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Abstract. We establish (i) stability of Lyapunov exponents and (ii) convergence in prob-
ability of Oseledets spaces for semi-invertible matrix cocycles, subjected to small random
perturbations. The first part extends results of Ledrappier and Young [18] to the semi-
invertible setting. The second part relies on the study of evolution of subspaces in the
Grassmannian, where the analysis developed, based on higher-dimensional Möbius transfor-
mations, is likely to be of wider interest.

1. Introduction

The landmark Oseledets Multiplicative Ergodic Theorem (MET) plays a central role in
modern dynamical systems, providing a basis for the study of non-uniformly hyperbolic
dynamical systems. Oseledets’ theorem has been extended in many ways beyond the original
context of products of finite-dimensional matrices, for instance to certain classes of operators
on Banach spaces and more abstractly to non-expanding maps of non-positively curved
spaces.

The original Oseledets theorem [20] was formulated in both an invertible version (both the
base dynamics and the matrices are assumed to be invertible) and a non-invertible version
(neither the base dynamics nor the matrices are assumed to be invertible). The conclusion in
the non-invertible case is much weaker than in the invertible case: in the invertible version,
the theorem gives a splitting (that is, a direct sum decomposition) of Rd into equivariant
subspaces, each with a characteristic exponent that is used to order the splitting components
from largest to smallest expansion rate; whereas in the non-invertible version, the theorem
gives an equivariant filtration (that is, a decreasing nested sequence of subspaces) of Rd.

In various combinations, the current authors and collaborators have been working on
extensions of the MET to what we have called the semi-invertible setting [10, 11, 16]. This
refers to the assumption that one has an invertible underlying base dynamical system (also
known as driving or forcing), but that the matrices or operators that are composed may
fail to be invertible. In this setting, our theorems yield an equivariant splitting as in the
invertible case of the MET, rather than the equivariant filtration that the previous theorems
would have given.

We are interested in applications where the operators are Perron-Frobenius operators of
dynamical systems acting on suitable Banach spaces. Here, the ‘suitable’ Banach spaces are
spaces that are mapped into themselves by the Perron-Frobenius operator, and on which the
Perron-Frobenius operator is quasi-compact. These Banach spaces have been widely studied
in the case of a single dynamical system.

An Ansatz that first appeared in a paper of Dellnitz, Froyland and Sertl [4] in the context
of Perron-Frobenius operators of a single dynamical system is the following:
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Ansatz. The peripheral spectrum (that is, spectrum of the Perron-Frobenius operator outside
the essential spectral radius) corresponds to global features of the system (such as bottlenecks
or almost-invariant regions) whereas the essential spectrum corresponds to local features of
the system, such as rates of expansion.

In a series of papers, they take this idea further by showing that level sets of eigen-
functions with eigenvalues peripheral to the essential spectral radius can be used to locate
almost-invariant sets in the dynamical system [5, 6, 17, 14, 15, 8]. Figure 1 gives a schematic
illustration of such a system: The left and right halves are almost-invariant under the dy-
namics, but the bottleneck joining them allows small but non-negligible interaction between
them.

+1 −1

(a) (b)

Figure 1. (a) Schematic representation of a dynamical system with almost-
invariant regions. (b) Approximate values of eigenfunction corresponding to
the bottleneck.

While this Ansatz was initially made in the context of a single dynamical system, it seems
to apply equally in the case of random and time-dependent dynamical systems [12, 7, 13],
and this is the central motivation for our research in this area. It is well known that Perron-
Frobenius operators of non-invertible maps are essentially never invertible, but it is often
reasonable to assume that the base dynamics are invertible. Indeed, even if the driving
system is non-invertible, one can make use of canonical mathematical techniques to extend
it to an invertible one. Hence, we naturally find ourselves in the semi-invertible category.
The principal object that we are interested in understanding is the second Oseledets subspace
(or more generally the first few Oseledets subspaces).

The significance of our extensions to the MET is that the second subspace that we obtain
is low-dimensional (typically one-dimensional) instead of (d− 1)-dimensional, which is what
would come from the standard non-invertible MET. In numerical applications, where d may
be 105 or greater, one cannot expect to say anything reasonable about level sets of functions
belonging to a high-dimensional subspace, whereas using the semi-invertible version of the
theorem, we are once again in a position to make sense of the level sets.

In practice, of course, one cannot numerically study the action of Perron-Frobenius oper-
ators on infinite-dimensional Banach spaces. Nor can one find a finite-dimensional subspace
preserved by the operators. A remarkably fruitful approach is the so-called Ulam method.
Here, the state space is cut into small reasonably regular pieces and a single dynamical sys-
tem is treated as a Markov chain, by applying the dynamical system and then randomizing
over the cell in which the point lands. This also makes sense for random dynamical systems.
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In [9], we showed that applying the Ulam method to certain random dynamical systems,
the top Oseledets space of the truncated system converges in probability to the true top
Oseledets space of the random dynamical system as the size of the partition is shrunk to
0. The top Oseledets space is known to correspond to the random absolutely continuous
invariant measure of the system. It is natural to ask whether the subsequent Oseledets
spaces for the truncated systems converge to the corresponding Oseledets spaces for the
full system. We are not yet able to answer this, although the current paper represents a
substantial step in this direction.

In [9], we viewed the Ulam projections of the Perron-Frobenius operator as perturbations
of the original operator, and showed that the top Oseledets space was robust to the kind of
projections that were being considered. In this paper, we prove convergence the of subsequent
Oseledets spaces under certain perturbations, but do this in the context of matrices instead
of infinite-dimensional operators.

A related work in this direction is due to Bogenschütz [3]. The context there is considerably
more general, dealing with stability of Oseledets subspaces on Banach spaces rather than
just Rn. However, his results only hold under a number of very strong a priori assumptions,
including that there is uniform separation between the subspaces - that is, he covers the
projectively hyperbolic case, which is known to be robust under all small perturbations, not
just the stochastic ones considered in this article. We refer the reader to the article of Bochi
and Viana [2] for more information. Our results are established in the finite-dimensional
stochastic setting, without any uniformity assumptions on the splitting.

In general, Lyapunov exponents and Oseledets subspaces are known to be highly sensi-
tive to perturbations. A mechanism responsible for this is attributed to Mañé; see also [1].
Ledrappier and Young considered the case of perturbations of random products of uniformly
invertible matrices [18]1. This followed related work of Young in the two-dimensional setting
[22]. In view of the sensitivity results, it was necessary to restrict the class of perturbations
that they considered, and they dealt with the situation where the distribution of the per-
turbation of the matrix at time 0 was absolutely continuous (with control on the density)
conditioned on all previous perturbations. The simplest instance of this is the case where
the matrices to be multiplied are subjected to additive i.i.d. absolutely continuous noise. In
this situation, they showed that the perturbed exponents converge almost surely to the true
exponents as the noise is shrunk to 0. While they did not directly address the Oseledets
subspaces, work of Ochs [19] shows that convergence of the Lyapunov exponents implies
convergence in probability of the Oseledets subspaces in the invertible setting.

In this paper, we deal with the case of uniform i.i.d. additive noise in the matrices, but
make no assumption on invertibility of the unperturbed matrices. The conclusions that
we obtain are the same as may be obtained in the invertible case. Our argument first
demonstrates stability of the Lyapunov exponents, and then shows stability of the Oseledets
subspaces. The first part is closely based on Ledrappier and Young’s approach, although
we need to do some non-trivial extra work to deal with the lack of uniform invertibility (in
Ledrappier-Young’s argument, in one step, there is an upper bound to the amount of damage
that can be done to the exponents, whereas in the non-invertible case there is no such bound).

1We refer to this situation as stochastic stability of the Lyapunov exponents and subspaces, as they change
continuously as the matrices are perturbed stochastically, while Ledrappier and Young referred to this just
as stability.

3



The second part of the argument is completely new. The methods of Ochs cannot be made
to work here because they are based on finding the space with the smallest exponent and
then using exterior powers to move up the ladder. In the case where the smallest exponent
is −∞, when one takes exterior powers, all products with this subspace have exponent −∞
so there is no distinguished second-smallest subspace. To get around this problem, we use
the Grassmannian in place of the exterior algebra. We study evolution of subspaces in the
Grassmannian, and show that this is controlled by fractional linear transformations. An
important role is played by a higher-dimensional analogue of the cross ratio.

We are hopeful that the techniques that we introduce to control evolution of these Os-
eledets subspaces under the matrices may be applied much more widely.

1.1. Statements of the main results. If σ : (Ω,P) → (Ω,P) is a measure-preserving
transformation of a probability space and A : Ω → Md×d(R) is a measurable matrix-valued

function, we let A
(n)
ω denote the product A(σn−1ω)A(σn−2ω) · · ·A(ω). We call the tuple

(Ω,P, σ, A) a matrix cocycle. Throughout the article, we shall write ‖ · ‖ for the spectral
norm of a matrix (that is its operator norm with respect to the Euclidean norm on Rd).

Let U be the collection of d × d matrices with entries in [−1, 1]. We equip U with the

uniform measure, λ, that is volume measure scaled by 2−d
2
. Let Ω̄ = Ω×UZ. We write ω̄ =

(ω,∆) for an element of Ω̄. and put the measure P̄ = P× λZ on Ω̄. Given ε > 0, then for an
element ω̄ ∈ Ω̄, the corresponding sequence of matrices is (Aεn(ω̄))n∈Z = (A(σnω) + ε∆n)n∈Z.
This paper is concerned with a comparison of the properties of the matrix cocycle (Ω,P, σ, A)
with those of the matrix cocycle (Ω̄, P̄, σ̄, Aε) as ε→ 0.

