polynomial time in the input size. In Theorem 14 we show that
to test whether a graph G is admissible is fixed parameter tractable, where the
parameter is the treewidth of G. Specifically, if the treewidth is fixed at < k and
G has size n, we can determine whether G is admissible in O(n - f(k)) time.

Courcelle showed [14, 13] that for graphs of bounded treewidth, an entire class
of problems have fixed parameter tractable algorithms. However, employing this
result for our problem of testing admissibility looks to be highly non-trivial. In
particular, it is not clear how the topological constraints of our problem can be
expressed in monadic second-order logic, as Courcelle’s theorem requires. Even
if Courcelle’s theorem could be used, our results here provide significantly better
constants than a direct application of Courcelle’s theorem would.

Following the example of Courcelle’s theorem, however, we generalise our
result to a larger class of problems (Theorem 18). Specifically, we introduce the
concept of a simple property, and give a fixed parameter tractable algorithm
which, for any simple property p, determines whether a graph admits a triangu-
lated 3-manifold with property p (again the parameter is treewidth).

We show that these results are practical through an explicit implementation,
and identify some simple heuristics which improve the running time and memory
requirements. To finish the paper, we identify a clear potential for how these ideas
can be extended to the more difficult enumeration problem, in those cases where
a graph is admissible and a complete list of triangulations is required.

Parameterised complexity is very new to the field of 3-manifold topology [10,
11], and this paper marks the first exploration of parameterised complexity in
3-manifold enumeration problems. Given that 3-manifold algorithms are often
extremely slow and complex, our work here highlights a growing potential for
parameterised complexity to offer practical alternative algorithms in this field.

2 Background

To avoid ambiguity with the words “vertex” and “edge”, we use the terms node
and arc instead for graphs, and vertexr and edge in the context of triangulations.

Many NP-hard problems on graphs are fixed parameter tractable in the
treewidth of the graph (e.g., [1,2,4,5,13]). Introduced by Robertson and Sey-
mour [26], the treewidth measures precisely how “tree-like” a graph is:



Definition 1 (Tree decomposition and treewidth). Given a graph G, a
tree decomposition of G is a tree H with the following additional properties:

— Fach node of H, also called a bag, is associated with a set of nodes of G;
— For every arc a of G, some bag of H contains both endpoints of a;
— For any node v of G, the subforest in H of bags containing v is connected.

If the largest bag of H contains k nodes of G, we say that the tree decomposition
has width k + 1. The treewidth of G, denoted tw(G), is the minimum width of
any tree decomposition of G.

Bodlaender [4] gave a linear time algorithm for determining if a graph has
treewidth < k for fixed k, and for finding such a tree decomposition, and Kloks
[21] demonstrated algorithms for finding “nice” tree decompositions.

A closed 3-manifold is essentially a topological space in which every point
has some small neighbourhood homeomorphic to R3. We first define general
triangulations, and then give conditions under which they represent 3-manifolds.

Definition 2 (General triangulation). A general triangulation is a set of
abstract tetrahedra { Ay, Aa, ..., Ay} and a set of face identifications or “gluings”
{m1, 72, ..., Tm}, such that each m; is an affine identification between two distinct
faces of tetrahedra, and each face is a part of at most one such identification.

Note that this is more general than a simplicial complex (e.g., we allow an
identification between two distinct faces of the same tetrahedron), and it need not
represent a 3-manifold. Any face which is not identified to another face is called
a boundary face of the triangulation. If a triangulation has no such boundary
faces, we say it is closed. We also note that there are six ways to identify two
faces, given by the six symmetries of a regular triangle.

We can partially represent a triangulation by its face pairing graph, which
describes which faces are identified together, but not how they are identified.

Definition 3 (Face pairing graph). The face pairing graph of a triangulation
T is the multigraph I'(T) constructed as follows. Start with an empty graph G,
and insert one node for every tetrahedron in T . For every face identification
between two tetrahedra T; and T}, insert the arc {i, j} into the graph G.

Note that a face pairing graph will have parallel arcs if there are two distinct
face identifications between T; and T3, and loops if two faces of the same tetra-
hedron are identified together. T is connected if and only if I'(7) is connected.

Some edges of tetrahedra will be identified together as a result of these face
identifications (and likewise for vertices). Some edges may be identified directly
via a single face identification, while others may be identified indirectly through
a series of face identifications.

