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Multiplicative ergodic theorems for transfer operators:
towards the identification and analysis of coherent structures

in non-autonomous dynamical systems

Cecilia González-Tokman

Abstract. We review state-of-the-art results on multiplicative ergodic theory

for operators, with a view towards applications to the analysis of transport
phenomena in non-autonomous dynamical systems, such as geophysical flows.

The focus of this work is on ideas and motivation, rather than on proofs and

technical aspects.
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1. Introduction

An important motivation behind the recent work on multiplicative ergodic the-
orems is the desire to develop a mathematical theory which is useful for the study
of global transport properties of real world dynamical systems, such as oceanic and
atmospheric flows.

Global features of the ocean flow include large scale structures which are im-
portant for the global climate. One of the best known such structures is the Gulf
Stream, which was discovered and navigated by Spanish sailors about five hundred
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years ago, at the time of the Spanish colonization of the Americas. The Gulf Stream
transports water from the tropical latitudes in the warm Caribbean towards the cold
North Atlantic, and it is of high importance for the global climate system. Another
large scale coherent oceanic structure is the North Pacific Gyre. There, water sinks
propitiating conditions for the Great Pacific Garbage Patch to be formed1. This
patch was discovered less than twenty years ago, by Captain Charles Moore. It
concentrates plastic residues mostly in the form of microplastics, at the surface
and beneath it, and affects marine life in various ways. This fact highlights the
importance of developing tools which are capable of analyzing three-dimensional
systems.

In the atmosphere, it is well known that there exist vortices near the poles
which are persistent over time scales of the order of weeks or longer. The condi-
tions on the Antarctic polar vortex are favorable for chemical reactions responsible
for the depletion of ozone, which manifest themselves in the ozone hole. Figure 1
shows streamlines of a snapshot of the wind vector field around the Antarctic po-
lar vortex on September 13th, 2015, from http://earth.nullschool.net/#current/

wind/isobaric/10hPa/orthographic=-70.56,-81.09,288. Both polar vortices retain
cold air, especially in the winter, and change their location over time. This fact
illustrates that a time-dependent (or non-autonomous) point of view is necessary
for the study of such structures.

9/13/15, 6:56 PMearth :: a global map of wind, weather, and ocean conditions

Page 1 of 1http://earth.nullschool.net/#current/wind/isobaric/10hPa/orthographic=-70.56,-81.09,288

Figure 1. Visualization of the Antarctic polar vortex in Septem-
ber 2015. Snapshot taken from http://earth.nullschool.net.

1The reader may visit the following National Geographic educational article on this topic:
http://education.nationalgeographic.com/encyclopedia/great-pacific-garbage-patch/

http://earth.nullschool.net/#current/wind/isobaric/10hPa/orthographic=-70.56,-81.09,288
http://earth.nullschool.net/#current/wind/isobaric/10hPa/orthographic=-70.56,-81.09,288
http://earth.nullschool.net
http://education.nationalgeographic.com/encyclopedia/great-pacific-garbage-patch/
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Two key features of these so-called coherent structures which make their anal-
ysis challenging, both computationally and mathematically, are: (i) The structures
in question are not completely invariant, but rather interact weakly with their sur-
roundings. Hence, especially in the three dimensional setting, it is often unclear
how to identify or determine their boundaries; and (ii) The structures are not static,
but change their shape and location over time.

A natural framework in which one may attempt to address these challenges
is that of non-autonomous dynamical systems, introduced in Section 2. Such a
setting deals with systems evolving under time-dependent mechanisms, and hence
can conveniently account for non static features such as the coherent structures of
interest. Non-autonomous dynamical systems have received considerable attention
in the literature over the last few years. In fact, some instances thereof –the so-
called noisy and driven systems– have been identified as important directions going
forward in dynamics in the recent survey article by L.-S. Young [97].

One of the tools which has proved to be very successful for analyzing the long
term behavior of a large class of dynamical systems is the so-called transfer operator,
discussed in Section 3. The idea behind this approach is to take a probabilistic
point of view of the system, and represent its state at a given time via a density
function, describing the distribution of mass (or fluid) in the system. The transfer
operator is a linear operator that encodes the action of the dynamics on this density.
That is, if ρ represents the state of the system at the present time, and L is the
transfer operator associated to the one-step dynamics, then Lρ describes the state
of the system one time step ahead. The crucial factor is that spectral properties
(eigenvalues and eigenvectors) of the transfer operator are closely related to objects
of dynamical interest.

Section 4 is about multiplicative ergodic theorems, dating back to the work of
Oseledets [85] in the mid 1960s. They provide time-dependent versions of spectral
decompositions for composition of random (or non-autonomous) linear operators.
Given the considerable success that spectral methods have enjoyed in explaining
autonomous dynamical systems via transfer operators, multiplicative ergodic the-
orems seem to be an ideal candidate for the investigation of coherent structures in
the non-autonomous setting. This was the breakthrough idea of Froyland, Lloyd
and Quas [42], which has been extensively investigated in recent years.

The design, development, implementation and optimization of numerical and
computational algorithms to identify and visualize relevant features, such as almost
invariant sets and coherent structures for models of dynamical systems of physi-
cal interest, has paralleled the theoretical development for transfer operators and
multiplicative ergodic theorems. This is the topic of Section 5.

Section 6 discusses recent works which have used the technology of transfer op-
erators and multiplicative ergodic theorems to locate coherent structures in models
of oceanic and atmospheric flows. A list of online resources for visualizing oceanic
and atmospheric flows is presented in Appendix A.

1.1. Acknowledgments. The author thanks her colleagues and collabora-
tors, especially Gary Froyland and Anthony Quas, for years of valuable collabora-
tion and discussions on the topic of the present work; and an anonymous referee
for providing comments and references which were incorporated in the published
version.
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2. Non-autonomous dynamical systems

The difference between autonomous and non-autonomous systems is that the
rules dictating the dynamics are fixed in the former, and change over time in the
latter. Thus, non-autonomous dynamical systems may be used to describe the
evolution of a wider class of phenomena, including systems which are forced or
driven, like a planet (or even a group of planets) whose evolution is affected by
external forces, such as the presence of one or more other planets, stars and perhaps
other factors.

