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 Ergodic theory is the study of measure-preserving transformations. 
Its utility derives from two facts: (1) there are remarkably 
strong conclusions that apply to every measure-preserving 

transformation; and (2) measure-preserving transformations 
occur naturally in many branches of mathematics (for example 
number theory, combinatorics, probability, differential geometry, 
information theory). Formally, one considers maps � from a space 
⌦ (equipped with a measure µ and a �-algebra B ) to itself, for 
which µ(��1A) = µ(A) for all measurable sets A. We generally 
consider the case where µ is a probability measure. A simple example 
is rigid rotation of a circle, which preserves Lebesgue measure. 
The measure-preserving transformation (⌦,B, �, µ), or more 
colloquially the measure µ, is said to be ergodic if ��1(A) = A 
implies µ(A) = 0  or µ(Ac) = 0 . This can be seen as an 
indecomposability condition, as if µ were not ergodic, one could 
restrict � to A and Ac and study the systems separately. 

A prototype theorem is the Birkhoff ergodic theorem. 

Theorem 1 (Birkhoff, 1932 [1]). Let � be a measure-preserving 
transformation of a measure space ⌦ and let f be an integrable 
function f on ⌦. Then (1/n)(f(!) + . . .+ f(σn�1!))
is convergent to some limit (a priori depending on !) for almost  
every !. If µ is ergodic, then the limit is s f dµ  for µ-almost  
every !. 

The ergodic case is often reduced to the maxim “the time average 
and space average agree.” Notice that the theorem gives non-
trivial conclusions even in the simplest example mentioned above. 
The strong law of large numbers in probability theory is an easy 
corollary of the Birkhoff ergodic theorem, as is the Borel normal 
numbers theorem. 

Chaos has been defined in many ways, but all of the notions of chaotic 
behaviour of a map include infinitesimally close points becoming in 
some sense separated as the map is iterated. One natural approach 
to this, in the case where the phase space is a subset of Rd and the 
map is differentiable, is to look at the derivative of the nth power of 
the map. Using the chain rule, the derivative of the nth composition 
of T , DTn(!) ,̀ is DT (Tn�1!) ·DT (Tn�1!) · · ·DT (!) . 
We focus temporarily on the case where T  is a map of a 
one-dimensional space. In this case, DTn(!) is simply a 
product of reals. In this case, taking logarithms, one sees that 
(1/n)log|DTn(!)| = (1/n)(log|DT (!)|+ . . . + log|DT (Tn�1!)|). 
Providing T  preserves an ergodic invariant measure µ, the limit of 
this is shown by the ergodic theorem to be s log|DT (!)|dµ(!). 
This quantity is called the Lyapunov exponent of T . Large Lyapunov 
exponents indicate fast separation of infinitesimally close trajectories. 

One definition of chaos is the existence of a positive Lyapunov 
exponent. In the higher-dimensional case, where T  is a self-map 
of a manifold or space with differentiable structure, DTn is a matrix 
product, so that the ergodic theorem does not directly apply as above. 
Oseledets’ multiplicative ergodic theorem, another extremely general 
statement, is of interest in this setting. 

Theorem 2 (Oseledets, 1968 [7]) Let � be a measure-preserving 
transformation of a space ⌦ and let A : ⌦ ! GL(d,R)  be 
measurable. Assume that s logA±1(!) dµ(!) < 1. Then there 
exist λ1(!) > λ2(!) > . . . > λk(!)  and a decomposition 
Rd = V1(!)� V2(!)� . . .� Vk(!) such that for µ-almost 
every !, the following hold: 

•	λi(σ!) = λi(!);

•	A(!)Vi(!) = Vi(σ(!)); and

•	 lim
n!1

(1/n) log kA(σn−1!) · · ·A(!)vk = λi(!)  for all 

v 2 Vi(!) \ {0}.

In particular, if µ is ergodic, then the λi(!) are constant–called 
Lyapunov exponents–and the Vi(!) have constant dimension µ
–almost everywhere.

We see this as a generalization to random matrices of a Jordan 
block decomposition. The vector space is expressed as a direct 
sum decomposition (with the decomposition depending equivariantly  
on !) into pieces that have characteristic exponential rates of 
expansion given by the λi(!). Applying this in the case where 
A(!) is DT (!) mentioned above, one obtains a splitting of the 
tangent space over each point into vector subspaces, each of which 
has a characteristic infinitesimal rate of expansion. 

