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Abstract

The paper [FGTQ14] established fibrewise stability of random absolutely contin-
uous invariant measures (acims) for cocycles of random Lasota-Yorke maps under a
variety of perturbations, including “Ulam’s method”, a popular numerical method for
approximating acims. The expansivity requirements of [FGTQ14] were that the co-
cycle (or powers of the cocycle) should be “expanding on average” before applying
a perturbation, such as Ulam’s method. In the present work we make a significant
theoretical and computational weakening of the expansivity hypotheses of [FGTQ14],
requiring only that the cocycle be eventually expanding on average, and importantly,
allowing the perturbation to be applied after each single step of the cocycle. The family
of random maps that generate our cocycle need not be close to a fixed map and our
results can handle very general driving mechanisms. We provide a detailed numerical
example of a random Lasota-Yorke map cocycle with expanding and contracting be-
haviour and illustrate the extra information carried by our fibred random acims, when
compared to annealed acims or “physical” random acims.

1 Introduction

The use of numerical approximation schemes in the study of dynamical systems has con-
tinued to evolve, benefiting from growing computer power as well as progressively more
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refined methods for analyzing and visualizing relevant features of the dynamics. These ex-
citing advances call for increasingly powerful theory to ensure such numerical schemes indeed
represent or well approximate features of interest for the underlying dynamical system.

The calculation of statistical and transport properties has become possible, and increasingly
popular [Hsu87, Fro01, KGA+01, Pad05, BM12, FPG14, KNC+14, WRK15], wherein finite
rank approximations are made to transfer operators induced by the underlying dynamical
system. The credibility of such schemes depends on both the computational feasibility
of implementation, and the robustness of the transfer operator dynamics to the types of
perturbations inherent in the approximations. The Ulam method [Ula60] is a Galerkin–
type projection scheme, and it has gained prominence as a simple and effective way of
modeling dynamical systems via Markov models [Hsu87, DJ99, DFJ01, Fro01, DFHP09,
FP09, BS13, FPG14]; it can be implemented from model simulations or sufficiently rich
observed data. Its robustness is supported by an extensive rigorous literature, beginning in
1976 with a proof of convergence to acims by Li [Li76] in the context of one-dimensional
dynamical systems (Lasota-Yorke maps [LY73]). Since then, numerous generalizations have
followed, extending the rigorous analysis to more general perturbations, uniformly hyperbolic
dynamics, higher dimensions, random dynamical systems, open dynamical systems, and
nonuniformly expanding dynamics [Kel82, Fro95, DZ96, BK97, Fro99, BM01, Mur01, Bah06,
Mur10, BFGTM14].

This numerical method has been successfully applied, in combination with modern de-
velopments in dynamical systems, to a wide variety of physical and biological problems;
a small sample includes drug design, transport in dynamical astronomy, the identifica-
tion large scale features of oceanic and atmospheric flows, such as oceanic gyre and ed-
dies and atmospheric vortices, and the tracking of floating plastic garbage in the ocean.
[DS04, DJK+05, FPET07, FSM10, FHR+12, MHN12, VSEF12]. This has been a major
motivation to pursue investigations regarding convergence properties of the Ulam scheme
beyond the autonomous setting, where one single map or vector field dictates the dynamics
of the system. The non-autonomous setting considered in this paper allows for the incorpo-
ration of random or deterministic external factors which drive the nonlinear dynamics in the
original state space.

Mathematically, our “random” driving dynamics will be controlled by an ergodic, invertible,
probability preserving base map σ : (Ω,P) 	. Let I be an interval; we form a skew product
τ : I×Ω 	 with measurable fibrewise dynamics τ(x, ω) = (fω(x), σ(ω)). We denote Iω = I×
{ω} ⊂ I ×Ω so that fω : Iω → Iσω. Random or time-dependent orbits of length n beginning

at driving configuration ω are produced by the concatenation f
(n)
ω := fσn−1ω ◦ · · · ◦ fσω ◦ fω.

We are concerned with invariant measures µ of τ . The non-autonomous analogue of invariant
measures are random invariant measures ; instead of the invariance condition µ = µ◦f−1 for
a single map f , random invariant measures satisfy µσω = µω◦f−1

ω for P-a.e. ω, where each µω
is a probability measure on Iω. In terms of the skew product τ , by standard disintegration,
for A ⊂ I × Ω, we can write µ(A) =

∫
Ω
µω(A) dP(ω), considering µω as a probability

measure on I × Ω, supported on Iω × {ω}; µ is invariant for τ in the usual sense. We are
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particularly interested in the situation where µω has a density hω with respect to Lebesgue
measure; then we say {µω} is a random absolutely continuous invariant measure or random
acim. Let Pω denote the Perron–Frobenius operator for fω, mapping L1(Iω)→ L1(Iσω) and

P(N)
ω = PσN−1ω◦· · ·◦Pω. We focus on the situation where there is a unique random acim, with

the important physical property that limN→∞P(N)

σ−Nω
g = hω for sufficiently regular densities

g and Pωhω = hσω. Thus, the densities hω describe the distribution of orbits at configuration
ω, having started at some arbitrary regular distribution g far in the past.

The random acim {µω}ω∈Ω also encodes a non-random physical measure or SRB measure
µ [Buz00], which can be constructed from forward time limits of convex combinations of
δ-measures along random orbits in I: µ := limn→∞

1
n

∑n−1
i=1 δf (i)ω (x)

for Leb a.e. x ∈ I and P
a.e. ω ∈ Ω, where weak convergence is meant. Alternatively, µ =

∫
µω dP(ω) and one can

take Birkhoff averages of sufficiently regular observables φ : I → R along these trajectories
for Leb a.e. initial condition x ∈ I and obtain

lim
n→∞

1

n

n−1∑
i=1

φ(f (i)
ω x) =

∫
φ(x)hω(x) dx dP(ω). (1)

Our results imply that Ulam’s method can be used to gain access to this physical measure
µ for general driving σ (the case where σ is a Bernoulli or Markov shift has been treated
in [Fro99]). Despite the importance of the SRB measure µ, we will show that significant
temporal information is lost in the integration with respect to P in (1), and that individual
hω can be very different from

∫
hω dP(ω) (see Section 6 and Figure 1). Finally, we note that

when σ is a Bernoulli process, it is natural to form an annealed operator P̄ :=
∫

Ω
Pω dP(ω).

Any τ -invariant measure, absolutely continuous with respect to Leb×P, has the form ν ×P
where dν/d(Leb) is a fixed point of P̄ [Mor88]. In the Bernoulli setting the non-random
probability measure ν is called the annealed invariant measure of the random dynamical
system and is also a physical measure in the sense above. When σ is not Bernoulli ν × P
is not τ -invariant in general, and there is no known interpretation for P̄ ; to emphasise this
point we compute ν in Figure 1.

