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A CONCISE PROOF OF THE MULTIPLICATIVE ERGODIC THEOREM
ON BANACH SPACES

CECILIA GONZÁLEZ-TOKMAN AND ANTHONY QUAS
(Communicated by Omri Sarig)

ABSTRACT. We give a new proof of a multiplicative ergodic theorem for quasi-
compact operators on Banach spaces with a separable dual. Our proof works
by constructing the finite-codimensional ‘slow’ subspaces (those where the
growth rate is dominated by some λi ), in contrast with earlier infinite-dimen-
sional multiplicative ergodic theorems which work by constructing the finite-
dimensional fast subspaces. As an important consequence for applications,
we are able to get rid of the injectivity requirements that appear in earlier
works.

1. INTRODUCTION

The multiplicative ergodic theorem (MET) is a very powerful result in ergodic
theory establishing the existence of generalized eigenspaces for stationary com-
positions of linear operators. It is of great interest in many areas of mathematics,
including analysis, geometry and applications. The MET was first established
by Oseledets [8] in the context of matrix cocycles. The decomposition into gen-
eralized eigenspaces is called the Oseledets splitting.

After the original version, the MET was proved by a different method by
Raghunathan [10]. The result was subsequently generalized to compact oper-
ators on Hilbert spaces by Ruelle [11]. Mañé [7] proved a version for compact
operators on Banach spaces under some continuity assumptions on the base
dynamics and the dependence of the operator on the base point. Thieullen [12]
extended this to quasi-compact operators. Recently, Lian and Lu [6] proved a
version in the context of linear operators on separable Banach spaces, in which
the continuity assumption was relaxed to a measurability condition.

We prove a non-invertible Oseledets theorem (i.e. we obtain a filtration) for
a random dynamical system (the full definition is below) acting on a Banach
space with separable dual. We do not make any assumption about injectivity of
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the operators, unlike most previous Banach-space valued versions of the Multi-
plicative Ergodic Theorem. We also prove a semi-invertible Oseledets theorem
(i.e. we obtain a splitting) under the assumption that the underlying Banach
space is separable and reflexive.

An important feature of the present approach is its constructive nature. In-
deed, it provides a robust way of approximating the Oseledets splitting, follow-
ing what could be considered a power method type strategy. This makes the
work also relevant from an applications perspective.

The approach of this work is similar in spirit to that of Raghunathan, in that
we primarily work with the ‘slow Oseledets spaces’. Mañé’s proof works hard
to build the fast space, as do the subsequent works based on Mañé’s template.
These proofs rely on injectivity of the operators; some of them make use of
natural extensions to extend the result to non-invertible operators – this was
the strategy in [12], and it was also used by Doan in [2] to extend [6] to the non-
invertible context. In contrast, we establish the non-invertible version first and
recover the (semi-)invertible one, including the ‘fast spaces’, straightforwardly
using duality. Another key simplifying feature of our method is that we prove
measurability at the end of the proof, rather than working to ensure that all
intermediate constructions are measurable.

While Raghunathan’s proof uses singular value decomposition and hence re-
lies on the notion of orthogonality, we study instead collections of vectors with
maximal volume growth. Another important difference with Raghunathan’s
approach is that instead of dealing with the exterior algebra, we work with
the Grassmannian. We claim this is more natural since subspaces correspond
to rank one elements of the exterior algebra (those that can be expressed as
v1 ∧ . . .∧ vk ). In the Euclidean setting, rank one elements naturally appear as
eigenvectors of Λk (A∗A), but this does not seem to generalize to the Banach
space case.

Section 2 analyses notions of volume growth for bounded linear maps T
on a Banach space X . We establish an asymptotic equivalence between k-
dimensional volume growth under T and T ∗, as well as other measures of vol-
ume growth and Section 3 uses these results to obtain the multiplicative ergodic
theorems. The main results in this article are Theorem 16 and Corollary 17. After
submitting the current article, we learned of an independent proof of essentially
the same result via closely related methods due to Blumenthal [1].

2. VOLUME CALCULATIONS IN BANACH SPACES

Let X be a Banach space with norm ‖ ·‖. As usual, given a non-empty subset
A of X and a point x ∈ X , we define d(x, A) = infy∈A d(x, y). We denote by BX

and SX the unit ball and unit sphere in X , respectively. The linear span of a
finite collection C of vectors in X will be denoted by lin(C ) with the convention
that lin(;) = {0}. The dual of X will be denoted by X ∗. In this section, we
study the relationships between various notions of volume and singular value
for maps of Banach spaces. Other closely related notions are due to Gelfand
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and Kolmogorov and are described in Pisier’s book [9]. For the purposes of
later sections, it will suffice to show that two quantities agree up to a bounded
multiplicative factor. We make no attempt to optimize the bounds. We use the
notation Q ³ Q ′ if the ratio of the quantities Q and Q ′ is bounded above and
below by constants independent of the Banach space(s).

We define the k-dimensional volume of a collection, (v1, . . . , vk ), of vectors in
a Banach space by

volk (v1, . . . , vk ) =
k∏

i=1
d(vi , lin({v j : j < i })).

It is easy to see that volk (α1v1, . . .αk vk ) = |α1| . . . |αk |volk (v1, . . . , vk ). In the
case where the normed space is Euclidean this notion corresponds with the
standard notion of k-dimensional volume. Notice that volk (v1, . . . , vk ) is not
generally invariant under permutation of the vectors.

Given a bounded linear map T from X to Y , we define dk T (v1, . . . , vk ) to be
volk (T v1, . . . ,T vk ) and Dk T = sup‖v1‖=1,...,‖vk‖=1 dk T (v1, . . . vk ).

LEMMA 1 (Submultiplicativity). Let T : X → Y and S : Y → Z be linear maps.
Then Dk (S ◦T ) ≤ Dk (S)Dk (T ).

Proof. Let T (v1), . . . ,T (vk ) ∈ X be linearly independent. Then one checks from
the definition that for any collection of coefficients (αi j ) j<i , the following holds

volk (v1, . . . , vk ) = volk
(
v1, v2 −α21v1, . . . , vk −

∑
j<k

αk j v j
)
.(1)

Since the linear spans in the definition of volume are finite-dimensional
spaces, the minima are attained so that

dk T (v1, . . . , vk )

= ‖T (v1)‖‖T (v2)−α21T (v1)‖ . . .‖T (vk )−αk1T (v1)− . . .−αk,k−1T (vk−1)‖
for appropriate choices of (αi j ) j<i .

Let w j = v j −∑
i< j α j i vi so that dk T (v1, . . . , vk ) = ‖T (w1)‖ . . .‖T (wk )‖ and set

u j = T (w j )/‖T (w j )‖. Using (1), we have

dk (S ◦T )(v1, . . . , vk ) = volk (ST (v1), . . . ,ST (vk ))

= volk (ST (w1), . . . ,ST (wk ))

= ‖T (w1)‖ . . .‖T (wk )‖volk (S(u1), . . . ,S(uk ))

≤ dk T (v1, . . . , vk )Dk S.

Taking a supremum over v1, . . . , vk in the unit ball of X , one obtains the bound
Dk (S ◦T ) ≤ Dk (S)Dk (T ) as required.

LEMMA 2. Let T : X → Y be linear. Suppose that V is a k-dimensional subspace
and ‖T x‖ ≥ M‖x‖ for all x ∈V . Then Dk T ≥ M k .

Proof. Let v1, . . . , vk belong to V ∩SX and satisfy d(v j , lin({vi : i < j })) = 1. Then
dk T (v1, . . . , vk ) ≥ M k .
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We now proceed to compare volume estimates for a linear operator T : X → Y
and its dual T ∗ : Y ∗ → X ∗. We introduce a third quantity to which we compare
both Dk (T ) and Dk (T ∗). Given linear functionals θ1, . . . ,θk ∈ Y ∗ and points
x1, . . . , xk ∈ X , we let U ((θi ), (x j )) be the matrix with entries Ui j = θi (T (x j )) and
define

Ek (T ) = sup
{
detU

(
(θi ), (x j )

)
: ‖θi‖ = 1 and ‖x j‖ = 1 for all i , j

}
.

LEMMA 3 (Relationship between volumes for T and T ∗). For all k > 0, there
exist positive constants ck and Ck with the following property: for every bounded
linear map T between Banach spaces X and Y ,

ck Dk (T ) ≤ Dk (T ∗) ≤Ck Dk (T ).

