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Abstract

We consider the problem of how to apply local perturbations to optimally enhance
the mixing of a (possibly time-dependent) dynamical system. We develop a flexible
modelling approach based on the transfer operator of the dynamical system, and pose
the problem in the language of convex optimisation. The optimal local perturbations
can then be efficiently computed, at discrete time instants, by standard convex op-
timisation techniques. The local perturbations satisfy physical constraints, such as
preservation of the invariant measure of the dynamics (for example, for incompressible
fluid flow, the perturbations preserve volume), and a variety of other physical con-
straints can also be easily enforced. We show that one can achieve surprisingly large
speedups in mixing via optimising the diffusion, as compared to fixed diffusion proto-
cols. Finally, we indicate how one might alternatively try to use local perturbation to
push a mass density toward a particular region of the domain.

1 Introduction

Mixing in fluids is a question of fundamental interest in engineering and natural sciences,
with applications ranging from industrial and chemical mixing on small and large scales, to
preventing the spreading of pollutants in geophysical flows. Depending on the situation, one
may be interested in maximising the speed of mixing, slowing it down or even in directing a
passive tracer towards a desired target distribution. The goal of this work is to place these
problems within a flexible numerical framework, and to develop a solution strategy based on
existing optimisation tools. We refer the reader to the book of Sturman et al. [SOW06] for
mathematical foundations of advective (kinematic) mixing, and to the recent review [A+14].
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A powerful theoretical and numerical approach to studying mixing arises from the spec-
tral theory of transfer operators, which capture the full advective or advective-diffusive evo-
lution of the flow. Their spectrum lies inside the unit circle in the complex plane, and
for steady flows the eigenfunction corresponding to the largest positive eigenvalue (namely
unity) is the steady-state mass distribution. The magnitude of the second largest eigenvalue
controls the exponential rate at which initial distributions approach the equilibrium distri-
bution. An important global feature of mixing, strange eigenmodes [Pie94], arises directly
from transfer operator constructions. Strange eigenmodes are eigenfunctions of the transfer
operator that correspond to eigenvalues of large magnitude (close to magnitude 1), in the
situation where there is a large spectral gap between these large magnitude eigenvalues and
lower magnitude eigenvalues. This large spectral gap means that the strange eigenmodes
decay much more slowly, and survive for much longer timescales, than lower eigenmodes. In
the context of time-varying dynamics, the strange eigenmodes are themselves time-varying
[FLS10, Fro13]. Strange eigenmodes have also been investigated in the context of open flows
[GDT11, GDTR09].

Following ideas of Dellnitz and Junge [DJ99], Froyland and co-workers have worked on
identifying metastable [FPET07] and coherent [FSM10, FHR+12] structures for geophysical
flows using Ulam-based approximations of the transfer operator. Ulam’s method is a popular
method of numerically approximating the transfer operator, and is based on a projection of
the operator onto characteristic functions supported on a fine grid in phase space [Ula60]. A
practical advantage of Ulam’s method is that if the governing flow is steady, the associated
matrix needs to be computed only once, and the approximate evolution of future distributions
can be computed by matrix/vector multiplication.

Related to Ulam’s method is the mapping method due to [SW51], which has been ex-
ploited in recent years to analyse, design and optimise mixing [SKMA08, GSA12]. The
diffusive mapping method [GGA12b] and modified mapping method [SCU+13] have been
developed to incorporate diffusion to purely advective transport models. This approach is
relevant for the study of a more general class of flows, in particular for those with relatively
low Péclet number (including advective-diffusive transport in microflows), as well as for the
treatment of numerical schemes, which unavoidably introduce diffusion. This numerical dif-
fusion, quantified by the size of the underlying discretisation, has been recently exploited to
simulate advection-diffusion transport problems at different Péclet numbers [GGA12a].

Quantifying mixing has been a topic of interest for many years. In one dimension, how
well a bijection of the unit interval mixes has been measured by the rate at which an initial
interval is chopped into disjoint subintervals. The rationale for this criterion is that in the
presence of small diffusion, the more disconnected the collection of subintervals, the greater
the effect of the diffusion. Prior work considering deterministic mixing only includes Krotter
et al. [KCOL12], who carry out numerical experiments of interval exchange transformations
(IET) of the interval, called cutting and shuffling. They focus on two finite-time measures
of mixing – the number of interfaces introduced by the IET, and the percent unmixed – and
propose design mechanisms for optimising mixing in these systems. Byott et al. [BHZ13]
consider maps of the form x 7→ mx (mod 1), m ∈ Z, composed with IETs. They conclude
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that the mixing rate is either unaffected or slowed by the additional permutations. The rate
of mixing is quantified by the magnitude of second largest eigenvalue of the Perron-Frobenius
operator. Subsequently, [BLZ14] study a similar setup, now allowing for the orientation of
some pieces to be reversed. They establish conditions on the interval exchange which make
the full dynamics non-mixing. They also identify a map, the zig-zag map, which is associated
with the worst asymptotic mixing rate within the family, and explicitly compute the rate of
mixing for that case.

The combined effect of advective and diffusive dynamics in one dimension has been
studied by several authors. Ashwin et al. [ANK02] combine interval exchanges of 3 to 5 equal
length intervals with diffusion from a Gaussian heat kernel. Mixing rates were computed
as the magnitude of the second eigenvalue of the Perron-Frobenius operator (acting on L2),
using a Galerkin scheme on Fourier modes. The authors also investigate the time it takes
to achieve 95% mixing. The mixing rates observed were faster when advection and diffusion
were combined than when only diffusion is present. Sturman [Stu12, Section 5.5] repeats
the experiment of [ANK02] with a much tighter heat kernel diffusion and compares the
result with a weak-mixing interval exchange. The mixing rates are reported in a mix-norm

(introduced below), and again, the combination of advection and diffusion produces faster
mixing than either advection or diffusion alone.

