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Abstract. The isolated spectrum of transfer operators is known to play a

critical role in determining mixing properties of piecewise smooth dynamical
systems. The so-called Dellnitz-Froyland ansatz places isolated eigenvalues in

correspondence with structures in phase space that decay at rates slower than

local expansion can account for. Numerical approximations of transfer operator
spectrum are often insufficient to distinguish isolated spectral points, so it is an

open problem to decide to which eigenvectors the ansatz applies. We propose

a new numerical technique to identify the isolated spectrum and large-scale
structures alluded to in the ansatz. This harmonic analytic approach relies on

new stability properties of the Ulam scheme for both transfer and Koopman

operators, which are also established here. We demonstrate the efficacy of this
scheme in metastable one- and two-dimensional dynamical systems, including

those with both expanding and contracting dynamics, and explain how the

leading eigenfunctions govern the dynamics for both real and complex isolated
eigenvalues.

1. Introduction.

1.1. Background and overview. The isolated spectrum of transfer operators
plays a critical role in determining mixing properties of dynamical systems. Af-
ter [11], transfer operator techniques have been applied in the study of almost-
invariant sets in molecular dynamics [38] as well as ocean dynamics [18]. The so-
called Dellnitz-Froyland ansatz initially proposed in [10], asserts that eigenvectors
of transfer operators associated to isolated spectral values encode global dynami-
cal features, such as structures responsible for slower than expected mixing rates.
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These structures are associated with metastability phenomena, which have also been
studied via the transfer operator approach in recent years [31, 19, 14, 20, 13, 1].

Despite being linear and bounded, transfer operators often have very compli-
cated spectra, without any isolated eigenvalues, when considered in spaces such as
Lp(Leb) or the space of continuous functions; see e.g. [3, Theorem 2.5]. The efforts
to better understand the behavior of transfer operators have led to the study of
their actions on more general Banach spaces. For example, spaces of smooth func-
tions Ck, the space of bounded variation functions BV with its higher dimensional
generalizations, Sobolev spaces of fractional order Htp, and others. The general
strategy behind the choice of such a space is to ensure that the transfer operator L
restricted to it is quasi-compact. Roughly speaking, L is quasi-compact if, outside
a disk of radius ρe < 1, called essential spectral radius, the spectrum of L consists
of isolated eigenvalues of finite multiplicity, including 1. See §2.2 for more details.

The part of the spectrum corresponding to eigenvalues of magnitude 1 has re-
ceived significant attention in the literature. A recent general result in this direction
is [5, Theorem 14]1, which implies that under rather general assumptions – including
piecewise expanding and hyperbolic settings – eigenvectors of eigenvalue 1 corre-
spond to physical invariant measures2, that the multiplicity of 1 is given by the
(finite) number of ergodic such measures, and that their basins cover Lebesgue al-
most every point of the state space. Also, there are finitely many eigenvalues of
magnitude 1, all of which are roots of unity. Thus, there exists k ≥ 1 such that
1 is the only eigenvalue of modulus 1 for the transfer operator of Lk. Early re-
sults in this direction, including some explicit bounds on the multiplicity of 1 are
[25, 36, 22, 37, 9]3. It is also possible in some cases to give estimates [24] and even
explicit formulas [29] for the essential spectral radius ρe.

However, it is in general an open problem to give bounds on the number of
isolated eigenvalues of magnitude greater than ρe. In fact, the general theory only
provides the existence of at least one, and at most countably many of them. The
existence of non-trivial eigenvalues (that is, of magnitude strictly less than 1) was
known for specific examples in the context of piecewise expanding affine Markov
maps [2], and general techniques for constructing such maps were developed in [10].
In the setting of smooth expanding maps, the first example that appeared in the
literature is due to Keller and Rugh [32].

Figure 1. Graph of system with three
invariant components, corresponding to
(14) with parameters ε = 0 and δ = 0.

The transition from invariant to almost-
invariant components is a delicate phenom-
enon, which can be observed in relatively
simple systems. Consider the piecewise
expanding map with three invariant sub-
intervals shown in Figure 1. Figure 2
shows numerical approximations to the top
5 eigenvectors of the transfer operator (top
row) and its adjoint, the Koopman operator
(bottom row) for the piecewise expanding
map of Figure 1.

1We refer the reader to [6, 12] for earlier results along these lines.
2That is, invariant measures whose basins include a set of positive Lebesgue measure. In the

expanding setting, physical measures are absolutely continuous with respect to Lebesgue.
3It is also worth pointing out that some exceptions to this decomposition exist in dimensions

greater than 1, even in the expanding setting, as the multiplicity of 1 may be infinite [41, 8].
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In this case it is rather straightforward to
(i) qualitatively distinguish the first three
eigenvectors from the last two; and (ii) identify the three invariant components
from the level sets of the first three Koopman eigenvectors.

Figure 2. Numerical approximation to the top 5 eigenvectors of transfer
(top) and Koopman (bottom) operators of a map with three invariant
sub-intervals (Figure 1).

In contrast, consider Figure 3(a) depicting a relatively small perturbation of the
previous map, in which there are no invariant sets of positive Lebesgue measure
other than the whole interval, and invariance of the three sub-intervals is turned
into almost-invariance. Figure 4 shows the corresponding eigenvectors. In this
case, questions such as “what are the almost-invariant sets?” and “how many of
them are there?” become harder to answer by inspecting the eigenfunctions. The
situation is even worse in multi-dimensional systems with a mixture of expanding
and contracting behavior, as the corresponding eigenfunctions tend to be highly
irregular along stable directions. This may even be the case for systems with an a
priori clear presence of almost-invariant sets.

In this paper we propose an algorithm for determining non-trivial isolated spec-
trum of transfer operators numerically. We also exhibit a harmonic analytic strategy
to identify almost-invariant sets, based on the Dellnitz-Froyland ansatz. The rough
idea is that by smoothing eigenvectors, it is possible to differentiate their underlying
large-scale features. The pertinence of this approach in our setting is elaborated in
§1.2.

(a) (b)

Figure 3. Graphs of systems with three almost-invariant components
(14), with parameters ε = .01 and (a) δ = 0.1, (b) δ = 0.2.



4 GARY FROYLAND AND CECILIA GONZÁLEZ-TOKMAN AND ANTHONY QUAS

To illustrate the scope of the proposed techniques, we present numerical exper-
iments for one- and two-dimensional systems. The one-dimensional systems are
piecewise expanding, and the two-dimensional ones have non-uniformly expanding
and contracting directions. An advantage of the approach in the present paper
is that it is useful even when dealing with one fixed discretization of the transfer
operator. Indeed, it does not depend on the possibility of observing asymptotic
behavior over a sequence of finer and finer approximations. This is an important
fact, given that the construction of Ulam matrices with high resolution is still a
time-consuming process.

We expect that this work will contribute useful tools for the study of mixing
and metastability phenomena in more complicated systems, where rigorous theory
may still be out of reach. Furthermore, we expect the ideas developed here can be
extended to the case of random systems, such as those studied in [16, 21] but we
do not pursue this approach further in the present work.

1.2. Approach. Our approach exploits prior knowledge about the regularity of
transfer and Koopman eigenvectors, as well as a strong type of convergence of
Ulam’s numerical approximation scheme to detect isolated spectrum and almost-
invariant sets in dynamical systems with hyperbolicity features.

When a non-singular system T : M 	 has several invariant components of pos-
itive Lebesgue measure, the corresponding eigenvectors of the Koopman operator
L∗ are particularly simple: they correspond to integration with respect to Lebesgue
measure on the different invariant sets. This is a direct consequence of the fact
that Leb(f) = Leb(Lf). Indeed, if A ⊂ M is invariant under T , then the linear
functional f 7→

∫
A
f dLeb is fixed under L∗, when restricted to an appropriate

space.
The strategy behind the numerical tests developed in this work is in some sense

reminiscent of the above phenomenon. It is worth remarking that one can in prin-
ciple observe a similar behavior for transfer operator eigenvectors, after rescaling
all of them by the top one (the invariant density). This procedure may be useful
in some situations, but it introduces numerical issues in cases where the invariant
density is very far from uniform.

We rely on stability of Koopman eigenvectors, including control of certain reg-
ularity properties. It is worth pointing out that Koopman operators are receiving
their own attention in the applied literature; see the recent article [7]. From a the-
oretical perspective, Koopman operators are often more complicated to deal with
than transfer operators, even in relatively simple systems such as expanding maps.
A reason for this is that if one wants to exploit functional analytical properties

Figure 4. Numerical approximation to top 5 eigenvectors of the transfer
operator (top) and Koopman operator (bottom) of a map with three
almost-invariant sub-intervals (Figure 3(a)).
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such as quasi-compactness, Koopman operators must be considered as linear oper-
ators on a space of distributions. Since rigorous results along these lines are, to our
knowledge, not present in the literature, we develop the necessary theory as well.
In particular, a rigorous convergence result is established in the context of piece-
wise smooth expanding one-dimensional maps, building on technology developed by
Keller and Liverani [30].