1.1 Statement of main results

For our formal results and to ensure absolute continuity we impose some conditions on the
fibre maps, namely P–a.e. fω are piecewise C1+Lip, with finitely many branches Nb(ω),
satisfying

∫
Ω

log+Nb(ω) dP(ω) <∞. The first and second derivatives are bounded uniformly
above and below: Λ−1 ≤ |f ′ω| ≤ Λ and |f ′′ω | ≤ K for constants Λ, K < ∞. We assume

expansion on average: let λ(ω) = ess infx∈I |f ′ω(x)|, f (N)
ω = fσN−1ω ◦ · · · ◦ fσω ◦ fω and

λN(ω) = ess infx∈I |f (N)
ω

′
|. We assume the existence of a finite N = N0 such that∫

Ω

log λN0(ω) dP(ω) > 0. (Exp)
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Finally, to guarantee uniqueness of the random acim, we impose a covering condition (intro-
duced by Buzzi in [Buz99]): for every sub-interval J ⊂ I and a.e. ω ∈ Ω, there exists nω ∈ N
such that f

(n)
ω (J) = I. Under the above conditions we say that {fω}ω∈Ω is an admissible

random Lasota–Yorke map, as studied in [Buz00, FGTQ14].

The main result of [FGTQ14] guarantees that random acims for random Lasota-Yorke maps
are stable under perturbations, including those caused by the numerical error associated to
the Ulam scheme, provided sufficient expansion holds, on average, prior to each application
of the Ulam scheme; specifically, one needs to apply the Ulam scheme to f

(m)
ω for m at least

N0. The flexibility of the random framework already allows systems that experience periods
of contraction, interspersed with expansion, but when one-step average expansion is slow
and N0 is large, the stability ensured by [FGTQ14] may be expensive to obtain.

In this paper, we relax the requirement of m ≥ N0 to m = 1, and show stability of the Ulam
scheme in the case of ‘eventually expanding-on-average’ random Lasota–Yorke maps, greatly
facilitating the computation of the random acims and opening the possibility of computa-
tional access to the physical measure (1). The intricacies involved in this generalisation are
already evident and non-trivial in the autonomous setting: while Li’s result for convergence
of acims in the case of strongly expanding maps goes back to the 1970s, the result covering
all piecewise C2 (eventually) expanding interval maps was only established in 1997 by Blank
and Keller [BK97].

One of the major obstacles in this extension, both in the autonomous and non-autonomous
settings, is the technical difficulty associated with the presence of so-called periodic turning
points (PTPs). Roughly speaking, control of the statistical properties of maps is possible
because expansion has a smoothing effect. On the other hand, turning points (discontinu-
ities in the map or its derivative) have the opposite effect, inducing large discontinuities in
probability densities under the action of the (Perron–Frobenius) transfer operator. PTPs are
problematic because the irregularities that they induce compound recurrently along periodic
orbits, and this may occur faster than the expanding dynamics can smooth them away. In the
random setting, orbits of turning points can be arbitrarily complicated. On the other hand,
if problematic orbits occur only rarely, then the mathematical technology of random sys-
tems allows their impact to be controlled. Our techniques are motivated by [BK97], wherein
the neighbourhoods of (now random) turning points are treated separately to the “smooth”
parts of the dynamics. The main difficulties arise in keeping the “bad” and “good” parts
of the dynamics from contaminating each other when the Ulam approximation is applied.
We will say that a sequence {fσnω}∞n=0 has no recurrent turning points if each random orbit

{f (n)
ω (y)}∞n=0 encounters at most one discontinuity of an fσjω or f ′σjω, and we assume that

P-a.e. sequences have no recurrent turning points.

While we have been specifically discussing Ulam’s method up until this point, Ulam’s method
can be viewed as a specific type of stochastic perturbation that is applied to the Perron–
Frobenius operator P(N)

ω of f
(N)
ω , for some N ≥ 1; importantly we show in this work that
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taking N = 1 suffices. Let Pω,ε = QεPω where Qε is a stochastic perturbation1 (such as
Ulam-type, but in any case corresponding to perturbations of orbits of size ≤ ε). We work
in the subspace of bounded variation functions on I and assume the existence of constants
Cε such that

var(Qεh) ≤ var(h) + Cε ‖h‖L1 (2)

for all h ∈ L1(I). We define the spread of an operator Q : BV → BV as

spread(Q) = inf{ε : supp(Q1J) ⊂ Jε ∀J ⊂ I},

where Jε denotes the ε neighbourhood of J inside I.

Examples of suitable Qε include: (i) Ulam–type perturbations Qε = E(· | Bε) (where Bε is the
σ–algebra generated by partitioning I into uniform subintervals of length ε); (ii) convolution
type perturbations (with a kernel support in [−ε, ε]); (iii) static perturbations where fω is
replaced with fω + ξ (ξ drawn randomly from [−ε, ε] and Qεh(x) = h(x− ξ)). See [FGTQ14]
for further details.

The main result of this paper is fibrewise convergence of the stochastically perturbed random
acims as the perturbation size ε goes to 0:

Theorem 1.1. Let σ : (Ω,F ,P) 	 be an ergodic, invertible, measure preserving transfor-
mation, {fω}ω∈Ω an admissible random Lasota–Yorke map and {Qε} a family of stochastic
perturbations satisfying (2), such that limε→0 ‖Qε − Id‖BV→L1 = 0 and spread(Qε) ≤ ε. Let
{hω} denote the densities of the (unique) random acims for {fω}. Then, there is an ε0 such
that each cocycle generated by Pω,ε (ε < ε0) admits a unique random acim with random
density Fε : Ω→ BV (I) and for P a.e. ω ∈ Ω, limε→0 Fε(ω) = hω in L1.

1.2 Convergence of Ulam’s method

Ulam’s method involves specific stochastic perturbations derived from a partition Pk =
{B1, . . . , Bk} of I into k equally sized subintervals with associated σ-algebra Bk. Let Qk =

E(· | Bk); that is, Qkh =
∑k

j=1

∫
Bj

h dx

Leb(Bj)
1Bj . Then spread(Qk) = 1

k
, ‖(Qk − Id)‖BV→L1 ≤ 1/k

and ‖Qk‖BV→BV = 1 (in particular, in equation (2) the constants Cε = 0). Put Pω,k = Qk◦Pω
(abusing notation slightly to index Qε = Qk when ε = 1/k).

Corollary 1.2. Let {fω} be an admissible random Lasota-Yorke map. For large enough k
the Ulam random cocycles generated by {Pω,k} admit unique random acims. These converge
fibrewise in L1 to the random acim for {fω} as k →∞.

Figure 1 illustrates Ulam’s method for the approximation of (i) the random densities hω
for two ω-fibres, (ii) the physical measure, and (iii) the acim for the “annealed” Perron–
Frobenius operator, for an expanding on average dynamical system (details in Section 6).

1‖Qε‖L1→L1 = 1, h ≥ 0⇒ Qεh ≥ 0.

5



Figure 1: Comparison of random measures for an eventually expanding on average dy-
namical system. Ulam’s method with k = 105 is used to calculate two random acims µω.
These are computed as P(200)

σ−200ω,k1 and are displayed for ω = 0.63, ω = 0.64. The physical
measure (1) is obtained by averaging over ω ∈ Ω (see (12)). These measures contrast with
the “annealed” density, computed as a fixed point of the averaged operator

∫
Ω
Pω dP(ω).

