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Abstract

Semi-invertible multiplicative ergodic theorems establish the existence
of an Oseledets splitting for cocycles of non-invertible linear operators
(such as transfer operators) over an invertible base. Using a constructive
approach, we establish a semi-invertible multiplicative ergodic theorem
that for the first time can be applied to the study of transfer operators
associated to the composition of piecewise expanding interval maps ran-
domly chosen from a set of cardinality of the continuum. We also give an
application of the theorem to random compositions of perturbations of an
expanding map in higher dimensions.

1 Introduction

1.1 Motivation and History

Oseledets’ proof, in 1965, of the multiplicative ergodic theorem is a milestone in
the development of modern ergodic theory. It has been applied to differentiable
dynamical systems to establish the existence of Lyapunov exponents and plays
a crucial role in the construction of stable and unstable manifolds. It also has
substantial applications in the theory of random matrices, Markov chains, etc.

The proof has been generalized in many directions by a number of authors
(including Ruelle [39], Mañé [36], Ledrappier [26], Raghunathan [38], Kaima-
novich [25] and many others). In the original version, one has an ergodic
measure-preserving system σ : Ω → Ω and for each ω ∈ Ω, a corresponding
matrix A(ω) ∈ Md(R). Under suitable integrability conditions on the norms
of the matrices it is shown that over almost every point, ω, of Ω, there is a
measurably-varying collection of subspaces (Vi(ω))1≤i≤k, with a decreasing se-
quence of characteristic exponents λi such that (i) the subspaces are equivariant
- that is, A(ω)(Vi(ω)) ⊂ Vi(σω); and (ii) that vectors in Vi(ω) (typically) expand

∗Department of Mathematics and Statistics, University of Victoria, Victoria, B.C., Canada

V8W 3R4. Email: ceciliag@uvic.ca. CGT is supported by a PIMS Postdoctoral Fellowship.
†Department of Mathematics and Statistics, University of Victoria, Victoria, B.C., Canada

V8W 3R4. Email: aquas@uvic.ca. AQ is supported by NSERC.

1

http://arxiv.org/abs/1105.5609v2


at rate λi under sequential applications of the matrices A(σjω) along the orbit.
That is,

lim
n→∞

1

n
log ‖A(σn−1ω) · · ·A(ω)v‖ = λi.

More specifically and of crucial significance for this article, Oseledets’ multi-
plicative ergodic theorem was proved in two versions: an invertible version and
a non-invertible version.

In the invertible version the following is assumed: σ is an invertible trans-
formation of Ω; the matrices A(ω) are each invertible and

∫

log+ ‖A(ω)‖ dP(ω)
and

∫

log+ ‖A(ω)−1‖ dP(ω) are both finite. The conclusion of the theorem is
then that there is for almost every ω a measurable splitting of Rd:

R
d = Y1(ω)⊕ Y2(ω)⊕ . . .⊕ Yl(ω) (1)

such that for all v ∈ Yi(ω) \ {0}

lim
n→∞

log ‖A(n)(ω)v‖

n
= λi; (2)

lim
n→−∞

log ‖A(n)(ω)v‖

n
= λi, (3)

where A(n) denotes the matrix cocycle A(σn−1ω) · · ·A(ω) for n > 0 whereas for
n < 0, it is A(σ−nω)−1 · · ·A(σ−1ω)−1.

In the non-invertible version of the theorem, σ is no longer assumed to be
invertible and there is no assumption on the invertibility of the matrices A(ω).
In this case there is a weaker conclusion: rather than a splitting of R

d one
obtains a filtration: A decreasing sequence of subspaces of Rd

R
d = V1(ω) ⊃ V2(ω) ⊃ . . . ⊃ Vl(ω) (4)

such that for all v ∈ Vi(ω) \ Vi+1(ω) (defining Vl+1(ω) to be {0}), (2) holds.
In [18], Froyland, Lloyd and Quas refined the dichotomy between invertible

and non-invertible versions of the theorem, introducing a third class of versions
of the theorem: semi-invertible multiplicative ergodic theorems. For semi-in-
vertible ergodic theorems the underlying dynamical system is assumed to be
invertible, but no assumption is made on the invertibility of the matrices. The
conclusion of the theorem in this category is that there is again a splitting of
the vector space (instead of a filtration) and that for all v ∈ Yi(ω) \ {0}, (2)
holds (but not (3) which does not make sense in this context).

Our motivation for considering semi-invertible multiplicative ergodic theo-
rems comes from application-oriented studies of rates of mixing due to Dellnitz,
Froyland and collaborators [12, 11, 17]. Given a measure-preserving dynamical
system it is called (strong-) mixing if µ(A ∩ T−nB) → µ(A)µ(B) for all mea-
surable sets A and B. This is an asymptotic independence property for any
measurable sets under evolution.