Proof. The statement will follow from the following inequalities:

Dk (T ) ≤ Ek (T ) ≤ k !Dk (T )(2)

Dk (T ∗) ≤ Ek (T ) ≤ k !Dk (T ∗).(3)

The second inequality of (2) is proved as follows. Let x1, . . . , xk and θ1, . . . ,θk

all be of norm 1 in X and Y ∗ respectively. Let α j = d(T x j , lin(T x1, . . . ,T x j−1)).

Let c j
1 , . . . ,c j

j−1 be chosen so that ‖Tz j‖ = α j , where z j is defined by z j = x j −
(c j

1 x1 + . . .+ c j
j−1x j−1). Note that U ′ = U ((θi ), (z j )) may be obtained from U =

U ((θi ), (x j )) by column operations that leave the determinant unchanged. No-
tice also that |U ′

i j | = |θi (Tz j )| ≤ α j . From the definition of a determinant, we

see that detU = detU ′ ≤ k !α1 . . .αk . This inequality holds for all choices of θi in
the unit sphere of Y ∗. Now, maximizing over choices of x j in the unit sphere of
X , we obtain the desired result.

The second inequality of (3) may be obtained analogously. We let

βi = d(T ∗θi , lin(T ∗θ1, . . . ,T ∗θi−1))

and choose linear combinations φi of the θi for which the minimum is obtained.
The matrix U ′′ = U ((φi ), (x j )) is obtained by row operations from U and the
|U ′′

i , j | = |φi (T x j )| = |(T ∗φi )(x j )| ≤βi .
To show the first inequality of (2), fix x1, . . . , xk of norm 1. As before, let

α j = d(T x j , lin(T x1, . . . ,T x j−1)). By the Hahn-Banach theorem, there exist lin-
ear functionals (θi )k

i=1 in SY ∗ such that θi (T xi ) =αi and θi (xk ) = 0 for all k < i .
Now

detU ((θi ), (x j )) =∏
αi .

Maximizing over the choice of (x j ), we obtain Ek (T ) ≥ Dk (T ) as required.
Finally, for the first inequality of (3), we argue as follows. Let ε > 0 be arbi-

trary and let θ1, . . . ,θk belong to the unit sphere of Y ∗. We may assume that
T ∗θ1, . . . ,T ∗θk are linearly independent – otherwise the inequality is trivial. Let
φi = T ∗θi −∑

k<i ai k T ∗θk be such that ‖φi‖ = d(T ∗θi , lin({T ∗θk : k < i })). We
shall pick x1, . . . , xk inductively in such a way that |det((φi (x j ))i , j≤l )| is at least∏l

i=1(‖φi‖− ε) for each 1 ≤ l ≤ k. Suppose x1, . . . , xl−1 have been chosen. Then

since det((φi (x j ))i , j<l ) is non-zero, the rows span Rl−1. Hence there exist (bi )i<l
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such that ψl := φl +
∑

i<l biφi satisfies ψl (x j ) = 0 for all j < l . By assumption,
‖ψl‖ ≥ ‖φl‖. Pick xl ∈ SX such that ψl (xl ) > ‖ψl‖−ε. Then the matrix with a row
for ψl and a column for xl adjoined has determinant of absolute value at least∏l

i=1(‖φi‖−ε). The matrix with φl replacing ψl has the same determinant, com-
pleting the induction. Maximizing over the choice of (θ j ) j≤k , letting ε shrink
to 0, and observing that det((φi (x j ))i , j≤k ) = det((T ∗θi (x j ))i , j≤k ) completes the
proof.

A fourth quantity that will play a crucial role in what follows is Fk (T ), defined
as

Fk (T ) = sup
dim(V )=k

inf
v∈V ∩SX

‖T v‖.

We make use of the following lemma due to Gohberg and Krein whose proof
may be found in Kato’s book [5] (Chapter 4, Lemma 2.3).

LEMMA 4 (Gohberg and Krein). Let V1 be a proper finite-dimensional subspace
of a subspace V2 of a Banach space, X . Then there exists v ∈ V2 à {0} such that
d(v,V1) = ‖v‖.

LEMMA 5 (Relation between determinants and Fk ). Let T be a bounded linear
map from a Banach space X to a Banach space Y . Then

Ek−1(T )Fk (T ) ≤ Ek (T ) ≤ k2k−1Ek−1(T )Fk (T ).

Proof. We first show Ek (T ) ≤ k2k−1Ek−1(T )Fk (T ). We may assume Ek (T ) > 0 as
otherwise the inequality is trivial. Let θ1, . . . ,θk be elements of the unit sphere of
X ∗ and x1, . . . , xk be elements of the unit sphere of X . Let U be the matrix with
entries θi (T x j ). Assume that detU 6= 0. Since x1, . . . , xk span a k-dimensional
space, there exists a v = a1x1 + . . .+ ak xk of norm 1 such that ‖T v‖ ≤ Fk (T ).
By the triangle inequality, one of the |a|’s, say |a j0 |, must be at least 1

k . Let
x̃ j = x j for j 6= j0 and x̃ j0 = v and set Ũ to be the matrix with entries θi (T x̃ j ).
By properties of determinants, we see |detŨ | = |a j0 | |detU | ≥ 1

k |detU |. Next,
there exists i0 for which |θi0 (T v)| is maximal, this maximum not being 0 since
|detŨ | is positive. Let θ̄i = θi − (θi (T v)/θi0 (T v))θi0 for i 6= i0 and θ̄i0 = θi0 , so
that ‖θ̄i‖ ≤ 2 and θ̄i (T v) = 0 for i 6= i0.

Now let Ūi j = θ̄i (T x̃ j ), so that |detU | ≤ k|detŨ | = k|detŪ |. Finally, the j0th
column of Ū has a single non-zero entry that is at most ‖T v‖ ≤ Fk (T ) in ab-

solute value. The absolute value of the cofactor is
∣∣∣det

(
θ̄i (T (x̃ j ))

)
i 6=i0, j 6= j0

∣∣∣ ≤
2k−1Ek−1(T ). Taking a supremum over choices of (θi ) and (x j ), we have shown
Ek (T ) ≤ k2k−1Ek−1(T )Fk (T ).

For the other inequality, we may suppose that T has kernel of codimension
at least k, otherwise Fk (T ) = 0 and there is nothing to prove. Let θ1, . . . ,θk−1

and x1, . . . , xk−1 be arbitrary. Let ∆ be the determinant of the matrix with entries
θi (T x j ). Let V be a k-dimensional subspace such that V ∩kerT = {0}. Let W =
lin(T x1, . . . ,T xk−1). Using Lemma 4, let z be a point in the unit sphere of T (V )
such that d(z,W ) = 1. Let v ∈V ∩SX be such that T (v) is a multiple of z. Let θk

be a linear functional of norm 1 such that θk |W = 0 and θk (z) = 1 and let xk = v .
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242 CECILIA GONZÁLEZ-TOKMAN AND ANTHONY QUAS

Now forming the k ×k matrix
(
θi (x j )

)
1≤i , j≤k , we see the absolute value of the

determinant is ∆ ·θk (T v) = ∆ · ‖T v‖ ≥ ∆ · infx∈V ∩SX ‖T x‖. Taking suprema over
choices of x’s, θ’s and k-dimensional V ’s, we see that Ek (T ) ≥ Fk (T )Ek−1(T ) as
required.

COROLLARY 6 (of Lemmas 3 and 5). For each k > 0, the quantities Dk (T ), Dk (T ∗),
Ek (T ) and

∏
i≤k Fi (T ) agree up to multiplicative factors that may be bounded by

constants independent of the bounded linear map T and the Banach spaces X
and Y . Further, Fi (T ) and Fi (T ∗) agree up to a uniformly bounded multiplicative
factor.

We comment that besides these approximate Banach space versions of sin-
gular values, additional related quantities are given by Gelfand numbers and
Kolmogorov numbers (see the book of Pisier [9] for more information). It can be
checked that these quantities also agree with the sequence of Fi ’s up to bounded
multiplicative factors (dependent on i , but independent of X and T ).