1.3 Structure of the paper

Sections 2, 3, 4 contain technical details, establishing weak and strong forms of random
Lasota–Yorke inequalities. The proof of Theorem 1.1 follows in Section 5. The results are
illustrated in Section 6 with a numerical example.

2 The inequality (LYw)

We first obtain a “weak” Lasota–Yorke inequality:

‖Pω,ε(h)‖BV ≤ C(ω)‖h‖BV , (LYw)

where
∫

logC(ω)dP(ω) < ∞ and ‖f‖BV := var(f) + ‖f‖L1 . This rough estimate will allow
us to control the large ‘B(ω)’ terms appearing in the strong Lasota–Yorke inequality later
on.
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Following Buzzi [Buz00], let 0 = a0(ω) < a1(ω) < · · · < aNb(ω)(ω) = 1 be the partition of I
into intervals of differentiability of fω (recall that Nb(ω) is the number of branches of fω).
Let ξi = (f

∣∣
[ai−1(ω),ai(ω)]

)−1. Then, the rough bound

var(Pω(h)) ≤
Nb(ω)∑
i=1

var

(
h

|f ′ω|
◦ ξi · 1f([ai−1(ω),ai(ω)])

)
,

together with the well known facts that var(hg) ≤ var(h)‖g‖∞ + var(g)‖h‖∞ and ‖h‖∞ ≤
var(h) + ‖h‖L1 imply (see [Buz00, Lemma 1.2] for full details).

var(Pω(h)) ≤ 6C̃(ω) var(h) + 4C̃(ω)‖h‖L1 , (3)

where C̃(ω) = max(1, Nb(ω)/λ(ω))·max(1, var(1/f ′ω))·max(1, 1/λ(ω)). Note that |(1/f ′ω)′| ≤
K Λ2 so that each 1/f ′ω is Lipschitz, and var(1/f ′ω) is bounded by KΛ2 + 2Nb(ω)Λ. Thus,
letting C(ω) = 6C̃(ω), we get

∫
Ω

logC(ω)dP(ω) <∞ and

‖Pω(h)‖BV ≤ C(ω)‖h‖BV , (4)

as required.

3 Construction of splitting into good and bad pieces

The stronger Lasota–Yorke inequality is obtained by a splitting of Pω,ε = P̃ω,1 + P̃ω,2, where
P̃ω,1 acts on “good” parts of fibres, and P̃ω,2 acts on “bad parts”, containing turning points
of the maps fω. The construction relies on a random decomposition of blocks of fibres

I × {ω, . . . , σN1−1ω} = Z(ω) ∪ Y (ω).

The construction is done in two steps: first a “skeleton” TP β of “fibrewise β-sufficient”
turning points established, and then these points are “fattened” to give (“bad”) intervals
comprising Y (ω).

Define N1 = m0N0 where m0 is chosen to satisfy

log(9(m0N0 + 1)Λ2N0) + 2 < m0

∫
Ω

log λN0(ω) dP(ω). (m0)

3.1 The skeleton TP β of turning points

A point (x, ω) ∈ I×Ω will be called a turning point if fω or f ′ω is discontinuous at x. A set
Sω ⊂ Iω will be called a fibrewise β–sufficient turning point set if {x : (x, ω) is a turning point} ⊂
Sω and for each connected component J of Iω \ Sω and y ∈ J we have

varJ(f ′ω) ≤ β |f ′ω(y)| and varJ(1/f ′ω) ≤ β

∣∣∣∣ 1

f ′ω(y)

∣∣∣∣ .
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(Since each fω is piecewise C2 this can be guaranteed by ensuring that the maximum distance
between turning points is no more than β/(KΛ2).)

Push forward of turning points Consider the sets TPσkω of all turning points which
fall in Iσkω for k = 0, . . . , N1 − 1; since each map fω is piecewise C2, each such set is finite.
For each x ∈ TPσkω augment TPσk+jω with (f

(j)

σkω
(x), σk+jω) for j = 0, . . . , N1 − 1− k. The

collection of all such points obtained in this way is

TP ′ :=

N1−1⋃
k=0

N1−1−k⋃
j=0

f
(j)

σkω
(TP ∩ Iσkω).

Note that if x is a point of discontinuity of fσkω then the future orbit of x gives rise to two
sets of contributions to TP ′: via limy→x− f

(j)

σkω
(y) and limy→x+ f

(j)

σkω
(y); both orbit fragments

are included in TP ′ (despite the abuse of notation).

Pull back elements of TP ′ and augment First, restrict to the fibre IσN1−1ω: if the
set TP ′ ∩ IσN1−1ω is not fibrewise β–sufficient then it can be2 augmented with finitely many
points to ensure fibrewise β–sufficiency on IσN1−1 .

Next, the fibres Iσkω, k = 0, . . . , N1− 2: Suppose that TP β has been formed by augmenting
TP ′ with points from I × {σk+1ω, . . . , σN1−1ω} to ensure fibrewise β–sufficiency on those
fibres and f−1

σjω
(TP β ∩ Iσj+1ω) ⊂ TP β (j = k + 1, . . . , N1 − 2). First augment TP β with

f−1
σkω

(TP β ∩ Iσk+1ω) and then as many supplementary points as needed to ensure that TP β

is β–sufficient on the fibre Iσkω. Repeating this construction until k = 0 concludes the
formation of TP β. Put

δ(ω) :=
1

2
min

0≤k<N1

min{|x− y| : x 6= y ∈ Iσkω ∩ TP β}. (5)

Summarising the recursive construction:

1. TP β contains all the turning points in I × {ω, . . . , σN1−1ω};

2. if (a, b) ⊂ Iσkω (0 ≤ k < N1 − 1) is a connected component of Iσkω \ TP β then
fσkω(a, b) ∩ TP β = ∅;

3. the set TP β is fibrewise β–sufficient on the fibres Iσkω (k = 0, . . . , N1 − 1);

4. if x, y ∈ TP β ∩ Iσkω (k < N1) then |x− y| ≥ 2 δ(ω).

2If S is a turning point set and a connected component of Iσkω \S has length ∆ then it can be subdivided
evenly into b1 + ∆/(β/KΛ2)c pieces such that if the break points are added to S then the resulting set is
fibrewise β–sufficient.

8



Fattening the turning point set to form Y (ω)

We now enlarge TP β to cover it by intervals. The complement of these intervals will be the
“good” parts of the space, and will comprise a family of intervals with minimum length δ(ω)
such that pseudo-orbits (x, σkω) 7→ fσkω(x) + ε (k < N1) which begin in the “good” parts
remain therein when ε is small enough.

Fix

ε(ω) :=
δ(ω)

2

Λ− 1

2ΛN1
. (6)

The construction of Y (ω) is recursive, beginning on the last fibre: form

YσN1−1ω = ∪x∈TPβ∩I
σN1−1ω

(x− ε(ω), x+ ε(ω))× {σN1−1ω}.