More precisely, we establish a rigorous convergence result in the context of frac-
tional Sobolev norms, which have been used in the transfer operator literature by
Baladi and coauthors [4, 5]. It is worth remarking that in the applied literature
on mixing systems, it has become customary to employ a similar type of Sobolev
norm to measure mixing. These are the so-called mix-norms, introduced in [34] and
recently reviewed in [40]. These two sets of norms are essentially related by dual-
ity: in the presence of expansion, the transfer operator behaves nicely on fractional
Sobolev spaces of order t > 0, while the mix-norms are equivalent to fractional
Sobolev norms of order t < 0.

One way to define fractional Sobolev spaces is via properties of their Fourier
transforms. This characterization is the one that allows us to connect the theory
with harmonic-analysis ideas, such as smoothing, to identify almost-invariant sets.
This point of view also allows us to make use of existing harmonic-analysis tools for
numerical implementations.

1.3. Outline. The necessary theoretical tools, including concepts and results about
quasi-compactness and stability, are presented in §2. A stability result for the Ulam
approximation scheme, underpinning the upcoming numerical tests, is presented in
§3. A new test for the detection of non-trivial isolated eigenvalues of transfer and
Koopman operators is presented in §4. This test also allows for a visualization
of almost-invariant sets of a dynamical system as level sets of a suitable trans-
formation of the non-trivial isolated Koopman eigenvectors, in the spirit of the
Dellnitz-Froyland ansatz. The efficacy of this approach is demonstrated in a variety
of examples, including a family of metastable one-dimensional piecewise expanding
maps in §4.1, and two-dimensional systems in §4.2.

2. Theoretical preliminaries.

2.1. Transfer and Koopman operators. Consider a dynamical system T : M 	,
acting on a compact manifold, possibly with boundary. The Koopman operator L∗
associated to T arises naturally as the dynamical action of T on bounded functions:
Given f : M → R, L∗(f) is defined as f ◦ T . The Perron-Frobenius or transfer
operator associated to T is defined by duality. Provided M is equipped with a
probability measure µ and T is non-singular with respect to µ (that is, µ(A) = 0
iff µ(T−1(A)) = 0), one can define L : L1(µ) 	 as the pre-dual of L∗ : L∞(µ) 	,
defined above. Thus, for every f ∈ L1(µ) and g ∈ L∞(µ), we have the relation∫
M
Lf · g dµ =

∫
M
f · L∗g dµ =

∫
X
f · g ◦ T dµ. Throughout this work, µ will be the

normalized Lebesgue measure, denoted by Leb.
While in the context of expanding and hyperbolic dynamical systems the ana-

lytical theory has been developed mostly for the transfer operator, we are primarily
concerned with eigenvectors of the Koopman operator, as discussed in §1.2. In
particular, we are interested in those eigenvectors associated to non-trivial isolated
eigenvalues. Here, non-trivial means of magnitude strictly between the essential
spectral radius ρe and 1.
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Fortunately, duality allows one to transfer several useful properties from a trans-
fer operator L to the corresponding Koopman operator L∗. One known example
is quasi-compactness, which has been extensively exploited in the study of transfer
operators. This is the topic of §2.2. Also, stability results may be translated from
transfer to Koopman operators, although care is needed in the interpretation of
convergence in a distribution space. This will be treated in §2.3.

2.2. Quasi-compactness. Let L : X 	 be a bounded linear operator on a Banach
space. The spectral radius of L is defined as ρ(L) := limn→∞ ‖Ln‖1/n. L is called
quasi-compact when there exists a number 0 ≤ ρe(L) < ρ(L), called the essential
spectral radius of L, and 1 ≤ l ≤ ∞ so that the spectrum of L outside the disc of
radius ρe(L) consists of isolated points r1, . . . , rl, all of which are eigenvalues of L
of finite (algebraic and geometric) multiplicity4. We will refer to these as isolated
eigenvalues of L.

When L is quasi-compact, it may be written as follows:

L =

l∑
i=1

(riPi +Di) +R, (1)

where Pi is the eigenprojection and Di the eigennilpotent corresponding to ri, [3,
§1.3], [28, §III.5]. Furthermore, ρ(R) < |rl|, and the following relations are satisfied.

PiPj = δijPi, PiDi = DiPi = Di, (L − ri)Pi = Di, PiR = RPi = 0. (2)

In particular, these imply that

Ln =

l∑
i=1

(riPi +Di)
n +Rn. (3)

Hence, quasi-compactness allows for the spectral analysis of the non-trivial isolated
eigenvalues, which, together with eigenvalues of magnitude 1, are dynamically the
most important.

The adjoint of L : X 	, L∗ : X∗ 	, acts on the dual of X which is normed
by ‖φ‖∗ := supf∈X,‖f‖≤1 |φ(f)|. L∗ is defined by duality, via L∗(φ)f := φ(Lf).

Quasi-compactness of L implies quasi-compactness of L∗; this is an exercise in [3].
In particular, if L satisfies (1), then L∗ may be written as follows:

L∗ =

l∑
i=1

(r̄iP
∗
i +D∗i ) +R∗. (4)

Notice that the adjoint of a projection is always a projection, and the adjoint of a
nilpotent is always nilpotent. Furthermore, ‖R∗‖∗ = ‖R‖ [28, III.3], and therefore
ρ(R∗) = ρ(R) < |rl|. The adjoint version of relations (2) holds also.

2.3. Stability.

4Although l may be infinite, we will pretend it is finite. This does not represent any loss of
generality in our analysis, as it amounts to possibly enlarging the value of ρe(L) slightly, making

sure it does not exceed the spectral radius of L, ρ(L). We also order r1, . . . , rl in non-increasing
order of magnitude.
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2.3.1. The Keller-Liverani result and a dual version. It is known that, in many in-
teresting cases, operators Lε arising from small perturbations of a Perron-Frobenius
operator L0 : (X, ‖ · ‖) 	 do not converge in the norm topology. That is, it often
happens that ‖Lε − L0‖ 6→ 0 as ε→ 0.

Frequently, it is the case that limε→0 |||Lε − L0||| = 0, where the triple norm
||| · ||| is defined in terms of two norms on X, as follows. Let L ∈ L(X, ‖ · ‖) be a
bounded linear operator that extends to a bounded linear operator on a Banach
space (Y, | · |), such that X ⊂ Y and |x| ≤ ‖x‖ for every x ∈ X. Then, |||L||| is the
norm of L : (X, ‖ · ‖)→ (Y, | · |). That is,

|||L||| := sup
‖x‖≤1

|Lx|. (5)

Thus, the triple norm is weaker than the operator norm on (X, ‖ · ‖).
Keller and Liverani [30] showed that, under certain conditions on {Lε}ε≥0, when-

ever limε→0 |||Lε − L0||| = 0, and the Lε are quasi-compact, then the isolated eigen-
values of L0 and its associated eigenvectors enjoy stability properties. In particular,
they established the following.

Theorem 2.1 ([30]). Let L0 = L : X 	 be a quasi-compact operator satisfying (1).
Suppose {Lε}ε≥0 are quasi-compact operators on (X, ‖ · ‖) such that limε→0 |||Lε −
L0||| = 0. Under the extra assumptions (ii)-(iv) of [30]5, there exists δ > 0 such that
if ε > 0 is sufficiently small, for every 1 ≤ j ≤ l, the projections

Πε,δ
j :=

1

2πi

∫
∂Bδ(rj)

(z − Lε)−1dz

are well defined, independent of the choice of δ for sufficiently small δ, and satisfy
the property

lim
ε→0
|||Πε,δ

j −Π0,δ
j ||| = 0. (6)

Furthermore, rank(Πε,δ
j ) = rank(Π0,δ

j ). Also, for |r| > α (see condition (iii)), let

Πε
r :=

1

2πi

∫
∂Br(0)

(z − Lε)−1dz.

Then,

lim
ε→0
|||Πε

r −Π0
r||| = 0, (7)

and there exists K = K(δ, r) > 0 such that for all ε > 0 sufficiently small and for
all n ∈ N, ‖Lnε Πε

r‖ ≤ Krn.

This result may be translated into a convergence statement about Koopman
operators, via the following lemma.