We remark that it is, at least in theory, possible to enlarge a non-autonomous
system to make it autonomous, by incorporating all the external factors into it.
An important benefit of considering the non-autonomous point of view is that one
may focus on the feature of interest – for example, one planet – and obtain much
finer conclusions about its behavior than one could get from considering a larger
autonomous system, at least with the current technology.

A strategy which has been successful for extending existing theory for au-
tonomous systems to the non-autonomous setting is to consider still objects which
explain or illustrate some dynamical feature in the autonomous setting, and an-
imate them into movies, capturing the corresponding characteristic in the non-
autonomous setup. An example which has been highly studied is that of a so-called
random fixed point: this is simply a point in state space which is moving over time.
This approach has been used to describe the asymptotic behavior in some classes
of random dynamical systems.

Non-autonomous dynamical systems are also known as random, forced and
time-dependent systems, as well as skew-products or cocycles. They consist of a
driving system (Ω,F ,P, σ) and an evolution rule. The latter consists of an indexed
family of maps Lω := L(1, ω, ·), where L : T× Ω×X → X is called the generator
of the system, and is generally assumed to be a measurable function. Here, we will
focus on the case of one sided discrete time systems, i.e. T = N := {0, 1, 2, . . . }, but
other common choices are T ∈ {Z,R,R+}, allowing for two sided and continuous
time systems as well. Thus, the full non-autonomous dynamical systems is described
by a tuple (Ω,F ,P, σ,X,L). A systematic treatment of these systems is presented
in the 1998 book by L. Arnold [2].

2.1. The driving system. The driving system encodes the external influ-
ences on the system of interest. It is modeled by a probability preserving trans-
formation σ of a probability space (Ω,F ,P). That is, P(σ−1E) = P(E) for every
measurable set E ∈ F . We assume σ is invertible2 and ergodic; that is, if E ∈ F is
such that σ−1E = E, then P(E) ∈ {0, 1}.

2This feature can often be obtained by considering the natural extension.
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This scenario is very flexible. For example, it allows for modeling deterministic
driving, such as quasi-periodic forcing, e.g. Ω = S1, P = Leb, σ(ω) = ω + α
(mod 1), α 6∈ Q. Furthermore, the setting also allows for handling a stochastic
framework, in which the external forcing can reflect the influence of noise, for
example by setting Ω = [−ε, ε]Z, P a product of uniform measures, and σ the shift.
In addition, this setting generalizes the autonomous case, which can be recovered
by choosing Ω = {ω0},P = δω0

, σ = Id.

2.2. The evolution rule. For each element ω ∈ Ω there is a correspond-
ing evolution operator Lω : X → X. Here X is the state space where the non-
autonomous dynamical system evolves. A useful way to think about the whole
system is to regard Ω as representing time. Then, Lω corresponds to the evolution
rule at the instant ω. The so-called cocycle property is necessary to describe the
evolution rule for the cocycle after n ∈ N steps:

(1) L(n)
ω := Lσn−1ω ◦ · · · ◦ Lσω ◦ Lω.

When the maps Lω are linear transformations, the cocycle is called a linear cocycle.
Among the most extensively studied linear cocycles is the so-called derivative

cocycle, which arises from taking a differentiable map f : M → M as the base
transformation, and constructing the cocycle by composing derivatives {Dfx}x∈M .
In this case, σ = f , Ω = M , P must be a probability measure preserved by f ,
X = TxM ∼= RdimM , and Lx = Dfx. The chain rule implies that the matrix
obtained by composition of the matrices along the cocycle exactly describes the
linearization (derivative) of the evolution of the system from time 0 to time n:
D(fn)x = Dffn−1x ◦ · · · ◦Dffx ◦Dfx.

In the applications discussed in this work, two other types of evolution oper-
ators are considered. In the first one, X is finite, X = {B1, . . . , Bn}. This choice
corresponds to a partition of the state space for a non-autonomous dynamical sys-
tems of interest, with evolution rules dictated by Tω : M →M , where M = ∪ni=1Bj .
The evolution rule associated to ω ∈ Ω is in this case a matrix, Aω, obtained by

the so-called Ulam’s method [92]: (Aω)ij =
m(Bi∩T−1

ω Bj)
m(Bi)

. In words, the ij-th en-

try of Aω is the fraction of orbits starting in Bi which fall inside Bj under one
step of the dynamics Tω, conditional on starting in Bi. This construction relies
on having a reference measure m on M , which in applications can frequently be
taken to be Lebesgue measure. This is a very intuitive finite-state Markovian model
approximating the dynamics of the system.

Another type of evolution operator, highly relevant to the problems at hand,
is given by transfer operators. These are bounded linear operators Lω acting on an
infinite dimensional Banach space X = B, which encode the evolution of densities
or ensembles of particles under the dynamics Tω. These operators will be the topic
of Section 3.

3. Transfer operators and quasi-compactness

Transfer operators yield powerful tools for the study of transport in dynami-
cal systems. Instead of representing the pointwise dynamics of the system, they
encode the evolution of densities or ensembles under the dynamics, as illustrated
in Figure 2. In many instances, transfer operators may be shown to be bounded
linear operators, but typically have the difficulty of acting on infinite dimensional
Hilbert or Banach spaces.
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Figure 2. Schematic representation of the action of a transfer
operator L on a density f , and its relation with the pointwise
action of T .

Consider a probability space (M,M,m) and a non-singular3 dynamical system
T : M →M . The transfer operator L associated to T is a linear operator L : X →
X defined via the duality relation:∫

f · g ◦ T dm =

∫
Lf · g dm, for every f ∈ X, g ∈ X∗.

Here, X can be thought of a space such as L1(m), but many other possibilities have
been used in the literature. In fact, the choice of X is often part of the challenge
faced in concrete applications.

3.1. The autonomous setting. A concept which has been a key to the cur-
rent understanding of transport properties of dynamical systems is that of quasi-
compactness. This property was investigated in the work of Ionescu Tulcea and
Marinescu [59], and later also by Nussbaum and Hennion [83, 57].

A bounded linear operator L acting on a Banach space (X, ‖ ·‖) is called quasi-
compact if its spectral radius ρ is strictly larger than its essential spectral radius
ρe. The spectral radius of L is defined as ρ(L) := limn→∞ ‖Ln‖1/n, and one way of
defining the essential spectral radius of L is ρe(L) := limn→∞ icX(Ln)1/n, where

icX(A) := inf{r > 0 : A(BX) can be covered with finitely many balls of radius r},

and BX = {x ∈ X : ‖x‖ ≤ 1} denotes the unit ball of X. Existence of the limit
follows in both cases from submultiplicativity. It is straightforward to see that
ρ ≥ ρe, and also that L is a compact operator if and only if ρe = 0.