By definition, for each natural number k, one can find sequences (θi )i≤k

and (x j ) j≤k such that det(U ((θi ), (x j ))) ³ Ek (T ). We now show that we can find
infinite sequences (θi ) and (x j ) so that, for each k, det(U ((θi )i≤k , (x j )i≤k )) ³
Ek (T ).

LEMMA 7 (Existence of consistent sequences). Let X and Y be infinite-dimen-
sional Banach spaces. For any linear map T : X → Y , there exist (θi )i≥1 in SY ∗

and (x j ) j≥1 in SX such that for all k,

det
(
(θi (T x j ))1≤i , j≤k

)≥ 1

2k

∏
i≤k

Fi (T ) and

‖T x‖ ≥ 4−k Fk (T )‖x‖ for all x ∈ lin(x1, . . . , xk ).

Proof. The proof is by induction: suppose (θi )i<k and (x j ) j<k have been chosen
and satisfy the desired inequalities at stage k − 1. Then pick an arbitrary k-
dimensional space V such that ‖T v‖ ≥ 1

2 Fk (T )‖v‖ for all v ∈V . Using Lemma 4,
let xk ∈V ∩SX be such that d(T xk , lin(T x1, . . . ,T xk−1)) = ‖T xk‖. Finally choose
θk of norm 1 such that θk (T xi ) = 0 for i < k and θk (T xk ) = ‖T xk‖. The determi-
nant inequality at stage k follows.

Let x = a1x1 + . . .+ak xk be of norm 1. Then

‖T x‖ ≥ |ak |d(T xk , lin(T x1, . . . ,T xk−1)) = |ak |‖T xk‖ ≥ |ak |Fk (T )/2.(4)

Also,

‖T x‖ ≥ ∥∥T (
∑

j<k a j x j )
∥∥−|ak |‖T xk‖.

Averaging the inequalities, we get

‖T x‖ ≥ 1
2

∥∥T (
∑

j<k a j x j )
∥∥ .(5)

If |ak | > 1
2 , (4) yields ‖T x‖ ≥ 1

4 Fk (T ). If |ak | ≤ 1
2 , then ‖∑

j<k a j x j‖ ≥ 1
2 , and (5)

combined with the inductive hypothesis gives ‖T x‖ ≥ 1
4 4−(k−1)Fk−1(T ).
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LEMMA 8 (Lower bound on volume growth in a subspace of finite codimension).
For any natural numbers k > m, there exists Ck such that if X ,Y are Banach
spaces, T : X → Y is a linear map and V is a closed subspace of X of codimension
m, then Dk (T ) ≤Ck Dm(T )Dk−m(T |V ).

Proof. Let ε > 0. Let P be a projection from X to V of norm at most
p

m + ε
(such a projection exists by Corollary III.B.11 in the book of Wojtaszczyk [13]).
Then, ‖I −P‖ ≤p

m +ε+1. Let x1, . . . , xk be a sequence of vectors in X of norm
1. The proof of Lemma 3 shows that there exist ψ1, . . . ,ψk in SY ∗ such that
det(ψi (x j )) ≥ dk T (x1, . . . , xk ). Write P1 for P and P0 for I − P , which has m-
dimensional range. There exists a choice ε1, . . .εk ∈ {0,1}k such that

|det(ψi (T x j ))| > 2−k dk T (x1, . . . , xk ),

by multilinearity of the determinant. At most m of the ε j can be 0, as otherwise
more than m vectors lie in a common m-dimensional space, so that at least
k−m of them lie in V . Hence, there exist vectors z1, . . . , zm in SX and zm+1, . . . , zk

in SX ∩V such that

|det(ψi (Tz j ))| ≥ (2(
p

m +ε+1))−k dk T (x1, . . . , xk ).

Using the proof of Lemma 3 again, we deduce that

dmT (z1, . . . , zm)dk−mT (zm+1, . . . , zk ) ≥ dk T (z1, . . . , zk )

≥ (2(
p

m +ε+1))−k /(k !)dk T (x1, . . . , xk ).

This completes the proof.

3. RANDOM DYNAMICAL SYSTEMS

A closed subspace Y of X is called complemented if there exists a closed sub-
space Z such that X is the direct sum of Y and Z , written X = Y ⊕Z . That is, for
every x ∈ X , there exist y ∈ Y and z ∈ Z such that x = y + z, and this decomposi-
tion is unique. The Grassmannian G (X ) is the set of closed complemented sub-
spaces of X . We equip G (X ) with the metric d(Y ,Y ′) = dH (Y ∩SX ,Y ′∩SX ) where
dH denotes the Hausdorff distance. We denote by G k (X ) the collection of closed
k-codimensional subspaces of X (these are automatically complemented), by
Gk (X ) the k-dimensional subspaces of X . If U and V are closed subspaces of X
such that U ⊕V = X , then ProjU∥V is the projection onto U parallel to V (that is
ProjU∥V (x) ∈U and x −ProjU∥V (x) ∈V ). We record some facts about Grassman-
nians in the following lemma.

LEMMA 9. Let X be a Banach space with separable dual. Let k ∈N. The following
facts hold:

1. G k (X ) is complete and separable.
2. If V ∈ G (X ), W ∈ G (X ) and V ⊕W = X , then 1

δ ≤ ‖ProjV ∥W ‖ ≤ 2
δ , where

δ= infx∈V ∩SX ,y∈W ∩SX ‖x − y‖.
3. There exists K > 0 (independent of X ) such that if V ∈Gk (X ), there exists a

subspace W ∈Gk (X ) such that ‖ProjW ∥V ‖ ≤ K and ‖ProjV ∥W ‖ ≤ K .
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4. (Symmetry of closeness) There exists K > 0 such that if V ,V ′ ∈G k (X ), then

sup
v ′∈V ′∩SX

inf
v∈V ∩SX

‖v − v ′‖ ≤ K sup
v∈V ∩SX

inf
v ′∈V ′∩SX

‖v − v ′‖.

Proof. The map ⊥ : G k (X ) → Gk (X ∗) defined by V ⊥ = {θ ∈ X ∗ : θ|V = 0} is a bi-
Lipschitz bijection [5]. Separability of G k (X ) and symmetry of closeness are
proved in [4]. The completeness is stated but not proved in Kato’s book. We
sketch a proof using results from the appendix of [4].

Let V be a k-dimensional subspace of a Banach space Z and let v1 . . . , vk

be an Auerbach basis. By the Hahn-Banach theorem, there exist θ1, . . . ,θk ∈ Z∗
of norm 1 such that θi (v j ) = δi j . Now if ṽ1, . . . , ṽk in Z satisfy ‖ṽi − vi‖ < ε/k
for each k, then one has ‖∑

ai ṽi‖ ≥ (1−ε)max |ai | (to see this, apply θi0 where
|ai0 | = max |ai |). From this, we see that ṽ1, . . . , ṽk is an ε-nice basis (as defined in
[4]). Now let (Vn) be a Cauchy sequence in Gk (Z ). By refining the sequence, one
may assume d(Vn ,Vn+1) < (3k)−n . Choosing an Auerbach basis v1

1 , . . . , v1
k for V1,

one may then obtain elements vn
1 , . . . , vn

k of Vn satisfying ‖vn+1
i −vn

i ‖ < (2k+1)−n .

This is a convergent sequence of 1
2 -nice bases. Letting v∗

i be the limit of vn
i ,

Corollary B6 of [4] shows that d(Vn ,V∗) → 0, where V∗ is the subspace spanned
by the v∗

i . This establishes completeness of Gk (X ∗) and hence completeness of

G k (X ). To see (2), if vn ∈ V ∩SX and wn ∈ W ∩SX , satisfy ‖vn −wn‖→ δ then
‖ProjV ∥W (vn −wn)‖ = 1 shows the first inequality. For the second inequality, let

v ∈V ∩SX . If 1− δ
2 < ‖w‖ < 1+ δ

2 , then ‖v +w‖ ≥ ‖v + ‖v‖
‖w‖w‖−|‖v‖−‖w‖| ≥ δ

2 . If
‖w‖ lies outside this range, then the same conclusion follows from the triangle
inequality, so that ‖ProjV ∥W (v +w)‖ = ‖v‖ ≤ 2

δ‖v +w‖. (3) can be found in [13],
Corollary III.B.11.