Lemma 2.2. Let (X, ‖ ·‖) and (Y, | · |) be Banach spaces with X ⊂ Y and |x| ≤ ‖x‖
for every x ∈ X. Let L ∈ L(X, ‖ · ‖) be a bounded linear operator that extends to a
bounded linear operator on (Y, | · |), and let |||L||| be defined as in (5). Then, L∗ ∈
L(X∗, ‖·‖∗)∩L(Y ∗, |·|∗), and |||L∗|||∗ ≤ |||L|||, where |||L∗|||∗ := supφ∈Y ∗,|φ|∗≤1 ‖L∗φ‖∗.

5(ii) is |Lnε | ≤ C1Mn for some C1,M > 0; (iii) is ‖Lnε f‖ ≤ C2αn‖f‖+C3|f | for some 0 < α < 1

and C2, C3 > 0; then (iv), regarding the residual spectrum of Lε, automatically holds whenever
the embedding (X, ‖ · ‖) ↪→ (Y, | · |) is compact.
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Proof. The first statement is straightforward from the definitions. The last state-
ment may be checked as follows.

|||L∗|||∗ = sup
φ∈Y ∗,|φ|∗≤1

‖L∗φ‖∗ = sup
φ∈Y ∗,|φ|∗≤1

sup
f∈X,‖f‖≤1

|φ(Lf)|

≤ sup
φ∈Y ∗,|φ|∗≤1

sup
g∈Y,|g|=1

|||L||||φ(g)| = |||L|||.

Combining Theorem 2.1 with Lemma 2.2, we get the following.

Corollary 2.3. Under the conditions of Theorem 2.1,

lim
ε→0
|||(Πε,δ

i )∗ − (Π0,δ
i )∗|||∗ = 0. (8)

Furthermore, the operators (Πε,δ
i )∗ correspond to the sum of eigenprojections onto

eigenspaces of L∗ε of eigenvalues inside Bδ(r̄i).

Proof. The first statement follows directly from Lemma 2.2. The last statement
follows from [28, III, Theorem 6.22].

2.3.2. Stability in the Grassmannian distance. In order to extract some concrete
and useful information from the previous stability results, let us introduce some
terminology. Given A,B ⊂ X closed subspaces, let d|·|(A,B) be the Grassmannian
distance between A and B, that is, the Hausdorff distance between the unit balls
in A and B,

d|·|(A,B) := max
(

sup
a∈A,|a|=1

inf
b∈B,|b|=1

|a− b|, sup
b∈B,|b|=1

inf
a∈A,|a|=1

|a− b|
)
. (9)

Proposition 2.4. Suppose (6) holds. Let Eεi := Πε,δ
i X, and assume6 dimEεi =

dimE0
i . Then,

lim
ε→0

d|·|(E
0
i , E

ε
i ) = 0. (10)

Remark 2.5. Equation (10) implies the following.

(I) If f ∈ E0
i , then there exist fε ∈ Eεi such that limε→0 |f − fε| = 0.

(II) If limn→∞ εn = 0, fn ∈ Eεni and limn→∞ fn = f (in the norm | · |), then
f ∈ E0

i .

Proof of Proposition 2.4. Let si = supx∈Ei\{0}
‖x‖
|x| . Since Ei is finite-dimensional,

si > 0. Let us estimate the first term of the right hand side of (9). Let τε =

|||Πε,δ
i −Π0,δ

i |||. Let x ∈ E0
i , |x| = 1. Then,

|Πε,δ
i (x)−Π0,δ

i (x)| = |Πε,δ
i (x)− x| ≤ τε‖x‖.

Thus, by the reverse triangle inequality, |Πε,δ
i (x)| ≥ 1− τε‖x‖. So, infy∈Eεi ,|y|=1 |x−

y| ≤
∣∣x−Πε,δ

i (x)
∣∣/|Πε,δ

i (x)| ≤ 4τε‖x‖, provided τεsi < 1/2. Thus,

sup
x∈E0

i ,|x|=1

inf
y∈Eεi ,|y|=1

|x− y| ≤ 4τεsi. (11)

Using the fact that dimEεi = dimE0
i , [27, Lemma 213] shows that if τε is suffi-

ciently small and (11) holds, then supx∈Eεi ,|x|=1 infy∈E0
i ,|y|=1 |x− y| ≤ 8τεsi. Thus,

d|·|(E
0
i , E

ε
i ) ≤ 8τεsi, and the conclusion follows.

6This always holds for sufficiently small ε in the Keller-Liverani setup; see Theorem 2.1.
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An immediate consequence of Proposition 2.4 and Corollary 2.3 is the following.

Corollary 2.6. Suppose the assumptions of Proposition 2.4 hold. Let (Eεi )
∗ :=

(Πε,δ
i )∗X∗. Then,

lim
ε→0

d‖·‖∗((E
0
i )∗, (Eεi )

∗) = 0. (12)

2.3.3. Interpreting convergence of Koopman eigenvectors. The results of the pre-
vious sections provide a rigorous way to extend convergence results for isolated
eigenvalues of the Perron-Frobenius operator available in the literature to rigorous
statements about convergence – in a suitable sense – of eigenvectors of Koopman
operators, also known as Koopman modes.

This “suitable sense” is in general neither pointwise, nor in a sense of closeness in
some normed function space, such as Lp or Ck, so it may not be evident to the eye
when plotting numerically computed eigenvectors. This issue is exemplified by the
fact that the second and third plots of the second rows of Figures 2 and 4, despite
looking completely different, are indeed close in some sense.

Closeness of Koopman modes should be interpreted in some distributional sense.
For a simple example, consider the doubling map T on S1 ⊂ C, given by T (z) = z2.
Start with any, say, C1 function g : S1 → R. Then, (L∗)k(g) = g ◦ T k is given by

z 7→ g(z2k). This is typically a very oscillatory function for large k. However, when
regarded as a distribution in the dual of C1, the sequence (L∗)k(g) converges to the
linear functional f 7→ a

∫
f dLeb, where a =

∫
g dLeb. Indeed, for every f ∈ C1, as

k →∞, the mixing property of T ensures that∫
(L∗)k(g)f dLeb =

∫
g ◦ T k · f dLeb→

∫
g dLeb

∫
f dLeb.

A more general setup, which allows us to treat maps with discontinuities and is
also numerically tractable with Fourier analysis tools, is introduced in §3.

3. The Ulam scheme in fractional Sobolev spaces. The Ulam method [42]
provides a way of approximating the transfer operator L of a dynamical system
T : M 	 via a sequence of finite-rank operators Lk, each taking values on piecewise
constant functions. They are defined as follows.

For each k ∈ N, let Pk = {B1, . . . , Bk} be a partition of M into k subsets of
positive Lebesgue measure, called bins. Let Ek be given by the formula

Ek(f) =

k∑
j=1

1

Leb(Bj)

(∫
1Bj f dLeb

)
1Bj .

Let Lk := EkL. The k×k matrix representing Lk in the ordered basis {1B1
, . . . , 1Bk}

is called the Ulam matrix. When these matrices are available, the left and right
eigenvectors provide approximations for Perron-Frobenius and Koopman operator
eigenvectors, respectively.

Fractional Sobolev spaces are well-studied Banach spaces which were introduced
to the transfer operator literature in [5]. They are of interest for this work be-
cause they make the Ulam scheme compatible with the Keller-Liverani stability
technology, as will be established in Theorem 3.1 for the one-dimensional case. Fur-
thermore, these spaces are characterized in terms of Fourier transforms, and this
fact will allow us to gain insight into the corresponding eigenvectors via numerical
tests in §4. They are defined as follows.
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Let t, p ∈ R. LetHtp be the subset of the fractional Sobolev space with parameters

p and t on Rd. That is, Htp is the space of tempered distributions f such that

F−1(mtF(f)) ∈ Lp(Rd),

where F denotes the Fourier transform, and mt(ξ) := (1 + |ξ|2)
t
2 =: 〈ξ〉t/2. The

norm on Htp is given by

‖f‖Htp := ‖F−1(mtF(f))‖p. (13)

In applications to transfer operators, the specific choice of parameters p and t de-
pends on the map. In particular, they satisfy 0 < t < 1

p , where t is a smoothness

parameter, and it can not be larger than the smoothness of the (derivative of the)
map.

Given a manifold M , one can construct fractional Sobolev spaces on M , Htp(M),
via charts, and different choices of charts give rise to the same space, with equivalent
norms; see e.g. [5]. The main theoretical result of this section is the following.

Theorem 3.1 (Convergence of the Ulam scheme in fractional Sobolev spaces).
Let 0 < α ≤ 1, and 0 < t′ < t < min(α, 1

p ) < 1.7 Let T : I 	 be a piecewise

C1+α sufficiently expanding map8, and let L : Htp 	 be the transfer operator of T 9.
Let {Ln}n∈N be the operators arising from the Ulam scheme with bins taken to be
n subintervals of uniform length, corresponding to εn := 1/n. Then, the stability
results of §2.3 hold. In particular, the isolated eigenvalues and eigenspaces of Ln
and L∗n converge (in Ht′p and Htp

∗
= H−tq , respectively) to those of L and L∗.