When L is quasi-compact and τ > ρe(L), the spectrum of L outside the disc
of radius τ consists only of finitely many eigenvalues, γ1, . . . , γl of finite (algebraic)
multiplicity. In particular, there is a spectral gap between the leading eigenvalue
and the rest of the spectrum. As in the case of compact operators, it may be that
eigenvalues of L accumulate on the disc of radius ρe(L).

Furthermore, if L is quasi-compact, it may be written as follows:

L =

l∑
i=1

(γiPi +Di) +R,

3T : M → M is non-singular if for every E ∈ M, m(T−1(E)) = 0 if and only if m(E) = 0.
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where Pi is the eigen-projection and Di the eigen-nilpotent corresponding to γi, [9,
§1.3], [63, §III.5]. In addition, ρ(R) < |γl|, and the following relations hold.

PiPj = δijPi, PiDi = DiPi = Di, (L− γi)Pi = Di, PiR = RPi = 0.

In particular, these imply that

Ln =

l∑
i=1

(γiPi +Di)
n +Rn.

Thus, quasi-compactness allows for the spectral analysis of the largest magnitude
eigenvalues of L, which are dynamically the most important.

When quasi-compactness holds in the context of transfer operators, the leading
eigenvalue is always γ1 = 1. The eigenvalues of large modulus and their correspond-
ing (generalized) eigenspaces have been associated with fundamental properties of
the underlying dynamical system.

3.1.1. Peripheral eigenvalues. The spectral decomposition for the transfer op-
erator (acting on the space of functions of bounded variation, X = BV ) was used
by Hofbauer, Keller [58] and Rychlik [88] in the study of of piecewise smooth,
piecewise expanding maps of the interval. In those works, it was shown that the
multiplicity k1 of the leading eigenvalue 1 provides the number of ergodic compo-
nents of positive Lebesgue measure – these are considered the relevant ones from a
physical point of view. A basis for the associated eigenspace may be taken as a set
{φ1, . . . , φk} of non-negative functions with disjoint supports (mod m).

Each of the φj gives rise to an absolutely continuous invariant measure (acim)

µj defined by
dµj

dm = φj , describing the long term statistical behavior of m−almost
every trajectory in the support of φj , Mj = supp(φj). This is in essentially the
same way that the stationary distribution of a finite-state Markov chain describes
the long term statistical behavior of almost all realizations, via the law of large
numbers: For m−almost every x ∈Mj ,

lim
N→∞

1

N

N−1∑
n=0

f(Tnx) =

∫
fφjdm.

Furthermore, when 1 is simple (k1 = 1), the existence of unit-length eigenvalues
different from 1 is the only obstruction for the system to have the so-called mixing
property4. In fact, if |γ2| < 1, then the exponential decay of correlations property

holds: Let µ be the measure given by dµ
dm = φ1. Then, for every f ∈ X, g ∈ X∗,∣∣∣ ∫ f · g ◦ TNdµ−

∫
fdµ

∫
gdµ

∣∣∣ ≤ C‖f‖X‖g‖X∗ |γ2|N .

Finer statistical properties, such as central limit theorems, weak invariant principles
and laws of iterated logarithms have also been established from spectral properties.
The seminal work of Keller and Liverani [65] shows stability properties of the
spectrum in this and more general settings.

Thanks to the great amount of work devoted to the study of transfer operators
in the last decades, these properties are now known to hold in much more general
settings than piecewise smooth expanding maps in BV . They essentially rely on
establishing the quasi-compactness property in an adequate Banach space. Ex-
amples include higher dimensional (piecewise) expanding systems, as well as some

4The system is mixing if for every A,B ∈ M, limN→∞m(A ∩ T−NB) = m(A)m(B).
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(piecewise) hyperbolic systems. The book by V. Baladi [9] contains references up
to the year 2000. More recent work in this direction includes [15, 12, 56, 27, 10].

3.1.2. Sub-unit eigenvalues. In the 1990’s, it was suggested by a group of ap-
plied mathematicians, including Dellnitz, Junge, Deuflhard and Schütte, that sub-
unit eigenvalues of the transfer operators together with their associated eigenspaces
also encompass important dynamical information [26, 28, 25]. For example, they
can encode the location of so-called metastable regions or almost invariant compo-
nents.

It remained for some time unknown whether sub-unit isolated eigenvalues could
be found in some well studied dynamical systems settings. For instance, the first
explicit example of an analytic expanding map of the circle with a sub-unit eigen-
value larger than the essential spectral radius was only found in 2004 [67]. Since
then, the development of the corresponding theory clarifying the connection be-
tween metastability and spectral properties of the transfer operator has received
considerable attention [66, 52, 49, 45, 31, 7, 55, 90].

This approach has been successfully used by Froyland and collaborators in the
study of models of oceanic flow, for example to detect gyres in the Southern ocean
[46].

3.1.3. The Koopman operator and a duality relation. The Koopman or com-
position operator K : X∗ → X∗, given by g 7→ g ◦ T , is the dual of the transfer
operator in that

∫
Lf · gdm =

∫
f · g ◦ Tdm for every f ∈ X, g ∈ X∗.

The Koopman operator is receiving considerable attention in the study of dy-
namical systems because direct information regarding the evolution of the Koopman
operator can be recovered from data measurements [20]. For example, suppose T
describes the evolution of a fluid over one unit of time, and g is a function measur-
ing temperature, or a similar observable quantity, at different moments in time and
along a large number of sensors placed in different spatial locations. Then, each
set of measurements taken after j units of time yields information regarding the
corresponding power Kj = g ◦ T j .

Despite being closely related, the transfer operator and Koopman operator
points of view of the dynamics have so far been considered mostly separately in
the literature. An approach which combines the dual perspectives is discussed in
Section 4.3.

3.2. The non-autonomous setting. Two common approaches to the study
of non-autonomous systems are the annealed and quenched points of view. In the
annealed case, the focus is on identifying properties of an averaged system which
describe global features of the non-autonomous dynamics. This approach has been
successful in the study of systems which are driven by a random iid process, such
as deterministic systems perturbed by noise [13, 65].