For a Banach space X , the bounded linear maps from X to itself will be writ-
ten B(X , X ) and BX will be the Borel σ-algebra on X . In this section, we con-
sider random dynamical systems. These consist of a tuple R = (Ω,F ,P,σ, X ,L ),
where (Ω,F ,P) is a complete probability space; σ is a measure preserving trans-
formation ofΩ; X is a separable Banach space; the generator L : Ω→ B(X , X ) is
strongly measurable (that is for fixed x ∈ X , ω 7→Lωx is (F ,BX )-measurable);
and log‖Lω‖ is integrable. An alternative description of strong measurabil-
ity is that the map ω 7→ Lω is (F ,S )-measurable, where S is the Borel σ-
algebra of the strong operator topology on B(X , X ) (see Appendix A of [4] for
details). In the context where X is separable and the operators are bounded,
strong measurability is equivalent to (F ⊗BX ,BX )-measurability of the map
(ω, x) 7→Lωx ([4]).

A random dynamical system gives rise to a cocycle of bounded linear opera-
tors L (n)

ω on X , defined by L (n)
ω (x) =Lσn−1ω◦· · ·◦Lωx. We will consider F and

P to be fixed, and thus refer to a random dynamical system as R = (Ω,σ, X ,L ).
We say R is ergodic if σ is ergodic.

When the base σ is invertible, we can also define the dual random dynamical
system R∗ = (Ω,F ,P,σ−1, X ∗,L ∗), where X ∗ is the dual of X and L ∗

ω (θ) :=
(Lσ−1ω)∗θ. Notice that L ∗

ω is not (Lω)∗. The rationale for this is that Lω maps
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the X -fibre over ω to the X -fibre over σ(ω) and similarly L ∗
ω maps the X ∗-fibre

over ω to the X ∗-fibre over σ−1ω. In this way, θ(Lωx) = L ∗
σωθ(x) and, more

generally, L ∗(n)
σnω θ(x) = θ(L (n)

ω x) for every x ∈ X ,θ ∈ X ∗. Thus, L ∗(n)
σnω = (L (n)

ω )∗.

LEMMA 10 (Measurable dense subset of a family of subspaces). Let X be a sepa-
rable Banach space. Let V : Ω→G k (X ) be measurable. Then there exist sequences
of measurable functions un : Ω→ SX and u′

n : Ω→ BX such that {un(ω) : n ∈N}
is a dense subset of V (ω)∩SX and {u′

n(ω) : n ∈N} is a dense subset of V (ω)∩BX .

Proof. First, for fixed v ∈ X ,ω 7→ d(v,V (ω)) is a measurable function, as it is the
composition of continuous and measurable functions. Fix a dense sequence
v1, v2, . . . ∈ SX . Now for each j , set u0

j (ω) = v j , and let uk+1
j (ω) = vl , where

l = min
{
m : d(vm ,V (ω)∩SX ) ≤ 1

4 d(uk
j (ω),V (ω)∩SX ) and

d(vm ,uk
j (ω)) ≤ 2d(uk

j (ω),V (ω)∩SX )
}
.

For each j , this is a measurable convergent sequence and hence the limit point
u∞

j (ω) is measurable, and belongs to V (ω)∩SX . The sequence (u∞
j (ω)) is dense

in V (ω)∩SX because there are v j arbitrarily close to all points of V (ω)∩SX . The
functions u′

n are produced exactly analogously.

LEMMA 11 (Measurability of growth measurements). Let R be a random dynam-
ical system R = (Ω,σ, X ,L ) acting on a separable Banach space. The following
functions are measurable:

• ω 7→ Dk (Lω);
• ω 7→ ‖Lω‖;
• ω 7→α(Lω) := inf

{
r > 0 : Lω(BX ) can be covered by finitely many balls of

radius r
}
.

Further, if V : Ω→G k (X ) is measurable, then ω 7→ ‖Lω|V (ω)‖ is measurable.

Proof. Let (xn) be a dense subsequence of BX . By strong measurability, for
each fixed n, ω 7→ ‖Lωxn‖ is measurable. Then for each j1, . . . , ji , we have that
f ji | j1,..., ji−1 (ω) := infq1,...,qi−1∈Q ‖Lωx ji −

∑
1≤l<i ql Lωx jl ‖ is measurable, so

Dk (Lω) = sup
j1,..., jk

∏
i≤k

f ji | j1,..., ji−1 (ω)

is measurable. In particular, ω 7→ ‖Lω‖ = D1(Lω) is measurable. We claim that

α(L ) = lim
n→∞sup

j
inf
k≤n

∥∥L x j −2‖L ‖xk
∥∥.(6)

If this limit is r , then there exists n such that sup j infk≤n
∥∥L x j −2‖Lω‖xk

∥∥ <
r +ε. This gives a covering of {L x j : j ∈N} by n balls of radius r +ε, so that the
left side of (6) is dominated by the right side. Conversely, if α(L ) = r , let L (BX )
be covered by finitely many balls of radius r +ε. These must have centres with
norm at most 2‖L ‖ otherwise they do not intersect L (BX ). The centres must
therefore be ε-approximable by points of the form 2‖L ‖xk , so that the right
side of (6) is at most r +2ε. We deduce (6) holds and ω 7→α(Lω) is measurable.
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Finally, if V : Ω→G k (X ) is measurable, let (un(ω))n∈N be a sequence of mea-
surable functions such that {un(ω) : n ∈N} is dense in SV (ω). Then ‖Lω|V (ω)‖ =
supn ‖Lωun(ω)‖, which is therefore measurable.

When R is ergodic, Lemma 11 combined with Kingman’s sub-additive er-
godic theorem ensures the existence of the maximal Lyapunov exponent of R,
defined by

λ(R) := lim
n→∞

1
n log‖L (n)

ω ‖,

for P-a.e. ω ∈Ω. Similarly, using the fact that the Kuratowski index of compact-
ness, α(L ), is also sub-multiplicative and bounded above by the norm, we have
existence of the index of compactness of R, defined by

κ(R) := lim
n→∞

1
n logα(L (n)

ω ),

with the property that κ(R) ≤λ(R).
In the case where Lω is independent of ω, λ(R) and κ(R) are the spectral ra-

dius and essential spectral radius respectively, so that κ(R) <λ(R) is the quasi-
compact case. If the operator is compact, then κ(R) is 0.

Our previous paper [4] studies the case in which R is a random dynamical
system where the operators Lω are Perron-Frobenius operators of a family of
expanding maps and gives sufficient conditions for κ(R) <λ(R).

LEMMA 12. Given an ergodic random dynamical system R, there exist constants
∆k =∆k (R) such that for almost every ω ∈Ω,

lim
n→∞

1
n logDk (L (n)

ω ) =∆k .

Furthermore, 1
n logEk (L (n)

ω ) →∆k . Define ∆0 = 0 and let µk =∆k −∆k−1 for each

k ≥ 1. Then, 1
n logFk (L (n)

ω ) →µk .

Proof. The first claim follows from Kingman’s sub-additive ergodic theorem,
via Lemma 11 and Lemma 1. The remaining two claims are consequences of
Corollary 6.

The µk ’s of the previous lemma are called the Lyapunov exponents of R.
When µk > κ(R), µk is called an exceptional Lyapunov exponent.

THEOREM 13 (Lyapunov exponents and index of compactness). Let R be a ran-
dom dynamical system with ergodic base acting on a separable Banach space X .
Then

• µ1 ≥µ2 ≥ . . .;
• For any ρ > κ(R), there are only finitely many exponents that exceed ρ;
• If σ is invertible, then R and R∗ have the same Lyapunov exponents.

Proof. That the µi are decreasing follows from Lemma 12 and the observation
that Fk (T ) ≤ Fk−1(T ). That the system and its dual have the same exponents
follows from Lemma 3 together with the simple result (in [3, Lemma 8.2]) that if
( fn) is sub-additive and satisfies fn(ω)/n → A almost everywhere, then one has
fn(σ−nω)/n → A also.
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It remains to show that for ρ > κ, the system has at most finitely many expo-
nents that exceed ρ. Let κ<α<β< ρ. Since log‖Lω‖ is integrable, there exists
a 0 < δ< (β−α)/2|α| such that if P(E) < δ, then

∫
E log+ ‖Lω‖dP(ω) < (β−α)/2.