The proof of Theorem 3.1 is deferred until Appendix A.

Remark 3.2. When T is piecewise C2, a result analogous to Theorem 3.1 is valid
with fractional Sobolev spaces replaced by the space of functions of bounded variation,
BV ⊂ L1. Indeed, stability of the Ulam scheme is established in [30], and the
arguments of §2.3 ensure stability of the Koopman operator on BV ∗. The main
reason for us to focus on the less classical setting of fractional Sobolev spaces is that
their duals – which are themselves fractional Sobolev spaces – are more manageable
than BV ∗.

4. Numerical tests for detecting isolated eigenvalues and large-scale almost-
invariant sets. In this section we present a numerical test, which exploits Fourier
analytical properties of the right eigenvectors of (row-stochastic) Ulam matrices to
detect the isolated spectrum of transfer (and Koopman) operators.

We consider matrix approximations to transfer operators arising from the Ulam
scheme introduced in §3. In the setting of Theorem 3.1, the leading left and right
eigenvectors of such matrices yield approximations to the isolated eigenvectors of
the original transfer and Koopman operators, respectively. These approximations
are close in the sense of fractional Sobolev norms, defined in (13).

Suppose wj is a small perturbation of an isolated eigenvector Wj of a Koopman
operator L∗, in H−tq . Then, by definition, applying the smoothing transformation

7Then, the Htp(I) norm is stronger than Ht′p (I). We will drop the dependence of the space on

the manifold, as it will be clear from the context.
8Explicit bounds on the necessary expansion may be extracted, with some work, from the

proof of Lemma A.5. For any piecewise expanding map, such bounds will be satisfied after taking

a higher iterate.
9The fact that L : Htp(I) 	 is well-defined as a bounded linear operator was established in [5].
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w 7→ F−1(m−tF(w)) to wj yields žj := F−1(m−tF(wj)), a small perturbation of

the corresponding smoothed version of Wj , Žj := F−1(m−tF(Wj)). This approxi-
mation is now close in the more basic Lq norm.

The smoothing procedure described above yields an isometry between H−tq (R)

and Lq(R). Thus, ‖Žj‖Lq = ‖Wj‖H−tq 6= 0. Hence, provided adequate normaliza-

tions are taken, if ‖žj‖Lq is very close to zero, one may discard wj as an isolated
eigenvector. In fact, as we order eigenvectors according to the magnitude of the cor-
responding eigenvalues, if wj is not an isolated eigenvector, neither is any wk with
k ≥ j. In order to be able to compare the norms of the different eigenvectors, we
initially normalize them in the Lq norm; this is equivalent to considering a so-called
triple-norm in the Keller-Liverani setup [30].

By identifying the endpoints of the interval I, we will regard functions on I as
periodic (on T1); we point out that the eigenvectors of interest are defined on spaces
where pointwise values are irrelevant. We will consider the procedure described
above as taking place on a periodic domain. For experiments in dimension two, we
will be concerned with tori only, where the definition of fractional Sobolev spaces
is an immediate generalization of (13).

The previous discussion suggests the following numerical test.

Test 1 (Threshold for fractional Sobolev norms). Set 0 < t < 1
p < 1 (as in

Theorem 3.1), and q = (1− p−1)−1.

1. Fix a resolution N and a number 0 < k � N . Compute the top k right
eigenvectors of the Ulam matrix LN , {w1, . . . , wk}, normalized in Lq.

2. Compute their discrete Fourier transforms {ŵ1, . . . , ŵk}.
3. Compute the weighted discrete Fourier transforms, z′j(ξ) = ŵj(ξ)〈ξ〉−t/2, where

〈ξ〉 := (1 + |ξ|2). Set zj(ξ) = z′j(ξ)
(

sin(πξ/N)/(πξ/N)
)2 10.

4. Compute the inverse discrete Fourier transforms {ž1, . . . , žk}.
5. Set a threshold τ > 0.
6. If ‖žj‖Lq is below the threshold τ , discard wl as an isolated eigenvector for

every l ≥ j.

Table 1 illustrates how Test 1 is implemented in Matlab. Such code shows how
to compute ‖žj‖Lq in Step (6), assuming w = wj is a vector of even length N ,
normalized in q-norm.

The smoothing procedure involved in Test 1 also provides a practical tool for
identifying almost-invariant sets. Indeed, while stability of Koopman eigenvectors
has been established by Theorem 3.1 in a distributional sense, the corresponding
stability properties allow us to rely on smoothened versions of the eigenvectors
for detecting almost-invariant components. In analogy with the Dellnitz-Froyland
ansatz, we will use level sets of the smoothed versions of top eigenvectors to identify
almost-invariant sets for the dynamics.

4.1. One-dimensional piecewise smooth expanding maps. We will illustrate
the use of Test 1 with a family of piecewise smooth expanding maps T , involving
parameters ε, δ. This family has been chosen, somewhat arbitrarily, in such a way

10The multiplicative factor p̂(ξ) :=
(

sin(πξ/N)/(πξ/N)
)2

, where N is the resolution, is intro-

duced to recover the approximation to Fourier integrals given by the trapezoid rule. The inverse

discrete Fourier transform of p̂F̂ corresponds to the piecewise linear function interpolating the
values F (n/N) at points n/N , 0 ≤ n < N,n ∈ N [23, Thm 5.30]. We point out, however, that the

outcomes of our experiments with or without this correction are very similar.
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y = fftshift( fft(w) ); % fftshift swaps the left and right halves of the

vector, so the first entry of fft(w) (zero-

frequency component) moves to the center of y

xi = transpose( -N/2:N/2-1 );

z = y.*( 1+xi.^2 ).^(-t/2).* ( sin(pi.*xi./N) ./ (pi.*xi./N) ).^2;

z(N/2+1) = y(N/2+1); % to get rid of NaN entry in z

norm( ifft(ifftshift(z)), q )

Table 1. MATLAB code for the implementation of Test 1.

that when ε and δ are close to 0, the maps are small perturbations of a map with
three ergodic components. Thus, for those parameters, it is reasonable to expect (at
least) three near-unit isolated eigenvalues, corresponding to metastable components.

Figure 3 depicts two such maps, corresponding to parameters ε = .01 and δ ∈
{0.1, 0.2}. As δ increases, the leftmost peak moves up, making the two left thirds
interact more strongly. The parameter ε may be regarded as fixed for the rest of this
section, and the dependence of the map on the parameters ε, δ will not necessarily
be explicit. Given parameters ε, δ, we let:

T (x) =



2(1 + 3 δ√
2
)x, for x ≤ 1

6
1
3

+ δ√
2
− 2(1 + 3 δ√

2
)(x− 1

6
) + 1000(x− 1

6
)2(x− 1

3
)2, for 1

6
< x ≤ 1

3
4
9

+ (2 + 9 ε√
2
)(x− 1

3
), for 1

3
< x ≤ 4

9
1
2
− (3 + 18 ε√

2
)(x− 1

2
) + 100000(x− 4

9
)2(x− 5

9
)3, for 4

9
< x ≤ 5

9
)

1
3
− ε√

2
+ (2 + 9 ε√

2
)(x− 5

9
), for 5

9
< x < 2

3

1− 2(1 + 3 ε√
2
)(x− 2

3
), for 2

3
≤ x < 5

6

1 + 2(1 + 3 ε√
2
)(x− 1), for 5

6
≤ x ≤ 1 (mod 1).

(14)

Remark 4.1 (Choice of parameters for Test 1). We make the following choices for
the remainder of this section. We fix p = 1.1, as p = 1 would be the limiting case
corresponding (almost) to the space of functions of bounded variation, where piece-
wise smooth expanding maps have been extensively studied. This choice determines
q = 11.

We set t = 0.9, which yields rather smooth outcomes for {ž1, . . . , žk}, making
more evident the low frequency features of {w1, . . . , wk}.

We fix k = 5, the number of eigenvalues to investigate. For step (5), we choose
τ = 0.05, corresponding 5% of the norm of the dominant eigenfunction w1 ≡ 1.

We point out that Test 1 seems robust under choices of parameters. We have
performed experiments with various choices, and arrived to similar conclusions. For
example we have tested p = q = 2, which is commonly used in the applied literature
for higher dimensional mixing systems.

Example 4.2 (Metastable map with 3 components).

Test 1 is illustrated in Figure 5 for the map T : I 	 depicted in Figure 3(a),
corresponding to ε = .01, δ = 0.1. The left figure shows the eigenvalues of the Ulam
matrix of resolution 213 bins; they have been obtained with Matlab’s routine eig.
The right figure shows the quotient of H−tq and Lq norms of the top 25 eigenvectors,
obtained as described in Table 1. We note a transition between the top 3 and the
other eigenvectors.