Early measures of mixing in the advection-diffusion setting have been based on quantities
such as dispersion statistics and spatial variance of passive scalar concentrations; see e.g.
[Pro99, HY00, LH04, Thi08]. Thiffeault, Doering and Gibbon [TDG04] use the long term
average of the variance of a stirring protocol (source) as a way of measuring mixing efficiency

in an advection-diffusion setting described by the equation ∂tθ + u · ∇θ = κ∆θ + s, where
κ represents molecular diffusivity, and u is an (incompressible) stirring velocity field. They
derive bounds for mixing efficiency in terms of the variance at the steady state, κ, u, and
the scale on which u and s act.

Mathew, Mezić and Petzold [MMP05] introduced a multiscale measure for mixing on
tori. This multiscale norm, called the mix-norm, is related to weak convergence in L2, and
is equivalent to a Sobolev norm of index −1/2. This and related norms have been receiving
considerable attention in the mixing literature; we refer the reader to Thiffeault [Thi12] for
a detailed review on multiscale norms, including an extensive list of references.

With established quantitative ways of studying mixing, the problem of optimising mixing
has become a subject of investigation in recent years. The work [TP08] identifies optimal
source distributions which are best mixed for given stirring field and diffusivity. The work
[CAG08] propose short time horizon optimisation procedures, which minimise the mix-norm
of the solution of an advection-diffusion equation over a range of different mixing protocols.
In a recent review, Balasuriya [Bal15] surveys dynamical systems techniques to enhance
mixing in the context of microfluids.

Our focus in this paper is to determine an optimal application of spatially localised
diffusion, which, in combination with the underlying dynamics, minimises the L2 distance
from equilibrium. We investigate diffusion protocols for enhanced mixing in 1D and 2D
case studies, ranging from the purely diffusive regime to advection-diffusion models. The
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flexible numerical optimisation scheme we develop allows for the introduction of practical
constraints, such as placing limits on the shape of the perturbation, limiting the perturbation
budget, and limiting the number of perturbation sites. Our results show that optimising the
diffusion protocol can significantly outperform standard protocols, such as uniform diffusion.
Our technique is insensitive to the Péclet number.

The paper is arranged as follows. In Section 2 we introduce basic dynamical concepts
and construct the relevant convex optimisation problem. Section 3 discusses discretisations
of the dynamics and the discretised optimisation problem, in preparation for the numerics.
Two case studies in one and two dimensions are carried out in Sections 4 and 5, respectively.
We analyse several natural situations, including limits on the range and form of the diffusion,
limits on the overall diffusion budget, and targetting nonequilibrium distributions.

2 Model setup and a convex optimisation problem

2.1 Dynamics and densities

Our domain is a bounded subset X of Rd. The dynamics could be governed by several setups.

1. An ordinary differential equation dx
dt

= F (x, t) representing purely advective dynamics,
where F : X → R

d is sufficiently smooth to guarantee unique solutions.

2. A partial differential equation ∂ρ
∂t

= −∇·(F (x, t)ρ(x, t))+∇·(D(x, t)∇ρ(x, t)), consist-
ing of advective dynamics given by the vector field F and diffusive dynamics controlled
by D(x, t).

3. A non-singular1 measurable map T : X → X representing purely advective dynamics.

4. A discrete-time advection-diffusion process, for example, Lηρ(x) =
∫

ρ(x)kη(x, Ty) dℓ(y),
where k : X ×X → R

+ is a stochastic kernel and T is a measurable non-singular map.

While the above four examples seem somewhat disparate, they can be linked by con-
sidering the dynamical action on a density ρ : X → R

+. In the following sections, we will
apply our local perturbations at discrete time intervals, so in the continuous-time examples
1. and 2. above, we choose a flow duration τ , and consider time-τ dynamics, yielding a map
T : X → X . Define a linear operator LTρ(x) = ρ(T−1x)/|det(DT (T−1x))|, where DT is
the spatial derivative of T . The operator LT is known as the Perron-Frobenius operator

or transfer operator of T and describes the discrete-time evolution of the density ρ under
the action of the time-τ map T . In case 3., we can implicitly define a Perron-Frobenius
operator for T by LT : L1(X) 	 by

∫

A
LTρ dℓ =

∫

T−1A
ρ dℓ for all measurable A ⊂ X . In

the situation where T is smooth and invertible, this definition coincides with the one given
above. Similarly, in case 4. we have the linear operator Lη, which is the transfer operator for
this dynamics. Thus, for each of these dynamical systems, we have a linear operator that
describes the discrete-time evolution of the density ρ.

1A map T : X → X is non-singular if ℓ(A) = 0 ⇒ ℓ(T−1A) = 0 (positive volume cannot be created out
of zero volume by pullback with T ).
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2.2 Local perturbations and mixing

Let us first consider the problem of enhancing mixing; in this case trying to push ρ toward
an equilibrium distribution. For simplicity, in each of the model dynamical systems 1.-4.
we assume that there is a unique equilibrium density ρ∗ satisfying Lρ∗ = ρ∗. In the pure
advection setting the choice of Banach space B for the operators L : B → B is typically very
important, if one wishes to have a “spectral gap” between the eigenvalue 1 corresponding to
ρ∗ and the rest of the spectrum. The ideal case is when the eigenvalue 1 is the only eigenvalue
on the unit circle in the complex plane and all other spectral points have magnitude strictly
less than 1. This guarantees that any other initial density in the Banach space converges to
ρ∗ exponentially quickly (at a geometric rate determined by the magnitude of the spectral
point closest to, but not on, the unit circle). Because our perturbations are of diffusion-type,
these issues do not concern us and we consider our perturbed L as acting on L2 functions.
The space L2 is simple to work with and for our diffusive perturbations, we obtain a spectral
gap without having to employ more exotic Banach spaces.