Suppose now that Yσk+1ω has been constructed, and if J = (a, b) let Jε = (a − ε, b + ε) ∩ I.
Let

Yσkω =
(
∪J∈Y

σk+1ω
f−1
σkω

(Jε(ω))
)⋃(

∪x∈(TPβ∩I
σkω

)\f−1

σkω
(TPβ∩I

σk+1ω
)(x− ε(ω), x+ ε(ω))

)
×{σkω}.

Repeat inductively until k = 0.

Now define

Y (ω) := ∪N1−1
k=0 Yσkω and Z(ω) := (I × {ω, . . . , σN1−1ω}) \ Y (ω). (7)

Clearly Y (ω) covers the β–sufficient turning point set TP β. Notice that every interval in
Yσkω contains an element of TP β and has length bounded by 2ε(ω)ΛN1/(Λ − 1) = δ(ω)/2
and every connected component of Z(ω) is an interval of length at least δ(ω)3. Moreover,

Lemma 3.1. Let C0 := 4ΛN1/(Λ − 1) (a constant independent of ω, but depending on N1)
and let {xk}N1−1

k=0 be pseudo-orbit segments with |fσkω(xk)− xk+1| < δ(ω)/C0. We have

xj ∈ Yσjω ⇒ xk ∈ Yσkω 0 ≤ k ≤ j

and
xl ∈ Z(ω) ⇒ xj ∈ Z(ω) N1 > j ≥ l.

Proof. Let {xk}N1−1
k=0 be an ε(ω) pseudo-orbit sequence (compare definition (6)). Suppose

that xj ∈ J where J is a connected component of Yσjω and j ≥ 1. Then fσj−1ω(xj−1) ∈ Jε(ω)

so that xj−1 ∈ Yσj−1ω. Repeat inductively for k = j − 1, j − 2, . . . , 1. On the other hand,
suppose that xl ∈ Z(ω) but xj ∈ Y (ω) for some l < j < N1. Then xj ∈ Yσjω, implying that
xl ∈ Yσlω, a contradiction.

Corollary 3.2. With notation as in Lemma 3.1, if spread(Q) < ε(ω) (compare (6)) then

Pσj+1ω((QPσjω1Z(ω))1Y (ω)) = 0.
3By Property 4 following the definition (5), elements of TP β are at least 2 δ(ω) apart and every component

of Y (ω) is an interval which fattens a point of TP β into an interval of length no more than δ(ω)/2.
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4 The inequality (LYs)

For fixed N1, β and ω we have a random set Y (ω) ⊂ I ×{ω, σω, . . . , σN1−1ω} which encloses
the turning points of {fσjω}N1−1

j=0 and has a number of good properties (detailed in the previous
section). We define two restricted operators

P̃σjω,1(·) = Pσjω,ε(· 1Zσjω) and P̃σjω,2(·) = Pσjω,ε(· 1Yσjω)

where Y (ω) = ∪N1−1
j=0 Yσjω and each Zσjω = Iσjω\Yσjω. Iterates are defined in the obvious way.

We establish two families of strong Lasota–Yorke inequalities, valid for all 0 ≤ j < j+k ≤ N1

and all ε < ε(ω):

var(P̃(k)

σjω,1
h) ≤ 3λk(σ

jω)−1 var(h) +B1(ω)‖h‖L1 (LYs1)

and
var(P̃(k)

σjω,2
h) ≤ 3λk(σ

jω)−1 var(h) +B2(ω)‖h‖L1 , (LYs2)

where B1(ω) and B2(ω) are measurable and finite P a.e. and h ∈ BV (Iσjω). The operator
with a subscript 1 is the restriction of Pε to a “good” set Z(ω), well separated from turning
points, and the operator with a subscript 2 is restricted to the “bad” set Y (ω) where all
discontinuities occur.

These inequalities are combined to prove a fibre-dependent, but “strong” Lasota–Yorke in-
equality. The dependence on β is removed during the proof.

Theorem 4.1. Suppose that P a.e. ω has no recurrent turning points and let N1 be fixed by
equation (m0). Then there are measurable δ(ω) > 0 and B(ω) <∞ (P a.e.) such that

var(PN1
ω,εh) ≤ α(ω) var(h) +B(ω) ‖h‖L1 (LYs)

when spread(Qε) < δ(ω)/C0 (see Lemma 3.1) and

α(ω) := 9(N1 + 1)Λ2N0

m0−1∏
k=0

λN0(σ
kN0ω)−1.

Note that
∫

log(α(ω))dP < −2, because of (m0). In obtaining a random Lasota-Yorke in-
equality, the strong inequality (LYs) will be applied for most ω, with the weak inequality
(LYw) used when δ(ω) is too small.

4.1 The inequality (LYs1)

This part follows [BK97, §3.2]. The first ingredient (extending [BK97, Lemmas 3.5 & 3.6]) is
the construction of a stochastic operator Q̃ω,ε,k, with uniformly controlled variation bounds,
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such that instead of applying the perturbation Qε after each map, or a restriction thereof,
one can apply the Q̃ω,ε,k at the start, and then the transfer operators of the unperturbed
system. The second part replaces [BK97, Lemma 3.7] with the key being a localisation
argument that works because mass cannot leak out of the connected components of Z(ω)
(for a large measure set of ω ∈ Ω). For convenience of notation, in what follows we suppress
ω, ε from the notation in Q̃.

Lemma 4.2. Let β > 0 be given and {Tj}kj=0 be a family of invertible C1 transformations
of R such that

var(T ′j) ≤ β|T ′j(yj)| and var(1/T ′j) ≤ β|1/T ′j(yj)|

for fixed {y0, . . . , yk} ⊂ R. Let Pj be the transfer opertors corresponding to Tj and let
Qj : BV (R) 	 be such that

var(Qjh) ≤ var(h) + Cj ‖h‖L1 (8)

for fixed finite contants Cj. Then there exists Q̃k : BV (R) 	 such that

QkPkQk−1Pk−1 · · ·Q0P0 = PkPk−1 · · ·P0Q̃k

and

var(Q̃kh) ≤
(

1 +
3β

2

)2k

var(h) + C̃k ‖h‖L1

(the constant C̃k depends on C0, . . . , Ck,Λ and β).

Proof. The key estimate is

var(Pjh) ≤ var(1/T ′j) ‖h‖∞ + ‖1/T ′j‖∞ var(h)

≤ β|1/T ′j(yj)|(var(h)/2) + β|1/T ′j(yj)| var(h) = (1 + 3β/2)1/|T ′j(yj)| var(h).

Similarly, var(P−1
j h) ≤ (1 + 3β/2)|T ′j(yj)| var(h). Now put

Q̃0 = P−1
k QkPk and Q̃j = P−1

k−jQ̃j−1Qk−jPk−j, j = 1, . . . , k.

Then

var(Q̃0h) ≤ (1 + 3β/2) |T ′k(yk)| var(QkPkh)

≤ (1 + 3β/2)2 var(h) + (1 + 3β/2)|T ′k(yk)|Ck ‖h‖L1

≤ (1 + 3β/2)2 var(h) + (1 + 3β/2 )ΛCk ‖h‖L1

and so on. The bounds on var(Q̃j) proceed inductively, as in [BK97].