The main result of this paper is the following.

Theorem 1. Let σ be an ergodic, invertible measure-preserving transformation of (Ω,P) and
let A : Ω→Md×d(R) be a measurable map such that

∫
log+ ‖A(ω)‖ dP(ω) <∞.

Let the Lyapunov exponents of the matrix cocycle be λ1 > . . . > λp ≥ −∞ with multiplic-
ities d1, d2, . . . , dp and let the corresponding Oseledets decomposition be Rd = Y1(ω) ⊕ . . . ⊕
Yp(ω).

Let D0 = 0, Di = d1 + . . . + di and let the Lyapunov exponents (with multiplicity) be
∞ > µ1 ≥ µ2 ≥ . . . ≥ µd ≥ −∞, so that µj = λi if Di−1 < j ≤ Di.

(I) (Convergence of Lyapunov exponents) Let the Lyapunov exponents of the perturbed
matrix cocycle (Ω̄, P̄ , σ̄, Aε) (with multiplicity) be µε1 ≥ µε2 ≥ . . . ≥ µεd. Then µεi → µi
for each i as ε→ 0.

(II) (Convergence in probability of Oseledets spaces) Let Ni be a neighbourhood of µi in
the extended real line R̄. Let ε0 be such that for each ε ≤ ε0, µεj ∈ Ni for each
Di−1 < j ≤ Dj. For ε < ε0, let Y ε

i (ω) denote the sum of the Lyapunov subspaces
having exponents in Ni. Then Y ε

i (ω̄) converges in probability to Yi(ω) as ε→ 0.

1.2. Outline of the paper. Section 2 introduces terminology, background results and a
collection of lemmas that will be used in the proof of the main result. Theorem 1(I) is
established in Section 3, and part (II) is proven in Section 4.

2. Preliminaries

For two subspaces, U and V , of Rd of the same dimension, we define ∠(U, V ) = dH(U ∩
B, V ∩B), where dH denotes Hausdorff distance and B is the unit ball. For two subspaces U
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and W of complementary dimensions, we define ⊥ (U,W ) = (1/
√

2) inf{u∈U∩S,w∈W∩S} ‖u −
w‖, where S denotes the unit sphere. Thus ⊥ (U,W ) is a measure of complementarity
of subspaces, taking values between 0 and 1, with 0 indicating that the spaces intersect
and 1 indicating that the spaces are orthogonal complements. Note that ⊥ (U, V ) ≥⊥
(U,W )− ∠(W,V ).

Let sj(A) denote the jth singular value of the matrix A and let Ξj(A) denote log s1(A) +
. . .+ log sj(A). Note that Ξj(A) = log ‖ΛjA‖, so that Ξj(AB) ≤ Ξj(A) + Ξj(B).

The structure of the proof of the first part of the theorem closely follows that of Ledrappier
and Young, in which the orbit of ω is divided into blocks of length ≈ | log ε|. These are
classified as good if a number of conditions hold (separation of Lyapunov spaces, closeness
of averages to integrals etc.) and bad otherwise. The crucial modifications that we make
are in estimations for the bad blocks. In the case of [18], the matrices (and hence their
perturbations) have uniformly bounded inverses, so that for bad blocks one can give uniform
lower bounds on the contribution to the singular value. By contrast, here, there is no
uniform lower bound. Upper bounds are straightforward, so all of the work is concerned with
establishing lower bounds for the exponents. Absent the invertibility, a similar argument to
[18] would yield (random) bounds of order log ε, which turn out to be too weak to give the
lower bounds that we need.

It is helpful for notation to assume that we are dealing with an unperturbed system with
Lyapunov exponents λ1 > . . . > λp with multiplicities d1, . . . , dp. We define Di = d1+. . .+di.
Given a matrix A with the property that sDi(A) < sDi+1(A), we define Ei(A) to be the space
spanned by the (Di + 1)st to dth singular vectors and Fi(A) to be the space spanned by the
images of the 1st to Dith singular vectors under A. If one has a matrix cocycle with base
space Ω and matrices Aω, we use the very similar notation Ei(ω) and Fi(ω) to refer to the
Oseledets subspaces. The convention will be that if the argument is a matrix, then they refer
to the span of the bottom singular vectors or the images of the top singular vectors, while
if the argument is a point of the base space, they refer to spaces appearing in the Oseledets
theorem. These spaces are obtained simply as limits of spans of singular vectors, as explained
in Lemma 2 below, justifying the notation. Lemma 3 collects properties of singular-value
decompositions retained under perturbations. Lemma 4 shows how the smallness of the
perturbations in the matrix cocycle is used in later arguments. Lemma 5 is a finitary version
of Lemma 2.

Lemma 2 (Singular Vectors of blocks of the unperturbed system). Let σ be an ergodic
measurable transformation of Ω and let A be a matrix cocycle with exponents ∞ > λ1 >
. . . > λp ≥ −∞ with multiplicities d1, . . . , dp. Let Di = d1 + . . . + di. For almost every ω

and each 1 ≤ i ≤ p, Ei(A
(n)
ω )→ Ei(ω) and Fi(A

(n)

σ−nω)→ Fi(ω) as n→∞.

Proof. The statement that Ei(A
(n)
ω ) → Ei(ω) follows from Raghunathan’s proof of the Os-

eledets theorem ([21, Claim I]). The singular value decomposition ensures that Fi(A
(n)

σ−nω) =(
Ei(A

(n) ∗
σ−nω)

)⊥
, where A∗ denotes the adjoint of A.

On the other hand, a similar statement is true for the spaces E∗i (ω) and Fi(ω). More
precisely, we claim that if we let E∗i (ω) be the Oseledets spaces for the dual cocycle with
base σ−1 and generator G(ω) = A(σ−1ω)

∗
, then Fi(ω) = (E∗i (ω))⊥. Applying Oseledets’

theorem to the dual cocycle, we obtain Ei(A
(n) ∗
σ−nω)→ E∗i (ω).
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To prove the claim, suppose for a contradiction that there exist f(ω) ∈ Fi(ω) and

e∗(ω) ∈ E∗i (ω) of unit length such that 〈f(ω), e∗(ω)〉 6= 0. By invertibility of A
(n)

σ−nω as a

map from Fi(σ
−nω) to Fi(ω) there exist for all n, unit vectors f (−n)(ω) ∈ Fi(σ

−nω) such

that A
(n)

σ−nωf
(−n)(ω) is a multiple of f(ω). Then,

(1) 〈A(n)

σ−nωf
(−n)(ω), e∗(ω)〉 = 〈f (−n)(ω), A

(n) ∗
σ−nωe

∗(ω)〉.
The right hand side grows at a rate slower than λi. The left hand side grows at a rate at

least λi, by [10, Eq. (18)]. This yields a contradiction, so Fi(ω) ⊂
(
E∗i (ω)

)⊥
. Since the

dimensions agree, they coincide.

Now the statement that Fi(A
(n)

σ−nω)→ Fi(ω) follows directly from the fact thatEi(A
(n) ∗
σ−nω)→

E∗i (ω), and continuity of V 7→ V ⊥.
�

Lemma 3. [Lemmas 3.3, 3.6 & 4.3, [18]] For any δ > 0, there exists a K such that if (i)
the Dith singular value of a matrix A exceeds K; (ii) the (Di + 1)st singular value at most
1; and (iii) ‖B − A‖ ≤ 1, then the following hold:

(a) ∠(Fi(A), Fi(B)) and ∠(Ei(A), Ei(B)) are less than δ/3;
(b) 1

3
≤ sj(A)/sj(B) ≤ 3 for each j ≤ Di and sj(B) ≤ 2 for each j > Di;

(c) If V is any subspace of dimension Di such that ⊥ (V,Ei(A)) > δ/6, then ∠(BV, Fi(A)) <
δ/3;

(d) If V is a subspace of dimension Di and ⊥ (V,Ei(A)) > δ, then | det(A|V )| ≥ (Dδ)Di exp ΞDi(A),
where D is an absolute constant.

This is all proved in [18] except for the second part of (b). For this part, let V be the
subspace of Rd spanned by the (Di + 1)st to dth singular vectors. Then for v ∈ V of norm
1, we have ‖Bv‖ ≤ 2. Since V is a (d − Di)-dimensional subspace on which B uniformly
expands vectors by at most 2, we have sj(B) ≤ 2 for all j > Di.

Lemma 4. Let σ be an ergodic measure-preserving transformation of (Ω,P) and let A : Ω→
Md×d(R) be a measurable map such that log+ ‖A(ω)‖ is integrable. There exists C such that
for all η0 > 0, there exists ε0 such that for all ε < ε0, there exists G ⊆ Ω of measure at least
1− η0 such that for all ω ∈ G, and all (∆n) ∈ UZ

‖(Aεω̄)(N) − A(N)
ω ‖ ≤ 1,

where ω̄ = (ω, (∆n)), N = bC| log ε|c and (Aεω̄)(N) = AεN−1(ω̄) . . . Aε1(ω̄)Aε0(ω̄).