We assign an arbitrary orientation to each edge of each tetrahedron. Given
two tetrahedron edges e and ¢’ that are identified together via the face identifi-
cations, we write e ~ ¢’ if the orientations agree, and e ~ ¢’ if the orientations
are reversed. In settings where we are not interested in orientation, we write
e ~ ¢ if the two edges are identified (i.e. one of e ~ ¢’ or e ~ ¢’ holds).



Fig. 1. A triangulation of a 3-ball with 6 tetrahedra meeting along an internal edge.

This leads to the natural notation [e] = {€/ : e ~ €'} as an equivalence
class of identified edges (ignoring orientation). We refer to [e] as an edge of the
triangulation. Likewise, we use the notation v ~ v’ for vertices of tetrahedra that
are identified together via the face identifications, and we call an equivalence class
[v] of identified vertices a vertex of the triangulation.

A boundary edge /vertex of a triangulation is an edge / vertex of the triangu-
lation whose equivalence class contains some edge / vertex of a boundary face.

The link of a vertex [v] is the (2-dimensional) frontier of a small regular
neighbourhood of [v]. Figure 1 shows the link of the top vertex shaded in grey;
in this figure, the link is homeomorphic (topologically equivalent) to a disc. The
link is a 2-dimensional triangulation (in the example it has six triangles), and we
use the term arc to denote an edge in this triangulation. In this paper, whether
“arc” refers to a graph or a vertex link is always clear from context.

Definition 4 (Closed 3-manifold triangulation). A closed 3-manifold tri-
angulation T is a general triangulation for which (i) T is connected; (ii) for any
vertex v in T, the link of v is homeomorphic to a 2-sphere; and (ii) no edge e
in T is identified with itself in reverse (i.e. e £ €).

These properties are necessary and sufficient for the underlying topological space
to be a 3-manifold. We say that a graph G is admissible if it is the face pairing
graph for any closed 3-manifold triangulation 7.

Definition 5 (Partial-3-manifold triangulation). A partial-3-manifold tri-
angulation T is a general triangulation for which (i) for any vertex v in T, the
link of v is homeomorphic to a 2-sphere with zero or more punctures; and (i)
no edge e in T is identified with itself in reverse (i.e. e £€).

These are in essence “partially constructed” 3-manifold triangulations; the
algorithms of Section 4.1 build these up into full 3-manifold triangulations. Note
that the underlying space of 7 might not even be a 3-manifold with boundary:
there may be “pinched vertices” whose links have many punctures.

We can make some simple observations: (i) the boundary vertices of a partial
3-manifold triangulation are precisely those whose links have at least one punc-
ture; (ii) a connected partial-3-manifold triangulation with no boundary faces is
a closed 3-manifold triangulation, and vice-versa; (iii) a partial-3-manifold tri-
angulation with a face identification removed, or an entire tetrahedron removed,
is still a partial-3-manifold triangulation.



{to:2,t1: 2}

Fig. 2. The triangulation from Example 7. The grey shaded tetrahedron is ¢o. Edges are
marked with their orientations, and the double-ended arrow indicates the identification
of two opposing faces of the pyramid. The resulting space resembles a hockey puck with
the centre pinched into a point. This pinch is the vertex {to:2,¢1:2}.

3 Configurations

The algorithms in Section 4.1 build up 3-manifold triangulations one tetrahedron
at a time. As we add tetrahedra, we must track what happens on the boundary of
the triangulation, but we can forget about the parts of the triangulation not on
the boundary—this is key to showing fixed parameter tractability. In this section
we define and analyse edge and vertex configurations of general triangulations,
which encode exactly those details on the boundary that we must retain.

Definition 6 (Edge configuration). The edge configuration of a triangulation
T is a set C, of triples detailing how the edges of the boundary faces are identified
together. Fach triple is of the form ((f,e), (f’,€'), o), where: f and f' are
boundary faces; e and €' are tetrahedron edges that lie in f and f' respectively;
e and € are identified in T; and o is a boolean “orientation indicator” that is
true if e ~ €' and false if e ~ €.

This mostly encodes the 2-dimensional triangulation of the boundary, though
additional information describing “pinched vertices” is still required.

Ezample 7 (2-tetrahedra pinched pyramid). In all examples, we use the notation
t; : a to denote vertex a of tetrahedron t;, and t; : abc to denote face abc of
tetrahedron ¢;. Face identifications are denoted as t;: abc <+ t; : def, which means
that face abc of t; is mapped to face def of t; such that a <+ d, b <+ e and ¢ <+ f.

Take two tetrahedra ¢ty and t;, each with vertices labelled 0, 1,2, 3, and apply
the face identifications £4:012 <> ¢1:012 and ¢g:023 <> t;:321.