Figures 6 and 7, illustrate the top k = 5 left eigenvectors of two Ulam matrices
corresponding to different resolutions (N = 212 and N = 213). Each row of Figures 6
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Figure 5. Left:
Eigenvalues of
Ulam matrix of
Example 4.2.
Right: Fractional
Sobolev norms
of top 25 right
eigenvectors.
Resolution: 213

bins.

Figure 6. Test 1 for Example 4.2: map (14) with ε = .01 and δ = 0.1.
1st and 2nd columns: real and imaginary parts of right Ulam eigenvec-
tors wj ; 3rd column: |ŵj |; 4th and 5th columns: real and imaginary
parts of žj , respectively. Resolution: 212 bins.

and 7 corresponds to a fixed eigenvalue. The first two columns depict real and
imaginary parts of right Ulam eigenvectors wj , obtained with Matlab routine eigs.
The third column displays the magnitude of the discrete Fourier transform ŵj of
wj , obtained with fft composed with fftshift.

Set zj(ξ) = ŵj(ξ)〈ξ〉−t/2
(

sin(πξ/N)/(πξ/N)
)2

. Columns 4 and 5 of Figures 6
and 7 show real and imaginary parts of žj , respectively. The H−tq norm of žj is
shown next to the vertical axis of Column 4. Column 4 is a smoothed version
of Column 1; similarly, Column 5 is a smoothed version of Column 2. For both
resolutions, Test 1 allows us to detect the presence of three isolated eigenvalues for
L∗. They correspond to those rows for which the fractional Sobolev norms exceed
the threshold 0.05.

Figure 8 illustrates how the level sets of smoothed eigenvectors can provide in-
formation about almost-invariant components of the underlying map, by setting a
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Figure 7. As in Figure 6. Resolution: 213 bins.

(a) (b)

Figure 8. Partitions of the
interval given by level sets of
smoothed 2nd and 3rd eigen-
vectors of the Koopman op-
erator of (14), with parame-
ters ε = .01 and (a) δ = 0.1,
(b) δ = 0.2. (Obtained from
Column 4 of Figures 7 and
10.)

threshold and separating the phase space into parts above and below the threshold.
The upper graphs depict the signs of the level sets of the smoothed 2nd eigenvector.
The lower graphs show the partitions given by the 3rd eigenvectors, with thresh-
olds 0.034 in (a) and .0025 in (b). While the thresholds are ad hoc choices in our
examples, the existence of an adequate option already shows the value of the pro-
posed algorithm for the identification of almost-invariant sets. We recall that the
partition into intervals (0, 1/3), (1/3, 2/3) and (2/3, 1) is invariant for the map with
parameters ε = 0, δ = 0.

Remark 4.3. We note that the Fourier transforms in the top three rows of Figures 6
and 7, unlike the bottom ones, have their highest peak at low frequencies. This
suggests a test for metastability, which has also been robust to different resolutions
and maps. (See also Figures 10, 13 and 14.) Intuitively, it is reasonable to consider
the dominance of low frequencies as a sign of metastability. However, rigorous
arguments substantiating this claim are, to our knowledge, unavailable.

Example 4.4 (Collapse of metastable components).

By increasing δ from 0 in (14), we can observe a change in the number of
metastable components. Let us fix ε = .01 and increase δ from δ = 0.1 in Exam-
ple 4.2 to δ = 0.2. Figure 9 shows the eigenvalues of the Ulam matrix corresponding
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Figure 9. Left: Eigenva-
lues of Ulam matrix of Ex-
ample 4.4. Right: Frac-
tional Sobolev norms of top
25 right eigenvectors. Res-
olution: 213 bins.

Figure 10. Test 1 for Example 4.4: map (14), ε = .01, δ = 0.2. Resolu-
tion: 213 bins.

to 213 bins (left), and the quotient of H−tq and Lq norms of the top 25 eigenvectors
(right).

This test suggests that the third isolated eigenvalue of Example 4.2 is lost for
δ = 0.2, as the corresponding Sobolev norm is below the threshold.

Figure 10 illustrates the top 5 right Ulam eigenvectors, as well as their smoothed
versions of Test 1. Columns and rows are as explained in Example 4.2. Figure 8(b)
has been obtained as Figure 8(a) in the Example 4.2. The top part of Figure 8(b)
(red and white online) allows one to distinguish the two almost-invariant compo-
nents of the underlying system.

Example 4.5 (Metastable map with rotation).

We consider the addition of a rotation to the map (14) with parameters ε = 0.01,
δ = 0.1, and define Tθ(x) = T (x) + θ (mod 1). When θ = 1/3, the three (previ-
ously) almost-invariant intervals (0, 1/3), (1/3, 2/3), and (2/3, 1) are now cyclically
interchanged by Tθ, to become almost-cyclic sets [11]. This property manifests in
the spectrum of the Perron-Frobenius operator L : Htp 	 and Koopman operator

L∗ : H−tq 	 in the following way. Instead of the eigenvalue 1 and two other real
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Figure 11. Left: Eigen-
values of Ulam matrix
of Example 4.5, θ =
1/π. Right: Fractional
Sobolev norms of top 25
right eigenvectors. Reso-
lution: 213 bins.

eigenvalues close to 1 as in Example 4.2, we now have the eigenvalue 1 and the two
complex cube roots of unity of magnitude close to 1. The complex eigenfunctions of
the two complex-conjugate eigenvalues are rotated by 1/3 forward (resp. backward)
by the Perron-Frobenius operator (resp. Koopman operator).

For irrational θ, as in the periodic rotation case, the spectrum of the Perron-
Frobenius and Koopman operators may possess an isolated complex-conjugate pair
of eigenvalues. This will occur if the rotation is compatible with the dynamics of T so
that rotating “coherent sets” persist. Denote the complex-conjugate pair of isolated
eigenvalues λ2 = r2e

iβ , λ̄2 = r2e
−iβ , with corresponding complex eigenfunctions

f2, f̄2. Since

Lf2 = r2(cos(β)<(f2)− sin(β)=(f2)) + ir2(sin(β)<(f2) + cos(β)=(f2)), (15)

and L preserves real functions, we see

L(<(f2)) = r2(cos(β)<(f2)−sin(β)=(f2)) and L(=(f2)) = r2(sin(β)<(f2)+cos(β)=(f2)).

By considering the set S := {%ζ : 0 ≤ ζ < 1}, where %ζ := <(f2) cos(2πζ) −
=(f2) sin(2πζ), in the case of the Perron-Frobenius operator, one can extract a
family of rotating “coherent sets” of the form Aζ = {%ζ ≥ cζ}, {%ζ < cζ} for suitable
threshold cζ (chosen so that ν({%ζ ≥ cζ}) is independent of ζ), where ζ = kθ, k ∈ Z.
A similar construction applies to the smoothed eigenfunctions of L∗ by linearity of
the Fourier transform.

If θ = 1/π, the rotation is close to 1/3 and it approximately maintains the
structure of the almost-invariant sets (0, 1/3), (1/3, 2/3), and (2/3, 1). Thus in
Figure 11 we see two complex eigenvalues of large magnitude, which appear to
be isolated according to Test 1. In contrast if θ = 0.2, this rotation does not
preserve the collection of almost-invariant sets (0, 1/3), (1/3, 2/3), and (2/3, 1), and
the metastability is lost. In Figure 12, Test 1 indicates the possible presence of only
one nontrivial isolated eigenvalue, and correspondingly that the three-set structure
is destroyed by this rotation.

Figures 13 and 14 depict eigenvectors and their smoothed versions for T1/π and
T0.2, with rows and columns as explained in Example 4.2. Figure 15(a) depicts posi-
tive and negative level sets of the smoothed 2nd eigenvector for T1/π, corresponding
to ζ = 0 and ζ = 1/π, illustrating the rotating coherent sets discussed above. (In
this case, the second eigenvalue of the Ulam matrix is λ2 = −0.4256 + 0.6726i,
which has argument β ∼ 2.1349. This approximately corresponds to ζ = 1/π.) It
is worth remarking that this partition clearly encodes large-scale features of the
system. Indeed, it is not highly disconnected as it would be for other eigenvectors.
Figure 15(b) illustrates the argument of the smoothed 2nd eigenvector for T1/π.
The eigenvector condition (15) implies that the action of L on the angle is simply a
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Figure 12. Left: Eigen-
values of Ulam matrix of
Example 4.5, θ = 0.2.
Right: Fractional Sobolev
norms of top 25 right eigen-
vectors. Resolution: 213

bins.