Proof. Let g(ω) = log+(‖Aω‖ + 1) and let C > 0 satisfy
∫
g(ω) dP(ω) < 1/C. Notice

that provided ε < 1 (and using the fact that the perturbations have norm bounded by ε),
log+ ‖Aεω̄‖ ≤ g(ω), and

‖(Aεω̄)(N) − A(N)
ω ‖ ≤

N−1∑
i=0

‖(Aεσ̄iω̄)(N−i−1)(Aεσ̄iω̄ − Aσiω)A(i)
ω ‖

≤ Nε exp(g(ω) + . . .+ g(σN−1ω)).

There exists n0 such that for N ≥ n0, Nε exp(g(ω) + . . .+ g(σN−1ω)) ≤ ε exp(N/C) on a set
of measure at least 1− η0. In particular, provided bC| log ε0|c > n0, taking N = bC| log ε|c,
the conclusion follows.

�
6



Lemma 5. Let σ be an ergodic measure-preserving transformation of (Ω,P) and let A : Ω→
Md×d(R) be a measurable map such that

∫
log+ ‖A(ω)‖P(ω) < ∞. Let the Lyapunov expo-

nents be ∞ > λ1 > λ2 > . . . > λp ≥ −∞ with multiplicities d1, . . . , dp. Suppose 1 ≤ i < p is
such that λi > 0 > λi+1, and let Di = d1 + . . .+ di.

Let η0 > 0 and δ1 > 0 be given. Then there exist n0 > 0, κ > 0 and δ ≤ min(δ1, κ) such
that: for all n ≥ n0, there exists a set G ⊆ Ω with P(G) > 1 − η0 such that for ω ∈ G, we
have

(a) ⊥ (Ei(ω), Fi(ω)) > 10κ;

(b) ∠(Fi(A
(n)
ω ), Fi(σ

nω)) < δ;

(c) ∠(Ei(A
(n)
ω ), Ei(ω)) < δ;

(d) sDi(A
(n)
ω ) > K(δ) and sDi+1(A

(n)
ω ) < 1, where K(δ) is as given in Lemma 3.

Proof. From the proof of Oseledets’ theorem, we know ⊥ (Ei(ω), Fi(ω)) is a positive mea-
surable function. Hence there exists κ > 0 such that (a) occurs on a set of measure at least
1− η0/4. Let δ = min(δ1, κ).

From the proof of Oseledets’ theorem, there exists an n1 > 0 such that for all n ≥ n1,

∠(Fi(A
(n)

σ−nω), Fi(ω)) < δ and ∠(Ei(A
(n)
ω ), Ei(ω)) < δ hold on sets of measure at least 1−η0/4.

Hence there is a set of measure at least 1 − η0/4 where (c) holds. Similarly, using shift-
invariance, there is a set of measure at least 1− η0/4 where (b) holds.

Since 1
n

log sDi(A
(n)
ω ) → λi and 1

n
log sDi+1(A

(n)
ω ) → λi+1, (d) holds on a set of measure at

least 1 − η0/4 for all n ≥ n2 for some n2 > 0. Now let n ≥ n0 = max(n1, n2). Intersecting
the above sets gives a set G satisfying the conclusions of the lemma. �

3. Convergence of Lyapunov exponents

Proof of Theorem 1(I). Most of the work in this part is concerned with showing the inequal-
ity

(2) lim inf
ε→0

(µε1 + . . .+ µεDi) ≥ µ1 + . . .+ µDi , for any 1 ≤ i ≤ p.

We also prove

(3) lim sup
ε→0

(µε1 + . . .+ µεj) ≤ µ1 + . . .+ µj for any 1 ≤ j ≤ d

which is fairly straightforward using sub-additivity. These facts, combined with the fact that
the µεj and µj are decreasing in j are sufficient to establish the claim that µεj → µj for each
j.

To see this, suppose that (2) and (3) hold. Let hj = µ1+. . .+µj and letHj(ε) = µε1+. . .+µεj.
By (2) and (3), we have limε→0HDi(ε) = hDi . If λi+1 = −∞, we see limε→0 µ

ε
j = −∞ for all

j > Di from (3). Hence we may assume that λi+1 > −∞. Since the exponents are arranged
in decreasing order, (Hj(ε))

d
j=1 is a ‘concave’ sequence for each ε (that is Hj+1(ε)−Hj(ε) ≤

Hj(ε)−Hj−1(ε) for each j in range), as is (hj)
d
j=1. However, hj is an arithmetic progression

for j in the range Di to Di+1. Since a concave function is bounded below by its secant, we
deduce lim infε→0Hj(ε) ≥ hj for Di ≤ j ≤ Di+1. Hence we see Hj(ε)→ hj as ε→ 0 for each
j, from which the statement follows.

To show (3), let χ > 0 and let 1 ≤ j ≤ d. By sub-additivity,
∫

(1/N)Ξj((A
ε
ω̄)(N)) dP̄(ω̄) is

an upper bound for Hj(ε). By the sub-additive ergodic theorem, there exists an N > 0 such
7



that
∫

(1/N)Ξj(A
(N)
ω ) dP < hj + χ/2. Now for arbitrary ε < 1

d
and an arbitrary sequence

(∆k) ∈ UZ, Ξj((A
ε
ω̄)(N)) ≤ j

∑N−1
k=0 log(‖Akσω‖ + dε) giving domination by an integrable

function. Now as ε is shrunk to 0, Ξj((A
ε
ω̄)(N))→ Ξj(A

(N)
ω ) for all ω̄. Hence, the dominated

convergence theorem gives that Hj(ε) < hj +χ for all sufficiently small ε as required. Notice
that this part of the argument is completely general, whereas the lower bound depends on
the particular properties of the matrix perturbations.

We now focus on proving (2). In the case i = p, this is automatic since the sum of
the characteristic exponents is the integral of the log of the determinant of the matrices
generating the cocycle, so we assume i < p. Let j = Di. We therefore have λi > −∞. By
multiplying the entire family of matrices by a positive constant, we may assume that λi > 0
and λi+1 < 0.

Let χ > 0 be arbitrary. Let D be the absolute constant occurring in the statement of
Lemma 3, C be as in the statement of Lemma 4 and K be the constant occurring in the
statement of Lemma 10. Define a constant η > 0 by

(4) η = min

(
χ

4× 1.28d2j
,
χC

8K

)
.

Let n0, κ and δ be the quantities given by Lemma 5 using δ1 = 1
2

and η0 = η/2. Since∫
log ‖Aω‖ dP(ω) <∞, it follows that

∫
Ξ+
j (Aω) dP(ω) <∞.

Let N(ε) = bC| log ε|c, where C is as above. The fact that N scales like | log ε| will be of
crucial importance later. Let ε0 be the quantity appearing in Lemma 4 with η0 taken to be
η/2.

Let ε be sufficiently small that

N(ε) >
4j log(3/(δD))

χ
,

| log ε|
N(ε)

< 2/C,

N(ε) >
8

χ

∫
Ξ+
j (Aω) dP(ω),

ε < ε0.

(5)

Let G be the intersection of the good set given by Lemma 4 with the good set given by
Lemma 5 with n taken to be N = N(ε), so that P(G) > 1− η. If ω ∈ G, we say the matrix
product AσN−1ω · · ·Aω is a good block.

Now we divide everything into blocks of length N and estimate the sum of the logarithms
of the first j singular values of the ε-perturbed cocycle.

We will bound from above the difference between the sum of the logs of the first j singular
values in the unperturbed system and this sum in the perturbed version. We informally
speak of the costs due to various contributions. That is, estimates of various contributions
to an upper bound for the difference (unperturbed)−(perturbed). These costs are estimated
in the following parts.

i. To deal with the concatenation of good blocks, we give an upper bound for the differ-
ence (sum of individual block exponents)−(exponent of concatenated block). This is

8



estimated using Lemma 3. Over the whole block there is a cost of at most log(3/Dδ),
so a cost per index of O(1/| log ε|).

ii. Reduction of singular values within bad blocks. There is an expected cost of at worst
1.28d2j per index in a bad block from (8).

iii. Reduction of singular values at the first and last matrix of a string of bad blocks. Here,
there is an upper bound in expected cost of approximately | log ε| per bad block. Here
is where it is crucial that the blocks are of length O(| log ε|). The upper bound for the
cost averages out at O(1) per index in each bad block. The argument is saved by the
fact that most blocks are good blocks.

The sum of the costs is O(η) +O(1/| log ε|) per index (η being the frequency of bad blocks),
which will allow us to derive (2). Let us proceed with the details.

Step 1. A lower bound for Ξj for concatenations of good blocks.

Suppose k < l and σkNω, σ(k+1)Nω, . . . , σ(l−1)Nω ∈ G. Let Bn = A
(N)

σnNω
and B̃n =

(AεσnNω)(N). We then claim that

Ξj(B̃l−1 · · · B̃k) ≥
l−1∑
i=k

Ξj(Bi) + (l − k)j log δ − (l − k)j log(3/D)

≥ Ξj(Bl−1 · · ·Bk) + (l − k)j log(Dδ/3),

(6)

where D is the absolute constant appearing in Lemma 3.
This is proved inductively using Lemma 3. Recall that ‖Bn− B̃n‖ ≤ 1. We let Ṽk = Vk =

Ej(Bk)
⊥ and define Vn+1 = BnVn and Ṽn+1 = B̃nṼn.