The independence property in the driving system allows for the construction of
an annealed transfer operator, L̄ :=

∫
Ω
LωdP(ω), which in some sense represents the

behavior of the non-autonomous system. However, when the driving process is not
iid, the operator L̄ does not necessarily reflect dynamical properties of the underly-
ing non-autonomous system. In fact, it is not known whether in this more general
case there exists an annealed operator reflecting relevant dynamical properties.

The quenched perspective seeks to understand the system by considering in-
dividual realizations of the driving process. Early works combining this approach
with transfer operators technology include [69, 68, 8, 11, 22, 21].
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Buzzi [22] investigated non-autonomous compositions of piecewise smooth in-
terval maps, under fairly general assumptions on expansion and distortion. He
established the existence of at least one and at most finitely many so-called ran-
dom absolutely continuous invariant measures (acims), µ = {µω}ω∈Ω, each with an
associated basin B(µ) ⊂M of positive Lebesgue measure, and whose union covers

M (mod m). The probability measures µω have associated densities φω = dµω

dm
satisfying the equivariance relation Lωφω = φσω. This condition ensures that ran-
dom acims also satisfy a law of large numbers type condition: For m−almost every
x ∈ B(µ),

lim
N→∞

1

N

N−1∑
n=0

f(T (n)
ω x) =

∫ ∫
fdµωdP(ω).

In subsequent work [21], Buzzi identified conditions ensuring exponential decay
of random correlations, as follows:∣∣∣ ∫ f · g ◦ T (N)

ω dµω −
∫
fdµω

∫
gdµσnω

∣∣∣ ≤ C(ω)‖f‖BV ‖g‖∞|γ2|N .

Limit theorems have also been investigated in the non-autonomous setting. Kifer
[70] introduced a time-dependent centering term, and obtained a version of the
central limit theorem, as well as other limit laws. Without the time-dependent
centering, this type of limit theorems have only been established in cases where all
maps preserve a common invariant measure [4, 82, 1].

A key component of the recent progress in the study of transport in non-
autonomous systems has been the formulation of a non-autonomous version of the
quasi-compactness property, going back to Thieullen [91]. A non-autonomous dy-
namical systems R = (Ω,F ,P, σ,X,L) is called quasi-compact if its maximal Lya-
punov exponent,

Λ(R) := lim
n→∞

1

n
log ‖L(n)

ω ‖X ,

is strictly larger than its index of compactness,

κ(R) := lim
n→∞

1
n log icX(L(n)

ω ),

where icX was defined in Section 3. The fact that these limits exist and are constant
P−almost everywhere is a consequence of (i) submultiplicativity of both ‖ · ‖X and
icX(·), (ii) ergodicity of the driving system σ and (iii) Kingman’s sub-additive
ergodic theorem [71]. As in the autonomous case, it is straightforward to show
that Λ(R) ≥ κ(R).

The non-autonomous quasi-compactness property has allowed for the possibil-
ity of extending the use of transfer operator technology to the study of coherent
structures, which are the analogue of metastable regions in the non-autonomous
setting. This approach has been facilitated by the so-called multiplicative ergodic
theorems, discussed in Section 4.

4. Multiplicative ergodic theorems and coherent structures

Multiplicative ergodic theorems give rise to a time-dependent decomposition
which plays the role of a spectral decomposition in the non-autonomous setup.
The so-called Oseledets splitting has been used to describe the dominant trans-
port features of the dynamics via non-linear, time-varying modes called coherent
structures, which decay slowly over time. The rate of decay of each structure is
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measured by an asymptotic exponential rate, called Lyapunov exponent. This is in
contrast with the one-step contraction (or expansion) factor, which an eigenvalue
would yield.

Y2(ω)

Y1(ω) Y1(σω)

Y2(σω)

Y1(σ
2ω)

Y2(σ
2ω)

Y1(σ
3ω)

Y2(σ
3ω)

Figure 3. Schematic representation of the evolution of Oseledets
splittings under a non-autonomous dynamical system.

Intuitively, one may think of each of the components of the splitting as de-
scribing one evolving feature of the system, such as a vortex, or an eddy. However,
in practice, recovering the actual spatial features from the decomposition requires
significantly more work, and there is still considerable research effort taking place
in that direction.

The study of multiplicative ergodic theorems covers the cases of finite as well
as infinite dimensional underlying spaces X. The finite dimensional case includes
settings such as discrete time finite-state Markov chains. The infinite dimensional
setting is especially relevant for analyzing more general models of physical phe-
nomena, including the framework of transfer operators. Another distinction among
multiplicative ergodic theorems considers whether the evolution rule is invertible
or not. While both cases have been investigated in the literature from the start,
it is only recently that results guaranteeing a splitting have been established for
non-invertible, more precisely semi-invertible, cocycles.

4.1. Definitions and convention. Consider a Banach space X. The Grass-
mannian of X, G = G(X), is the set of closed linear subspaces of X, which have
closed complements. Included in G(X) are all finite dimensional and finite co-
dimensional subspaces Gk(X) = {E ⊂ X,dimE = k < ∞} and Gk(X) = {F ⊂
X, codimF = k < ∞}. In particular, when X is a finite dimensional space, G(X)
is the set of all linear subspaces of X.

The Grassmannian G(X) can be endowed with a metric, defined by dG(E,F ) :=
dH(E ∩ BX , F ∩ BX) where BX denotes the unit ball in X and dH the Hausdorff
distance, dH(A,B) := max{supa∈A infb∈B ‖a − b‖, supb∈B infa∈A ‖a − b‖}. Some
fundamental properties of G(X) are established in [63] and, in the context of sep-
arable X5, in [53, Appendix B].

An Oseledets splitting for a linear cocycle R = (Ω,F ,P, σ,X,L) consists of:

(I) A sequence of isolated (exceptional) Lyapunov exponents ∞ > λ1 > · · · >
λl > κ ≥ −∞, where the index l ≥ 1 is allowed to be finite or countably
infinite; and

(II) A family of ω-dependent splittingsX =
⊕l

j=1 Yj(ω)⊕V (ω), where dimYj(ω) <

∞ for every 1 ≤ j ≤ l, and V (ω) ∈ G(X),

5A Banach space is called separable if it has a countable dense subset.
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satisfying the following conditions:

(i) Measurability:
The maps ω 7→ Yj(ω) and ω 7→ V (ω) are (F ,B(G)) measurable, where B(G)
is the Borel σ-algebra of the Grassmannian G(X).