We denote our target density ρT and our initial density ρ0; in many situations ρT = ρ∗.
At each step of the optimisation procedure, we seek a perturbation (a stochastic kernel)
k : X ×X → R

+ so that by applying the perturbation, and then evolving the dynamics, we
push ρ0 as close as possible to ρT in the L2 norm. Then, the optimisation proceeds iteratively,
taking the outcome of the current step as the initial density for the next optimisation step.
The reason that we apply the perturbation first and then evolve the dynamics is that we
want the perturbation to take advantage of the knowledge of the (one step) future dynamics.
Such a short-term prediction of the dynamics at the level of densities can be constructed
directly whenever a numerical model of the system is available. Our basic version of the full
optimization problem is:

min
k(x,y)∈L2(X×X)

∥

∥

∥

∥

L
(
∫

X

ρ0(x)k(x, y) dℓ(x)

)

− ρT
∥

∥

∥

∥

2

(1)

subject to

∫

X

k(x, y) dℓ(y) = 1 ∀x ∈ X (2)
∫

X

ρ∗(x)k(x, y) dℓ(x) = ρ∗(y) ∀x ∈ X (3)

k(x, y) = 0 if |x− y| > ǫ (4)

0 ≤ k(x, y) ≤ U ∀x, y ∈ X. (5)

The constraint (2) and the lower bound of (5) simply say that k indeed represents a
stochastic kernel. The upper bound of (5), which may depend on ǫ, guarantees that the op-
erator Kf(y) :=

∫

X
f(x)k(x, y) dℓ(x) is compact as an operator on L2(X, ℓ). The constraints

(3) insist that the kernel k preserve the equilibrium density of the dynamics. Even if the
target density ρT is not the equilibrium density ρ∗, it is a reasonable condition that the diffu-
sion does not alter the dynamics too much; for example in incompressible volume-preserving
fluid flow, one should insist that the diffusion does not violate volume-preservation. The
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constraints (4) restrict the spatial range of the perturbations to a maximum distance of ǫ,
ensuring the perturbations are local or “small”. Note that the volume of the support of
k(x, ·) is at least 1/U . The least-radius perturbation corresponding to this volume is the
radius of a unit ball with volume 1/U , which is rU = Γ(d/2+1)1/d/(

√
πU1/d), where Γ is the

standard gamma function. Thus, for a given U , one should choose ǫ large enough so that
rU ≤ ǫ; a “most local” or “minimal” perturbation would be

k(x, y) = 1BrU
(x)(y). (6)

It is relatively easy to introduce further constraints that are linear in k.
Bounding the kernel: One can easily place lower bounds on the kernel:

0 ≤ L ≤ k(x, y) ≤ U < ∞ for all x, y ∈ X such that |x− y| ≤ ǫ. (7)

Bounding the variance of k: For each fixed x, one can limit the “spread” induced by
k(x, y) in the form of a variance constraint:

∫

X

|x− y|2k(x, y) dℓ(y) ≤ V for all x ∈ X , (8)

where V ≥ 0 is an upper bound on the variance of the perturbation.
Perturbation budget: When the kernel is bounded above by U , one can talk about the
cost of perturbations beyond the “minimal” perturbation (6). To include a total perturbation
budget 0 ≤ B ≤ 1 where B = 1 represents complete freedom, we can use the constraint

(1/ℓ(X))

∫

X

∫

X\BrU
(x)

k(x, y) dℓ(y) dℓ(x) ≤ B. (9)

Thus, all perturbations lying outside the support of the minimal perturbation incur a cost.
One could also add a distance term |x− y| as a coefficient to k(x, y) to charge according to
distance perturbed, updating the value of B accordingly.
Uniform diffusion: When k is bounded above by U , to insist on a uniform diffusion (of
variable intensity) beyond the support of the minimal perturbation, one can include the
constraints

k(x, y) = k(x, z) for all y, z ∈ Bǫ(x) \BrU (x), (10)

(uniform on an ǫ-ball centred at x outside the rU -ball centred at x).
We note that the objective (1) is a convex quadratic function of k, and the constraints are

all linear functions of k, placing the optimisation problem in a convenient class. Nevertheless
the problem is infinite-dimensional, so to solve it numerically, one could either “optimize
then discretize”, namely write down a (e.g. gradient-based) scheme to solve the infinite-
dimensional problem and then discretize that scheme, or “discretize then optimize”, namely,
discretize the problem and then use finite-dimensional solution methods. Because there
are natural ways to discretise the action of LT , we take the latter approach and solve a
finite-dimensional version of (1)–(5).
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3 Discretising the dynamics and the optimisation prob-

lem

3.1 Discretised dynamics

We wish to have a finite-dimensional approximation of the evolution operator L. A common
approach is to perform a Galerkin projection on L with respect to some finite-dimensional
approximating basis for L2(X). When the dynamics is governed by a purely advective
map T , a common choice of basis is the set of characteristic functions {1A1

, . . . , 1An
},

where {A1, . . . , An} partition X . Typically the sets Aj , j = 1, . . . , n are formed via a
fine mesh on X , so that they are often boxes of small diameter. The associated projec-
tion πn : L2 → span{1A1

, . . . , 1An
} is defined by taking expectations on boxes: πnf =

∑n
i=1(1/ℓ(Ai))

(

∫

Ai
f dℓ

)