We claim that the following hold:

i. ∠(Vn, Ṽn) < δ for each n;
ii. ⊥ (Vn, Ei(Bn)) > δ and ⊥ (Ṽn, Ei(B̃n)) > δ for each n.

Item (i) and the first part of (ii) hold immediately for the case n = k. The second part of
(ii) holds because Ṽk = Vk = Ei(Bk)

⊥ and ∠(Ei(Bk), Ei(B̃k)) < δ by Lemma 3.
Given that (i) and (ii) hold for n = m and that Bm is a good block, Lemma 3 implies

that ∠(Vm+1, Fi(Bm)) < δ/3, ∠(Ṽm+1, Fi(B̃m)) < δ/3 and ∠(Fi(Bm), Fi(B̃m)) < δ/3, so that
∠(Ṽm+1, Vm+1) < δ, yielding (i) for n = m+ 1.

Finally, by the induction hypothesis and Lemma 5, we have ∠(Fi(σ
(m+1)Nω), Fi(Bm)) < δ

and ⊥ (Fi(σ
(m+1)Nω), Ej(σ

(m+1)Nω)) > 10δ. Thus, we obtain (ii) for n = m+ 1.

Hence using Lemma 3(d), we see that det(B̃n|Ṽn) ≥ (Dδ)j det(B̃n|Ei(B̃n)⊥) = (Dδ)jeΞj(B̃n) ≥
(Dδ/3)jeΞj(Bn).

Since Ξj(B̃l−1 · · · B̃k) ≥
∏l−1

n=k det(B̃n|Ṽn), multiplying the inequalities and taking loga-
rithms gives the result.

Step 2. A lower bound for Ξj for concatenations of arbitrary blocks.

Let A1, . . . , An be an arbitrary sequence of matrices. We write

(7) gε(A1, . . . , An,∆1, . . . ,∆n) = Ξj(A
ε
n . . . A

ε
1)− Ξj(An . . . A1)

and prove that (gε)− is integrable in ∆1, . . . ,∆n and that

(8)

∫
gε(A1, . . . , An,∆1, . . . ,∆n) dλn(∆1, . . . ,∆n) ≥ −1.28d2nj
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for all A1, . . . , An.

Lemma 6. There exists B ≈ −1.28 such that for all z ∈ C, and all l ≥ 0∫ 1

0

tl log |1− tz| dt ≥ B.

Proof. Let us show there exists a lower bound; its precise value is irrelevant for our purposes.
Since for every z ∈ C, t ∈ [0, 1], we have that |1 − tz| ≥ |1 − tRe(z)| ≥

∣∣1 − t|Re(z)|
∣∣, it

suffices to show the lemma holds for z ∈ R+∪{0}. For z = 0 the integral is 0. Let us assume
z ∈ R+, and let log− x := min(0, log x). Then,∫ 1

0

tl log |1− tz| dt ≥
∫ 1

0

tl log− |1− tz| dt ≥
∫ 1

0

log− |1− tz| dt

=
1

z

∫ z

0

log− |1− y| dy ≥ inf
z∈(0,2]

1

z

∫ z

0

log− |1− y| dy.

The function g(z) := 1
z

∫ z
0

log− |1 − y| dy for z 6= 0 and g(0) := 0 is continuous on R+, and
hence bounded on [0, 2]. The statement follows. �

Lemma 7. Let B be as in Lemma 6 and p be a polynomial. Then, for all l ≥ 0,∫ 1

0

tl(log |p(t)| − log |p(0)|) dt ≥ B · deg(p).

Proof. If p(0) = 0, then the result is clear. Otherwise, we consider the polynomial f(t) =

p(t)/p(0) and demonstrate that
∫ 1

0
tl log |f(t)| dt ≥ B · deg(f).

To see this, notice that f(t) may be expressed as
∏deg(f)

i=1 (1− tzi), where {z−1
i }

deg(f)
i=1 is the

set of roots of f , and hence p, with multiplicity. Applying Lemma 6 then gives the result. �

Lemma 8. Let B be the constant from the statement of Lemma 6. Let P (t) be a degree j

matrix-valued polynomial. That is, P (t) may be expressed as
∑j

k=0Akt
k for some collection

of d× d matrices Ak. Then, for all l ≥ 0,∫ 1

0

tl(log ‖P (t)‖ − log ‖P (0)‖) dt ≥ B · deg(P ).

Proof. If P (0) is the zero matrix, the result is trivial. Otherwise, there exist unit vectors e
and f such that P (0)e = ‖P (0)‖f .

If we set p(t) = 〈P (t)e, f〉, then we have p(0) = ‖P (0)‖ and ‖P (t)‖ ≥ |p(t)|, so the result
follows from Lemma 7. �

Lemma 9. Let B ≈ −1.28 be the constant from the statement of Lemma 6. Let L, M , A
and R be arbitrary d× d matrices. Then∫ 1

0

tl
(
log ‖Λj(L(A+ tM)R)‖ − log ‖Λj(LAR)‖

)
dt ≥ jB.

Proof. Notice that Λj(L(A+ tM)R) is a polynomial family of operators on ΛjRd. Taking the
standard orthogonal basis of ΛjRd, let P (t) be the matrix of Λj(L(A + tM)R). The result
then follows by applying Lemma 8. �
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We obtain (8) by a telescoping argument:

Ξj(An . . . A1)− Ξj(A
ε
n . . . A

ε
1)

=
n∑
k=1

(
Ξj(A

ε
n . . . A

ε
k+1Ak . . . A1)− Ξj(A

ε
n . . . A

ε
kAk−1 . . . A1)

)
Recall that Ξj(A) = log ‖ΛjA‖. We estimate the integral of the kth term in the sum. Let
L = Aεn . . . A

ε
k+1 and R = Ak−1 . . . A1. Regarding ∆k+1, . . . ,∆n as fixed, we need to estimate:∫

B

(
log ‖Λj(LAkR)‖ − log ‖Λj(L(Ak + ε∆)R)‖

)
dλ(∆),

where B = {M : ‖M‖ ≤ 1}. We then disintegrate the measure λ radially, so that dλ =

d2td
2−1 dt · d(∂λ)(H) where ∆ = tH, H takes values in ∂B and ∂λ is the boundary measure.

For a fixed H, the quantity to estimate is∫ 1

0

(
log ‖Λj(LAkR)‖ − log ‖Λj(L(Ak + εtH)R)‖

)
td

2−1 dt.

Since this quantity is uniformly bounded above, by Lemma 9, we obtain (8).

Step 3. Gluing blocks.

Lemma 10. Let L, R and A be given matrices. Then Ξj(L(A + ε∆)R) − (Ξj(L) + Ξj(R))
has integrable negative part as a function of ∆ and has integral bounded below by K log ε,
where K is independent of L, A and R.

Proof. Write L = O1D1O2 where D1 is diagonal with entries arranged in decreasing order and
O1 and O2 are orthogonal. Similarly write R = O3D2O4. Let A′ = O2AO3 and ∆′ = O2∆O3.
Then we have

Ξj(L(A+ ε∆)R) = Ξj(D1(A′ + ε∆′)D2);

Ξj(L) = Ξj(D1); and

Ξj(R) = Ξj(D2).

Using the inequality Ξj(AB) ≤ Ξj(A) + Ξj(B) and setting C to be the diagonal matrix with
1’s in the first j elements of the diagonal and 0’s elsewhere, we have

Ξj(D1(A′ + ε∆′)D2) ≥ Ξj(CD1(A′ + ε∆′)D2C)

= Ξj(D1C(A′ + ε∆′)CD2)

= Ξj(D1C) + Ξj(C(A′ + ε∆′)C) + Ξj(CD2)

= Ξj(L) + Ξj(R) + Ξj(C(A′ + ε∆′)C).

The equality between the second and third lines arises because the matrices D1C, C(A′+
ε∆′)C and CD2 and their product have non-zero entries only in the top left j× j submatrix.
For such matrices, Ξj(·) is numerically equal to the logarithm of the absolute value of the
determinant of the submatrix. Since the determinant is multiplicative, the equality follows.

Since Lebesgue measure on B = {M : ‖M‖ ≤ 1} is preserved by the operations of pre-
and post-multiplying by an orthogonal matrix, it suffices to show that there exists K > 0
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such that for any matrix A,

(9)

∫
B

Ξj(C(A′ + ε∆)C) dλ(∆) ≥ K log ε for ε < 1
2
.

Let A′′ be the top left j × j submatrix of A′ and notice that the measure on the top left
j × j submatrix of ∆ is absolutely continuous with respect to the measure on j × j matrices
with uniform entries in [−1, 1] with bounded density. As noted above, Ξj agrees with the
logarithm of the absolute value of the determinant for a j × j matrix.

Hence to establish (9), it suffices to give a logarithmic lower bound:

(10)

∫
U

log det(A′′ + εU) dλ′(U) ≥ K log ε for ε < 1
2
,

where U is the collection of j × j matrices with entries in [−1, 1] and λ′ is the uniform
measure on U. One checks, thinking of the columns of U being generated one at a time,
that the probability that the ith column lies within a δ-neighbourhood of the span of the
previous columns is at most O(δ/ε), so the probability that the determinant of A′′ + εU is
less than δj is O(jδ/ε). Hence we obtain

P(− log det(A′′ + εU) > k) ≤ min(1, Cje−k/j/ε).

Using the estimate for non-negative random variables EX ≤
∑∞

k=0 P(X ≥ k), we obtain the
bound E(− log det(A′′ + εU)) . j| log ε|.