One caveat with the above theorems is that the strength of the 
conclusion is only as good as the invariant measure that one 
is using. Suppose that T  is a map from X to itself (where there is 
no measure specified yet). To apply ergodic theory, one needs to find 
a T -invariant measure. In general there may be (uncountably) many 
invariant measures for a given transformation. If T  has a fixed point, 
x0, then the Dirac �-measure, giving mass 1 to x0 and mass 0 to 
the remainder of the space is an invariant measure. Unsurprisingly, 
this measure is quite useless from our point of view, because the 
ergodic theorems give conclusions that hold for almost every point 
with respect to the invariant measure. In the case of a �-measure, 
the conclusion only holds at the single fixed point! If one wants a 
conclusion that holds for Lebesgue almost every point (assuming 
X is a subset of Rd or a manifold), one needs an ergodic invariant 
measure equivalent to Lebesgue measure (that is, an absolutely 
continuous invariant measure). 

A standard technique for searching for absolutely continuous 
invariant measures is to use the Ruelle-Perron-Frobenius 
operator. For a dynamical system T  whose phase space is a 
subset of Rd, its Perron-Frobenius operator is a linear map 
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L from L1(Rd) to itself, which may be thought of as describing 
the evolution of densities: if a random variable Z has a distribution 
with density ⇢(x), then T (Z) (the random variable obtained by 
sampling a point from Z and applying T ) has density L(⇢). As an 
example, if T  is the map of R sending x to x/2, L would send 
a density ⇢ to a density L(⇢)(x) = 2⇢(2x) (i.e. a density with 
half the width and twice the height). Absolutely continuous invariant 
measures are in a one-to-one correspondence with non-negative 
fixed points of this operator. 

A good analogy for Ruelle-Perron-Frobenius operators is transition 
matrices for finite Markov chains. Invariant distributions for Markov 
chains are exactly fixed points (i.e. left eigenvectors with eigenvalue 1) 
for the transition matrix. In the nice situation where all other 
eigenvalues of the transition matrix have absolute value less than 1, 
there is said to be a spectral gap. The size of the spectral gap is 
related to the convergence rate of the Markov chain to its invariant 
distribution. The mixing time is a closely related statistic (see [6] for 
more information). There is important information also in the left 
eigenvectors corresponding to (real) eigenvalues close to 1. The level 
sets can be used to determine almost invariant sets for the Markov 
chain: if one has a Markov chain with a ‘bottleneck’ – that is, the 
state space is divided into pieces such that it takes a long time to 
transition between them – then eigenvectors are almost constant 
on the almost invariant sets. 

We combine all of the above ingredients to understand the evolution 
of densities in forced dynamical systems. Here one imagines 
that there is a dynamical system (the forcing system) running 
autonomously in the background, but whose state affects the 
evolution of a second dynamical system. For a simple illustration, 
imagine the moon evolving autonomously and affecting, but not being 
affected by, tidal motions. 

Formally, we are talking about dynamical systems of the form 
S : ⌦⇥X ! ⌦⇥X  given by S(!, x) = (σ(!), T!(x)) . 
We further assume that X  is a subset of Rd and T! is a 
differentiable mapping. Writing L! for the Ruelle-Perron-Frobenius 
operator of T!, we can study the evolution of densities under the 
forced dynamical system. A recent generalization of the multiplicative 
ergodic theorem due to Lian and Lu [5] (following earlier work by 
Mañé, Ruelle, Thieullen and others) allows us to decompose suitable 
Banach spaces of densities into a direct sum of finite-dimensional 
subspaces, the top one with exponent 0, and others with negative 
exponents, together with a residual faster-contracting subspace. 
Just as with the Markov chain analysis, this may be used to to identify 
principal bottlenecks responsible for inhibiting mixing. In recent work 
and work in progress with Gary Froyland [2,3,4] as part of a long-
term program of Froyland and his collaborators, we aim to apply 
these techniques to studying slow-mixing regions of the oceans 
(called gyres) which have been implicated in phenomena such as 
the Great Pacific Garbage Patch.
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