By the sub-additive ergodic theorem, there exists L > 0 such that P(α(L (L)
ω ) ≥

eαL) < δ/2. If α(L (L)
ω ) < eαL , then by definition, L (L)

ω BX may be covered by
finitely many balls of size eαL . By linearity, if α(A) = ζ, one sees that if B is a ball
with arbitrary centre and radius ρ, then A(B) may be covered by finitely many
balls of size ζρ.

Let r be chosen large enough so that P(G) > 1−δ, where G (the good set) is
defined by

G = {
ω : L (L)

ω BX may be covered with er L balls of size eαL}
.

We split the orbit of ω into blocks: if σiω ∈G , then the block length is L; other-
wise, if σiω is bad, we take a block of length 1. Consider the following iterative
process: start with a ball of radius ρ0 = 1. Then look at the current iterate of ω,
σiω, and suppose that L (i )

ω BX is covered by Ni balls of radius ρi . If σiω ∈ G ,
then L (i+L)

ω BX is covered by at most Ni+L = Ni er L balls of radius ρi+L = eαLρi

and the new iterate is σi+Lω. If σiω 6∈ G , then L (i+1)
ω BX is covered by at most

Ni+1 = Ni balls of radius ρi+1 = ‖Lσiω‖ρi and the new iterate is σi+1ω.
We claim that for almost all ω, for sufficiently large N , L (N )

ω (BX ) is covered
by at most er N balls of size eβN . Indeed, given ω, let n0 be chosen such that
for all N ≥ n0, one has

∑N−1
i=0 1Gc (σiω) log+ ‖Lσiω‖ < (β−α)N /2. If α ≥ 0, then

for large N , through the good steps, the balls are inflated by a factor at most
eαN . If α< 0, then combining the good blocks, the balls are scaled by a factor
of eα(1−δ)N < e(α+β)N /2 or smaller. In both cases, we see that overall, balls are
scaled by at most eβN . The splitting only takes place in the good blocks, and
yields at most er N balls.

Now suppose that µk > ρ. For almost all ω, we have that for all large N ,
Dk (L (N )

ω ) > ekNρ . Fix such an N , and suppose that x1, . . . , xk belong to SX and
have the property

∏
i≤k Di > ekNρ , where

Di = d
(
L (N )
ω xi , lin({L (N )

ω x j : j < i })
)
.

Let Ti = {0,1, . . . ,bDi /(2keβN )c} and notice that |T1×·· ·×Tk | ≥ ekN (ρ−β)/(2k)k .
For ( j1, . . . , jk ) ∈ T1 ×·· ·×Tk , define

y j1,..., jk =
k∑

i=1

2 ji eβN

Di
L (N )
ω xi .

It is not hard to see that all of these points belong to the image of the unit ball
of X under L (N )

ω . Further, from the definition of Di , one can check that these
points are mutually separated by at least 2eβN , so that one requires at least
ekN (ρ−β)/(2k)k balls of radius eβN to cover L (N )

ω (BX ).
Hence we obtain

ekN (ρ−β)

(2k)k
≤ er N .
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Since this holds for all large N , we deduce k ≤ r /(ρ−β) as required.

LEMMA 14 (Measurability II). Suppose that X is a Banach space with separable
dual. Suppose further that R is an ergodic random dynamical system acting on
X . Assume there exist λ′ >λ ∈R and d ∈N such that for P-almost every ω, there
is a closed d-codimensional subspace V (ω) of X such that:

1. For all v ∈V (ω), limsupn→∞
1
n log‖L (n)

ω v‖ ≤λ;
2. For each a > 0 and ε > 0, there is an n0 such that for v ∈ SX satisfying

d(v,V (ω)) > a, one has ‖L (n)
ω v‖ ≥ en(λ′−ε) for all n ≥ n0.

Then ω 7→V (ω) is measurable.

Proof. Given V ∈ G d (X ), fix w1, . . . , wd such that V ⊕ lin(w1, . . . , wd ) = X and
define a neighbourhood of V by

NV ,k = {
U ∈G d (X ) : U ∩ lin(w1, . . . , wd ) = {0} and

‖Projlin(wi )∥U⊕lin({w j : j 6=i }) |V ‖ ≤ 1
k for 1 ≤ i ≤ d

}
.

Since G d (X ) is separable, fix a countable sequence (Vn) of subspaces, dense
in G d (X ). Using Lemma 9 items (3) and (4), there exists K > 0 such that for each
V ∈ G d (X ), there exists W ∈ Gd (X ) such that ‖ProjW ∥V ‖ ≤ K , ‖ProjV ∥W ‖ ≤ K .
If w1, . . . , wd is an Auerbach basis for W , then ‖Projlin(wi )∥lin({w j : j 6=i }) |W ‖ = 1.
For each Vn , let Wn be a subspace satisfying the above inequalities and let
wn,1, . . . , wn,d be an Auerbach basis. Let Pn,i denote Projlin(wn,i )∥V (ω)⊕lin({wn, j : j 6=i }).

We obtain a countable collection of basic sets (NVn ,k ) which generate the
Borel σ-algebra on G d (X ). To see this, we claim that for each V ∈ G d (X ) and
each open set O containing V , there are n and k such that V ∈ NVn ,k ⊂O. Then
each open set is the union of the basic sets that it contains.

Given V ∈ G d (X ) and an open set O containing it, let Br (V ) ⊂ O. Let k >
4K d/r and δ = min(1/(2K ),1/(4kK ),r /2). Let n be such that dH (V ∩ SX ,Vn ∩
SX ) < δ. Let v ∈ V ∩SX and w ∈ Wn ∩SX . There exists v ′ ∈ Vn ∩SX such that
‖v − v ′‖ < δ. By Lemma 9(2), ‖w − v ′‖ ≥ 1/K , so that ‖w − v‖ ≥ 1/(2K ). Hence
V ∩Wn = {0} and ‖ProjWn∥V ‖ ≤ 4K . Now given v ′ ∈Vn∩SX , there exists v ∈V ∩SX

and x ∈ X with v ′ = v +x and ‖x‖ < δ. We have

‖Pn,i (v ′)‖ = ‖Pn,i (x)‖ = ‖Pn,i ◦ProjWn∥V (x)‖ ≤ 4Kδ,

so that V ∈ NVn ,k . Finally let U ∈ NVn ,k and let v ′ ∈ Vn ∩SX . By definition, we
have ‖Pn,i (v ′)‖ ≤ 1

k for each i , so that ‖ProjWn∥U (v ′)‖ ≤ d
k . In particular, there

exists u ∈ U such that ‖u − v ′‖ ≤ d
k and hence there is u ∈ U ∩ SX such that

‖u − v ′‖ ≤ 2d
k . Using Lemma 9(4), we deduce dH (U ∩SX ,Vn ∩SX ) ≤ 2K d

k , so that

dH (U ∩SX ,V ∩SX ) ≤ δ+ 2K d
k < r , showing NVn ,k ⊂O.

Hence to show the desired measurability, it suffices to show that for each
N = NVn ,k , {ω : V (ω) ∈ N } is measurable. First, {U : U ∩Wn = {0}} is an open set,
so that {ω : V (ω)∩Wn = {0}} is measurable.

Fix a dense set v1, v2, . . . in the unit sphere of Vn . We claim that for those ω
lying in the set G of full measure on which dimV (ω) = d and hypotheses (1) and
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(2) of the lemma hold, we have that V (ω) lies in N if and only if the following
condition holds:

For each rational ε > 0 and each j ∈ N, there is m0 > 0 such that

for each m ≥ m0, there are rationals a j
1 , . . . , a j

d in [− 1
k , 1

k ] such that

‖L (m)
ω (v j −∑d

i=1 a j
i wn,i )‖ ≤ e(λ+ε)m .

To see the ‘only if’ direction, suppose that V (ω) ∈ N . Now given v j ∈Vn ∩SX ,
by definition of N , there are b1, . . . ,bd in [− 1

k , 1
k ] such that v j = v ′ + b1wn,1 +

. . .+bd wn,d with v ′ ∈ V (ω). Hence v ′ = v j −∑d
i=1 bi wn,i ∈ V (ω), and therefore

we have ‖L (m)
ω v ′‖ < e(λ+ε)m for all sufficiently large m. Now for any such m,

one can take ai ’s that are suitably close rational approximations to bi so that
‖L (m)

ω (v j −∑d
i=1 ai wn,i )‖ ≤ e(λ+ε)m .