An equivalent formulation of mixing is that
∫

f ·g ◦T n dµ should converge to
∫

f dµ
∫

g dµ for all L2 functions f and g. Clearly nothing is lost if one demands
that the functions should have zero integral.
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Relaxing the assumption that µ is an invariant measure, one may take µ
to be some ambient measure (e.g. Lebesgue measure in the case that T is a
smooth map of a manifold or subset of Rd). A key tool in this study is the
Perron- Frobenius Operator or transfer operator, L, acting on L1(µ). This is
the pre-dual of the operator of composition with T acting on L∞, the so-called
Koopman operator, so that

∫

f ·g◦T dµ =
∫

Lf ·g dµ for all f ∈ L1 and g ∈ L∞).
In many cases one can give a straightforward expression for Lf . It is not hard
to check from the definition that Lf = f if and only if f is the density of an
absolutely continuous invariant measure for T .

One might naively ask for the rate of convergence of
∫

f · g ◦ T n dµ to 0 if
indeed the system is mixing, but simple examples show that there is no uniform
rate of convergence: one can construct in any non-trivial mixing system, func-
tions f and g such that the rate of convergence is arbitrarily slow. One does
however obtain rates of mixing if one places suitable restrictions on the class of
‘observables’ f and g for which one computes

∫

f · g ◦ T n dµ. It turns out that
an important reason that the Perron-Frobenius operator is so useful is that if
one restricts the function f to a suitable smaller Banach space of observables
B ⊂ L1, then in many cases L maps B to B; and better still L is a quasi-
compact operator on B, so that the spectrum of L consists of a discrete set of
values outside the essential spectral radius each corresponding to eigenvalues
of L with finite-dimensional eigenspaces. Given this one can relate the rate of
mixing of the dynamical system (restricted to a suitable class of observables) to
the spectral properties of the operator L restricted to the Banach space B. It
is a key fact for our purposes that the Perron-Frobenius operators L that one
works with are almost invariably non-invertible.

Ulam’s method takes this one step further, replacing the operator L by
a finite rank approximation. In works of Froyland [15, 16] and Baladi, Isola
and Schmitt [3], the relationship between the finite rank approximations of L
and the original Perron-Frobenius operators is studied. This turns out to be
remarkably effective and this is a good technique for computing invariant mea-
sures numerically (see for example work of Dellnitz and Junge [12], Froyland[14],
Keane, Murray and Young [28]). Keller and Liverani [29] showed that excep-
tional eigenvalues of L (those outside the essential spectral radius) persist under
approximation of L.

In a development of Ulam’s method, [12] and later [16] related the large sub-
unit eigenvalues and corresponding eigenvectors of the finite rank approximation
of L to properties of the underlying system. In particular they showed that
these exceptional eigenvectors give rise to global features inhibiting mixing of
the system (whereas the essential spectral radius is related to local features
inhibiting mixing of the system). For a cartoon example, one can consider a
map of the interval [−1, 1] in which the left sub-interval [−1, 0] and right sub-
interval [0, 1] are almost invariant (that is only a small amount of mass leaks
from one to the other under application of the map) but within each subinterval
there is rapid mixing- see work of González-Tokman, Hunt and Wright [23] and
Dellnitz, Froyland and Sertl [11]. In this case one observes eigenvalues that are
close to 1, where the eigenfunction takes values close to 1 on one sub-interval
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and close to −1 on the other sub-interval. In applied work Dellnitz, Froyland
and collaborators[21, 10] make use of these exceptional eigenvectors to analyse
the ocean and locate regions with poor mixing, called gyres.

The current work (and its predecessors [18] and [19]) is motivated by ex-
tending the program of Dellnitz and Froyland to the case of forced dynamical
systems (or equivalently random dynamical systems), that is systems of the
form T (ω, x) = (σ(ω), Tω(x)). Again as a cartoon example, one can consider
the effect of the moon on the oceans: the moon evolves autonomously (and
invertibly), whereas the evolution of the ocean is affected by the position of the
moon. Relating this to the context of the multiplicative ergodic theorem, think
of the dynamical system σ : Ω → Ω as being the autonomous dynamics of the
moon and the ω-dependent matrix to be a map on a Banach space of densities
in the ocean. The aim is, once again, to identify and study the second and
subsequent exceptional eigenspaces with a view to understanding obstructions
to mixing. The importance of the semi-invertible multiplicative ergodic theo-
rems here (the underlying base dynamics is invertible but the Perron-Frobenius
operators are non-invertible) are that the obstructions to mixing, the V2(ω), ap-
pear here as finite-dimensional subspaces rather than the finite-codimensional
subspaces that one would obtain from the standard multiplicative ergodic the-
orems. This program has been demonstrated to work in practice for driven
cylinder flows in an article of Froyland, Lloyd and Santitissadeekorn [20].