Figure 13. Test 1 for Example 4.5: map (14), ε = .01, δ = 0.1, θ = 1/π.
Resolution: 213 bins.

rotation with argument β. Notice that the inverse image of [−π/2, π/2] corresponds
to positive real part, so Figure 15(a) could be recovered from Figure 15(b).

Remark 4.6. It is worth mentioning that a test analogous to Test 1 can be imple-
mented for eigenvectors of the Perron-Frobenius operator (left eigenvectors of the
Ulam matrix). Indeed, the test could consist of steps (1)–(6) of Test 1, with the
left Ulam eigenvectors v1, . . . , vk instead of w1, . . . , wk, q replaced by p and −t by
t. However, such a test roughens eigenfunctions instead of smoothing them. Since
numerical approximations introduce noise, at least at small scales, such a roughen-
ing procedure emphasizes less-well-approximated modes, and thus provides, in our
experience, less reliable outcomes.

4.2. Two dimensional examples. In this section, we investigate the application
of Test 1 to two-dimensional systems with expanding and contracting directions. We
set the parameters p = q = 2 and t = 1, so that the corresponding Sobolev norm is
H−1

2 = H−1. Such a norm is used to quantify fluid mixing, and called a mix-norm
[34]. It is worth remarking that this norm smooths out high frequency modes in all
directions. For this reason, we employ the same norm to measure eigenvectors of
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Figure 14. Test 1 for Example 4.5: map (14), ε = .01, δ = 0.1, θ = 0.2.
Resolution: 213 bins.

(a) (b)

Figure 15. (a) Partition into rotating coherent sets from smoothed 2nd
eigenvector of the Koopman operator of map (14), with parameters
ε = .01, δ = 0.1, θ = 1/π and ζ = 0 (top), ζ = 1/π (bottom). The
horizontal line illustrates the rotation corresponding to ζ = 1/π. (Ob-
tained from Columns 4 and 5 of Figure 13.) (b) Argument of smoothed
2nd eigenvector.

Perron-Frobenius and Koopman operators. We set threshold τ = 1/3. It is worth
pointing out that the examples at hand turn out to be highly robust under changes
of this value. Indeed, any threshold in the range (0.3, 0.7) would yield the same
conclusions.

We remark that this procedure also allows eigenvectors of the transfer operator to
be used to identify almost-invariant sets in the hyperbolic case, and not only in the
elliptic case where there are truly invariant sets. This setup has been investigated
in [26, 35, 17, 33] and references therein. In related work, [15] proposes the so-
called unwrapping procedure. There seems to be a similarity between the plots of
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Figure 16. Left: Top
210 eigenvalues of Ulam
matrix of weakly coupled
standard maps (Exam-
ple 4.7). Right: Mix-
norms of left and right
eigenvectors (circles and
asterisks, respectively).

[15] and the smoothed eigenvectors arising from our experiments. Both methods
involve smoothing effects; however, there is at present no complete explanation for
these similarities.

Example 4.7 (Weakly interacting standard maps).

Here we investigate a two-dimensional system obtained from joining two standard
maps in a weakly interacting way. More precisely, we study a map on a 4π × 2π
rectangle, obtained from applying a shift of 5% to the left (mod 4π), then applying
the standard map on each 2π × 2π side, then shifting 5% to the right, and finally
reapplying the double standard map on each side. The standard map applied on
each side is given by (x, y) 7→ (x+y, y+8 sin(x+y)) (mod 2π). The horizontal shifts,
which only affect the x coordinate, are determined by x 7→ x± 4π/20 (mod 4π).

While rigorous results on the spectrum of the transfer operator for this system
are not available, we anticipate that Test 1 detects at least two isolated eigenvalues,
corresponding to the almost-invariant left and right components of the system.

We analyze the Ulam matrix corresponding to 256 × 512 bins resolution. The
top 210 eigenvalues are depicted in Figure 16(a). Here, there seem to be several
eigenvalues which could be isolated. The mix-norms of the first 25 eigenvectors are
plotted in Figure 16(b). There is a clear gap between the mix-norm of the first two
and the rest of the eigenvectors, which is detected by Test 1. Thus, this test adds
confidence to the claim that the first two eigenvectors are associated with large-scale
dynamical features.

As in the one-dimensional case, the smoothing procedure damps higher Fourier
frequencies in such a way that distributions in the space H−1 get transformed to
functions in L2. Furthermore, a large H−1 norm can be interpreted as the presence
of a large-scale structure underlying the distribution. Figure 17 shows the top 5 left
and right eigenvectors of the Ulam matrix, as well as the corresponding smoothed
versions. We observe that the level sets of the smoothed second eigenvectors pro-
vide a very good approximation of the almost-invariant left and right halves. It
is worth pointing out that the remaining eigenvectors may still encode information
about (almost-)invariant sets. However, such sets would correspond to smaller-scale
phenomena.

Example 4.8 (Weakly interacting cat maps).

Next we consider a variant of the previous example: a pair of weakly coupled
Arnold’s cat maps. More precisely, we study a map on rectangle [0, 2] × [0, 1],
obtained from applying a shift of 5% to the left (treating the entire rectangle as a
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torus), then applying the double cat map (linear hyperbolic map

(
2 1
1 1

)
map on

each 1× 1 square, treating each half as a torus), then shifting 5% to the right, and
finally reapplying the double cat map.

We analyze the Ulam matrix corresponding to 256×512 bins resolution. The top
210 eigenvalues are depicted in Figure 18(a). The first 25 values of the mix-norms
of left and right eigenvectors are plotted in Figure 18(b). The outcomes of Test 1
again separate the top two isolated eigenvalues, adding confidence to the claim that
the first two eigenvectors correspond to large-scale dynamical features. Figure 19
shows the top 5 left and right eigenvectors, as well as the corresponding smoothed
versions. The level sets of the smoothed second eigenvectors clearly identify the
almost-invariant left and right sides of the phase space. The third row of Figure 19
may encode further almost-invariant sets, corresponding to blue and red in the 2nd
and 5th columns. It is not clear whether the system features large-scale almost-
invariant sets apart from left and right sides, and the corresponding eigenvector
may be interesting for further analyses.

5. Conclusion. Transfer operator methods of detecting and identifying metastable
dynamics are becoming increasingly pervasive in the analysis of real-world dynami-
cal systems. These methods are based on numerical estimates of the eigenfunctions
of the transfer operator (or Koopman operator) that correspond to isolated eigenva-
lues. In this work we put forward the first numerical method for determining which
of the computed eigenfunctions correspond to isolated eigenvalues. Our numerical
approach is based on the expected regularity properties of the computed eigen-
functions, and is supported by a new theoretical result concerning the stability of
the isolated spectrum of the transfer operator and its dual, the Koopman operator.
Our suggested implementation of the numerical method is based on Fourier analytic
tools, which are currently being used in both applied and pure studies of mixing in
dynamical systems (under the names of mix-norms and fractional Sobolev spaces,
respectively). We show that these tools, in conjunction with the well-known Ulam
method of numerically approximating the linear operators, effectively numerically
identify isolated spectrum of transfer and Koopman operators, as well as recover
underlying large-scale nearly invariant sets. Our proposed numerical test provides
an improved visualisation of almost-invariant or metastable sets (an improvement
over the raw eigenfunctions of the transfer operator and Koopman operator), par-
ticularly in the complicated setting where there is both expanding and contracting
dynamics. We also provide an interpretation of eigenprojectors corresponding to
complex eigenvalues. The current paper is focused on autonomous systems, and
work on extending the method to the non-autonomous setting is underway.
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Figure 17. Test for weakly coupled standard maps (Example 4.7); fig-
ure should be considered in landscape orientation. 1st column: real part
of left Ulam eigenvectors, eigenvalues are shown on vertical axis; 2nd
and 3rd columns: real and imaginary parts of smoothed left Ulam eigen-
vectors, mix-norms are shown on vertical axis; 4th column: real part of
right Ulam eigenvectors; 5th and 6th columns: real and imaginary parts
of smoothed right Ulam eigenvectors. Resolution: 256× 512 bins.
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Figure 18. Left:
Top 210 eigenvalues
of Ulam matrix of
weakly coupled cat
maps (Example 4.8).
Right: Mix-norms
of left and right
eigenvectors (cir-
cles and asterisks,
respectively).
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Figure 19. Test for weakly coupled cat maps, Example 4.8; figure
should be considered in landscape orientation. 1st column: real part
of left Ulam eigenvectors, eigenvalues are shown on vertical axis; 2nd
and 3rd columns: real and imaginary parts of smoothed left Ulam eigen-
vectors, mix-norms are shown on vertical axis; 4th column: real part of
right Ulam eigenvectors; 5th and 6th columns: real and imaginary parts
of smoothed right Ulam eigenvectors. Resolution: 256× 512 bins.
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Appendix A. Proof of Theorem 3.1. Throughout this section, we will use ‖ · ‖
and |·| to denote ‖·‖Htp and ‖·‖Ht′p , respectively. We will need with some preparatory

material.