The next lemma shows how to localise Lemma 4.2.
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Lemma 4.3. Fix ω, and β > 0. Let {Zj}kj=0 be a sequence of subintervals of I such that each
Zj ×{σjω}∩ TP β contains at most one point (and if the point is yj then yj is not a turning
point). Suppose also that each [fσjω(Zj)]ε(ω) ⊂ Zj+1 and that {Qj}k−1

j=0 is a family of operators

Qj : BV (Iσj+1ω) 	 satisfying (8) and spread(Qj) < ε(ω). Then there is a Q̃k,ω : BV (Iω) 	
and constant C̃k,ω such that

P(k)
ω,εh = Qk−1Pσk−1ω · · ·Q0Pωh = P(k)

ω Q̃k,ωh

and
var(Q̃k,ωh) ≤ (1 + 3 β)2k var(h) + C̃k,ω ‖h‖L1

for all h ∈ BV (Z0), with C̃k,ω bounded for k ≤ N1.

Proof. First, embed Iσjω in R with the map π(y, σjω) = y. If L : BV (Iσjω)→ BV (Iσlω) then
π∗L acting on BV (R) is defined by π∗Lg(x) = [L(g◦π)](x, σlω). By the setup on Zj, each Zj
intersects either one or two open connected components of Z(ω). Let Aj be this (union of)
component(s). For each j = 0, . . . , k − 1 define Tj : R→ R such that Tj|π(Aj) = π ◦ fσjω|Aj ,
but Tj is C1, with linear extensions outside of π(Aj). Note from the construction of TP β

that each T−1
j π(Aj+1) ⊆ π(Aj). If Pj is the transfer operator for Tj then Pjg = π∗Pσjωg

when supp(g) ⊂ π(Aj). The conditions on the sequence of intervals {Zj} ensure that P(j)
ω,εh

is supported on Zj when h is supported on Z0 and hence that each

(π∗Qj)Pj . . . (π
∗Q0)P0h = π∗P(j+1)

ω,ε h

for such h. Each Tj satisfies the conditions of Lemma 4.2 but with 2β in place of β and
yj = π(Aj × {σjω} ∩ TP β) (when the intersection is non-empty, and any point of π(Aj)
when it is not). Let Q̃k : BV (R) 	 be the operator from the lemma applied to the sequence
{π∗Qj}, and define Q̃k,ωh(y, ω) = [Q̃k(h◦π)](y). The constants C̃k,ω are the C̃k from applying
Lemma 4.2 with 2β in place of β.

We now obtain a Lasota–Yorke inequality for functions which are supported in the good set.
Fix β to satisfy

(1 + 3 β)2N1(1 +N1 β Λ2N1) < 1.5.

Lemma 4.4. Let N1 be fixed by (m0), β as above and let spread(Qε) < ε(ω). There is a
constant B0(ω) such that for each k with j + k ≤ N1

var(P(k)

σjω,ε
h) ≤ 1.5λk(ω)−1 var(h) +B0(ω) ‖h‖L1

when h ∈ BV (Iσjω) is supported on a connected interval Zj ⊂ Z(ω).

Proof. For each k let Zj+k be the component of Z(ω) containing fσj+k−1ωZj+k−1. Since
ε ≤ ε(ω), each (fσj+k−1ωZj+k−1)ε(ω) ⊂ Zj+k (Lemma 3.1). Qε has spread bounded by ε(ω), so
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Lemma 4.3 applies, giving Q̃k,σjω with the stated properties. [The proofs above reveal that

each C̃k,σjω ≤ C̃N1,ω.] Standard estimates give

var(P(k)

σjω
g) ≤ λk(ω)−1 var(g) + var(1/f

(k)

σjω

′
) ‖g‖∞.

The β–sufficiency condition implies that each var
f
(l)

σjω
(Zj)

(1/f ′
σj+lω

) ≤ β Λ, so a standard

induction gives var(1/f
(k)

σjω

′
) ≤ k βΛk. Combining with ‖g‖∞ ≤ var(g)/2,

var(P(k)

σjω
g) ≤ (λk(ω)−1 + k β Λk/2) var(g) ≤ (1 + k β Λ2k/2)λk(ω)−1 var(g).

Applying with g = Q̃k,σjωh gives

var(P(k)

σjω
g) ≤ (1 + 3 β)2k(1 + k β Λ2k/2)︸ ︷︷ ︸

≤1.5

λk(ω)−1 var(h) + (1 + k β Λ2k/2) ΛkC̃k,σjω︸ ︷︷ ︸
B0(ω) when k = N1

‖h‖L1

(since k ≤ N1 and the choice of β).

Proof of (LYs1): Without loss of generality we establish for j = 0. Let h ∈ BV (Iω). Then
Zω = Z(ω) ∩ Iω is a union of intervals of length at least δ(ω) and by iterated application of
equation (14) ∑

Z∈Zω

var(h1Z) ≤ 2 var(h) +
2

δ(ω)
‖h‖L1 . (9)

By Lemma 3.1, when spread(Qε) is less than ε(ω),

supp
(
Pσkω,ε1Iσkω∩Z(ω)

)
⊆ Iσk+1ω ∩ Z(ω).

This implies that each P̃(k)
ω,1h = P(k)

ω,εh when h is supported on Zω. In particular,

P̃(k)
ω,1h = P(k)

ω,ε(h1Zω) =
∑
Z∈Zω

P(k)
ω,ε(h1Z).

By Lemma 4.4, when Z ∈ Zω,

var(P(k)
ω,ε(h1Z)) ≤ 1.5λ−1

k (ω) var(h1Z) +B0(ω) ‖h1Z‖L1 .
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Then

var(P̃(k)
ω,1h) = var(P(k)

ω,ε(h1Zω))

≤
∑
Z∈Zω

var(P(k)
ω,ε(h1Z))

≤
∑
Z∈Zω

[
1.5λ−1

k (ω) var(h1Z) +B0(ω) ‖h1Z‖L1

]
≤ 1.5λ−1

k (ω)
∑
Z∈Zω

var(h1Z) +B0(ω) ‖h‖L1

≤ 3λ−1
k (ω) var(h) +

[
3 ΛN1

δ(ω)
+B0(ω)

]
︸ ︷︷ ︸

=B1(ω)

‖h‖L1 ,

where the last inequality uses (9). This defines (B1) and establishes (LYs1).

4.2 The inequality (LYs2)

The next two lemmas complement Lemma 4.4 by treating functions whose support is con-
tained in the bad set. This proceeds in a similar way to (LYs1), but has additional complexi-
ties because of turning points and the construction of Y (ω). Let β be fixed as in Lemma 4.4.