(ii) Equivariance:
For each 1 ≤ j ≤ l and P-a.e. ω ∈ Ω,

LωYj(ω) = Yj(σω) and LωV (ω) ⊆ V (σω).

(iii) Growth rates:
For every 1 ≤ j ≤ l and P-a.e. ω ∈ Ω,

lim
n→∞

1
n log ‖L(n)

ω y‖ = λj for every y ∈ Yj(ω) \ {0}, and

lim
n→∞

1
n log ‖L(n)

ω v‖ ≤ κ for every v ∈ V (ω).

(iv) Tempered projections:
Let Πj(ω) = ΠYj(ω)‖⊕i6=jYi(ω)⊕V (ω) and Π′j(ω) = Π⊕i6=jYi(ω)⊕V (ω)‖Yj(ω)

6. Then,

lim
n→±∞

1
n log ‖Πj(σ

nω)‖ = 0 = lim
n→±∞

1
n log ‖Π′j(σnω)‖.

It is worth mentioning that, in the context of invertible cocycles, the original
work of Oseledets and many subsequent works state, instead of property (iv), a
condition on sub-exponential decay of angles between subspaces along trajectories.
For instance, for j′ 6= j,

lim
n→±∞

log sin∠(Yj(σ
nω), Yj′(σ

nω)) = 0.

Property (iv) implies this alternative statement, when the notion of angle between
subspaces, ∠(E,F ), (or sine thereof) is extended to Banach spaces, for example
as the Grassmannian distance between them, dG(E,F ). This follows from the fact
that if dG(E,F ) < δ, then for every e ∈ E of norm 1, there exists f ∈ F so that
‖e− f‖ < δ. In particular, since ΠE‖F (e− f) = e, then ‖ΠE‖F ‖ > δ−1.

Throughout this section, we will say that the multiplicative ergodic theorem
holds for the non-autonomous dynamical systems R = (Ω,F ,P, σ,X,L) if R has
an Oseledets splitting. However, we note that the term is used in a more general
way in the literature.

4.2. Brief history.
4.2.1. Finite dimensional systems. Multiplicative ergodic theorems (METs) were

first discovered in the mid 1960s by Oseledets [85] in the context of finite-dimensional
linear cocycles. The existence of an Oseledets splitting was established for non-
autonomous dynamical systems of the form (Ω,F ,P, σ,Rn, A), where A : Ω →
GL(n,R) is an invertible matrix valued cocycle satisfying the integrability condi-
tions

∫
Ω

log+ ‖A(ω)‖dP(ω) <∞ and
∫

Ω
log+ ‖A−1(ω)‖dP(ω) <∞.

Furthermore [85] addressed the non-invertible case, where A : Ω → Mn×n(R)
satisfies

∫
Ω

log+ ‖A(ω)‖dP(ω) < ∞, and also σ : Ω → Ω is allowed to be non-
invertible. In this setting, a coarser conclusion was provided, for P-a.e. ω ∈ Ω:
Aside from the sequence of Lyapunov exponents, there exists a measurable family
of ω-dependent filtrations, X = V1(ω) ⊃ V2(ω) · · · ⊃ Vl(ω) ⊃ {0}, which are

6When the spaces E,F ∈ G(X) have trivial intersection, E ∩ F = {0}, the operator ΠE‖F
denotes projection onto E along F ; that is, ΠE‖F (e + f) = e for every e ∈ E, f ∈ F .
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equivariant in the sense that A(ω)Vj(ω) ⊆ Vj(σω), and satisfy the growth rate

condition limn→∞
1
n log ‖A(n)(ω)v‖ ≤ λj , for every v ∈ Vj(ω).

In 1979, Raghunathan [86] provided an alternative proof of the multiplicative
ergodic theorem of Oseledets relying on the singular value decomposition (SVD).
This approach has turned out to be useful in much more general settings, and is
also at the base of numerical methods for approximation of Oseledets splittings,
discussed in Section 5.

One of the major motivations for the development of multiplicative ergodic
theorems has been their power in establishing the existence of stable and unstable
manifolds in dynamical systems. The book by Barreira and Pesin [14] includes
a detailed treatment of the multiplicative ergodic theorem in the setup of smooth
ergodic theory.

Further generalizations of the multiplicative ergodic theorem have been estab-
lished in other settings, including semi-simple Lie groups [60], non-positively curved
spaces [62] and isometry groups of metric spaces [61].

In 2010, Froyland, Lloyd and Quas [42] extended Oseledets’ theorem to the
case of semi-invertible cocycles. They established the multiplicative ergodic theo-
rem for finite dimensional linear cocycles (Ω,F ,P, σ,Rn, A) under the assumptions
of invertibility of σ and integrability of log+ ‖A(ω)‖, without any invertibility hy-
potheses on the matrices A(ω).

4.2.2. Infinite dimensional systems. The first multiplicative ergodic theorems
in the infinite dimensional case are due to Ruelle [87] and Mañé [76]. They showed
the existence of Oseledets splittings for injective, compact operators acting on sep-
arable Hilbert and Banach spaces, respectively. Ruelle treated discrete as well as
continuous time systems, and had in mind applications to partial differential equa-
tions arising in the study of hydrodynamic turbulence. Mañé treated discrete time
systems and aimed for applications to parabolic semilinear equations and delay
functional differential equations.

Thieullen [91] extended Mañé’s result to cocycles of non-autonomous quasi-
compact operators on Banach spaces, satisfying a continuity property called P-
continuity. In the early 1990s, related results were also established in the context
of stochastic partial differential equations [89] and stochastic linear delay equations
[77].

Lian and Lu [75] established a version of the multiplicative ergodic theorem
which relaxed the continuity condition of [91] to a (strong) measurability condition,
at the cost of requiring the Banach space X to be separable.