From this, we obtain the O(| log ε|) bound as required. �

Step 4. Putting it all together.

We apply this by grouping each consecutive string of good blocks into a single matrix
(and using (6)) and also grouping strings of consecutive bad blocks minus the first and last
matrices into a single matrix (and using (8)). The first and last matrices of a string of bad
blocks are then handled with Lemma 10.

More specifically, we condition on ω ∈ Ω and calculate
∫

Ξj((A
ε
ω)(MN)) dλMN . Let S =

{0 ≤ l < M : A
(N)

σlNω
is bad}. Let r(ω) = |S| and 0 < b1 < b2 < . . . < br < M be the

increasing enumeration of S. Also let b0 = −1 and br+1 = M . Then we factorize (Aεω)(MN)

and A
(MN)
ω as

(Aεω)(MN) = G̃rB̃r · · · B̃2G̃1B̃1G̃0 ; and

A(MN)
ω = GrBr · · ·B2G1B1G0,

where Gl = A
((bl+1−bl−1)N)

σ(bl+1)Nω
, G̃l = (Aε

σ(bl+1)Nω
)((bl+1−bl−1)N), Bl = A

(N)

σblNω
and B̃l = (Aε

σblNω
)(N)

(so the Gl are products of consecutive good blocks and Bl are (single) bad blocks). We
further factorize Bl and B̃l as B̃l = Aε

σ(bl+1)N−1ω
C̃lA

ε
σblNω

and Bl = Aσ(bl+1)N−1ωClAσblNω,

where C̃l = (Aε
σblN+1ω

)(N−2) and Cl = A
(N−2)

σblN+1ω
.

Now using Lemma 10 (and the constant K from its statement), we have∫
Ξj((A

ε
ω)(MN)) dλMN ≥

∫ r(ω)∑
l=0

Ξj(G̃l) +

r(ω)∑
l=1

Ξj(C̃l)

 dλMN + r(ω)K| log ε|.
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From (6), we have
∑r

l=0 Ξj(G̃l) ≥
∑r

l=0 Ξj(Gl) + Mj log(Dδ/3) for all values of the per-
turbation matrices that occur inside those blocks. From (8), we have for each 1 ≤ l ≤ r(ω),∫

Ξj(C̃l) dλ
N−2(∆blN+1, . . . ,∆(bl+1)N−2) ≥ Ξj(Cl)− 1.28d2(N − 2)j.

Letting E(ω) = Mj log(Dδ/3) − 1.28d2(N − 2)jr(ω) + r(ω)K log ε and combining the in-
equalities together with subadditivity of Ξj yields

1

MN

∫
Ξj((A

ε
ω)(MN)) dΛMN ≥ 1

MN

r(ω)∑
l=0

Ξj(Gl) +
1

MN

r(ω)∑
l=1

Ξj(Cl) +
E(ω)

MN

≥ Ξj(A
(MN)
ω )

MN
− 1

MN

r(ω)∑
l=1

(
Ξ+
j (AσblNω) + Ξ+

j (Aσ(bl+1)N−1ω)
)

+
E(ω)

MN
.

(11)

By (4) and (5), we see (1/MN)
∫
E(ω) dP(ω) > −3χ/4. Finally, we have

1

MN

∫ r(ω)∑
l=1

(Ξ+
j (AσblNω) + Ξ+

j (Aσ(bl+1)N−1ω))

 ≤ 2

N

∫
Ξ+
j (Aω) dP(ω) <

χ

4
.

Combining these inequalities, we obtain

1

MN

∫
Ξj((A

ε
ω)(MN)) dP̄(ω̄) ≥ 1

MN

∫
Ξj(A

(MN)
ω ) dP(ω)− χ.

Taking the limit as M → ∞, we deduce lim infε→0(µε1 + . . . + µεj) ≥ (µ1 + . . . + µj) − χ.
Since χ > 0 was arbitrary, we deduce (2).

�

4. Convergence of Oseledets spaces

Let Ni for 1 ≤ i ≤ p be disjoint neighbourhoods of λi as in the statement of the theorem.
In Part (I), we established the existence of an ε0 > 0 such that for ε < ε0, in the perturbed
matrix cocycle, µεj ∈ Ni for all j satisfying Di−1 < j ≤ Di. Recall that Y ε

i (ω̄) was defined
to be the sum of the Oseledets spaces corresponding to exponents in Ni, with Yi(ω) being
the corresponding spaces for the unperturbed matrix cocycle. Let Fi(ω) =

⊕
k≤i Yi(ω) be

the fast subspace for the unperturbed matrix cocycle and Ei(ω) =
⊕

k>i Yi(ω) be the slow
subspace. We similarly introduce notation F ε

i (ω̄) and Eε
i (ω̄) in the perturbed matrix cocycle,

so that F ε
i (ω̄) is a Di-dimensional space corresponding to the top Di exponents (counted with

multiplicity) and Eε
i (ω̄) is a (d−Di)-dimensional space corresponding to the smallest d−Di

exponents. Notice that ω̄ = (ω,∆), and so Fi(ω) and F ε
i (ω̄) may be regarded as living on

the same probability space (Ω̄, P̄).
The proof of Theorem 1(II) will follow relatively straightforwardly from the following

lemma whose proof will occupy this section.

Lemma 11. Let 0 < χ < 1. Let Fi(ω) and F ε
i (ω̄) be as above. Then, for every ε sufficiently

small,

P̄
(
ω̄ : ∠(F ε

i (ω̄), Fi(ω)) > χ
)
< χ.

That is, F ε
i (ω̄) converges in probability to Fi(ω) as ε→ 0.
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Notice that the conclusion of Lemma 11 trivially holds for i = p because F ε
i (ω̄) = Fi(ω) =

Rd in this case. Thus, we will only be concerned with the case i < p. In this case none of
the Lyapunov exponents of vectors in Fi(ω) are −∞.

Recalling that Ei(ω) =
(
F ∗i (ω)

)⊥
, where F ∗i (ω) denotes the Oseledets space of the cocycle

dual to A, Lemma 11 immediately implies the following.

Corollary 12. Let Ei(ω) and Eε
i (ω̄) denote the slow Oseledets subspaces of the unperturbed

and perturbed cocycles, respectively, as described above. Then Eε
i (ω̄) converges in probability

to Ei(ω) as ε→ 0.

Proof of Theorem 1(II) from Lemma 11 . Notice that Yi(ω) = Fi(ω)∩Ei−1(ω) and Y ε
i (ω̄) =

F ε
i (ω̄) ∩ Eε

i−1(ω̄), so we want to show that Eε
i−1(ω̄) ∩ F ε

i (ω̄) converges in probability to
Ei−1(ω) ∩ Fi(ω) as ε→ 0. We also have

Eε
i−1(ω̄) ∩ F ε

i (ω̄) = PrF εi (ω̄)‖Eεi (ω̄)(E
ε
i−1(ω̄)); and

Ei−1(ω) ∩ Fi(ω) = PrFi(ω)‖Ei(ω)(Ei−1(ω)).

Now, lemma 6 of [11], together with Lemma 11 and the separation of Fi(ω) and Ei(ω)
guaranteed by Lemma 5 implies the result. �

4.1. Strategy and notation. Throughout, we shall let j = Di, so that we are studying
evolution of j-dimensional subspaces. In order to show Lemma 11, we will assume that all
of the perturbations (∆n) are fixed except for the −1 time coordinate. That is, we compute
the probability that the perturbed and unperturbed fast spaces are close conditioned on
(∆n)n6=−1 and ω.

It is well known that F ε
i (ω̄) depends only on the matrices Aεσ̄nω̄ for n < 0. Once ω

and (∆n)n 6=−1 are fixed, we think of F ε
i (ω̄) as a random variable (depending on ∆−1), then

applying the sequence of matrices (all already fixed), (Aεω̄)(nN), we show that the resulting
j-dimensional subspace is highly likely to be closely aligned to Fi(σ

nNω).
To control the evolution, we successively apply (Aεω̄)(N), (Aεσ̄N ω̄)(N), . . . , (Aε

σ̄(n−1)N ω̄
)(N),

where ω̄ = (ω,∆), s denotes the left shift and σ̄(ω̄) = (σω, s∆). We will assume that the
underlying blocks of unperturbed A’s are good blocks. The number, n, of steps will be fixed.
In fact, n will depend only on the difference λj − λj+1 and the quantity, C, appearing in
Lemma 4. Hence provided that the probability of bad blocks is very small, it will be likely
that one has n consecutive good blocks.

We shall use the following parameterization of the Grassmannian of j-dimensional sub-
spaces of Rd. Let f1, . . . , fj be a basis for F , a j-dimensional subspace, and e1, . . . , ed−j a
basis for E, a complementary subspace. Now for any j-dimensional vector space V with the
property that V ∩ E = {0}, each fk can be uniquely expressed in the form vk −

∑
i bikei

where vk ∈ V . The parameterization of V with respect to the (f1, . . . , fj; e1, . . . , ed−j)
chart (we shall mainly speak more informally of the (F,E) chart) is the (d − j) × j ma-
trix B = (blk)1≤l≤d−j,1≤k≤j. Conversely, given the matrix B, one can easily recover a basis
for V : vk = fk +

∑
l blkel and hence the subspace V .