Lemma 4.5. Let y0 ∈ TP β, k < N1 and yj := f
(j)
ω (y0) (j = 1, . . . , k). Let Y0 ⊂ Iω be the

connected component of Yω containing y0. If spread(Qε) < ε(ω) and none of {yj}k−1
j=0 is a

turning point then there is a measurable B0(ω) <∞ such that

var(P̃(k)
ω,2(h1Y0)) ≤ 1.5λk(ω)−1 var(h1Y0) +B0(ω) ‖h1Y0‖L1

for h ∈ BV (Iω).

Proof. First, for each j = 1, . . . , k let each Yj ⊂ Iσjω be the connected component of Y (ω)
containing yj. Note from the construction of Y (ω) that each fσjω(Yj) ⊂ (Yj+1)ε(ω). Conse-
quently, the support of each QεPσjω(1Yj) intersects each adjacent Z ∈ Z(ω) in a subinterval
of length at most 2 ε(ω) < δ(ω)/2 (compare with equation (6)). Since each such Z has length
at least δ(ω), this support cannot extend into another component of Yσj+1ω and

1Y (ω) (Pσjω,ε1Yj) = 1Yj+1
(Pσjω,ε1Yj) = 1Yj+1

(QεPσjω1Yj).

Hence
P̃(k)
ω,2h = QεPσk−1ω1Yk−1

QεPσk−2ω1Yk−2
QεPσk−3ω · · ·1Y1QεPω h

if supp(h) ⊂ Y0. Now, for each j = 1, . . . , k − 1 define Qj−1 acting on BV (Iσjω) by Qj−1g =
1Yj Qεg and Qk−1 = Qε. Then

P̃(k)
ω,2(1Y0h) = Qk−1Pσk−1ωQk−2Pσk−2ω · · ·Q0Pω(1Y0h)
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for each h ∈ BV (Iω). Now Lemma 4.2 can be applied exactly as in the proof of Lemma 4.3

to produce a Q̃ such that P̃(k)
ω,2(1Y0h) = P(k)

ω,ε Q̃(1Y0h) (and Q̃ has the same properties as in
the conclusion of Lemma 4.3). The remainder of the proof now proceeds as in Lemma 4.4,
including the choice of B0(ω).

Lemma 4.6. Let all hypotheses be as in Lemma 4.5, except that now suppose that yj is a
turning point for some j < k. Then

var(P̃(k)
ω,2(h1Y0)) ≤ 3λk(ω)−1 var(h1Y0) + 2B0(ω) ‖h1Y0‖L1

for h ∈ BV (Iω).

Proof. First of all clarify notation by putting y+
l = f lω(y0) for l ≤ j and y+

l = limy→y+j
f l−j
σjω

(y)

for j < l ≤ k. Let Y +
l be the connected component of (the closure of) Y (ω) containing y+

l

for each l, and construct similar sequences {y−l } and {Y −l } as y → y−j . [Note that if yl is
a point of continuity of fσjω but discontinuity of the derivative then all y+

l = y−l , and if yj
is a discontinuity of the map then y+

l = y−l and Y +
l = Y −l (= Yl) for l ≤ j. In particular,

Y0 = Y ±0 .] Let Y ±j = Yj = [a, b]. Then, similar to Lemma 4.5:

P̃(j)
ω,2(1Y0h) = QεPσj−1ω1Yj−1

QεPσj−2ω1Yj−2
Qε · · · Pω (1Y0h)

P̃(j+l)
ω,2 (1Y0h) = QεPσj+l−1ω1Y −j+l−1

QεPσj+l−2ω1Y −j+l−2
Qε · · · Pσjω (1[a,yj ]P̃

(j)
ω,2(1Y0h))

+QεPσj+l−1ω1Y +
j+l−1

QεPσj+l−2ω1Y +
j+l−2

Qε · · · Pσjω (1[yj ,b]P̃
(j)
ω,2(1Y0h)).

The argument now proceeds as in Lemma 4.5, applied independently to each of the two
products of operators.

Proof of (LYs2): Without loss of generality we establish for j = 0. Let h ∈ BV (Iω). Then
Zω = Z(ω) ∩ Iω is a union of intervals of length at least δ(ω) and

h1Yω =
∑
Y0∈Yω

h1Y0 .

By iterated application of equation (16), successively removing intervals Z ∈ Iω \ Yω,∑
Y0∈Yω

var(h1Y0) ≤ var(h) +
∑
Z∈Zω

2

δ(ω)
‖h1Z‖L1 ≤ var(h) +

2

δ(ω)
‖h‖L1 . (10)

Let h ∈ BV . Then, each Y0 ∈ Yω is of a type which is covered by either Lemma 4.5 or 4.6.
Hence, each

var(P̃(k)
ω,2(h1Y0)) ≤ 3λk(ω)−1 var(h1Y0) + 2B0(ω) ‖h1Y0‖L1 .
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Then

var(P̃(k)
ω,2h) = var(P(k)

ω,2(h1Yω))

≤
∑
Y0∈Yω

var(P(k)
ω,2(h1Y0))

≤
∑
Y0∈Yω

[
3λ−1

k (ω) var(h1Y0) + 2B0(ω) ‖h1Y0‖L1

]
≤ 3λ−1

k (ω)
∑
Y0∈Yω

var(h1Y0) + 2B0(ω) ‖h‖L1

≤ 3λ−1
k (ω) var(h) +

[
6 ΛN1

δ(ω)
+ 2B0(ω)

]
︸ ︷︷ ︸

=B1(ω)

‖h‖L1 ,

where the last inequality uses (10). This defines (B2) and establishes (LYs2).

4.3 Proof of Theorem 4.1

The calculation combines (LYs1) and (LYs2). Let β be chosen as in Lemma 4.4 and
spread(Qε) < δ(ω)/C0. By Corollary 3.2, each

P̃σkω,2P̃kω,1 = 0

(k = 1, . . . , N1 − 1). Hence

P(N1)
ω,ε = (P̃σN1−1ω,1 + P̃σN1−1ω,2) · · · (P̃ω,1 + P̃ω,2) =

N1∑
n=0

P̃N1−n
σnω,1 P̃nω,2.

Each term in this sum can be controlled by a combination of (LYs1) and (LYs2):

P̃N1−n
σnω,1 P̃nω,2h ≤ 32 λN1−n(σnω)−1 λn(ω)−1 var(h) + (3λN1−n(σnω)−1B2(ω) +B1(σnω)) ‖h‖L1 .

Put B(ω) := B1(ω) +
∑N1−1

n=1 (3λN1−n(σnω)−1B2(ω) +B1(σnω)) +B2(ω). Then

var(P(N1)
ω,ε h) =

N1∑
n=0

var(P̃N1−n
σnω,1 P̃nω,2h)

≤ 9(N1 + 1) max
0≤n≤N1

{
λN1−n(σnω)−1 λn(ω)−1} var(h) +B(ω) ‖h‖L1

≤ 9(N1 + 1)Λ2N0

m0−1∏
k=0

λN0(σ
kN0ω)−1

︸ ︷︷ ︸
α(ω)

var(h) +B(ω)‖h‖L1 ,

(LYs)

using equation (17).
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5 The random Lasota–Yorke inequality and proof of

the main result

Theorem 5.1. Let the dynamical conditions of Section 1 hold, and suppose there are no
recurrent turning points P-a.e. Then, there is an ε0 > 0 such that when spread(Qε) < ε0 the
following random Lasota–Yorke inequality holds

var(P(N)
ω,ε (h)) ≤ α̃(ω) var(h) + B̃(ω)‖h‖L1 , (LY)

for some fixed N ∈ N, with
∫

log α̃(ω)dP < 0 and B̃(ω) measurable.