Conversely, suppose that V (ω)∩ linWn = {0}, but V (ω) 6∈ N . Then there exists
a v ∈ Vn ∩SX and an i such that ‖Pn,i (v)‖ > 1

k . By continuity, there exists a v j

satisfying the same property. Let δ= ‖Pn,i (v j )‖− 1
k . Then ‖Pn,i (v−∑d

l=1 al wl )‖ ≥
δ for all (al )d

l=1 ∈ [− 1
k , 1

k ]d . By hypothesis, we now see that the condition is not
satisfied.

Since this condition is obtained by taking countable unions and intersections
of measurable sets, the measurability of G ∩ {ω : V (ω) ∈ N } is demonstrated. Us-
ing completeness of (Ω,F ,P), we deduce that {ω : V (ω) ∈ N } is measurable, so
that ω 7→V (ω) is measurable as required.

LEMMA 15. Let σ be an ergodic measure-preserving transformation of a proba-
bility space (Ω,P). Let g be a non-negative measurable function and let h ≥ 0 be
integrable. Suppose further that g (ω) ≤ h(ω)+g (σ(ω)), P-a.e. Then g is tempered,
that is limn→∞ g (σnω)/n = 0, P-a.e.

A proof of this lemma appears in Mañé’s paper [7].

Proof. Let ε> 0 and let K > ∫
h. By the maximal ergodic theorem,

B1 =
{
ω : h(ω)+ . . .+h(σn−1ω) < nK for all n

}
has positive measure. Let M be such that B2 := {ω : g (ω) < M } has positive
measure. As a consequence of the Birkhoff ergodic theorem, for any measurable
set B with P(B) > 0, for P-a.e. ω, for all sufficiently large k, there exists j ∈
[(1 + ε)k , (1 + ε)k+1) such that σ j (ω) ∈ B . Now for ω ∈ Ω, let k0 be such that
for all k ≥ k0, there exist j ∈ [(1+ ε)k , (1+ ε)k+1) such that σ jω ∈ B1 and j ′ ∈
((1+ε)k+2, (1+ε)k+3) such that σ j ′ω ∈ B2. If n > (1+ε)k0+1, then n ∈ [(1+ε)k+1, (1+
ε)k+2) for some k ≥ k0. Let j ∈ [(1+ε)k , (1+ε)k+1) and j ′ ∈ [(1+ε)k+2, (1+ε)k+3)
be as above. Then

g (σnω) ≤
j ′−1∑
k=n

h(σkω)+ g (σ j ′ω) ≤
j ′−1∑
k= j

h(σkω)+ g (σ j ′ω) ≤ K ( j ′− j )+M ,

so that limsup g (σnω)/n ≤ 4ε. Since ε is arbitrary, the conclusion follows.
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THEOREM 16 (Multiplicative ergodic theorem: the Oseledets filtration). Let R be
an ergodic random dynamical system acting on a Banach space X with separable
dual. Suppose that κ(R) <λ(R). Then there exist 1 ≤ r ≤∞1 and:

• a sequence of exceptional Lyapunov exponents λ(R) = λ1 > λ2 > . . . > λr >
κ(R),

• a sequence m1,m2, . . . ,mr of positive integers, and
• a measurable filtration of closed subspaces,

X =V1(ω) ⊃V2(ω) ⊃ ·· · ⊃Vr (ω) ⊃V∞(ω),

with the equivariance property Lω(Vi (ω)) ⊂Vi (σ(ω)) for each i ,

such that for P-a.e. ω, codimV`(ω) = m1 +·· ·+m`−1; for all v ∈V`(ω)àV`+1(ω),
one has lim 1

n log‖L (n)
ω v‖ =λ`; and for v ∈V∞(ω), limsup 1

n log‖L (n)
ω v‖ ≤ κ(R).

While the theorem is stated for ergodic random dynamical systems, a stan-
dard application of ergodic decomposition allows one to deduce a version for
non-ergodic systems, in which constants are replaced by invariant functions.

Proof. Let µ1 ≥ µ2 ≥ . . . be as in Lemma 12. Let λ1 > λ2 > . . . be the decreasing
enumeration of the distinct µ-values that exceed κ(R) (if this an infinite se-
quence, then Theorem 13 establishes that λi → κ(R)). The fact that λ(R) =λ1

is straightforward from the definitions. Let m` be the number of times that λ`
occurs in the sequence (µi ) and let M` = m1+ . . .+m`, so that µM`−1 =λ`−1 and
µM`−1+1 =λ`.

We now turn to the construction of V`(ω). For a fixed ω, let the sequences
(θ(n)

i )i≥1 and (x(n)
j ) j≥1 be as guaranteed by Lemma 7 for the operator L (n)

ω . We

let V (n)
`

(ω) be lin((L (n)
ω )∗θ(n)

1 , . . . , (L (n)
ω )∗θ(n)

M`−1
)⊥, Y (n)

`
(ω) be lin({x(n)

j : j ≤M`}).

Thus, X =V (n)
`

(ω)⊕Y (n)
`−1(ω). All of these depend on the choice of θ’s and x’s. No

claim of uniqueness or measurability is made.
The space V (n)

`
(ω) is an approximate slow space. The proof will go by the

following steps:

(a) For almost all ω, for arbitrary ε > 0 and for sufficiently large n, ‖L (n)
ω x‖ ≤

e(λ`+ε)n‖x‖ for all x ∈V (n)
`

(ω);

(b) V (n)
`

(ω) is a Cauchy sequence for almost all ω – we define the limit to be
V`(ω);

(c) The V`(ω) are equivariant: Lω(V`(ω)) ⊆V`(σ(ω));
(d) If x 6∈V`+1(ω), then ‖L (n)

ω x‖ > e(λ`−ε)nd(x,Vl+1(ω)) for large n;
(e) For all a > 0 and ε > 0, there exists n0 so that for all n ≥ n0 and all x ∈ SX

such that d(x,V`+1(ω)) ≥ a, one has ‖L (n)
ω x‖ ≥ e(λ`−ε)n .

The remaining steps are proved by induction on `:

(f ) If x ∈V`(ω), then limsup 1
n log‖L (n)

ω x‖ ≤λ`;
(g) ω 7→V`(ω) is measurable;

1If r =∞, the conclusions are replaced by: λ(R) = λ1 > λ2 > . . . → κ(R), m1,m2, . . . ∈N and
X =V1(ω) ⊃V2(ω) ⊃ . . . ; V∞(ω) =⋂

Vi (ω).
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(h) The restriction R` of R to V`(ω) has the same exponents as R with the
initial M`−1 exponents removed.

Proof of (a). Note that by construction

det
((
θ(n)

i (L (n)
ω x(n)

j )
)

1≤i , j≤M`−1

)
≥ K EM`−1 (L (n)

ω ),

where K is a constant depending only on M`−1 arising from Lemmas 5 and 7.
For an arbitrary x ∈V (n)

`
∩SX , let φ ∈ SX ∗ be such that φ(L (n)

ω x) = ‖L (n)
ω x‖. Then,

adding a column for x and a row for φ to the matrix U ((θ(n)
i ), (x(n)

j ))1≤i , j≤M`−1 , we

see that the x column has all 0 entries except for the 1+M`−1-st (by definition
of V (n)

`
(ω)), and so we arrive at the bound (uniform over x ∈ SX ∩V (n)

`
),

K EM`−1 (L (n)
ω )‖L (n)

ω x‖ ≤ E1+M`−1 (L (n)
ω ).(7)

The conclusion follows from Lemma 12.
Proof of (b). Let us assume that n0 is chosen large enough that for all n ≥ n0, the
following conditions are satisfied: ‖Lω‖, ‖Lσnω‖ are less than eεn ; ‖L (n)

ω x‖ ≤
e(λ`+ε)n‖x‖ for all x ∈V (n)

`
; and ‖L (n)

ω x‖ ≥ e(λ`−1−ε)n‖x‖ for all x ∈ Y (n)
`−1(ω) (using

integrability of log‖Lω‖; (a); and Lemma 7). Let n ≥ n0. Let x ∈ V (n)
`

(ω)∩SX

and write x = u +w where u ∈V (n+1)
`

(ω) and w ∈ Y (n+1)
`−1 (ω). Now we have

‖L (n+1)
ω x‖ ≤ e(λ`+ε)n‖Lσnω‖ ≤ e(λ`+2ε)n .