Lemma 13. Let F and E be orthogonal complements in Rd and let (fk)1≤k≤j and (ek)1≤k≤d−j
be orthonormal bases. Let V be a j-dimensional subspace of Rd such that V ∩E = {0}. Let
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the parameterization of V with respect to the (F,E) chart be B. Then

⊥ (V,E) =

√
1− ‖B‖√

1 + ‖B‖2
.

In particular for any M > 1, ‖B‖ ≤M implies ⊥ (V,E) ≥ 1/(2M).

Proof. Let vk = fk +
∑

l blkel so that (vk) forms a basis for V . Now let v =
∑

k ckvk =∑
ckfk +

∑
k(Bc)kek belong to V ∩ S, so that ‖c‖2 + ‖Bc‖2 = 1. The closest point in E ∩ S

to v is (1/‖Bc‖)
∑

k(Bc)kek, which is at a square distance ‖c‖2 + (‖Bc‖− 1)2 = 2(1−‖Bc‖)
from v. This distance is minimized when c is the multiple of the dominant singular vector of
B for which ‖c‖2 + ‖Bc‖2 = 1. That is, ‖c‖ = 1/

√
‖B‖2 + 1 and ‖Bc‖ = ‖B‖/

√
‖B‖2 + 1.

Substituting this, we obtain the claimed formula for ⊥ (V,E).
�

Given a matrix M , for which sj(M) > sj+1(M), let e1, . . . , ed be the singular vectors.
We will refer to the (e1, . . . , ej; ej+1, . . . , ed) chart as the (E(M)⊥, E(M)) chart. Similarly,
the (F (M), F (M)⊥) chart refers to the (f1, . . . , fj; fj+1, . . . , fd) chart where f1, . . . , fd are
an orthonormal basis given by the normalized Mel for those l where this is non-zero; and
chosen arbitrarily to ensure orthonormality otherwise. The vectors then satisfy 〈Mel, fm〉 =
δlmsl(M). There may be some non-uniqueness of charts in the case that there are repeated
singular values. However, this does not affect the conclusion and occurs with probability
zero in any case.

Given ω̄, we write Cl to mean (Aε
σ̄lN ω̄

)(N). We will do the iteration using the following
steps:

(S0) Express V = F ε
i (ω̄) as a matrix B using the (E(C0)⊥, E(C0)) chart. Set l = 0.

(S1) Compute Cl(V ) in the (F (Cl), F (Cl)
⊥) chart; this is straightforward as Cl is diagonal

with respect to the pair of bases on the domain and range spaces.
(S2) Change bases to the (E(Cl+1)⊥, E(Cl+1)) chart. Increase l and repeat steps S1 and

S2 a total of n times.

The group GLd(R) acts on the (d−j)×j matrices in the following way: Let Q =

(
W X
Y Z

)
,

where W , X, Y and Z are respectively of dimensions j × j, j × (d − j), (d − j) × j and
(d − j) × (d − j). Then Q defines a self-map of the collection of (d − j) × j matrices
by fQ(B) = (Y + ZB)(W + XB)−1 (providing the inverse is defined). One can check
fQ ◦ fQ′ = fQQ′ . We then show that the update rules (S1) and (S2) correspond to Möbius
transformations, so that their n-step composition is another Möbius transformation. Notice
also that fQ(B) = YW−1 + (Z − YW−1X)B(W +XB)−1. The strategy is to show that for
ω belonging to a good set, and any sequence of perturbations, the non-constant term takes
small values for most arguments B. In our application, these B’s are the image under the
chart of the F ε

i (ω̄) as in step (S0). We use properties of multivariate normal distributions to
show that for good ω, most B’s are in the part of the space where the Möbius transformation
is almost constant.

The matrix Z − YW−1X plays a key role in this, and is analogous to a cross ratio.

Proof of Lemma 11. As pointed out above, the result is trivial if i = p, so that we assume
i < p and therefore λi > −∞. Let τ < 1

4
(λi − λi+1).
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By multiplying the family of matrices by a positive constant, we may assume without loss
of generality that λi > 4τ and λi+1 < 0. Let C be the constant guaranteed for the family of
matrices by Lemma 4. Fix n > 1/(Cτ) and let ε0 be the constant arising when Lemma 4 is
applied with η0 = χ/(8n+ 8).

Let χ be as in the statement of the lemma, and apply Lemma 5 with η0 = χ/(8n+ 8) and
δ1 = χ/2. Let κ, δ and n0 be as in the conclusion of the lemma and let G1 be the ‘good
set’ of ω’s of measure at least 1− η0 on which the transversality, nearness and separation of
singular value conditions of Lemma 5 are satisfied.

We now fix the range of ε in which we will obtain the required closeness of the top spaces.
We shall set N(ε) = bC| log ε|c, and will require that ε be small enough (and hence that
N(ε) should be large enough) to simultaneously satisfy a number of conditions:

(C1) ε < min(ε0,
1
d
);

(C2) N(ε) > n0;
(C3) eN(ε)τ > max(2 + 2/δ, [(1 + δ)/(5δ2)]1/4);

(C4) exp(N(ε)(nτ − 1/C)) > 2δ(eπ/2)d
2/2j3/2/χ;

(C5) P(‖Aω‖ > eτnN(ε) − 1) < χ/8;

(C6) P(sj(A
(N)
ω ) > 6e4τN and sj+1(A

(N)
ω ) < 1) > 1− χ/(8n+ 8);

Let G2 be the set of measure at least 1 − η0 guaranteed by applying Lemma 4 with

the value ε as obtained above. Let G3 = {ω : sj(A
(N)
ω ) > 6e4τN and sj+1(A

(N)
ω ) < 1} and

G4 = {ω : ‖Aσ−1ω‖ ≤ eτnN−1}. Let G̃ = G4∩
⋂n
j=0 σ

−jN(G1∩G2∩G3). Then P(G̃) ≥ 1−χ/2.
We make the following claim.

Claim 14. Let G̃ be as above. Then,

(12) P̄(∠
(
F ε
i (ω̄), Fi(ω)

)
> χ|ω) ≤ χ/2 for all ω ∈ σ−(n+1)NG̃.

With this result at hand, the proof of Lemma 11 goes as follows.

Proof of Lemma 11 using Claim 14.

P̄
(
ω̄ : ∠(F ε

i (ω̄), Fi(ω)) > χ
)

≤ P̄(∠(F ε
i (ω̄), Fi(ω)) > χ | ω ∈ σ−(n+1)NG̃) · P(σ−(n+1)NG̃) + (1− P(σ−(n+1)NG̃))

≤ χ/2 · (1− χ/2) + χ/2 < χ.

�

4.2. Proof of Claim 14. We let ω be a fixed element of G̃ throughout this proof, and
demonstrate that λZ({∆: ∠(F ε

i (σ̄(n+1)N(ω,∆)), Fi(σ
(n+1)Nω)) > χ}) < χ/2. In fact, we do

more. We let ω ∈ G̃ be fixed and let (∆k)k 6=−1 be an arbitrary sequence. We then show that
λ{∆−1 : ∠(F ε

i (σ̄(n+1)N(ω,∆)), Fi(σ
(n+1)Nω)) > χ} < χ/2. Write ω̄ for (ω, (∆k)).

Let V0 = F ε
i (ω̄), and let Vl+1 = Cl(Vl). Write Bl for the matrix of Vl with respect to

the (E(Cl)
⊥, E(Cl)) basis, as explained in Step S0 above; we will see that B0 is a random

variable with ε-variability.
Let Rl be the matrix describing multiplication by Cl with respect to the (E(Cl)

⊥, E(Cl))
and (F (Cl), F (Cl)

⊥) bases. This corresponds to Step S1. Let Pl (corresponding to Step S2)
be the basis change matrix from the (F (Cl), F (Cl)

⊥) to the (E(Cl+1)⊥, E(Cl+1)) basis.
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Then, Rl is diagonal, say

Rl :=

(
D2,l 0

0 D1,l

)
,

where D1,l is the diagonal matrix with entries sj+1, . . . , sd and D2,i is the diagonal matrix
with entries s1, . . . , sj, where s1 ≥ . . . ≥ sd are the singular values of Cl. Since σlNω ∈ G2,

we have ‖A(N)

σlNω
− (Aε

σ̄lN ω̄
)(N)‖ ≤ 1. Since σlNω ∈ G3, we have sj(A

(N)

σlNω
) > 6e4τN and

sj+1(A
(N)

σlNω
) < 1, so that by Lemma 3,

(13) ‖D2,lx‖ > 2e4τN‖x‖ for all x ∈ Rj and ‖D1,l‖ < 2.

Notice that Pl is an orthogonal matrix, as it is the change of basis matrix between two
orthonormal bases. Let

Pl :=

(
ζl γl
βl αl

)
, and(14)

Ql := PlRl =:

(
ql tl
pl rl

)
,(15)

so that

(16) ql = ζlD2,l, tl = γlD1,l, pl = βlD2,l and rl = αlD1,l.

To estimate ‖ζ−1‖ we use a similar argument to that in Lemma 13. Let F (Cl) be spanned by
the singular vector images f1, . . . , fj; E(Cl+1)⊥ be spanned by the singular vectors g1, . . . , gj
and E(Cl+1) be spanned by h1, . . . , hd−j. In particular, if a2

1 + · · · + a2
j = 1 and v =

a1f1 + · · ·+ajfj, then with respect to the ((gk), (hk)) basis, v has coordinates (ζla, βla). The
nearest point in the unit sphere of E(Cl+1) has coordinates βla/‖βla‖ with respect to the
(hk) vectors. By the calculation in Lemma 13, the distance squared between the two points
is 2− 2‖βla‖.