1Ai
. The matrix representation of πnL restricted to span{1A1

, . . . , 1An
}

is given by Qij = ℓ(Ai ∩ T−1Aj)/ℓ(Aj). In the discrete setting, it is more convenient
to evolve probability measures rather than density functions, so we use the matrix Pij =
Qijℓ(Aj)/ℓ(Ai). We remark that the matrix P is sparse, as the only nonzero elements in the
ith row are those indices j for which T (Ai) intersects Aj . This approach is known as Ulam’s
method [Ula60]. The volumes of intersection ℓ(Ai ∩ T−1Aj) can be easily estimated numeri-
cally by sampling a large number of test points uniformly on Ai, applying T , and counting
how many land inAj . For example, let zi,1, . . . , zi,r, r = 1, . . . , R denote uniformly distributed
test points in Ai, i = 1, . . . , n. We estimate Pij ≈ #{r : zi,r ∈ Ai and Tzi,r ∈ Aj}/R. Be-
cause ‖πnf − f‖1 → 0 as n → ∞ for each f ∈ L1(X), one has that πnLf → Lf strongly in
L1(X). In the case of an advection-diffusion equation, one can compute sample trajectories
using Euler-Maruyama integration or similar techniques [KP92].

3.2 A finite-dimensional optimisation problem

We now describe a discrete version of (1)–(5) using the finite-dimensional basis span{1A1
, . . . , 1An

}.
In the formulation below, ̺∗i , i = 1, . . . , n is an estimate of

∫

Ai
ρ∗ dℓ; because ρ∗ is a density

function, ̺∗ is a probability vector. We similarly define the vectors ̺0, ̺T , approximat-
ing continuous densities ρ0, ρT . The array κij estimates (1/ℓ(Ai))

∫

Ai×Aj
k(x, y) d(ℓ × ℓ),

i, j = 1, . . . , n; by (2) one has
∑n

j=1 κij = 1 for all i = 1, . . . , n. Define Bǫ
i = {i ∈ {1, . . . , n} :

|ci− cj | < ǫ where ci is the centroid of Ai}; this is the set of boxes reachable by an ǫ pertur-
bation from Ai.
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Thus, the finite-dimensional version of (1)–(5) becomes:

min
κij

n
∑

j=1

(

n
∑

i=1

(

n
∑

m=1

̺0mκmi

)

Pij − ̺Tj

)2

(11)

subject to

n
∑

j=1

κij = 1 ∀i = 1, . . . , n (12)

n
∑

i=1

̺∗iκij = ̺∗j ∀j = 1, . . . , n (13)

κij = 0 i = 1, . . . , n, j /∈ Bǫ
i (14)

κij ≥ 0 ∀i, j = 1, . . . , n. (15)

The objective (11) and constraints (12)–(15) are completely analogous to (1)–(5), respec-
tively. The additional constraints (7)–(10) discussed in Section 2 have the following discrete
forms.
Bounding κ: One can include the upper and/or lower bounds

0 ≤ ℓ(Aj)L ≤ κij ≤ ℓ(Aj)U < ∞ for all i, j = 1, . . . , n. (16)

By (12) and (15) we see that κij ≤ 1 for all i, j = 1, . . . , n, thus one already has an effective
upper bound of U = 1/ℓ(Aj) for κij . This corresponds to the perturbation κ placing all mass
in the set Aj , so that the density on Aj is 1/ℓ(Aj).
Bounding the variance of κ: For each fixed i, one can limit the “spread” induced by κij

in the form of a variance constraint:

n
∑

j=1

|ci − cj |2κij ≤ V for all 1 ≤ i ≤ n, (17)

where V ≥ 0 is an upper bound on the variance of the perturbation.
Perturbation budget: To include a total perturbation budget 0 ≤ B ≤ 1 where B = 1
represents complete freedom, we can use the constraint

(1/ℓ(X))

n
∑

i=1

n
∑

j=1,j 6=i

ℓ(Ai)κij ≤ B. (18)

One could also weight κij by some function of |ci − cj| to reflect higher cost for larger
perturbations, adjusting B accordingly.
Uniform diffusion: For each box Ai, to insist on uniform diffusion (of varying intensity)
centred at ci and of radius approximately ǫ, one can include the constraints

κij/ℓ(Aj) = κim/ℓ(Am) for all j,m ∈ Bǫ
i \ {i}. (19)
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Restricted perturbation sites: For physical reasons it may be that one can only apply
perturbations at specific spatial sites. Let S ⊂ {1, . . . , n} be the index set of allowed sites.
To restrict to these sites, we add the constraints

κij = 0, for all i ∈ {1, . . . , n} \ S, j ∈ Bǫ
i . (20)

If one can only use a maximum of W < |S| of the sites in S, we additionally introduce binary
variables wi ∈ {0, 1}, i ∈ S with wi = 1 representing usage of site i and non-use otherwise.
We also require

κij ≤ wi, for all i ∈ S, j ∈ Bǫ
i . (21)

If we have a fine grid, then n is large, however by constraint (14) the number of variables
is approximately nMǫ, where Mǫ is the average number of boxes within distance epsilon from
a given box. The number of constraints is of order n. However, our optimisation problem is
a finite-dimensional convex quadratic program with linear constraints, which can be solved
efficiently with e.g. barrier methods. In the numerical experiments reported in the following
sections, we used FICO Xpress Optimizer (version 7.5) with default settings on a desktop
with Intel Core i7 (3.4 GHz) processor and 16 GB of RAM. The sparse matrix P was passed
to Xpress in sparse format for memory efficiency.