In all three works, this paper and its two predecessors, [18] and [19], the goal
is to prove a semi-invertible multiplicative ergodic theorem and apply it to as
general a class of random dynamical systems as possible. In all three papers,
the starting point was a pair of multiplicative ergodic theorems: an invertible
and a non-invertible; and then to derive, using the pair of ergodic theorems as
black boxes, a semi-invertible ergodic theorem.

[18] dealt with the original Oseledets context of d × d real matrices (and
used Oseledets’ original theorem [37] as the basis). [19] dealt with the case of
an operator-valued multiplicative ergodic theorem where the map L : ω 7→ L(ω)
is (almost)-continuous with respect to the operator norm (using a theorem of
Thieullen [42] as a basis). The current paper deals with the case of an operator-
valued multiplicative ergodic theorem where the map ω 7→ L(ω) is measurable
with respect to a σ-algebra related to the strong operator topology (using a
Theorem of Lian and Lu [34] as a basis).

The applications to random dynamical systems have become progressively
more general through the sequence of works: [18] applied to finite-dimensional
approximations of random dynamical systems (using the Ulam scheme) as well
as dealing exactly with some dynamical systems satisfying an extremely strong
jointly Markov condition. [19] applied to one-dimensional expanding maps.
However, since the set of Perron-Frobenius operators of C2 expanding maps
acting on the space of functions of bounded variation is uniformly discrete, the
conditions of the theorem restricted the authors to studying random dynamical
systems with at most countably many maps. In the current paper, Lian and Lu’s
result allows us to weaken the continuity assumption to strong measurability
(defined below). Essentially, this amounts to checking continuity of ω 7→ LTωf
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for a fixed f . The cost, however, is that the Banach space on which the transfer
operators act is now required to be separable (which the space of functions of
bounded variation, used in [19], is not). In order to apply the semi-invertible er-
godic theorem to random one-dimensional expanding maps, we make substantial
use of recent work of Baladi and Gouëzel [2] who used a family of local Sobolev
norms to study Perron-Frobenius operators of (higher-dimensional) piecewise
hyperbolic maps; see also Thomine [43] for a specialization in the context of
expanding maps. While Baladi and Gouëzel were working with a single map,
we show that the Perron-Frobenius operators on the Banach spaces that they
construct depend in a suitable way for families of expanding one-dimensional
maps allowing us to apply our semi-invertible multiplicative ergodic theorem
(making essential use also of an idea of Buzzi [7]). We also point out that, to
our knowledge, it was not even known whether an Oseledets filtration existed
in this setting.

Another feature of the proofs is the way in which the semi-invertible the-
orem is proved from the invertible and non-invertible theorems. The essential
issue is that the non-invertible theorem provides equivariant families of finite
co-dimensional subspaces Vi(ω) (being the set of vectors that expand at rate
λi or less). One is then attempting to build an equivariant family of (finite-
dimensional) vector spaces Yi(ω) so that Vi+1(ω)⊕ Yi(ω) = Vi(ω).

In [18] this was done in a relatively natural way (by pushing forward the
orthogonal complement of Vi(σ

−nω)⊖Vi+1(σ
−nω) under A(σ−1ω) · · ·A(σ−nω)

and taking a limit as n tends to infinity).
In [19], the proof exploited the structure of the proof given by Thieullen.

Specifically Thieullen first proved the invertible multiplicative ergodic theorem
and then obtained the non-invertible theorem as a corollary by building an
inverse limit Banach space (reminiscent of the standard inverse limit construc-
tions in ergodic theory). The finite-co-dimensional family Vi(ω) was obtained by
projecting the corresponding subspaces from the invertible theorem onto their
zeroth coordinate. In [19] it was proved that applying the same projection to the
finite-dimensional complementary family yielded the Yi(ω) spaces. This proof,
while relatively simple, is problematic for applications as there appears to be no
sensible way to computationally work with these inverse limit spaces. We see
this proof technique as non-constructive. This non-constructive proof technique
should probably apply with a high degree of generality.

In the current paper we come back much closer to the scheme applied in [18].
The same non-constructive techniques that were used by Thieullen to obtain the
non-invertible theorem from the invertible theorem were used by Doan in his
thesis [13] to obtain a non-invertible version of the result of Lian and Lu [34].
Starting from the non-constructive existence proof of the finite co-dimensional
subspaces we obtain a constructive proof of the finite-dimensional Yi(ω) spaces.
We see this as being likely to lead to computational methods although we have
not implemented these at the current time.
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1.2 Statement of Results and structure of paper

The context of Lian and Lu’s multiplicative ergodic theorem is that of strongly
measurable families of operators.