From the definition of the good set G, we get ⊥ (F (Cl), E(Cl+1)) > 6δ. Indeed we

have ⊥ (Ei(σ
(l+1)nω), Fi(σ

(l+1)nω)) > 10δ from Lemma 5(a); ∠(Fi(A
(n)

σlnω
), Fi(σ

(l+1)nω)) < δ

and ∠(Ej(A
(n)

σ(l+1)nω
), Ei(σ

(l+1)nω)) < δ by Lemma 5(b) and (c). Finally the δ-closeness of

E(A
(n)

σ(l+1)nω
) and E(Cl+1); and F (Cl) and Fj(A

(n)

σlnω
) comes from Lemma 3(a).

Combining the two previous paragraphs, we see 2−2‖βla‖ exceeds 72δ2, so that 1−‖βla‖ ≥
36δ2 and ‖ζla‖2 = (1− ‖βla‖)(1 + ‖βla‖) ≥ 36δ2. In particular, we deduce

(17) ‖ζlx‖ ≥ 6δ‖x‖ for all x ∈ Rj.

Let us also note that the pl, ql, rl and tl depend only on the choice of matrices from time
0 onwards and hence have been fixed by the conditioning, whereas B0 is a random quantity
whose conditional distribution we will study in §4.2.3.

Notice that the matrix Ql is characterized by the property that if the coordinates of x ∈ Rd

with respect to the (E(Cl)
⊥, E(Cl)) basis are given by z, then the coordinates of (Aε

σ̄lN ω̄
)(N)x

are given by Qlz with respect to the (E(Cl+1)⊥, E(Cl+1)) basis.
Let

(18)

(
Fl
Hl

)
= Ql−1 . . . Q1Q0

(
I
B0

)
.
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Recall that Bl is the matrix of Vl with respect to the (E(Cl)
⊥, E(Cl)) chart. Then, provided

Vl ∩ E(Cl) = {0}, we have

(19) Bl = HlF
−1
l .

To see this, consider a point x of V expressed in terms of the (E(C0)⊥, E(C0)) basis as
z. Then with respect to the (E(Cl)

⊥, E(Cl)) basis, (Aεω̄)(lN)x has coordinates Ql−1 . . . Q0z.
(Aεω̄)(lN)V has a basis expressed in coordinates of the (E(Cl)

⊥, E(Cl)) basis given by the

columns of

(
Fl
Hl

)
. Post-multiplying by F−1

l gives an alternative basis for (Aεω̄)(lN) expressed

in terms of the (E(Cl)
⊥, E(Cl)) basis, as the columns of

(
I

HlF
−1
l

)
as required.

Our strategy for the remainder of the proof is to show that for most choices of the pertur-
bation ∆−1, the matrix Bn is of norm at most 2/δ. Since Bn is the matrix of F ε

i (σ̄nN(ω̄)) in
the (E(Cn+1)⊥, E(Cn+1)) chart, Lemma 13 will ensure that ⊥

(
F ε
i (σ̄nN(ω̄)), E(Cn+1)

)
> δ/4.

Lemma 3 (c) will then give that ∠
(
F ε
i (σ̄(n+1)N(ω̄)), F (Cn+1)

)
< δ/3. Since by the goodness

properties, ∠
(
F (Cn+1), Fi(σ

(n+1)N(ω))
)
< δ, we will obtain the required closeness.

Let

Qn−1 . . . Q0 =

(
W (n) X(n)

Y (n) Z(n)

)
,

where the W ’s are j× j, X’s are j× (d− j), Y ’s are (d− j)× j and Z’s are (d− j)× (d− j).

4.2.1. Singular values and invertibility of W (n). Let us now show that ‖W (n)x‖ ≥ e3nNτ‖x‖
for all x. Of course, this implies that W (n) is invertible. We start by proving ‖W (k)x‖ ≥
δ‖Y (k)x‖ for all x and k ≥ 0.

Combining (13), (16) and (17) with the fact that ‖γk‖, ‖βk‖ and ‖αk‖ are all at most 1
since Pl is orthogonal, we have

‖qkx‖ ≥ 6δ‖D2,kx‖ for all x ∈ Rj;

‖tk‖ ≤ 2

‖pkx‖ ≤ ‖D2,kx‖ for all x ∈ Rj; and

‖rk‖ ≤ 2.

(20)

Notice that (
W (k+1)

Y (k+1)

)
=

(
qk tk
pk rk

)(
W (k)

Y (k)

)
.

We have

(21) ‖W (k+1)x‖ ≥ ‖qkW (k)x‖ − ‖tkY (k)x‖ ≥ 6δ‖D2,kW
(k)x‖ − 2‖Y (k)x‖,

where we used (17) to obtain the third inequality. Similarly

‖Y (k+1)x‖ ≤ ‖pkW (k)x‖+ ‖rkY (k)x‖ ≤ ‖D2,kW
(k)x‖+ 2‖Y (k)x‖.

Suppose ‖W (k)x‖ ≥ ck‖Y (k)x‖ for all x. Since ‖D2,ky‖ ≥ 2e4Nτ‖y‖ for all y, we see that
‖W (k+1)x‖ ≥ ck+1‖Y (k+1)x‖, where

(22) ck+1 =
6δcke

4τN − 1

cke4τN + 1
.

18



Using (C3), one checks

(23) if c > δ, then
6δce4Nτ − 1

ce4Nτ + 1
> δ.

It is easy to see that c0 = 1 (W (0) = I and Y (0) = 0), so that ck > δ for all k. We deduce
that

(24) ‖W (k)x‖ ≥ δ‖Y (k)x‖,

for all k > 0 and all x ∈ Rj as required. Hence we see that

‖W (k+1)x‖ ≥ 12δe4τN‖W (k)x‖ − 2‖Y (k)x‖
≥ (12δe4τN − (2/δ))‖W (k)x‖
≥ e3τN‖W (k)x‖,

where we used (21), (24) and the first part of (C3) for the respective inequalities.
In particular we deduce

(25) ‖W (n)x‖ ≥ e3τnN‖x‖ for all x ∈ Rj.

4.2.2. Recursion for En. Let En be the cross ratio Z(n) − Y (n)W (n)−1
X(n). Notice that

(26)

(
W (n) X(n)

Y (n) Z(n)

)(
−W (n)−1

X(n)

I

)
=

(
0
En

)
.

In fact, En may be defined this way: En is the unique lower submatrix M such that there
exists A satisfying (

W (n) X(n)

Y (n) Z(n)

)(
A
I

)
=

(
0
M

)
.

Now we have(
W (n+1) X(n+1)

Y (n+1) Z(n+1)

)(
−W (n)−1

X(n)

I

)
=

(
qn tn
pn rn

)(
W (n) X(n)

Y (n) Z(n)

)(
−W (n)−1

X(n)

I

)
=

(
qn tn
pn rn

)(
0
En

)
=

(
tnEn
rnEn

)
.

To finalise the recursion setup, we now seek matrices B and C such that

(27)

(
W (n+1) X(n+1)

Y (n+1) Z(n+1)

)(
B
0

)
=

(
−tnEn
C

)
.

Combining the above, we see(
W (n+1) X(n+1)

Y (n+1) Z(n+1)

)(
B −W (n)−1

X(n)

I

)
=

(
0

rnEn + C

)
,

so that En+1 = rnEn + C.
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From (27), we see thatB = −W (n+1)−1
tnEn, so that C = Y (n+1)B = −Y (n+1)W (n+1)−1

tnEn.
In particular, we obtain

En+1 =
(
rn − Y (n+1)W (n+1)−1

tn

)
En.

Substituting x = W (k)−1
z in (24), we obtain ‖z‖ ≥ δ‖Y (k)W (k)−1

z‖, so that {‖Y (k)W (k)−1‖}k∈N
is uniformly bounded by 1/δ. Furthermore, from the definition of Qk, (15), and the choice
of N , ‖rk‖, ‖tk‖ ≤ 2, so that ‖Ek+1‖ ≤ 2(1 + 1

δ
)‖Ek‖. Hence by (C3), we obtain

(28) ‖En‖ ≤ eτNn.

Finally, we have

Bn = (Y (n) + Z(n)B0)(W (n) +X(n)B0)−1

= (Y (n) + (Y (n)W (n)−1
X(n) + En)B0)(W (n) +X(n)B0)−1

= Y (n)(I +W (n)−1
X(n)B0)(W (n) +X(n)B0)−1 + EnB0(W (n) +X(n)B0)−1

= Y (n)W (n)−1
+ EnB0(W (n) +X(n)B0)−1,

(29)

where we used (18) and (19) in the first equality, and the definition of En in the second
equality.

4.2.3. Expression for B0. Recall that we conditioned on ω and (∆l)l 6=−1. This determines
the top subspace at time −1, as well as the Ej((A

ε
σ̄kN ω̄

)(N)) and Ej((A
ε
σ̄kN ω̄

)(N))⊥ spaces for
each k ≥ 0.

