Invariant densities for metastable systems

Cecilia González Tokman

Department of Mathematics, University of Maryland, College Park

Introduction

- Metastable systems. Systems with two or more nearly invariant subsets. We consider one-dimensional piecewise expanding maps T_{ϵ} that are perturbations of a map T_0 with two invariant sets. I_{ϵ} and I_{ϵ} .
- Invariant densities. Functions that describe invariant measures of physical interest.
- **Question**. For small ϵ , what is the best approximation to the invariant density of T_{ϵ} by a linear combination of the ergodic invariant densities of T_0 ?

Figure: Metastable system: red. Initial system: blue. Holes: brown.

Call $H_{l,\epsilon} := I_l \cap T_{\epsilon}^{-1}(I_r)$ and $H_{r,\epsilon} := I_r \cap T_{\epsilon}^{-1}(I_l)$ the holes.

Main theorem

Consider T_0 and T_ϵ satisfying assumptions (I1)-(I5) and (P1)-(P3), respectively.

Suppose that $A := \lim_{\epsilon \to 0} \frac{\mu_{\ell}(H_{\ell,\epsilon})}{\mu_{\ell}(H_{\ell,\epsilon})}$ exists. Let $\alpha = \frac{A}{1+A}$. Then as $\epsilon \to 0$.

$$\phi_{\epsilon} \xrightarrow{L^1} \alpha \phi_I + (1 - \alpha)\phi_r$$
.

Generalizations

- ▶ Multiple holes.
- Disconnected invariant sets.
- ▶ Boundary point can depend on ϵ.

Initial system

 $T_0: I \odot$ is a piecewise C^2 expanding map with critical set $C_0 = \{-1 = c_0^0 < c_1^0 < \dots < c_d^0 = 1\}$, satisfying:

- (I1) Two invariant sets with unique ACIMs.
 - ♦ There is a boundary point $b \in (-1, 1)$ such that $I_I := [-1, b]$ and $I_I := [b, 1]$ are invariant under T_0 .
 - T₀|_{I_s} has a unique ACIM μ_{*} with density φ_{*}
- (I2) Restriction on infinitesimal holes.
 - ♦ Let the infinitesimal holes be H₀ := T₀⁻¹{b} \ {b}.
 - $\bullet I_1 \cap H_0 = \{h_1\}, I_1 \cap H_0 = \{h_r\}.$
- (I3) No-return of the critical set to the infinitesimal holes.
- (14) Positive densities at infinitesimal holes.
- (I5) Restriction on periodic critical points.
 - ♦ Either the expansion is greater than 2, or T₀ has no periodic critical points except possibly -1 or 1 fixed.

Example

► Lebesgue measure on I_l , I_r is invariant for T_0 . \downarrow^{I_0} \downarrow^{I_0}

Properties of invariant densities

- ► Bounded variation [LY73].
- Regular-singular decomposition [Bal07, BS08].

$$\phi_{\epsilon} = \phi_{\epsilon}^{reg} + \phi_{\epsilon}^{sal}$$
,

 ϕ_{ϵ}^{reg} is Lipschitz.

 $\phi_{\epsilon}^{Sal} = \sum_{U_{\epsilon}} s_{U_{\epsilon}} H_{U_{\epsilon}}$, is the sum of step functions along postcritical orbits

- $s_{u_{\epsilon}}$ is the jump of ϕ_{ϵ} at u_{ϵ} , H_{u} is a Heaviside function.
- Equal measure of holes.

$$\mu_{\epsilon}(H_{\epsilon,I}) = \mu_{\epsilon}(H_{\epsilon,\ell}).$$

Uniformly bounded variation.

$$\sup_{0<\epsilon<\epsilon_0} \operatorname{var}(\phi_\epsilon) < +\infty.$$

- Uniform Lipschitz constants.

$$\sup_{0<\epsilon<\epsilon_0} \operatorname{Lip}(\phi_{\epsilon}^{reg}) < +\infty.$$

- Exponential decay of jumps along critical trajectories.
- Small jumps inside the holes. For
 * ∈ {I, r}, δ > 0 and ϵ small, the
 variation of φ_ε^{sal} over H_{*,ϵ} is

$$\text{var}_{H_{\epsilon,\epsilon}}(\phi_{\epsilon}^{sal}) < \delta.$$

Continuity of \(\phi_* \) at \(h_*. \)

Conclusions

- Limit invariant densities are found for a class of one-dimensional, expanding, piecewise C^2 metastable systems with finitely many components, that are not required to have Markov partitions.
- The result agrees with linear response heuristics, and complements works of [KL09], where eigenvalues of the transfer operator associated to T_{ϵ} are approximated. Invariant densities correspond to eigenvectors of eigenvalue 1.

Acknowledgments

- Joint work with Brian Hunt and Paul Wright, [GTHW].
- Problem suggested by Dmitry Dolgopyat.

References

V. Baladi.

On the susceptibility function of piecewise expanding interval maps.

Comm. Math. Phys., 275(3):839-859, 2007.

V. Baladi and D. Smania.

Linear response formula for piecewise expanding unimodal maps.

Nonlinearity, 21(4):677-711, 2008.

a C. González-Tokman, B.R. Hunt, and P. Wright. Approximating invariant densities of metastable systems.

To appear in ETDS.

G. Keller and C. Liverani.

Rare Events, Escape Rates and Quasistationarity: Some Exact Formulae.

Journal of Statistical Physics, 135:519-534, 2009.

A. Lasota and J.A. Yorke.

On the existence of invarian

On the existence of invariant measures for piecewise monotonic transformations.

Trans. Amer. Math. Soc., 186:481-488, 1973.

Perturbations

 $T_{\epsilon}:I\circlearrowleft$ is a perturbation of T_{0} such that for $\epsilon>0$, the following hold:

- (P1) Small C2 perturbation.
- (P2) Unique ACIM μ_{ϵ} , with density $\phi_{\epsilon} := d\mu_{\epsilon}/dx$.
- (P3) Boundary condition.
 - ♦ When $b \notin C_0$, $T_{\epsilon}(b) = b$.
 - $lackloaise When b \in C_0$, $b \in C_{\epsilon}$, $T_{\epsilon}(b_{-}) \leq b$ and $T_{\epsilon}(b_{+}) \geq b$.