Having in mind applications to the detection of coherent structures in oceanic
and atmospheric dynamics, the recent works of Froyland, Lloyd, Quas and González-
Tokman [43, 53, 54] extend infinite dimensional versions of the multiplicative er-
godic theorem to the setting of semi-invertible cocycles. Based on [91], Froyland,
Lloyd and Quas established a multiplicative ergodic theorem in the context of P-
continuous cocycles [43]. Building on [75] and [30], Quas and González-Tokman
replaced the continuity condition by a strong measurability condition, together with
the requirement that the Banach space X (and its dual X∗) is separable [53, 54].
A related volume-based approach to the multiplicative ergodic theorem on Banach
spaces is presented in [16].

4.3. Identification of Oseledets splittings and coherent structures.
The breakthrough paper of Froyland, Lloyd and Quas [42] made the connection
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between the hierarchical structure provided by multiplicative ergodic theorems and
coherent structures in non-autonomous dynamical systems. It was for the first time
then that ideas such as the second Oseledets space encoding information regarding
a dynamical structure which, while changing its location over time, retains a large
portion of its mass as it evolves were put on firm mathematical grounds. It is also
worth remarking that the theoretical advances of [42] were followed by a numerical
demonstration of their applicability in non-autonomous models of fluid flow in [44],
a paper in which the term coherent sets was coined.

Next, we present a recent, general method for the identification of Oseledets
splittings in the context of linear cocycles on Banach spaces, following [54]. Appli-
cations of the theory to the identification of coherent structures in geophysical flows
are discussed in Section 6. We recall that a singular value decomposition (SVD)7

of a real d× d matrix M consists of a diagonal matrix D, and orthogonal matrices
U and V such that M = UDV T , where V T is the transpose of V . The diagonal
entries sj of D are the singular values of M , which will be considered in decreasing
order s1 ≥ s2 ≥ · · · ≥ sd. The column vectors of U and V are called left and right
singular vectors of M , respectively. If vj denotes the jth column vector of V , then
Mvj = sjuj . Hence, the vectors v1, . . . , vd form an orthonormal basis of Rd which
is transformed by M into the orthogonal basis s1u1, . . . , sdud.

It is worth remarking that the case of top singular values and singular vectors
of a matrix M are easy to visualize. The top singular value is the norm of M
and the associated right singular vector(s) is (are) the unit length vectors v for
which the norm of M is realized, ‖Mv‖ = ‖M‖. The corresponding left singular
vector(s) is (are) the normalized images of the right singular vector(s). Similarly, in
the non-autonomous setting, the top Oseledets space and top Lyapunov exponent
correspond to the fastest growing vectors and maximal exponential growth rate for
the composition of matrices along the cocycle, respectively.

In the finite dimensional setting, the approach of Raghunathan [86] gives rise
to a method for identifying the Lyapunov exponents and components of the compo-
nents of the Oseledets filtration,

⊕
i≥j Yi(ω), by considering SVDs of the matrices

A(n)(ω). Indeed, the Lyapunov exponents are λj = limn→∞
1
n log sdj (A(n)(ω)),

where sk(M) denotes the kth largest singular value of M , and dj = 1 +m1 + · · ·+
mj−1, with m0 = 0 and for each i ≥ 1, mi = dimYi(ω) is the multiplicity of λi.

Furthermore,
⊕

i≥j Yi(ω) = limn→∞
⊕

i≥j Ei(A
(n)(ω)) for each j, where Ej(M)

denotes the mj-dimensional space spanned by right singular vectors of M with
singular values sdj , . . . , sdj+mj−1.

The SVD decomposition is not available in the infinite-dimensional Banach
space setup, because it relies on the notion of orthogonality. However, an inductive
algorithm to identify Oseledets spaces building on the essential properties of SVDs,
which is valid in both finite and infinite dimensional settings, is presented in [54].
To overcome the lack of the notion of orthogonality, the algorithm also involves the
so-called dual cocycle R∗ = (Ω,F ,P, σ−1, X∗,L∗), as well as different notions of
volume in Banach spaces. Here X∗ is the dual of X, and L∗ω is defined as the adjoint

to Lσ−1ω, L∗ω := (Lσ−1ω)∗. In particular, L∗(n)
σnω = (L(n)

ω )∗. While the analysis is

7The SVD of a matrix M can be obtained from the eigen-decomposition of the symmetric

matrices MMT and MTM . It is not always unique, although the singular values as well as the
spaces spanned by singular vectors associated to a fixed singular value are uniquely defined, just

as eigenspaces are.
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significantly more technical than in the finite-dimensional case, Lyapunov exponents
can also be obtained from the maximal exponential growth rates of volumes of
parallelepipeds of increasing dimensions.

An algorithm to identify Oseledets splittings is as follows. Let V
(n)
1 (ω) = X,

and for each l > 1, and n ∈ N, let kl = m0 + · · · + ml−1, and θ
(n)
1 , . . . , θ

(n)
kl
∈

SX∗ be unit vectors in X∗ such that the volume of the parallelepiped with sides

(L(n)
ω )∗θ

(n)
1 , . . . , (L(n)

ω )∗θ
(n)
kl

is (nearly) maximal over all possible choices of kl-tuples

in SX∗ . Let V
(n)
l (ω) ⊂ X be the annihilator of the linear span of (L(n)

ω )∗θ
(n)
1 , . . . , (L(n)

ω )∗θ
(n)
kl

,

V
(n)
l (ω) =

〈
(L(n)

ω )∗θ
(n)
1 , . . . , (L(n)

ω )∗θ
(n)
kl

〉⊥
.

It is shown in [54] that the sequence V
(n)
l (ω) has a limit Vl(ω) as n approaches

infinity. This provides an Oseledets filtration, just like in the finite-dimensional
approach of Raghunathan.

Calling V ∗l (ω) the corresponding Oseledets filtration for the dual cocycle R∗
and letting Wl(ω) = (V ∗l (ω))⊥, one obtains a collection of equivariant spaces com-
plementary to the Vl(ω), X = Vl(ω)⊕Wl(ω). The Oseledets splitting is recovered
by letting Yl(ω) = Vl(ω) ∩Wl+1(ω).

It is worth noting that the multiplicative ergodic theorems discussed in Sec-
tion 4.2 can be applied to Koopman operator cocycles, duals of transfer operator
cocycles, whenever the necessary hypotheses hold8.