The resulting triangulation is a square based pyramid with one pair of op-
posing faces identified (see Figure 2(a)). The final space resembles a hockey puck
with a pinch in the centre, as seen in Figure 2(b). Note that the vertex at top of



the pyramid, which becomes the pinched centre of the puck, has a link homeo-
morphic to a 2-sphere with two punctures. Therefore, although this is a partial
3-manifold triangulation, the underlying space is not a 3-manifold.

The edge configuration of this triangulation is:

{((t0:013,03), (t,:013,13), f),  ((t0:013,01), (t;:013,01),1),
((to:013,13), (t0:123,13),8),  ((to:123,12), (tc:123,23), f),
((t1:013,03), (t1:023,03),8),  ((£1:023,02), (t;:023,23), f)};

here ¢t and f represent true and false respectively.

Definition 8 (Vertex configuration). The vertex configuration C, of a trian-
gulation T is a partitioning of those tetrahedron vertices that belong to boundary
faces, where vertices v and v' are in the same partition if and only if v ~ v'.

In partial-3-manifold triangulations, vertex links may have multiple punc-
tures; the vertex configuration then allows us to deduce which punctures belong
to the same link. In essence, the vertex configuration describes how the trian-
gulation is “pinched” inside the manifold at vertices whose links have too many
punctures.

For instance, the vertex configuration of Example 7 is given by

{{tO:O,tlzo,t1:3}, {toll,to:?),tl:l}, {t0:2,t1:2}}.

The partition {tg : 2,1 : 2} represents the pinch at the center of the “hockey
puck”.

Definition 9 (Boundary configuration). The boundary configuration C of
a triangulation T is the pair (C., C,) where C. is the edge configuration and C,
is the vertex configuration.

Lemma 10. For b boundary faces, there are % possible edge configurations.

Proof Note that b must be even; let b = 2m. Each boundary face has three
edges, so there are 6m possible pairs (f,e) where e is an edge on a boundary
face f. Each such pair must be identified with exactly one other pair, with either
e~ ¢ or e~ ¢, and so the number of possible edge configurations is

(6m)! (3!

(Bm)! — (3b/2)1"

2.(6m—1)-2-(6m—3)-...-2-3-2-1=

Lemma 11. For b boundary faces, the number of possible boundary configura-
tions is bounded from above by

(3b)! 2.376b \*
(3b/2)! <ln(3b+ 1)) '
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Fig. 3. Part of the boundary of a triangulation. The link of the top vertex is shaded
grey; this link does not contain the vertex, but instead cradles the vertex from below.

Proof There are 3b tetrahedron vertices on boundary faces, and so the number
of possible vertex configurations is the Bell number Bsp,. The result now follows
from Lemma 10 and the following inequality of Berend [3]:

1% 23760 \*
B3, = - — <\ - O
e ; i! <1n(3b + 1)>
Corollary 12. The number of possible boundary configurations for a triangula-
tion on n tetrahedra with b boundary faces depends on b, but not on n.

The boundary configuration can be used to partially reconstruct the links of
vertices on the boundary of the triangulation. In particular:

— The edge configuration allows us to follow the arcs around each puncture of
a vertex link—in Figure 3 for instance, we can follow the sequence of arcs
ai, as, ... that surround the puncture in the link of the top vertex.

— The vertex configuration tells us whether two sequences of arcs describe
punctures in the same vertex link, versus different vertex links.

In this way, we can reconstruct all information about punctures in the vertex
links, even though we cannot access the full (2-dimensional) triangulations of the
links themselves. As the next result shows, this means that the boundary config-
uration retains all data required to build up a partial-3-manifold triangulation,
without knowledge of the full triangulation of the underlying space.

Lemma 13. Let T be a partial 3-manifold triangulation with b boundary faces,
and let T' be formed by introducing a new identification between two boundary
faces of T. Given the boundary configuration of T and the new face identification,
we can test whether T’ is also a partial-8-manifold triangulation in O(b) time.

A full proof appears in the full version of this paper. The basic idea is to check
whether the conditions in Definition 5 are preserved. The edge configuration



allows us to easily test for edges identified together in reverse, and the partial
reconstruction of the vertex links (as described above) allows us to test whether
all vertex links are still 2-spheres with zero or more punctures.

4 Algorithms and simple properties

Recall that the motivating problem for our work was to quickly detect whether
a given graph admits a closed 3-manifold triangulation. To this end we show:

Theorem 14. Given a connected 4-reqular multigraph G, the problem of de-
termining whether there exists a closed 3-manifold triangulation T such that
I'(T) = G is fized parameter tractable in the treewidth of G.