Proof. We combine information from strong and weak inequalities, (LYs) and (LYw), to get
(LY).

Let N := N1 be fixed by (m0) and let C(ω) be given by (LYw). Choose γ such that if Ω′

has P(Ω′) > 1− γ then∫
Ω\Ω′
| log λN0|dP ≤ 1/m0 and

∫
Ω\Ω′
| logC(ω)| dP ≤ 1.

Since δ(ω) is defined, measurable and positive a.e., there is a δ0 > 0 such that

P(δ ≥ δ0) ≥ 1− γ/2.

Define the set of good ω as ΩG = {ω : δ(ω) ≥ δ0} and put ε0 := δ0/C0 (see Lemma 3.1).
Then Theorem 4.1 applies when ω ∈ ΩG and spread(Qε) < ε0. Referring to (LYs), choose
K > 0 such that P(B(ω) > K) < γ/2 and set Ω′ := ΩG ∩{B(ω) ≤ K}. Then P(Ω′) > 1− γ.
Moreover, with α(ω) from (LYs)∫

Ω′
logα(ω) dP = P(Ω′) log(9(N1 + 1)Λ2N0) +

∫
Ω′

log

m0−1∏
k=0

λN0(σ
kN0ω)−1 dP

≤ log(9(N1 + 1)Λ2N0)−
m0−1∑
k=0

∫
σ−kN0Ω′

log λN0 dP

≤ log(9(N1 + 1)Λ2N)−
m0−1∑
k=0

∫
Ω

log λN0 dP +

m0−1∑
k=0

∫
Ω\σ−kN0Ω′

| log λN0| dP

< −2 +m0 (1/m0) = −1,

by (m0) and the fact that each P(Ω \ σ−kN0Ω′) = 1− P(Ω′) < γ. Then, by the choice of γ,∫
Ω′

logα(ω) dP +

∫
Ω\Ω′

logC(ω) dP < −1 + 1 = 0. (11)
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Letting α,B be as in Theorem 4.1 and C(ω) as in (LYw) put

(α̃(ω), B̃(ω)) =

{
(α(ω), B(ω)) ω ∈ Ω′,
(C(ω), C(ω)) otherwise.

Thus, log B̃ is integrable and
∫

Ω
log α̃ dP < 0 (by (11)). We apply (LYs) when ω ∈ Ω′ and

(LYw) otherwise. Then

var(P(N1)
ω,ε (h)) ≤ α̃(ω) var(h) + B̃(ω)‖h‖L1

and the proof is complete.

Proof of Theorem 1.1

Let ε0, N be as in Theorem 5.1. Put Lω = P(N)
ω and Lω,ε = P(N)

ω,ε . The random Lasota–Yorke
inequality in Theorem 5.1 holds uniformly for Lω and Lω,ε for all ε < ε0.

Due to the covering property, the random acim {hω} is unique for the original cocycle
Pω [Buz00, Buz99]. Proceeding as in the the proof of [FGTQ14, Theorem 2.4], one has that,
for sufficiently small ε, Lω,ε also has a unique random acim (see also [Buz00, Proposition 2.1]).
Specifically, there are unique (for ε < ε0) F, Fε : Ω→ BV (I) with ‖F·(ω)‖L1 = 1, F·(ω) ≥ 0
and such that LωF (ω) = F (σNω), Lω,εFε(ω) = Fε(σ

Nω). The same proof as [FGTQ14,
Theorem 3.7] gives fibrewise convergence of the random equivariant functions for Lω,ε to

those of Lω as ε → 0; that is, Fε(ω)
L1

→ F (ω) for P–a.e. ω. These are densities of random
absolutely continuous invariant measures (acims). Because LσωPω = PσNωLω, the random
densities G(ω) := Pσ−1ωF (σ−1ω) are also L–equivariant. Hence F = G. In particular,
F (σω) = G(σω) = PωF (ω), so F is Pω–equivariant, and thus F (ω) coincides fibrewise with
the densities hω. Similarly, the Fε are the unique equivariant densities for {Pω,ε}ω∈Ω, and
the proof is complete.

6 Example

We illustrate the results with a system that exhibits alternating periods of expansion and
contraction, while remaining sufficiently expanding on average. Let I = [0, 1] and

f1(x, ω) = 2.1 (x− 2ω) (mod 1), f2(x, ω) = 0.5 (x− 2(ω − 0.5)) (mod 1)

where ω ∈ Ω := S1, P is Lebesgue measure and σ(ω) = ω + ρ (mod 1) for irrational ρ. Put

fω(x) =

{
f1(x, ω) if ω ∈ [0, 1/2),
f2(x, ω) if ω ∈ [1/2, 1).
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Then
∫

Ω
log λ(ω) dP(ω) = 0.5(log(2.1) + log(0.5)) ≈ 0.0244 and Nb(ω) ≤ 4, so {fω} is an

admissible random Lasota-Yorke map with K = 0 and Λ = 2.1. It remains to check that
the set of recurrent turning points is P-trivial. The only turning points of {fω} arise at
discontinuities of f1(·, ω) or f2(·, ω). If x is such a discontinuity point, then f·(x+, ω) = 0
and f·(x−, ω) = 1 (where f(x±, ω) = limy→x± f(y, ω)). It therefore suffices to check for
recurrence to 0 and 1.

Proposition 6.1. For each n the set Rn := {ω : f
(n)
ω ({0, 1})∩{0, 1} 6= ∅} is finite. In par-

ticular, P{ω : ∃x ∈ Is.t.{f (n)
ω (x)}∞n=0 visits two turning points } ≤

∑∞
j=0

∑∞
n=1 P(f−jRn) =

0.

Proof. For each (x, ω) there are integers l1 ∈ {−2,−1, 0, 1, 2, 3}, l2 ∈ {−1, 0} such that(
fω(x)
σ(ω)

)
= A(ω)

(
x
ω

)
+ b(ω)

where

A1 =

(
2.1 −4.2

0 1

)
, A2 =

(
0.5 −1

0 1

)
, b1 =

(
l1
ρ+ l2

)
, b2 =

(
0.5 + l1
ρ+ l2

)
and A(ω) = Aj, b(ω) = bj when fω = fj (j = 1, 2). If xn = f (n)(ω) and ωn = σn(ω) then(

xn
ωn

)
= A(ωn−1) · · ·A(ω0)

(
x0

ω0

)
+

n−1∑
i=0

A(ωn−1) · · ·A(ωi+1)b(ωi).