We also have ‖u‖ ≤ 1+‖w‖, ‖L (n+1)
ω w‖ ≥ e(λ`−1−ε)(n+1)‖w‖ and ‖L (n+1)

ω u‖ ≤
e(λ`+ε)(n+1)(1+‖w‖). Manipulation with the triangle inequality yields

‖w‖ ≤ e−n(λ`−1−λ`−4ε).(8)

Hence, we have shown that each point in the unit sphere of V (n)
`

(ω) is expo-

nentially close to V (n+1)
`

(ω). Since the two spaces have the same codimension,
one obtains a similar inequality in the opposite direction by Lemma 9(4). This
establishes that V (n)

`
(ω) is a Cauchy sequence.

Proof of (c). We argue essentially as in (b). For large n, we take v ∈V (n+1)
`

(ω)∩SX .

We write Lω(v) as u + w with u ∈ V (n)
`

(σ(ω)) and w ∈ Y (n)
`−1(σ(ω)). We have

bounds of the form ‖L (n+1)
ω v‖. eλ`n ; ‖u‖. 1+‖w‖, ‖L (n)

σ(ω)u‖. eλ`n(1+‖w‖)

and ‖L (n)
σ(ω)w‖ & eλ`−1n‖w‖ (here . means ‘is smaller up to sub-exponential

factors’). Combining the inequalities as before, one obtains a bound ‖w‖ .
e−(λ`−1−λ`)n . Taking a limit, we obtain LωV`(ω) ⊂V`(σ(ω)) as required.
Proof of (d). Let x 6∈ V`+1(ω), with ‖x‖ = 1. For large n, if x is written as
un + vn with un ∈ V (n)

`+1(ω) and vn ∈ Y (n)
`

(ω), then ‖vn‖ ≥ 1
2 d(x,V`+1(ω)) and

‖un‖ ≤ 1+‖vn‖. By (7), ‖L (n)
ω un‖ ≤ e(λ`+1+ε)n(1+‖vn‖) for large n, and Lemma

7 gives ‖L (n)
ω vn‖ ≥ 4−M`FM`

(L (n)
ω )‖vn‖ ≥ e(λ`−ε)n‖vn‖ for large n. The conclu-

sion follows. The proof of (e) is the same, using the uniformity in Lemma 7.
For the inductive part, notice that the case ` = 1 is trivial. Let ` ≥ 2 and

suppose that the claims have been established for the case `− 1. We know
from (a) that elements of V (n)

`
(ω) expand at exponential rate approximately λ`
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under L (n)
ω . We need to show that the analogous statement holds for the limit-

ing subspace V`(ω). We mimic the start of the proof to control the slow m`−1-
codimensional subspace of V`−1(ω). This will be exactly V`(ω).
Proof of (f). By the inductive hypothesis, the top Lyapunov exponent of L (n)

ω ap-
plied to the bundle {V`−1(ω) :ω ∈Ω} is λ`−1 with multiplicity m`−1, with the fol-
lowing Lyapunov exponent being λ`. Let (z(n)

j )m`−1

j=1 ∈ SX ∩V`−1(ω) and (ψ(n)
j )m`−1

j=1

be as guaranteed by Lemma 7 and let V ′
`

(n)(ω) = V`−1(ω)∩ lin(ψ(n)
1 , . . . ,ψ(n)

m`−1
)⊥.

The same argument as in (a) shows that for arbitrary ε > 0 and sufficiently
large n, ‖L (n)

ω x‖ ≤ e(λ`+ε)n‖x‖ for x ∈ V ′
`

(n)(ω). The argument used in (b) also

works, showing that V ′(n)
`

(ω) converges to a space V ′
`

(ω) ⊂ V`−1(ω) and, cru-
cially, we obtain an analogue of (8): for all sufficiently large n, if x ∈ V ′

`
(ω),

then x may be expressed as u + w with u ∈ V ′
`

(n)(ω) and w ∈ V`−1(ω) satisfy-

ing ‖w‖ ≤ e−n(λ`−1−λ`−4ε). Then, ‖L (n)
ω u‖. eλ`n by the above, and ‖L (n)

ω w‖.
e−(λ`−1−λ`)n · eλ`−1n . So ‖L (n)

ω x‖. eλ`n by the triangle inequality. From (d), we
deduce V ′

`
(ω) ⊆V`(ω). Since, by (h) (applied to R`−1), V`(ω) and V ′

`
(ω) have the

same finite co-dimension as subspaces of V`−1(ω), V`(ω) =V ′
`

(ω) and (f) follows.
Proof of (g). From (f) and (d), we see that

V`(ω) = {
v : limsup 1

n log‖L (n)
ω v‖ ≤λ`

}
and the assumptions of Lemma 14 hold. Measurability of V`(ω) follows.
Proof of (h). Let W (ω) = {w ∈V`−1(ω) : d(w,V`(ω)) ≥ 1

2‖w‖}. Let ε> 0. We claim
that for sufficiently large n,

d(w ′, v ′) > e−εn for all w ′ ∈ SX ∩L (n)
ω W (ω) and v ′ ∈V`(σnω).(9)

Let δ< ε(λ`−1−λ`)
4(λ`−1−λ`+ε) . Let g`(ω) = supp∈N e−p(λ`+δ)

∥∥L
(p)
ω |V`(ω)

∥∥. This is measur-
able by Lemma 11. Notice that

log+ g`(ω) ≤ log+ ‖Lω‖+max(−λ`−δ,0)+ log+ g`(σω).

By Lemma 15, limn→∞ 1
n log+ g`(σnω) = 0. Then, there exists n0(ω) such that for

p,n ≥ n0, one has

‖L (p)
σnωz‖ ≤ 1

3 exp(n ε
2 +p(λ`−1 +δ))‖z‖ for all z ∈V`−1(σnω);

‖L (p)
σnωv‖ ≤ 1

3 exp(n ε
2 +p(λ`+δ))‖v‖ for all v ∈V`(σnω).

(10)

Additionally by (e), n0 may be chosen so that

en(λ`−1−δ) < ‖L (n)
ω w‖ < en(λ`−1+δ) for all w ∈W (ω)∩SX and n ≥ n0.(11)

We will show (9) by contradiction. Suppose d(L (n)
ω w,V`(σnω)) < e−εn‖L (n)

ω w‖
for some n > n0, and such that εn/(λ`−1 −λ`) > n0. Write L (n)

ω w = v + z, with

v ∈ V`(σnω) and ‖z‖ < e−εn‖v‖. Now L
(p+n)
ω w = L

(p)
σnωv +L

(p)
σnωz. Taking p =

εn/(λ`−1 −λ`), the bounds on the two terms coming from (10) agree, giving

‖L (n+p)
ω w‖ ≤ e−εn/2e(p+n)(λ`−1+δ).
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One checks, however, that by the choice of δ, this is smaller than e(p+n)(λ`−1−δ),
contradicting (11). This establishes claim (9). Notice that combining (9) and
(11), we see that the restriction of the random dynamical system to the equivari-
ant family Q`−1(ω) =V`−1(ω)/V`(ω) satisfies for all sufficiently large n,

‖L̄ (n)
ω w̄‖Q`−1(σnω) ≥ e(λ`−1−ε)n‖w̄‖Q`−1(ω) for all w̄ ∈Q`−1(ω),(12)

where L̄ω denotes the induced action of Lω on Q`−1(ω).
Set m = m`−1. To complete the proof of (h), let n > n0 be arbitrary; let

v1, . . . , vk−m be unit vectors in V`(ω) and w1, . . . , wm be unit vectors in V`−1(ω).
Then

dkL (n)
ω (v1, . . . , vk−m , w1, . . . , wm)

≥ dk−mL (n)
ω (v1, . . . , vk−m)dmL̄ (n)

ω (w̄1, . . . , w̄k−m),

where w̄i is wi +V`(ω). We therefore see

DkL (n)
ω |V`−1(ω) ≥ Dk−mL (n)

ω |V`(ω) ·DmL̄ (n)
ω .

By (12) and Lemma 2, DmL̄ (n)
ω & eλ`−1mn .

This gives a matching upper bound for Dk−mL (n)
ω |V`(ω) to the lower bound

that we obtained in Lemma 8. Hence we deduce the first k exponents of R`−1

are m = m`−1 repetitions of λ`−1 followed by the first k −m exponents of R`,
establishing (h).