The level sets associated to vectors in the dominant Oseledets spaces of transfer
operator cocycles (or their finite-time approximations) have been used to locate co-
herent structures in models of non-autonomous dynamical systems, for example, by
thresholding singular vectors at optimal values [48]. Thus, the algorithm discussed
above may assist in validating existing singular-value decomposition based meth-
ods, and perhaps also yield new insights for the identification of coherent structures
in applications.

4.4. Stability. A topic of paramount interest for applications is that of sta-
bility: How much do the behavior and properties of a dynamical system change
under perturbations? The answer to this question is highly relevant for modeling,
both analytically and numerically, as well as for accounting for noise and random
effects which may affect the evolution of the system.

In our setting, the stability question translates into whether Oseledets splittings
and Lyapunov exponents are stable under perturbations. One of the difficulties of
this problem is that for stability to hold, non-trivial conditions have to be imposed
on the non-autonomous dynamical systems. Indeed, without extra hypotheses,
there are examples where Lyapunov exponents undergo discontinuous changes un-
der perturbations. This is in contrast with the case of autonomous systems, where
spectral stability properties of linear operators are known to hold in very broad
generality [63].

A topic complementary to stability is bifurcation theory, which investigates
qualitatively significant changes which can occur when a system undergoes small
perturbations. For a treatment of bifurcations in non-autonomous dynamical sys-
tems, we refer the reader to the monograph [72].

8Quasi-compactness and integrability conditions for K would follow directly from the analogue
conditions for L. However, separability of X∗ does not follow from separability of X.
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4.4.1. Finite dimensional systems. The question of stability of Lyapunov ex-
ponents for invertible matrix cocycles was treated by Young in [96], and later by
Ledrappier and Young in [73]. They showed stability of Lyapunov exponents when
sufficiently random perturbations are considered. In a similar context of invertible
matrix cocycles, Ochs showed that stability of Lyapunov exponents is equivalent to
stability of the associated Oseledets splitting [84]. Recently, Froyland, González-
Tokman and Quas [37] established a finite-dimensional stochastic stability result for
Lyapunov exponents and Oseledets splittings associated to semi-invertible matrix
cocycles. Further results concerning stability of Lyapunov exponents in different
settings are presented in the recent book by Viana [94], and in the forthcoming
research monograph by Duarte and Klein [32].

Negative stability results for finite-dimensional cocycles include [3], which shows
that an arbitrarily small Lp perturbation can make all Lyapunov exponents collapse
to one point. Another mechanism for instability of Lyapunov exponents has been
shown in the context of derivative cocycles associated to area-preserving C1 dif-
feomorphisms [17]. The idea behind such a method is attributed to Mañé, and
it relies on carefully interchanging vectors corresponding to directions of strongest
and weakest expansion on non-uniformly hyperbolic cocycles, where there is no uni-
form lower bound for the angles between Oseledets spaces associated to different
Lyapunov exponents.

4.4.2. Infinite dimensional systems. In the autonomous case, the work of Keller
and Liverani [65] guarantees stability of isolated eigenvalues and their associated
eigenspaces for quasi-compact operators. This technology may be applied in the
setting of random iid perturbations of a non-random map, to obtain results for
the annealed (averaged) operators. However, the stability problem remains largely
open in the general non-autonomous case.

Most of the stability results available in the quenched setup deal with random
perturbations of a fixed (non-random) initial map. Baladi, Kondah and Schmitt
[11] show stability of the random invariant measure for random perturbations of
a smooth expanding map. In a similar setting, Baladi obtains stability results for
more general equilibrium states in [8].

Bogenschütz [18] shows stability of Lyapunov exponents and Oseledets split-
tings under strong hypotheses on the cocycle and the perturbations. An interesting
application of this work addresses the case of stability of the splitting for non-
autonomous perturbations of an autonomous system. A recent work has employed
multiplicative ergodic theorems to investigate small, quenched random perturba-
tions in the context of partially expanding maps on the torus [81].

A stability result in the context of transfer operators of random maps has been
established in [36]. The main result shows stability of the top Oseledets space –the
one corresponding to the random invariant measure– under perturbations including
model and numerical approximation errors, as well as noisy perturbations of the
underlying maps. A relevant feature of this setting, which makes the analysis
more tractable than in the case of second and higher components of the Oseledets
splitting, is that the leading Lyapunov exponent is always zero and, in fact, there
exists a random fixed point.
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5. The numerical and computational aspects

The so-called Ulam’s method [92], introduced in Section 2.2, has provided an
intuitive and effective way of analyzing dynamical systems numerically via transfer
operators. Figure 4 shows an approximation of the density of the acim for an
interval map relying on Ulam’s method (blue), and on averages taken along a long
trajectory (red).

Figure 4. Two approximations of the density of the acim of an
interval map, obtained via Ulam’s method (blue) and by taking
averages over a long trajectory (red).

The rigorous convergence properties of this approximation method, as finer
and finer grids are considered, are still an open question in general, even in the
autonomous case. This is a particular instance of the stability question discussed
in Section 4.4. In some settings, including quite general classes of one-dimensional
maps, the scheme has been shown to well approximate acims as well as rates of
exponential correlation decay. Some works in this direction are [74, 29, 33, 78,
65, 64, 79, 19, 80, 5, 6]. Ulam’s method was investigated the case of iid and
Markovian composition of one-dimensional maps in [34].

In the non-autonomous case, efficient numerical algorithms to identify Lya-
punov exponents and Oseledets spaces for finite-dimensional (matrix) cocycles have
been developed in the last decade by Ginelli and coauthors [51], Wolfe and Samel-
son [95] and Froyland, Hüls, Morriss and Watson [40]. These approaches rely on
very efficient routines built into standard mathematical software, including the QR
decomposition and singular-value decomposition algorithms. A comparison of these
methods in different model scenarios is presented in [40].

Computational algorithms relying on Ulam’s method have been used to identify
almost invariant sets and coherent structures in autonomous and non-autonomous
dynamical systems, for example in the context of geophysical flows, as will be de-
tailed in Section 6. Further numerical methods have been proposed to test for reg-
ularity properties of the transfer operator spectrum, with the aim of distinguishing
between true and spurious eigenfunctions in [35].