4 Mixing in one dimension

We first consider the situation of deterministic invertible dynamics targetting the equilibrium
distribution on the unit interval or the circle with unit circumference. We focus on three
case studies: the identity transformation, a periodic interval exchange, and a weak mixing
interval exchange. Each of these transformations is length-preserving and by a straightfor-
ward calculation2, the L2 norm of the difference between a non-equilibrium density and the
equilibrium density is invariant under the dynamics: ‖LTf − ρ∗‖L2(ℓ) = ‖f − ρ∗‖L2(ℓ). The
addition of diffusion enables L2-mixing and the rate of this mixing heavily depends on the
deterministic dynamics.

We investigate the two interval exchanges studied in [Stu12], and compare the Gaussian
diffusion used by [ANK02, Stu12] with uniform diffusion on an ǫ-ball, and with our L2-
optimised diffusion. Our results are quantified in both the L2 norm and a mix-norm. We
demonstrate that significant mixing speedups can be obtained by optimising the diffusion
process.

4.1 Mixing by diffusion only

In order to better understand what our optimal L2 perturbations are doing, we set the
advective part of the dynamics to the identity transformation and aim to reduce the L2

2‖LT f − ρ∗‖2
L2(ℓ) =

∫

X
|LT (f − ρ∗)|2 dℓ =

∫

X

∣

∣f ◦ T−1 − ρ∗ ◦ T−1
∣

∣

2
dℓ =

∫

X
|f − ρ∗|2 dℓ = ‖f − ρ∗‖2

L2(ℓ),
since ℓ is preserved by T .
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error between an initial density

ρ0(x) =

{

2, 0 ≤ x < 1/2
0, 1/2 ≤ x < 1

(22)

and the equilibrium density ρ∗ ≡ 1, by applying diffusion alone.
We select a value of ǫ based on experiments of Sturman [Stu12], which used Gaussian

diffusion with mean zero and variance V = 2 × 10−4. This is matched by the variance of
a uniform noise kernel supported on [−ǫ, ǫ], with ǫ =

√
6 · 10−2. We compare the evolu-

tion of ρ0 under three different diffusion operators. Firstly, uniform diffusion: Du
ǫ f(y) :=

1
2ǫ

∫

X
f(x)1[−ǫ,ǫ](y−x) dℓ(x). Secondly, Gaussian diffusion: Dg

ǫ f(y) :=
1√
2πV

∫

X
f(x) exp(−(x−

y)2/2V ) dℓ(x). Thirdly, iterative application of the diffusion operator generated by solutions
of (11)–(15).

We partition the circle of unit circumference X = S1 into 4096 equal subintervals. The
uniform diffusion operator Du

ǫ is approximated by the matrix

Du
ij =

{

1
#Bǫ

i

= 1
200

if j ∈ Bǫ
i

0 otherwise
, (23)

and the Gaussian diffusion operator Dg
ǫ by the matrix

Dg
ij =

1√
2πV

∫ |cj−ci|+rj

|cj−ci|−rj

e−x2/2V dx, (24)

where cj is the centre of the j-th subinterval, rj its radius and |cj−ci| denotes distance along
the circle. The above integral is approximated in Matlab using the normcdf subroutine. We
compute vectors ̺t+1,u = ̺t,uDu

ǫ , ̺
t+1,g = ̺t,gDg

ǫ , t = 0, . . . , 29, representing the evolution of
the initial density ̺0 = ̺0,u = ̺0,g under the uniform and Gaussian diffusion protocols. The
optimised operator is simply multiplication by the optimal 4096× 4096 perturbation matrix
κ∗. We obtain ̺1 = ̺0κ∗, where κ∗ is the optimum of (11)–(15), and similarly compute
̺t, t = 2, . . . , 30. Figure 1 shows that over 30 time steps, the uniform and Gaussian diffusion
protocols approach equilibrium at an essentially identical rate, and that by optimising the
diffusion locally, we can achieve a faster rate of approach to equilibrium. To illustrate the
optimised protocol in more detail, we focus on the first application of κ∗ at time t = 0.
Figure 2 (upper) is an intensity plot of the 4096 × 4096 perturbation matrix κ∗ resulting
from an application of (11)–(15) with ρ0 as in (22). The width of the diagonal band is
about 200 boxes, as our choice of ǫ corresponds to 100.33 boxes of width 1/4096; that is,
Bǫ
i = {i− 100, . . . , i− 1, . . . , i+ 1, . . . , i+ 100} (modulo 4096). The inset boxes labelled (a)

and (b) show zooms of the intensity of κ∗ in the vicinity of the discontinuities of ρ0. The
optimal perturbation strategy in the neighbourhood of the discontinuity is approximately
deterministic. At (b), the perturbation on a set Ai ⊂ [1/2− ǫ, 1/2] is roughly to place 1/2 of
its mass in the set Ai+100; there is a matching reverse perturbation with the set Ai+100 placing
half of its mass in the set Ai. After such perturbations, the value of ̺0κ∗ is approximately
1 (the target value of the equilibrium density ̺∗) in the interval [1/2 − ǫ, 1/2 + ǫ]. At (a)
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Figure 1: Plot of ‖̺t,u − ̺∗‖2L2 , ‖̺t,g − ̺∗‖2L2, ‖̺t − ̺∗‖2L2, vs. t, for advective dynamics given
by the identity transformation. The curves for ‖̺t,u − ̺∗‖2L2 and ‖̺t,g − ̺∗‖2L2 are almost
identical.

Figure 2: Upper: Support of the optimal perturbation matrix κ∗ at time t = 0. There are
823296 nonzero entries in the 4096× 4096 matrix (4.91% sparsity). Lower: (a),(b),(c) show
numerical values of κ∗ and are zooms of the corresponding insets in the upper figure.
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similar perturbations occur in the interval [−ǫ, ǫ]. Away from the ǫ-neighbourhoods of the
two discontinuities in ρ0 at x = 0, 1/2, perturbations have no effect because ρ0 is constant.
The inset (c) shows a uniform perturbation, however, this choice has no effect on the objective
function.