A.1. Approximation by smooth functions. Let f ∈ Htp and ε > 0. Set

fε :=
∑
j∈Z

e−ε(1+(2πj)2)ajφj(x), (16)

where φj(x) = e2πijx and aj :=
∫ 1

0
φj(y)f(y) dy. Then, fε ∈ C∞. Since |aj | ≤ ‖f‖1,

a direct calculation shows

‖fε‖C2 ≤
∞∑
j=1

e−ε(1+(2πj)2)(2πj)2‖f‖1 ≤ C(ε)‖f‖Htp , (17)

for some decreasing function C : (0,∞)→ R+ such that limε→0+ C(ε) =∞.
The main result of this subsection is the following approximation lemma.

Lemma A.1. Let f ∈ Htp. Then, |fε − f | ≤ C#ε
t−t′

2 ‖f‖.

Before proceeding with the proof, we present a lemma about sequences of bounded
variation. Let b = (bj), indexed by Z. We define its variation by var(b) :=∑
j∈Z |bj − bj−1|. Let (φj) denote the standard orthonormal basis for L2(T). That

is, φj(x) := e2πijx. For a bounded sequence b, define an operator on Lp(T) by

Mb :
∑
j

ajφj →
∑
j

ajbjφj . (18)

Lemma A.2. Let b = (bj) be a sequence of non-negative reals such that var(b) <∞
and bj → 0 as j → ±∞. Then for each p > 1, ‖Mb‖p ≤ Cp var(b).

The following auxiliary result will be used in the proof.

Lemma A.3. Let (bj) be as in the statement of Lemma A.2. Define sets S1 and
S2 as follows:

S1 =
⋃
j

{j} × [0, bj)

S2 =
⋃
i

⋃
j≥i

({i, i+ 1, . . . , j} × [max(bi−1, bj+1),min(bi, bi+1, . . . , bj))) ,

Then S1 = S2 and the union in S2 is a disjoint union. Writing Ii,j for

[max(bi−1, bj+1),min(bi, bi+1, . . . , bj)),

with the convention that [c, d) is empty if d ≤ c, and setting hi,j = |Ii,j |, we have∑
i,j hi,j = 1

2var(b).

The content of this lemma is illustrated in Figure 20.

Proof of Lemma A.2. Consider b : Z → [0,∞) as a function on the integers. By
Lemma A.3, we can write

b =
∑
i,j

hi,j1[i,j],
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Figure 20. Illustration of Lemma A.3.

where hi,j is given by |Ii,j |, the length of the interval defined in Lemma A.3. In
particular, we deduce

Mb =
∑
i,j

hi,jS[i,j],

where S[i,j](f) :=
∑j
l=i alφl. Thus, ‖Mb‖p ≤

∑
i,j hi,jCp = 1

2var(b)Cp, where Cp
is a uniform bound on ‖Sk‖p, and Sk is the truncated Fourier series Sk(f) :=∑
|j|≤k ajφj .

Corollary A.4. Let (bj) be as in the statement of Lemma A.2. Suppose (bj) is
piecewise monotonic with at most K pieces. Then, ‖Mb‖p ≤ CpK‖b‖∞.

Proof of Lemma A.1. Let ε > 0, and bj,ε = 〈j〉 t
′−t
2 (1− e−ε〈j〉). Then,

|f − fε| =
∥∥∥ ∞∑
j=1

bj,ε〈j〉
t
2 f̂(j)φj

∥∥∥
p

= ‖Mb(Jtf)‖p ≤ ‖Mb‖p‖f‖Htp , (19)

where Mb is the operator defined in (18), and Jt : Ht
p(T) → Lp(T) is given by

Jt(f) := F−1mtF(f), with mt(ξ) = 〈ξ〉 t2 = (1 + |ξ|2)
t
2 .

For 0 < γ < 1, let h(x) = x−γ(1− e−εx). One can check that h has two intervals
of monotonicity. For x < 1/ε, one has h(x) ≤ εx1−γ , while for x ≥ 1/ε, one has
h(x) ≤ x−γ . In particular, one has ‖h‖∞ ≤ εγ .

Using the above with γ = t−t′
2 , the lemma follows from (19) and Corollary A.4.

A.2. Boundedness of Ek in Htp. Recall that Ek is the conditional expectation
with respect to the uniform partition of the interval into k bins. It is well known that
Ek is a contraction in Lp. For Htp norms, we are not aware of any similar results
in the literature. Here we establish the following, which may be of independent
interest.

Lemma A.5. Let p > 1 and let 0 < t < 1/p. There exists a constant C# such that
‖Ekf‖ ≤ C#‖f‖ for all k ≥ 1 and all f ∈ Htp11.

In order to demonstrate this, we shall make use of a theorem of Strichartz [39].

Theorem A.6 (Strichartz). Let p > 1 and 0 < t < 1, and f : R → R with
supp f ⊆ [0, 1]. Then f ∈ Htp if and only if ‖f‖p + ‖Stf‖p < ∞ and the implied

11We remind the reader that C# may depend on parameters p, t, and that ‖ · ‖ denotes ‖ · ‖Htp
throughout this section.
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norm is equivalent to the standard Htp norm, where Stf is given by

Stf(x) =

(∫ ∞
0

dr

r1+2t

(∫ 1

−1

|f(x+ ry)− f(x)| dy
)2
)1/2

. (20)

Proof of Lemma A.5. We shall use the notation A . B to indicate that the quantity
A is bounded by a constant multiple of the quantity B, where the constant is
independent of k and any function to which the inequality is being applied.

Let k be fixed (although we ensure that all bounds that we give are independent
of k). For x ∈ [0, 1), let j(x) denote the index of the interval to which x belongs.
That is j(x) = bkxc.

We have ‖Ekf‖p ≤ ‖f‖p so it suffices to show that ‖St(Ekf)‖p . ‖Stf‖p.
We let Hrf(x) be the outer integrand in Stf(x), that is

Hrf(x) =
1

r1+2t

(∫ 1

−1

|f(x+ ry)− f(x)| dy
)2

. (21)

Notice that Stf(x) ≤ S(1)
t f(x) + S

(2)
t f(x), where

S
(1)
t f(x) =

(∫ 1/(2k)

0

Hrf(x) dr

)1/2

and

S
(2)
t f(x) =

(∫ ∞
1/(2k)

Hrf(x) dr

)1/2

.

We start by establishing an inequality that we use several times. Let Ij denote
the interval [(j − 1)/k, j/k).

Claim A.7.∫ 1

0

|Ekf(x)− f(x)|p dx . k−pt
∫ 1

0

dx

(∫ 3/k

2/k

Hrf(x) dr

)p/2
. (22)

Proof. Let x ∈ [0, 1]. If 2
k ≤ r ≤

3
k , then

Hrf(x) & k1+2t

(∫ 1

−1

|f(x+ ry)− f(x)| dy
)2

& k3+2t

(∫ x+r

x−r
|f(s)− f(x)| ds

)2

≥ k3+2t

(∫
Ij(x)

|f(s)− f(x)| ds

)2

≥ k3+2t

(∫
Ij(x)

|Ekf(s)− f(x)| ds

)2

= k1+2t|Ekf(x)− f(x)|2.

Integrating in r over the range [ 2
k ,

3
k ] and raising to the p/2 power, we obtain

|Ekf(x)− f(x)|p . k−pt
(∫ 3/k

2/k

Hrf(x) dr

)p/2
,

which establishes the claim upon integrating with respect to x.
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Notice for later usage that

|Ekf(x)− f(x)| . k−tS(2)
t f(x). (23)

For a function f(x), let fj denote the value of Ekf on the interval Ij . Recalling
definitions (21) and (20) of Hr and St, the above implies the inequality

kpt
∫ 1

0

|fj(x)(x)− f(x)|p dx . ‖Stf‖pp. (24)

Straightforward modifications also establish the inequality

kpt
∫ 1

0

|fj(x)+1(x)− f(x)|p dx . ‖Stf‖pp. (25)

We now estimate S
(2)
t Ekf(x). Letting r > 1/(2k), we have

Hr(Ekf)(x) =
1

r1+2t

(∫ 1

−1

|Ekf(x+ ry)− Ekf(x)| dy
)2

.
(f(x)− Ekf(x))2

r1+2t
+

1

r1+2t

(∫ 1

−1

|Ekf(x+ ry)− f(x)| dy
)2

.

Hence we have

S
(2)
t (Ekf)(x) .