This is a special case of our more general Theorem 18, and so we do not
prove it in detail here. The basic idea is as follows.

We say that a boundary configuration C' is wviable for a graph G if there
exists some partial-3-manifold triangulation 7 with I'(7) = G and with C as
its boundary configuration. Our algorithm starts with an empty triangulation,
and then introduces tetrahedra and face identifications in a way that essentially
works from the leaves up to the root of the tree decomposition of G. For each
subtree in the tree decomposition we compute which configurations are viable
for the corresponding subgraph of G, and then propagate these configurations
further up the tree. The running time at each node depends only on the number
of boundary faces, which is bounded in terms of the bag size and thereby tw(G).

4.1 A generalisation to simple properties

Here we generalise Theorem 14 to many other settings. For this we define a
simple property of a partial 3-manifold triangulation (see below).

We extend boundary configurations to include an extra piece of data ¢ based
on the partial triangulation that helps test our property. For instance, if p is
the simple property that the triangulation contains < 3 internal vertices, then ¢
might encode the number of internal vertices thus far in the partial 3-manifold
triangulation (here ¢ takes one of the values 0,1, 2, 3, too_many).

As before: for a simple property p, we say that a boundary configuration C
is p-viable for a graph G if there exists some partial-3-manifold triangulation 7
with property p, with I'(7) = G and with C as its boundary configuration.

Shortly we solve the problem of testing whether a graph G admits any closed
3-manifold triangulation with property p, for any simple property p. The basic
idea is as before: for each subtree of our tree decomposition of GG, we compute
all viable configurations and propagate this information up the tree.

Definition 15 (Simple property). A boolean property p of a partial-3-mani-
fold triangulation is called simple if all of the following hold. Here all configura-
tions have < b boundary faces, and f, g, h are some computable functions.



1. The extra data ¢ in the boundary configuration satisfies ¢ € P for some
universal set P with |P| < f(b).

2. We can determine whether a triangulation satisfies p based only on its bound-
ary configuration (including the extra data ¢).

3. Given any viable configuration and a new face identification m between two
of its boundary faces, we can in O(g(b)) time test whether introducing this
identification yields another viable configuration and, if so, calculate the cor-
responding value of ¢.

4. Given viable configurations for two disjoint triangulations, we can in O(h(b))
time test whether the configuration for their union is also viable and, if so,
calculate the corresponding value of ¢.

The four conditions above can be respectively interpreted as meaning;:

1. the upper bound on the number of viable configurations (including the data
@) still depends on b but not the number of tetrahedra;

2. we can still test property p without examining the full triangulation;

3. new face identifications can still be checked for p-viability in O(g(b)) time;

4. configurations for disjoint triangulations can be combined in O(h(b)) time.

Ezample 16. Let p be the property that a triangulation contains at most x in-
ternal vertices (i.e., vertices with links homeomorphic to a 2-sphere), for some
fixed integer x. Then p is simple.

Here we define ¢ € P = {0,1,...,z,toomany} to be the number of vertices
in our partial 3-manifold triangulation with 2-sphere links. This clearly satisfies
conditions 1 and 2. For condition 3: when identifying two faces together, a new
vertex acquires a 2-sphere link if and only if the identification closes off all
punctures in the link (which we can test from the edge and vertex configurations).
Condition 4 is easily satisfied by summing ¢ over the disjoint configurations.

The case when x = 1 is highly relevant: much theoretical and computational
work has gone into 1-vertex triangulations of 3-manifolds [19, 23], and these are
of particular use when searching for O-efficient triangulations [20].

We can now state the main result of this paper:

Problem 17 p-ADMISSIBILITY(G) Let p be a simple property. Given a connected
4-reqular multigraph G, determine whether there exists a closed 3-manifold tri-
angulation T with property p such that I'(T) = G.

Theorem 18. Let p be a simple property. Given a connected 4-regular multi-
graph G on n nodes with treewidth < k, and a corresponding tree decomposi-
tion with O(n) nodes where each bag has at most two children, we can solve
p-ADMISSIBILITY (G) in O(n - f(k)) time for some computable function f.

Our requirement for such a tree decomposition is not restrictive: Bodlaender
[4] gives a fixed parameter tractable algorithm to find a tree decomposition of
width < k for fixed k, and Kloks [21] gives an O(n) time algorithm to transform



this into a tree decomposition where each bag has at most two children. The “two
children” constraint can be relaxed; we use it here to keep the proof simple.