4.2 Periodic interval exchange dynamics

We now introduce advective dynamics, and firstly consider the periodic interval exchange
based on intervals [0, 3/16), [3/16, 10/16), [10/16, 12/16), [12/16, 1), which when labelled with
the integers 1,2,3,4, respectively, undergo the permutation (1, 2, 3, 4) 7→ (4, 3, 2, 1). An inter-
val exchange is a length preserving map, which simply interchanges the prescribed intervals
under the given permutation, but preserves order and distance within each of them. This
interval exchange is periodic, returning to the identity map after 30 iterations; see Figure
3(a), which shows the effect of the periodic interval exchange on the initial density ρ0, defined
on equation (22).

t=0

t=1

t=10

t=15

t=25

t=30

(a) Periodic interval exchange
map

t=0

t=1

t=10

t=15

t=25

t=30

(b) Periodic interval exchange
map with uniform diffusion

t=0

t=1

t=10

t=15

t=25

t=30

(c) Periodic interval exchange
map with optimised diffusion

Figure 3: Evolution of the initial density ρ0 = 21[1/2,1] at t = 0, under different diffusion
protocols at times t = 0, 1, 10, 15, 25, 30. A density of value 2 is indicated in black and a
density of 0 is indicated in white.

We now introduce diffusion and consider the evolution of ρ0 under repeated application
of LTDu

ǫ and LTDG
ǫ , where LT is the Perron-Frobenius operator for the interval exchange.

These results are compared to optimised diffusion; see Figure 4. We use the same numerical
and parameter setup as the previous section; the only change is the introduction of LT . In
comparison to Figure 1, clearly the combination of advection and diffusion increases mixing
rates when compared to diffusion alone, confirming results by [ANK02, Stu12]. Additionally
we see that the optimised diffusion significantly improves the mixing rate over fixed diffusion
protocols such as uniform diffusion or Gaussian diffusion.

Figure 4 shows the distance from equilibrium in a Sobolev norm, which is often used to
quantify mixing for purely advective dynamics. We use the negative index Sobolev space
H−1, which is dual to the Sobolev space H1 via the standard L2 inner product. The latter
consists of functions which are square integrable and have square integrable first derivatives.
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Figure 4: Plot of distance from equilibrium versus time for a periodic interval exchange with
uniform, Gaussian, and optimised diffusion protocols with respect to the ‖ · ‖2L2 norm (left)
and ‖ · ‖2H−1 (right).

Thus H−1 contains L2 and also contains functions which are much more irregular, enabling
one to make sense of limits of infinite-time pushforwards of integrable densities ρ. The norm
on H−1, represented by Fourier coefficients3 of ρ, is ‖ρ‖2H−1 =

∑∞
k=−∞(1 + k2)−1|ρ̂k|2. The

conclusions regarding mixing efficiency hold just as strongly when using the above mix-norm.

4.3 Weak mixing interval exchange dynamics

In this third one-dimensional case study, we consider a weak mixing interval exchange trans-
formation. A length preserving map T is called weak mixing if limn→∞

1
n

∑n−1
k=0 |ℓ(A∩T−kB)−

ℓ(A)ℓ(B)| = 0. In the context of IETs, the weakly mixing property is typical [AF07]. How-
ever, for example if the lengths of all intervals are rational (as in the case of the periodic
interval exchange in section 4.2), the resulting map is never weak mixing.

We set T to be the weak mixing interval exchange on 4 intervals identified in [SU05,
Appendix A.1.3], where the lengths of the intervals permuted by T are based on roots of a
quartic. To four decimal places, the interval lengths are 0.4276, 0.3382, 0.1196, 0.1144, and
the IET dynamics is defined by the permutation (1, 2, 3, 4) 7→ (4, 3, 2, 1). Figure 5 shows
the effect of this weak mixing interval exchange on the initial density ρ0. We repeat the
experiments for the periodic interval exchange for this weak mixing interval exchange, and
the rate of approach to equilibrium in the L2 norm and mix-norm are shown in Figure 6.

3In our numerical experiments, ρ is represented by its values on 4096 equispaced grid points on the unit
circle, and we use the fast Fourier transform to compute the values of ρ̂k, k = 0, . . . , 4096. We adjust these
values to obtain ρ̂′

k
= ρ̂k · (sin(πkN)/(πkN))2, so as to yield the exact (continuous transform) Fourier

coefficients of the unique function ρ′ which linear interpolates the 4096 values of ρ. The values ρ̂k are
obtained via periodicity of the discrete Fourier transform: ρ̂−k = ρ̂N−k. We thus in practice compute

‖ρ′‖H−1 =
∑

N−1
k=−N+1(1 + k2)−1|ρ̂′k|2.
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(a) Weak mixing interval ex-
change map only
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change map with uniform dif-
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Figure 5: Evolution of the initial density ρ0 = 21[1/2,1] at t = 0, under different diffusion
protocols at times t = 0, 1, 10, 15, 25, 30. A density of value 2 is indicated in black and a
density of 0 is indicated in white.
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Figure 6: Plot of distance from equilibrium versus time for a weak mixing interval exchange
with uniform, Gaussian, and optimised diffusion protocols with respect the ‖·‖2L2 norm (left)
and ‖ · ‖2H−1 (right). Note that in the left figure, the “none” curve takes the constant value
1.
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5 Mixing in two dimensions

On the rectangular domain X = [0, 1] × [0, 2] we consider the time-dependent system of
differential equations [SLM05]