Let V be a d × j matrix whose columns consist of an orthonormal basis in Rd for the
fast space at time −1. The fast space at time 0 has a basis given by the columns of
(Aσ−1ω + ε∆−1)V (recall that ∆ was assumed to be independent of the other perturba-
tions of (A(σnω))n∈Z\{−1} that have already been fixed). For this section, we write A in
place of Aσ−1ω and ∆ in place of ∆−1. The coordinates of (A + ε∆)V in terms of the
(Ej((A

ε
σ̄kN ω̄

)(N))⊥, Ej((A
ε
σ̄kN ω̄

)(N))) basis are given by(
F T

ET

)
(A+ ε∆)V =:

(
Z1

Z2

)
,

where F is the matrix whose column vectors are the (orthonormal) basis for E⊥ and E is the
matrix whose column vectors are the orthonormal basis for E. Specifically, the jth column
of this matrix gives the (E⊥, E) coordinates of the image of the jth basis vector of V under
A+ ε∆. The matrix B0 is then given by Z2Z

−1
1 , that is (ET (A+ ε∆)V )(F T (A+ ε∆)V )−1.

4.2.4. Bounds on Bn. Substituting the expression for B0 into (29), we get

Bn = Y (n)W (n)−1
+ EnE

T (A+ ε∆)V (F T (A+ ε∆)V )−1 ·[
W (n) +X(n)ET (A+ ε∆)V (F T (A+ ε∆)V )−1

]−1

= Y (n)W (n)−1
+ EnE

T (A+ ε∆)V
[
W (n)F T (A+ ε∆)V +X(n)ET (A+ ε∆)V

]−1

= Y (n)W (n)−1
+ EnE

T (A+ ε∆)V (UAV + εU∆V )−1,

where U = W (n)F T +X(n)ET .
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We make the following definitions:

M = EnE
T (A+ ε∆)V ;

D = UAV ; and

∆̃ = D + εU∆V.

(30)

Now we have

(31) Bn = Y (n)W (n)−1
+M∆̃−1.

What remains is to give an upper bound on ‖M‖ and to show that ‖∆̃−1‖ is small for a
large set of ∆’s.

4.2.5. Bounds on ‖∆̃−1‖ using multivariate normal random variables.

Reduction to normal random variables. We want to majorize P(‖(D+ εU∆V )−1‖ ≥ T ). Let
Z be a d× d matrix of independent standard normal random variables. We first show that
a bound for P(‖(D + εUZV )−1‖ ≥ T ) yields a majorization of P(‖(D + εU∆V )−1‖ ≥ T ).

For T > 0, let RT be the subset of d × d matrices C with entries in [−1, 1] such that
‖(D + εUCV )−1‖ ≥ T .

Notice that P(Z ∈ RT ) =
∫
RT
fZ(X) dX, where fZ(X) = (2π)−d

2/2 exp(−
∑

1≤i,j≤dX
2
ij/2)

is the density function of the d × d matrices with N(0, 1) entries. In particular fZ(X) ≥
(2πe)−d

2/2 for all matrices X with entries in [−1, 1], so that P(Z ∈ RT ) ≥ (2πe)−d
2/2Vol(RT )

(where Vol(RT ) is the volume of RT as a subset of Rd2). Similarly, since RT is a subset of

U , P(∆ ∈ RT ) = 2−d
2
Vol(RT ). We see that P (∆ ∈ RT ) ≤ (eπ/2)d

2/2P(Z ∈ RT ), or

(32) P(‖(D + εU∆V )−1‖ ≥ T ) ≤ (eπ/2)d
2/2P(‖(D + εUZV )−1‖ ≥ T ).

Bound in the normal case. Now let Z̃ = D+εUZV and let V̂k = span{c1, . . . , ck−1, ck+1, . . . , cj},
where the ck are the columns of Z̃. Let dk = d(ck, V̂k). Let x = (x1, . . . , xj)

T . Now we have

‖Z̃x‖ = ‖xkck + (x1c1 + . . .+ xk−1ck−1 + xk+1ck+1 + . . .+ xjcj)‖ ≥ d(xkck, V̂k) = |xk|dk. We

see that ‖Z̃x‖ ≥ maxk(|xk|dk) ≥ (mink dk) maxk |xk| ≥ ‖x‖mink dk/
√
j. In particular, we

deduce that ‖Z̃−1‖ ≤
√
j/mink dk. We now have

(33) P(‖Z̃−1‖ ≥ T ) ≤ P(min
k
dk ≤

√
j/T ) ≤

∑
k

P(dk ≤
√
j/T ).

Notice that the entries of the matrix D + εUZV have a multivariate normal distribution.
Any two such distributions with the same means and covariances are identically distributed.
Recall that V is a d × j matrix whose columns are pairwise orthogonal. A consequence of
this is that ZV has the same distribution as a d× j matrix of independent standard normal
random variables. To see this, we see immediately that the expectation of each entry is 0.
We then need to check the covariances, recalling that the columns of V are orthonormal, we
get:
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Cov((ZV )ab, (ZV )cd) =
∑
l,m

Cov(ZalVlb, ZcmVmd)

=
∑
l,m

VlbVmd Cov(Zal, Zcm)

=
∑
l,m

VlbVmdδacδlm

= δac
∑
m

V T
bmVmd = δac(V

TV )bd = δacδbd,

as required.
We next observe (by an identical calculation) that F TZV and ETZV are distributed as

independent j × j and (d− j)× j matrices with independent standard normal entries. Let
Z1 = F TZV and Z2 = ETZV . Recall that Z̃ = D+ εUZV and U = W (n)F T +X(n)ET . By
(33), we are interested in the columns of Z̃ = D + εW (n)Z1 + εX(n)Z2.

For a fixed k, we compute the probability that the distance of the kth column of Z̃ is
distant at least

√
j/T from the span of the other columns. We give a uniform estimate

on this probability conditioned on the columns of Z1 other than the kth and the value of
Z2. Having fixed all of this data, let n be a unit normal vector to the (j − 1)-dimensional
space spanned by the other columns (a constant given the data). We then want to estimate

P
(
|n · (D(k) + εX(n)Z

(k)
2 + εW (n)Z

(k)
1 )| <

√
j/T

)
, where the superscript (k) indicates we are

considering the kth column.

Let A = n · (D(k) + εX(n)Z
(k)
2 ) and v = εnTW (n) (both are constant given the data on

which we conditioned). We are therefore interested in P(|A + v · Z(k)
1 | <

√
j/T ). This is

bounded above by P(|v · Z(k)
1 | <

√
j/T ). More multivariate normal machinery tells us that

the distribution of v ·Z(k)
1 has the same distribution as ‖v‖ times a standard normal random

variable, so we want to estimate P(|Z0| <
√
j/(T‖v‖)), where Z0 is a standard normal

random variable. Simple estimates show this is less than
√
j/(T‖v‖) which, using (25) and

the fact that v = εnTW (n), is bounded above by
√
j/(εe3τnNT ). Hence, P(‖Z̃−1‖ > T ) ≤

j3/2/(εTe3τnN). Hence we obtain

(34) P
(
‖∆̃−1‖ > T

)
≤ (eπ/2)d

2/2j3/2

εe3τnNT
for any T > 0.

4.2.6. Final estimates. From (28) and (30), we have the upper bounds: ‖M‖ ≤ eτnN(1 +
‖A‖) ≤ e2τnN using the facts that 1 + ‖A‖ ≤ eτnN since ω ∈ G4; and that ‖ET‖ = ‖V ‖ = 1.
Combining this with (34) we obtain that

P̄(‖M∆̃−1‖ > 1/δ) ≤ P̄(‖∆̃−1‖ > 1/(δe2τnN))

≤ δj3/2(eπ/2)d
2/2

εeτnN

(35)
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Recalling the expression for Bn given in (31) and that N = C| log ε| and ‖Y (n)W (n)−1‖ ≤
1/δ, we get

P̄(‖Bn‖ > 2/δ) ≤ P̄(‖M∆̃−1‖ > 1/δ)

≤ j3/2δ(eπ/2)d
2/2

e(τn−1/C)N
< χ/2,

(36)

where we used (C4) for the final inequality.
For the last part of the proof, suppose that ‖Bn‖ ≤ 2/δ. Then Lemma 13 shows that
⊥ (F ε

j (σ̄nN ω̄), Ej((A
ε
σ̄nN ω̄)(N))) ≥ δ/6. We extract two conclusions from the fact that σnNω ∈

G2. Recall that δ ≤ δ1 = χ/2. Lemma 3(c) yields that ∠(F ε
j (σ̄(n+1)N ω̄), Fj((A

ε
σ̄nN ω̄)(N))) ≤

χ/4. Next, the hypotheses of Lemma 3 are satisfied with A = A
(N)

σnNω
and B = (AεσnNω)(N).

Conclusion (a) tells us that ∠(Fj((A
ε
σ̄nN ω̄)(N)), Fj(A

(N)

σnNω
)) ≤ χ/4. Finally, since σnNω ∈ G1,

we have ∠(Fj(σ
(n+1)Nω), Fj(A

(N)

σnNω
)) < χ/2. Combining these we get

∠
(
F ε
j (σ̄(n+1)N ω̄), Fj(σ

(n+1)Nω)
)
< χ.

By (36), P̄(‖Bn‖ > 2/δ | ω ∈ G̃) < χ/2. Thus,

P̄(∠
(
F ε
j (σ(n+1)N ω̄), Fj(σ

(n+1)Nω)
)
> χ |ω) < χ/2 for all ω ∈ G̃.

We have therefore established (12), and Claim 14 is proved.
�
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