A full proof appears in the full version of this paper; the main ideas are
as follows. For each bag v of the tree decomposition we define a corresponding
subgraph G, of G, which contains precisely those nodes of G that do not appear
in bags outside the subtree rooted at v. As before we use a dynamic programming
approach, working from the leaves of the tree decomposition up to the root: for
each v we construct all viable configurations for GG,,, by combining the viable
configurations at the child nodes of v and analysing any new face identifications
that might appear. We bound the running time at each v by a function of the bag
size, using the properties of Definition 15 and the observation that any partial
triangulation admitted by G, must have < 4(tw(G) + 1) boundary faces.

Once we reach the root node of the tree decomposition, the final list contains
a p-viable configuration if and only if G admits a closed 3-manifold triangulation
with property p.

5 Implementation and experimentation

The algorithm was implemented Java, using the treewidth library from [15]. Al-
though our theoretical bound on the number of configurations is extremely large
(Lemma 11), we store all configurations using hash maps to exploit situations
where in practice the number of viable configurations is much smaller. As seen
below, we find that such a discrepancy does indeed arise (and significantly so).

We also introduce another modification that yields significant speed improve-
ments in practice. The algorithm builds up a complete list of all viable config-
urations at each bag v of the tree decomposition. However, for an affirmative
answer to the problem, only a small subset of these may be required. We take
advantage of this as follows.

For any bag v with no children, configurations are computed as normal.
Once a viable configuration is found, it is immediately propagated up the tree
in a depth-first manner. This means that, rather than calculating every possible
viable configuration for every subgraph G, the improved algorithm can identify
a full triangulation with property p quickly and allow early termination.

We implemented the program with p defined to be one-vertexr and possibly
minimal, using criteria on the degrees of edges from [6]. This allowed us to com-
pare both correctness and timing with the existing software Regina [9]. We ran
our algorithm on all 4-regular graphs on 4, 5 or 6 nodes to verify correctness.
We see that the average time to process a graph increases with treewidth, as
expected. We also see that the number of viable configurations is indeed signifi-
cantly lower than the upper bound of Lemma 11, as we had hoped.

Regina significantly outperforms our algorithm on all of these graphs, though
these are small problems for which asymptotic behaviour plays a less important
role. What matters more is performance on larger graphs, where existing software
begins to break down.
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We therefore ran a sample of 12-node graphs through our algorithm, selected
randomly from graphs which cause significant slowdown in existing software.
This “biased” sampling was deliberate—our aim is not for our algorithm to
always outperform existing software, but instead to seek new ways of solving
those difficult cases that existing software cannot handle. Here we do find success:
our algorithm was at times 600% faster at identifying non-admissible graphs
than Regina, though this improvement was not consistent across all trials. More
detailed experiments will appear in the full version of this paper.

In summary: for larger problems, our proof-of-concept code already exhibits
far superior performance for some cases that Regina struggles with. With more
careful optimisation (e.g., for dealing with combinatorial isomorphism), we be-
lieve that this algorithm would be an important tool that complements existing
software for topological enumeration.

The full source code for the implementation of this algorithm is available at
http://www.github.com/WPettersson/AdmissibleFPG.

6 Applications and extensions

We first note that our meta-theorem is useful: here we list several simple prop-
erties p that are important in practice, with a brief motivation for each.

1. One-vertezr triangulations are crucial for computation: they typically use
very few tetrahedra, and have desirable combinatorial properties. This is
especially evident with O-efficient triangulations [20].

2. Likewise, minimal triangulations (which use the fewest possible tetrahedra)
are important for both combinatorics and computation [6, 7]. Although min-
imality is not a simple property, it has many simple necessary conditions,
which are used in practical enumeration software [7, 23].

3. Ideal triangulation of hyperbolic manifolds play a key role in 3-manifold
topology. An extension of Theorem 18 allows us to support several necessary
conditions for hyperbolicity, which again are used in real software [12,18].

Finally: a major limitation of all existing 3-manifold enumeration algorithms
is that they cannot “piggyback” on prior results for fewer tetrahedra, a technique
that has been remarkably successful in other areas such as graph enumeration
[25]. This is not a simple oversight: it is well known that we cannot build all
“larger” 3-manifold triangulations from smaller 3-manifold triangulations. The
techniques presented here, however, may allow us to overcome this issue—we can
modify the algorithm of Theorem 18 to store entire families of triangulations at
each bag of the tree decomposition. We would lose fixed parameter tractabil-
ity, but for the first time we would be able to cache and reuse partial results
across different graphs and even different numbers of tetrahedra, offering a real
potential to extend census data well beyond its current limitations.
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