(
|f(x)− Ekf(x)|2

∫ ∞
1/(2k)

1

r1+2t
dr

)1/2

+

(∫ ∞
1/(2k)

(
∫ 1

−1
|Ekf(x+ ry)− f(x)| dy)2

r1+2t
dr

)1/2

∼ kt|f(x)− Ekf(x)|+ (∗),

(26)

where (∗) denotes the term on the second line of the inequality.
We then estimate (*) as follows.∫ 1

−1

|Ekf(x+ ry)− f(x)| dy

=
1

2r

∫ x+r

x−r
|Ekf(s)− f(x)| ds

.
1

2r

∑
{j : Ij∩[x−r,x+r]6=∅}

∫
Ij

|Ekf(s)− f(x)| ds

≤ 1

2r

∑
{j : Ij∩[x−r,x+r]6=∅}

∫
Ij

|f(s)− f(x)| ds

.
∫ 1

−1

∣∣f (x+ (r + 1
k )y
)
− f(x)

∣∣ dy,
so that (∗) .

(∫∞
1/(2k)

Hr+ 1
k
f(x) dr

)1/2

≤ S
(2)
t f(x). Hence, by Theorem A.6 and

definition of S
(2)
t f , ‖(∗)‖p . ‖f‖Htp . Combining this with (26) and (23), we deduce

‖S(2)
t (Ekf)‖p . ‖f‖Htp .
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It remains to show that ‖S(1)
t (Ekf)‖p . ‖f‖Htp . Let x = j

k −h, where we assume

h < 1/(2k) (the other case being similar). We have HrEkf(x) = 0 if r ≤ h and,
recalling that r ≤ 1/(2k), HrEkf(x) ≤ |fj+1 − fj |2/r1+2t if r > h.

Hence

S
(1)
t Ekf(x) ≤ |fj+1 − fj |

(∫ 1/(2k)

h

1

r1+2t
dr

)1/2

. |fj+1 − fj |h−t.
Integrating the pth power, we see

‖S(1)
t Ekf‖pp .

∑
j

|fj+1 − fj |pkpt−1

∼ kpt
∫ 1

0

|fj(x)+1 − fj(x)|p dx

∼ kpt
(∫ 1

0

|fj(x)+1 − f(x)|p dx+

∫ 1

0

|fj(x) − f(x)|p dx
)
.

The desired bound then follows from (24) and (25).

Another result that will be used later is the following.

Lemma A.8. Let g ∈ Cγ , with t′ < min{γ, 1
p}. Then, |(Ek−I)g| ≤ C#‖g‖Cγηγ−t

′

k .

Proof. Let g ∈ Cγ and t < min(γ, 1/p). We will show that ‖(Ek − 1)g‖Htp ≤
C#‖g‖Cγkt−γ .

We use the Strichartz equivalent characterization of Htp of Theorem A.6 again.
Let x ∈ [0, 1] be at a distance s from one of the endpoints of the partition of the
interval into subintervals of length 1/k. Let g ∈ Cγ and let h = Ekg − g. We check
that |h|(z) ≤ ‖g‖γk−γ for all z.

We have ‖h‖Hpt ≈ ‖h‖p + ‖Sth‖p where

Sth(x) =

(∫ ∞
0

dr

r1+2t

(∫ 1

−1

|h(x+ ry)− h(x)| dy
)2
)1/2

.

We split the integration over the ranges [0, s] and [s,∞):(∫ s

0

dr

r1+2t

(∫ 1

−1

|h(x+ ry)− h(x)| dy
)2
)1/2

=

(∫ s

0

dr

r1+2t

(∫ 1

−1

|g(x+ ry)− g(x)| dy
)2
)1/2

≤

(∫ s

0

dr

r1+2t

(∫ 1

−1

‖g‖Cγ |ry|γ dy
)2
)1/2

= C#‖g‖Cγ
(∫ s

0

dr r2γ−1−2t

)1/2

≤ C#‖g‖Cγkt−γ .

Using the uniform bound on h, we have(∫ ∞
s

dr

r1+2t

(∫ 1

−1

|h(x+ ry)− h(x)| dy
)2
)1/2

≤ C#‖g‖Cγk−γs−t.
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Since the Lp norm of each part is of the form C#‖g‖Cγkt−γ , the desired result
is obtained.

A.3. Proof of Theorem 3.1. We must verify that the assumptions of Theorem 2.1
are satisfied. The compact embedding condition Htp ↪→ Ht

′

p is established in [4,
Lemma 2.2]. The Lasota-Yorke inequality for L follows from [5] (or the special-
ized version in [21]). The uniform Lasota-Yorke inequality for Ln follows from
Lemma A.5, provided the expansion is sufficiently strong.

It remains to show limk→∞ |(Lk −L)f | = 0 for every f ∈ Htp. Let ηk = 1
k be the

diameter of the partition elements of Pk. Let f ∈ Htp, and for each ε > 0, let fε as
in (16). For each k ∈ N, we have

|(Lk − L)f | ≤ |(Lk − L)fε|+ |(Lk − L)(fε − f)| =: (U1) + (U2). (27)

We will bound each term separately. The fact that

(U2) ≤ C#ε
t−t′

2 ‖f‖ (28)

follows from Lemma A.1, after recalling that |Ek| is bounded independently of k,
by Lemma A.5.

Now we estimate (U1). Let
{
Ii}1≤i≤β be the partition of I into domains of

differentiability of T , Qi = T (Ii), and ξi :=
(
T |Ii

)−1
. Then, the transfer operator

L is given by

Lf =

β∑
i=1

1Qi · f ◦ ξi · |Dξi|.

This is the sum of at most β terms of the form 1Jg, where J ⊂ I is an interval, and
g = f ◦ ξi · |Dξi| for some i ∈ N. Furthermore, when f ∈ Cγ , each such g is also
Cγ , and ‖g‖Cγ ≤ C‖f‖Cγ , where C depends on T , but not on f . In this case, Lf
may be rewritten as

Lf = (Lf)h + (Lf)s,

where (Lf)h ∈ Cγ is such that ‖(Lf)h‖ ≤ C‖f‖Cγ , and (Lf)s is the sum of at most
2β step functions, with jumps of size at most β‖f‖∞. Then, ‖(Lf)s‖∞ ≤ 2β2‖f‖∞
and

(U1) = |(Ek − I)Lfε| ≤ |(Ek − I)(Lfε)h|+ |(Ek − I)(Lfε)s| =: (U11) + (U12).

Le us estimate the first term. Lemma A.8, combined with the bound on ‖fε‖Cγ
implied by (17), immediately yields

(U11) ≤ C#‖(Lfε)h‖Cγηγ−t
′

k ≤ C#C‖fε‖Cγηγ−t
′

k ≤ C(ε)‖f‖ηγ−t
′

k . (29)

For the second term, we note that (Ek − I)(Lfε)s is a step function with at
most 2β steps with non-zero value. Also, the change of variables formula shows

that for each interval J ⊂ I, one has |1J | ≤ C#m(J)
1
p−t

′
. Hence, recalling that

‖(Lf)s‖∞ ≤ 2β2‖f‖∞, we get

(U12) ≤ 4β3‖fε‖∞ sup
1≤j≤k

|1Bk | ≤ C#β
3‖fε‖∞η

1
p−t

′

k ≤ C#β
3C(ε)‖f‖η

1
p−t

′

k , (30)

where the last inequality follows once again from (17).
Combining (28), (29) and (30) into (27), we get

|(Lk − L)f | ≤ C#

(
β3C(ε)η

(
min(γ, 1p )−t′

)
k + ε

t−t′
2

)
‖f‖, (31)
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where β is the uniform bound on number of branches of T . Choosing ε such that

β3C(ε) ≤ η−
1
2 (min(γ, 1p )−t′)

k ensures that limk→∞ |(Lk − L)f | = 0, as claimed.

Acknowledgments. The authors are grateful to Michael Dellnitz for motivating us
to develop techniques to numerically determine the peripheral spectrum of transfer
operators, and to Ben Goldys for useful discussions regarding function spaces.

REFERENCES

[1] W. Bahsoun and S. Vaienti, Metastability of certain intermittent maps, Nonlinearity, 25

(2012), 107–124, URL http://dx.doi.org/10.1088/0951-7715/25/1/107.

[2] V. Baladi, Unpublished, 1996.
[3] V. Baladi, Positive transfer operators and decay of correlations, vol. 16 of Advanced Series

in Nonlinear Dynamics, World Scientific Publishing Co. Inc., River Edge, NJ, 2000, URL
http://dx.doi.org/10.1142/9789812813633.

[4] V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: C∞ foliations, in Al-

gebraic and topological dynamics, vol. 385 of Contemp. Math., Amer. Math. Soc., Providence,
RI, 2005, 123–135.
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