The computation of Ulam matrices with high resolution can be a costly algo-
rithm, as it requires to sample all regions of the state space at a high resolution,
in fact finer than grid size. On the other hand, once this computation is done,
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the matrix can be stored for later calculations in the autonomous case. In the
non-autonomous setting, a similar procedure is possible, with the additional re-
quirement that, in principle, one has to compute one Ulam matrix for each ω.
For these reasons, the quest for more efficient numerical algorithms for the com-
putational analysis of dynamical systems is still a topic of current research efforts
[47, 41].

6. Applications to oceanic and atmospheric flows

An early application of transfer operator methods to the analysis of geophys-
ical flows was the work of Froyland and collaborators [46], where they detect the
two major oceanic gyres near Antarctica, the Ross and Wedell seas. The seasonal
variability as well as three-dimensional features of these sub polar gyres were sub-
sequently investigated in [24].

A related approach has also been used to study “origin, dynamics and evolution
of ocean garbage patches from observed surface drifters” in [93], and to investigate
the global connectedness of the ocean surface in [50].

The non-autonomous transfer operator technology has been used to detect and
track an eddy of the Agulhas ring, moving around the coast of Africa for several
months [38, 39]. This analysis was done in two and three dimensions, and showed
that such coherent structures are not only displaced horizontally parallel to the
surface, but also change along the vertical direction. The outcomes of this approach
yield significantly (about 15%) more coherent structures than alternative essentially
two-dimensional methods, based on relative vorticity or the so-called Okubo-Weiss
parameter.

In the atmosphere, the tools have been used to detect the Antarctic polar vortex
and track its evolution over a two-week period [48].

A related non-autonomous dynamical systems approach, considering random
attractors, has been investigated in stochastic models of climate dynamics in [23].

Appendix A. Online resources for the visualization of oceanic and
atmospheric flows

Besides the illustrations available in the references provided, there also ex-
ist wonderful online resources to visualize oceanic and atmospheric flows. Non-
autonomous visualizations of the ocean currents from the years 2005–2007 are avail-
able at: http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=3827.

An interactive website which contains (autonomous) approximations of ocean
currents and wind from recent data is http://earth.nullschool.net; see also
http://earth.nullschool.net/about.html for details. These visualizations are
built from data which are constantly being updated. Hence, some features which
were visible at the time of writing this work may have changed at the time of
reloading the website.

Some of the views available are:

• The Gulf Stream:
http://earth.nullschool.net/#current/ocean/surface/currents/

orthographic=-41.40,29.75,351

• The Agulhas rings:
http://earth.nullschool.net/#current/ocean/surface/currents/

orthographic=21.28,-18.45,718

http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=3827
http://earth.nullschool.net
http://earth.nullschool.net/about.html
http://earth.nullschool.net/#current/ocean/surface/currents/orthographic=-41.40,29.75,351
http://earth.nullschool.net/#current/ocean/surface/currents/orthographic=-41.40,29.75,351
http://earth.nullschool.net/#current/ocean/surface/currents/orthographic=21.28,-18.45,718
http://earth.nullschool.net/#current/ocean/surface/currents/orthographic=21.28,-18.45,718
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• Oceanic eddies around Australia:
http://earth.nullschool.net/#current/ocean/surface/currents/

orthographic=-222.20,-26.19,1024

• Winds at surface level:
http://earth.nullschool.net/#current/wind/surface/level/

orthographic=-98.32,31.17,512

• The Jet stream:
http://earth.nullschool.net/#current/wind/isobaric/250hPa/

equirectangular

• The Antarctic polar vortex:
http://earth.nullschool.net/#current/wind/isobaric/10hPa/

orthographic=-189.44,-72.33,322

• The Arctic polar vortex:
http://earth.nullschool.net/#current/wind/isobaric/10hPa/

orthographic=-135.96,59.60,322

References

[1] R. Aimino, M. Nicol, and S. Vaienti. Annealed and quenched limit theorems for random

expanding dynamical systems. Probab. Theory Related Fields, 162(1-2):233–274, 2015.
[2] L. Arnold. Random dynamical systems. Springer Monographs in Mathematics. Springer-

Verlag, Berlin, 1998.

[3] L. Arnold and N. D. Cong. Linear cocycles with simple Lyapunov spectrum are dense in L∞.
Ergodic Theory Dynam. Systems, 19(6):1389–1404, 1999.

[4] A. Ayyer, C. Liverani, and M. Stenlund. Quenched CLT for random toral automorphism.

DCDS, 24(2):331–348, 2009.
[5] W. Bahsoun. Rigorous numerical approximation of escape rates. Nonlinearity, 19(11):2529–

2542, 2006.
[6] W. Bahsoun and C. Bose. Invariant densities and escape rates: Rigorous and computable

approximations in the L∞-norm. Nonlinear Analysis: Theory, Methods & Applications,

74(13):4481–4495, 2011.
[7] W. Bahsoun and S. Vaienti. Metastability of certain intermittent maps. Nonlinearity,

25(1):107, 2011.

[8] V. Baladi. Correlation spectrum of quenched and annealed equilibrium states for random
expanding maps. Comm. Math. Phys., 186(3):671–700, 1997.

[9] V. Baladi. Positive transfer operators and decay of correlations, volume 16 of Advanced Series

in Nonlinear Dynamics. World Scientific Publishing Co. Inc., River Edge, NJ, 2000.
[10] V. Baladi and S. Gouëzel. Good Banach spaces for piecewise hyperbolic maps via interpola-
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aggregates in reversible nearly uncoupled Markov chains. Linear Algebra and its Applications,

315(13):39–59, 2000.

[29] J. Ding and A. Zhou. Finite approximations of Frobenius-Perron operators. a solution of
Ulam’s conjecture to multi-dimensional transformations. Physica D, 92(1-2):61–68, 1996.

[30] T. S. Doan. Lyapunov Exponents for Random Dynamical Systems. PhD thesis, Fakultät

Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2009.
[31] D. Dolgopyat and P. Wright. The diffusion coefficient for piecewise expanding maps of the

interval with metastable states. Stochastics and Dynamics, 12(01), 2012.
[32] P. Duarte and S. Klein. Lyapunov exponents of linear cocycles. Continuity via large devia-

tions. Atlantis Press, to appear, 2016.

[33] G. Froyland. Computer-assisted bounds for the rate of decay of correlations. Comm. Math.
Phys., 189(1):237–257, 1997.

[34] G. Froyland. Ulam’s method for random interval maps. Nonlinearity, 12:1029, 1999.
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