The next corollary provides a splitting when the base σ is invertible and the
Banach space is reflexive. Note that the methods of [4] obtain the same conclu-
sion under the weaker assumption that X ∗ has separable dual. We include this
new proof, as we find it to be illuminating.

COROLLARY 17 (Multiplicative Ergodic Theorem: The Oseledets splitting). Let
R be a random dynamical system acting on a reflexive separable Banach space.
Suppose that the base, σ, is invertible; and that κ(R) <λ(R). Then there exist 1 ≤
r ≤∞ and exceptional Lyapunov exponents and multiplicities as in Theorem 16.
Furthermore, there is a measurable direct sum decomposition2

X = Z1(ω)⊕·· ·⊕Zr (ω)⊕V∞(ω),

such that for P-a.e. ω, Lω(Zi (ω)) = Zi (σ(ω)) for each i , Lω(V∞(ω)) ⊂V∞(σ(ω)),
dim Zi (ω) = mi , and

lim
n→∞

1
n log‖L (n)

ω v‖ =λi for v ∈ Zi (ω)à {0},

limsup
n→∞

1
n log‖L (n)

ω v‖ ≤ κ(R) for v ∈V∞(ω).

We make use of the following facts valid for reflexive Banach spaces. If X is
reflexive andΘ is a closed subspace of X ∗ of codimension k, then its annihilator,
Θ⊥ is k-dimensional. Further if θ is a bounded functional such that θ|Θ⊥ = 0,
then θ ∈Θ.

2In the case r =∞, the decomposition is X =⊕∞
i=1 Zi (ω)⊕V∞(ω).
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Proof. Let R∗ be the dual random dynamical system to R as defined above.
Applying Theorem 16 to R∗, and recalling from Theorem 13 that the Lyapunov
exponents and multiplicities of R and R∗ coincide, yields a σ−1 equivariant
measurable filtration X ∗ = V ∗

1 (ω) ⊃ ·· · ⊃ V ∗
r (ω) ⊃ V ∗∞(ω), with the same codi-

mensions as those of R.
Let Y`(ω) = V ∗

`
(ω)⊥. Notice that dimY`(ω) = M`−1. Since V ∗

`
(ω) is measur-

able and (·)⊥ : G (X ∗) →G (X ) is continuous [5, IV §2], then Y`(ω) is measurable.
Also, for every ψ ∈ V ∗

`
(σω), we have L ∗

σωψ ∈ V ∗
`

(ω) by equivariance of V ∗
`

(·).
Hence, for every y ∈ Y`(ω), 0 = L ∗

σωψ(y) = ψ(Lωy). Thus, LωY`(ω) ⊂ Y`(σω),
yielding equivariance.

We define Z`(ω) = Y`+1(ω)∩V`(ω). It remains to show that V`−1(ω) =V`(ω)⊕
Z`−1(ω). To prove this, it suffices to show that V`(ω)⊕Y`(ω) = X . Suppose this
is not the case. Then, there exists v ∈ V`(ω)∩Y`(ω)∩SX . Let θ ∈ SX ∗ be such
that θ(v) = 1. Let θ̄ be the equivalence class of θ in Q∗(ω) = X ∗/V ∗

`
(ω).

We record a corollary of (12). For almost every ω, one has for all large n

‖L̄ ∗(n)
ω ψ̄‖Q∗(σ−nω) ≥ e−(λ`−1−ε)n‖ψ̄‖Q∗(ω) for all ψ̄ ∈Q∗(ω).

Since Q∗(ω) is a finite-dimensional space whose dimension does not depend
on ω, the above implies that L̄ ∗

ω is bijective. Furthermore, the quantity

C (ω) = inf
n∈N;ψ̄∈SX∗∩Q∗(ω)

e−(λ`−1−ε)n‖L̄ ∗(n)
ω ψ̄‖Q∗(σ−nω)

is positive. We claim that C (ω) is measurable. Let (ζn(ω)) be a measurable
dense subsequence of V ∗

`
(ω). If ψ̄(ω) is the equivalence class of ψ in Q∗(ω),

then we have ‖ψ̄(ω)‖Q∗(ω) = infk ‖ψ(ω)−ζk (ω)‖, which depends measurably on
ω. Proceeding as in Lemma 11, we see that C (ω) is measurable and by (12) is
positive almost everywhere. Hence C (ω) exceeds some quantity c on a set of
positive measure.

Let φ̄n ∈Q∗(σnω) be such that L̄ ∗(n)
σnω φ̄n = θ̄. Then

‖L̄ ∗(n)
σnω φ̄n‖Q∗(ω) ≥C (σnω)e(λ`−1−ε)n‖φ̄n‖Q∗(σnω).

By ergodicity, there exist arbitrarily large values of n for which

‖φ̄n‖Q∗(σnω) ≤ c−1e−(λ`−1−ε)n‖θ̄‖Q∗(ω).(13)

On the other hand, one has v ∈ Yl (ω), so that ψ(v) = 0 for every ψ ∈ V ∗
l (ω).

Thus, if we express L ∗(n)
σnω φn +ψn = θ, where φn ∈ X ∗ is a representative of φ̄n

and ψn ∈V ∗
l (ω), the following holds

1 = θ(v) =L ∗(n)
σnω φn(v)+ψn(v) =φn(L (n)

ω v).

In addition, for every ψ ∈ V ∗
l (σ−nω), (φn +ψ)(L (n)

ω v) = φn(L (n)
ω v) = 1. Thus,

for sufficiently large n and every ψ ∈V ∗
l (σ−nω), ‖φn +ψ‖e(λ`+ε)n ≥ 1. Therefore,

‖φ̄n‖Q∗(σn (ω)) ≥ e−(λ`+ε)n , giving a contradiction with (13). Hence, V`−1(ω) =
V`(ω)⊕Z`−1(ω) as required.
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[9] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in
Mathematics, No. 94, Cambridge University Press, Cambridge, 1989.

[10] M. S. Raghunathan, A proof of Oseledec’s multiplicative ergodic theorem, Israel J. Math., 32
(1979), 356–362.

[11] D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Ann. of Math.
(2), 115 (1982), 243–290.

[12] P. Thieullen, Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov.
Entropie. Dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 49–97.

[13] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics,
25, Cambridge University Press, Cambridge, 1991.

CECILIA GONZÁLEZ-TOKMAN <cecilia.gt@uq.edu.au>: School of Mathematics and Physics,
The University of Queensland, St Lucia QLD 4072, Australia

ANTHONY QUAS <aquas@uvic.ca>: Department of Mathematics and Statistics, University of
Victoria, Victoria, BC V8W 3R4, Canada

JOURNAL OF MODERN DYNAMICS VOLUME 9, 2015, 237–255

http://arxiv.org/pdf/1502.06554
http://www.ams.org/mathscinet-getitem?mr=MR2643709&return=pdf
http://dx.doi.org/10.1017/S0143385709000339
http://dx.doi.org/10.1017/S0143385709000339
http://www.ams.org/mathscinet-getitem?mr=MR3227155&return=pdf
http://dx.doi.org/10.1017/etds.2012.189
http://www.ams.org/mathscinet-getitem?mr=MR1335452&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2674952&return=pdf
http://dx.doi.org/10.1090/S0065-9266-10-00574-0
http://dx.doi.org/10.1090/S0065-9266-10-00574-0
http://www.ams.org/mathscinet-getitem?mr=MR730286&return=pdf
http://dx.doi.org/10.1007/BFb0061433
http://www.ams.org/mathscinet-getitem?mr=MR0240280&return=pdf
http://dx.doi.org/10.1017/CBO9780511662454
http://www.ams.org/mathscinet-getitem?mr=MR571089&return=pdf
http://dx.doi.org/10.1007/BF02760464
http://www.ams.org/mathscinet-getitem?mr=MR647807&return=pdf
http://dx.doi.org/10.2307/1971392
http://www.ams.org/mathscinet-getitem?mr=MR877991&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1144277&return=pdf
http://dx.doi.org/10.1017/CBO9780511608735
mailto:cecilia.gt@uq.edu.au
mailto:aquas@uvic.ca

	1. Introduction
	2. Volume calculations in Banach spaces
	3. Random dynamical systems
	References