ẋ = −πA sin(πf(x, t)) cos(πy) (25)

ẏ = πA cos(πf(x, t)) sin(πy)
df

dx
(x, t),

where f(x, t) = β sin(ωt)x2 + (1− 2β sin(ωt))x. We fix parameter values A = 0.25, β = 0.25
and ω = 2π and obtain a flow of period τ = 1. For β = 0, (25) models two rotating gyres of
incompressible fluid, centred at the equilibria (0.5, 0.5) and (1.5, 0.5) respectively. For small
β > 0 the vertical separatrix between these gyres oscillates in the x-direction with a period of
2π/ω. The stable and unstable manifolds of hyperbolic periodic orbits on the upper and lower
boundaries intersect transversally, forming so-called “lobes” [RKLW90, RKW90, Wig92] and
giving rise to chaotic dynamics. In addition to chaotic motion there are also regions of regular

Figure 7: Several long orbits of the time-1 map of the double-gyre flow c©2009 Froyland &
Padberg [FP09].

motion. Figure 7 shows several long orbits of the time-1 flow map (one period) of the time-
dependent ODE (25). The oscillating separatrix and lobe dynamics allows slow mixing
between the left and right halves of the domain, while the regular regions preclude complete
phase space mixing. This obstruction to fast mixing is intimately related to the structures
appearing in the dominant eigenmode of numerical approximations of the transfer operator
for the time-1 flow map, shown in Figure 8.

5.1 Enhancing mixing

For the computations we approximate L for the time-τ flow map of (25) using Ulam’s method
based on a partition of the domain into n = 215 equally-sized squares. We form the matrix P
by numerically integrating 400 uniformly distributed test points in each box from time t = 0
to time t = 1 using a fourth-order Runge-Kutta integrator. In all of the following experiments
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Figure 8: Dominant nontrivial eigenmode of the time-1 flow map of (25), computed as the left
eigenvector of Ulam matrix P corresponding to the second largest (in magnitude) numerical
eigenvalue.

we set ǫ = 0.05. The associated perturbation sets Bǫ
i , i = 1, . . . , n, each contain 137 boxes,

except near the boundary of X , where they contain fewer boxes to avoid perturbations
that leave the domain. Each set Bǫ

i is about 0.4% of the area of the domain and therefore
represents a small perturbation. As in the one-dimensional case, we use a uniform diffusion
operator Du

ǫ f(y) =
∫

X
f(x)k(x, y) dℓ(x), where k(x, y) = 1Bǫ(y)(x), to compare the uniform

diffusion protocol with our optimised diffusion protocol. Numerically, we form a discretised
version of k(x, y):

κu
ij =

{

1/#Bǫ
i , for j ∈ Bǫ

i ;
0, otherwise.

(26)

We set our initial density ̺0 to a uniform density on a disk of radius 1/4, centred at (1/2, 1/4).
We chose this initial density to partly intersect both regions of regular dynamics and chaotic
dynamics; see Figure 7. The dashed curve in Figure 9 shows the evolution of the squared L2

distance between the equilibrium density ̺∗ ≡ 1/2 and ̺t,u = ̺0(κuP )t, t = 0, . . . , 30. We

Figure 9: Plot of ‖̺t,u − ̺∗‖2L2 and ‖̺t − ̺∗‖2L2, vs. t for the double-gyre system (25).

remark that the transfer operator L for the flow map is invertible, but P is not an invertible
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matrix. The Ulam scheme thus produces small numerical diffusion, shown by the dotted
curve in Figure 9.

We now run our optimisation procedure for 30 iterations. The solid curve in Figure 9
shows the evolution of the squared L2 distance between ̺∗ and ̺t, where ̺t+1 = ̺t(κt)∗P ,
and (κt)∗ is the solution of (11)–(15), replacing ̺0 with ̺t, for t = 0, . . . , 29. Our optimisation
procedure has a significant impact on the rate of mixing over a uniform diffusion. After 30
steps the L2 distance from equilibrium using our optimised protocol is five times smaller
than the uniform diffusion protocol, despite the fact that both diffusion processes have the
same diffusion radius.

In both the solid and dashed curves of Figure 9 we see an initially steep decay of the
L2 distance, followed by a shallower decay. This transition is complete by t = 11 for the
optimised mixing protocol and at a later time (around t = 15 or 16) under the uniform
diffusion protocol. This two-phase mixing is likely due to rapid initial spreading of ̺t out
of the yellow invariant set in Figure 7 to cover [0, 1]× [0, 1], followed by a slower exchange
between [0, 1]× [0, 1] and [1, 2]× [0, 1] via diffusion-enhanced lobe dynamics. Figure 10 shows
̺11; one sees good spreading on the left half of the domain, but relatively little penetration
into the right half.
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Figure 10: Density ̺11 at time t = 11 after 11 iterations of our optimised protocol (left).
Density ̺11,u at time t = 11 after 11 iterations of the uniform diffusion protocol (right).