Thus, for each n it is possible to write

xn = αn x0 + βn ω0 + γn

where there are only finitely many possible choices of γn (depending on the (l1, l2) pairs defin-
ing b·). Additionally, βn < 0 for all n (an easy induction). In particular, ω0 = αnx0+γn−xn

−βn .
Setting each of x0, xn to be 0 or 1 shows that the set of possible ω0 comprising Rn is finite. If
f

(m)
ω (x) and f

(m+n)
ω (x) are both turning points then σm+1(ω) ∈ Rn, completing the proof.

By way of example, consider ρ = 1
10
√

2
. Orbits of σ alternately spend 7 (or 8) iterates

in [0, 1/2), followed by 7 (or 8) iterates in [1/2, 1). This gives rise to alternating periods
of contraction and expansion, but a random Lasota-Yorke inequality holds for the transfer
operator associated to fω, as well as stochastic perturbations satisfying

var(Qh) ≤ var(h) + C ‖h‖L1

when Q has small enough spread. We use an Ulam-type perturbation, where k is fixed, Bk
is the σ-algebra generated by uniform subintervals {[i/k, (i+ 1)/k)}k−1

i=0 and Q(k) = E(·|Bk).
Then var(Q(k)h) ≤ var(h) (so C = 0) and spread(Q(k)) = 1

k
.
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We have approximated the random invariant density by pushing forward Lebesgue measure
with the sequence of operators

P(N)
ω,k := Q(k) ◦ PσN−1ω ◦Q(k) ◦ PσN−2ω · · · ◦Q(k) ◦ Pω.

The results after 500 timesteps4 are displayed in Figure 2 for k = 10p (p = 2, 3, 4, 5, 6).
This implements Ulam’s method, because the expectation with respect to a partition into
subintervals is applied after every step of the dynamics. Notice that the coarser resolution
pictures are very different to the finer ones, revealing a complicated local structure.

Figure 2: Approximations to the density of the quenched random measure µω|ω=0.4260,
computed via Ulam’s method at differing levels of accuracy.

The densities in Figure 2 are supported on the fibre Iω where ω = 501ρ (mod 1) ≈ 0.4260.
Indeed, the next few ωs are {0.4260, 0.4968, 0.5675, 0.6382, 0.7089} so two subsequent it-
erations of the dynamics are expanding (via f1, since ω ∈ [0, 1/2)), followed by several
contracting maps. The density from Figure 2, together with the next five densities are
shown in Figure 3. Note in particular the increased irregularity under the contracting maps,
illustrating the complexity of the random dynamics.

4These approximations rely on quasicompactness to ensure convergence of P(N)
ω,ε 1 for large N . Repeating

the experiments with P(N+n0)

σ−n0ω,ε
1 gives the same results, suggesting that convergence has been achieved.
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Figure 3: Several consecutive quenched random measures µω, computed by Ulam’s method
with k = 105 subintervals and supported on fibres Iω, ω = σN0.

Ulam’s method can be used to gain computational access to the physical measure [Buz00]
for the random system (see equation (1)). Due to ergodicity of (τ, I × Ω), this measure can
be approximated via a long random orbit. Alternatively, the quenched random densities
hω = dµω

dx
on fibres Iω can be averaged over Ω. Relying on ergodicity of σ, we offer an

approximation to the density of the physical measure as

1

N1 −N0

N1∑
t=N0+1

h
(m)
σtω0

(12)

where h
(k)
ω is the Ulam approximation to hω using k–uniform subintervals5, N0 = 500 and

N1 = 104. Such an average is shown in Figure 4 with a k = 105 subintervals, along with a

5In practice, we iterate with h
(k)
σω = Pω,kh(k)ω .
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comparison of a random orbit of length 108 (both are shown as histograms over 1000 uniform
bins). Qualitative agreement is evident between the two methods.

Figure 4: Physical measure of random Lasota–Yorke maps temporally-averaged Ulam ap-
proximations of the quenched invariant measures µω as per equation (12) (k = 105 subin-
tervals, N0 = 500 . . . N1 = 104) (solid blue). Histogram over a random orbit of length 108,
drawn as histograms over 1000 bins (dash-dot black). Ulam approximation to density of
averaged operator, computed according to (13) (dashed red).

These experiments also provide an ideal illustration of the loss of information inherent in
approximating a random dynamical system via an averaged transfer operator . The averaged
operator is

P̄ :=

∫
Ω

Pω dP(ω),

and its fixed points can be interpreted as physical densities when the base dynamics is IID
[Ohn83, Bal97]. This is sometimes called the annealed case. In non-IID, but σ–ergodic,
cases Ulam’s method gives an approximation

P̄k :=
1

N

N−1∑
t=0

Pσtω,k. (13)

Figure 4 includes a comparison with the fixed point of this averaged operator, calculated via
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Ulam’s method as a fixed point of the approximation to P̄k with k = 500 subintervals and
N = 5000; calculating with higher k and N showed no visible changes.
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A Variation estimates

Let h ∈ BV (R), let |b− a| < δ and let y ∈ [a, b] be such that |h(y)| ≤
∫ b
a |h|
b−a . Then

|h(a)| ≤ |h(a)− h(y)|+
‖h‖L1[a,b]

δ
and |h(b)| ≤ |h(y)− h(b)|+

‖h‖L1[a,b]

δ
.

Hence

|h(a)|+|h(b)| ≤ var[a,b](h)+
2 ‖h‖L1[a,b]

δ
and max{|h(a)|, |h(b)|} ≤ var[a,b](h)+

‖h‖L1[a,b]

δ
.

Let b − a < δ and let c ∈ (−∞, a) ∪ (b,∞). The facts above imply the following estimates
for h ∈ BV (R):

var(h1[a,b]) ≤ 2 var[a,b](h) + 2
‖h‖L1

δ
(14)

and

|h(c)| ≤

{
var[c,b](h) +

‖h‖L1[a,b]

δ
if c < a,

var[a,c](h) +
‖h‖L1[a,b]

δ
if b < c.

(15)

Using (15):

var(h1R\(a,b)) ≤ var(−∞,a](h) + var[a,b](h) + var[b,∞)(h) + 2
‖h‖L1[a,b]

δ

= var(h) + 2
‖h‖L1[a,b]

δ
(16)
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B Estimates on λN1−n(σ
nω)λn(ω)

Note from the definition of λn(ω) = infx |f (n)′
ω (x)| that for all s, t ≥ 0

λs(σ
tω)λt(ω) ≤ λs+t(ω) ≤ Λsλt(ω).

Now let n ≤ N1 be given and choose m = b n
N0
c and write n = mN0 + t. Then

λmN0+t(ω) ≥ λt(σ
mN0ω)

m−1∏
k=0

λN0(σ
kN0ω) ≥ Λ−(N0−t)

m∏
k=0

λN0(σ
kN0ω).

Similarly,

λN1−n(σnω) ≥

(
m0∏

k=m+1

λN0(σ
kN0ω)

)
λN1−t(σ

nω) ≥ Λ−(N0−t)
m0−1∏
k=m+1

λN0(σ
kN0ω).

Combining these,

λN1−n(σnω)λn(ω) ≥ Λ−2N0

m0−1∏
k=0

λN0(σ
kN0ω). (17)
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