We now interpret the strategy that the optimisation takes at the first iteration. In
Figure 11 (upper left) we have plotted arrows that point from the centroid of a box Ai to
the mean spatial location of the perturbation described by κ∗

ij . In Figure 11 (upper left) the
main translational (as opposed to dispersive) effects of the perturbations are concentrated
at the boundary of the support of the initial density ̺0, and parallel to the gradient of ̺0.
Mass contained in the support of ̺0 and within ǫ of the boundary of the support is pushed
out of the support, while “zero” mass in boxes outside the support of ̺0 but within ǫ of
the boundary is pushed into the support. Both effects are necessary in order to conserve
Lebesgue measure and the combined effect is to average the density ̺0 in an 2ǫ-annulus
containing the boundary of the support of ρ0. Figure 11 (lower left) shows the result ̺1

after the perturbation and advection with P . The same principle is applied in Figure 11
(upper right), where the overall translational motion of the local perturbations is parallel
to the gradient of the current density, and in both directions, in order to preserve Lebesgue
measure. Note that the distribution of mass in Figure 11 (lower right) reflects the dominant

17



 

 

Figure 11: Quiver plot of optimised perturbations (white arrows) overlaid on the initial
density ̺0 at t = 0 (upper left) and the optimised density ̺11 at t = 11 (upper right).
Optimised densities at the following iteration at times t = 1 (lower left) and t = 12 (lower
right). Note that the color scale has been rescaled for each figure to show extra detail.

obstacles to mixing shown in the signed distribution of the strange eigenmode in Figure 8.

5.2 Enhancing mixing with a budget constraint

Our restriction to local perturbations of maximum diameter ǫ reflects a limited influence that
one may be subject to in applications. Until now, we have not imposed an overall budget
on the effort expended in the perturbations, as described in (18), and we now explore such a
restriction. In the following experiments we set B in (18) to be 0.1. Firstly, Figure 9 shows
the resulting approach to equilibrium in the L2 norm (dash-dot curve). By imposing this
restriction on our optimised diffusion protocol, we slow down the rate at which we approach
equilibrium, but Figure 9 shows that even with only 10% of the total perturbation effort of
the uniform diffusion protocol, we still obtain a faster approach to equilibrium than uniform
diffusion provides.

One can measure whether the optimised perturbations are predominantly translational
or dispersive by computing quantities such as the mean displacement of the perturbation
on Ai: si = |ci − c̄i|, where c̄i =

∑

j=1 κ
∗
ijcj, and the entropy of the perturbation on Ai:

Hi = −∑n
j=1 κ

∗
ij log κ

∗
ij; see Figure 12. The application of the global budget constraint

forces the optimiser to be parsimonious about its perturbations. Figure 12 shows that right
at the boundary of the support of ̺0, there is a peak of translational perturbations (the red
ring in the annulus shown in Figure 12 (middle left), exactly corresponding to the blue ring
in the same location in Figure 12 (lower left)). The perturbations on this ring have high
displacement but low entropy, meaning they are approximately deterministic perturbations.
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Figure 12: Densities at t = 0 (upper left) and t = 11 (upper right) when iterated using
the optimised diffusion with the budget constraint B = 0.1. Mean displacement fields
si, i = 1, . . . , 215 at times t = 0 (middle left) and t = 11 (middle right). Entropy fields
Hi, i = 1, . . . , 215 at times t = 0 (lower left) and t = 11 (lower right). Note that the color
scale has been rescaled for each figure to show extra detail.

The region away from the boundary but still within ǫ of the boundary show a mixture of
determinism and stochasticity as the optimiser attempts to mix, but is constrained by area
preservation. In Figure 12 (middle right, lower right) we see that the budget constraint
focuses the perturbations on areas of high gradient in the density ̺11 (upper right).

5.3 Containing a passive tracer

In this final section, we discuss how one might try to use the previous optimisation methodol-
ogy to direct (or contain) a passive tracer in a bounded region S ⊂ X . This is more difficult
than enhancing mixing toward an equilibrium density because the containment region S
may be far from invariant under the advective dynamics, and so we are attempting to fight
against advection with a small amount of diffusion. For this reason, building some future
information into the optimisation will be beneficial. We do this by penalising mass in the
complement of the containment region S and additionally in the preimages of the comple-
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ment of S. The preimage T−kSc can be estimated numerically by advecting backwards in
time 1Sc , the indicator function on Sc. If S is a union of boxes, this backward advection
can be estimated using the transpose of P (a discrete approximation of the Koopman oper-
ator). We approximate Sc by the support of Sc

k := 1Sc(P⊤)k, where here we abuse notation,
thinking of 1Sc is the indicator vector on box indices corresponding to Sc. We replace the
objective (11) with an objective which penalises mass both in Sc and in the preimages of
Sc, as mass in these latter sets will shortly enter Sc itself. We have found experimentally
that penalising mass in Sc, T−1Sc, . . . , T−KSc works well for modest K, as does a decreasing
penalty with increasing 0 ≤ k ≤ K (the further into the future mass sits outside S, the lower
the penalty). We denote the penalty coefficients by αk, k = 0, . . . , K.

min
κij

K
∑

k=1

αk





∑

j∈Sc
k

n
∑

i=1

(

n
∑

m=1

ρ0mκmi

)

Pij



 . (27)

In the experiment we report, we set S = [1, 2] × [0, 1], K = 3, and αk = 10 × 2−k. Figure
13 shows the value of (27) for κij = δij (no perturbation). We initialise with the density
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Figure 13: Value of (27) for κij = δij . Note that the highest penalty is applied to points
that do not enter S in three steps, while the lowest penalty is applied to points that remain
in S for three steps.

shown in Figure 12 (upper left) and iteratively minimise the objective (27), subject to the
constraints (2)–(5) for 30 time steps. Figure 14 shows the proportion of mass in S over
the 30 time steps, as compared to advection only, the uniform diffusion of Section 5.1, and
the optimal mixing protocol of Section 5.1. While the protocol optimised for rapid mixing
(solid line) also naturally moves mass into S, we can achieve a faster transfer of mass into S
via our containment objective (27) (upper dashed line). Figure 15 shows the results of our
containment protocol versus advection after 30 steps.
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Figure 14: The proportion of mass in the target set S vs. time for various diffusion protocols.
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Figure 15: Left: Density after 30 time steps of advection only. Right: Density after 30
iterative applications of the optimised containment objective (27).
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