If X is a separable Banach space, then L(X) will denote the set of bounded
linear maps fromX toX . The strong operator topology on L(X) is the topology
generated by the sub-base consisting of sets of the form {T : ‖T (x) − y‖ < ǫ}.
The strong σ-algebra S is defined to be the Borel σ-algebra on L(X) generated
by the strong operator topology. Appendix A develops a number of basic results
about strong-measurability, including the following useful characterization: A
map L : Ω → L(X) is strongly measurable if for each x ∈ X , the map Ω → X ,
ω 7→ L(ω)(x) is measurable with respect to the σ-algebra on Ω and the Borel
σ-algebra on X .

Of course the ‘strong operator topology’ is very much coarser than the norm
topology on L(X) - checking continuity in the strong operator topology can
be done one x at a time. This is the essential difference between the result of
Thieullen and that of Lian and Lu: for a given function f , L(ω)f and L(ω′)f
are close if Tω and Tω′ are close enough, but the operators LTω and LTω′ are, in
many interesting cases, uniformly far apart. (An exception to this is the setting
of smooth expanding analytic maps.)

For convenience we state our main results here, even though some of the
terms in the statement have yet to be defined. These correspond to Theorems
2.10 and 3.19 in the body of the paper.

Our new semi-invertible multiplicative ergodic theorem is the following (for
simplicity we state the version in which there are finitely many exceptional
exponents; a corresponding version holds if there are countably many exponents
which then necessarily converge to κ∗).

Theorem A. Let σ be an invertible ergodic measure-preserving transformation
of the Lebesgue space (Ω,F ,P). Let X be a separable Banach space. Let L : Ω →
L(X) be a strongly measurable family of mappings such that log+ ‖L(ω)‖ ∈
L1(P) and suppose that the random linear system R = (Ω,F ,P, σ,X,L) is quasi-
compact (i.e. the analogue of the spectral radius, λ∗, is larger than the analogue
of the essential spectral radius, κ∗).

Then there exists 1 ≤ l ≤ ∞ and a sequence of exceptional Lyapunov expo-
nents λ∗ = λ1 > λ2 > . . . > λl > κ∗ (or in the case λ = ∞, λ∗ = λ1 > λ2 > . . .;
limn→∞ λn = κ∗).

For P-almost every ω there exists a unique measurable equivariant splitting
of X into closed subspaces X = V (ω)⊕

⊕l
j=1 Yj(ω) where the Yj(ω) are finite-

dimensional. For each y ∈ Yj(ω) \ {0}, limn→∞
1
n log ‖L

(n)
ω y‖ = λj . For y ∈

V (ω), limn→∞
1
n log ‖L

(n)
ω y‖ ≤ κ∗.

The application to random piecewise expanding systems is as follows:

Theorem B. Let σ be an invertible ergodic measure-preserving transformation
of the Lebesgue space (Ω,F ,P). For each ω ∈ Ω, let Tω be a random expanding
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dynamical system acting on X0 ⊂ R
d. Assume further that ω 7→ Tω is Borel-

measurable, the C1+α norm of Tω is uniformly bounded above, the maps Tω have
a derivative that is uniformly bounded away from 1, and that some integrability
conditions are satisfied.

Suppose that either d = 1 (Lasota-Yorke case); or d > 1 and the maps
Tω are C2, have a common branch partition and belong to a sufficiently small
neighbourhood of a Cowieson map.

Then there exist a separable, reflexive Banach space X containing the C∞

functions supported on X0 for which the map ω 7→ Lω given by the transfer
operator associated to Tω is strongly measurable, a quantity 1 ≤ l ≤ ∞, a
sequence of exceptional exponents 0 = λ1 > . . . > λl > κ∗, (or if l = ∞, then
0 = λ1 > λ2 > . . . > κ∗; limn→∞ λn = κ∗), and a family of finite-dimensional
equivariant subspaces (Yi(x))1≤i≤l satisfying the conclusions of Theorem A.

The main motivation behind our search for semi-invertible Oseledets theo-
rems has been to provide a general framework in which it is possible to identify
low-dimensional spaces that are responsible for impeding mixing in infinite-
dimensional dynamical systems. Following Dellnitz, Froyland and collaborators
we want to extract information not simply from the exceptional Lyapunov ex-
ponents, but rather from the corresponding Lyapunov subspaces.

It is important to note that exponential decay of correlations is not assumed.
Our work applies, for instance, to an example of Buzzi in [6] (Example 3).
Buzzi’s example (which works by essentially having two copies of the interval
and a pair of maps each of which acts as doubling on each interval and then
simply permutes the intervals) fails to have exponential decay of correlations,
but it is still quasi-compact. In our context this will be reflected in the fact
that the top exceptional Lyapunov subspace has multiplicity 2 rather than 1.
In fact, the structure of this top subspace exactly illustrates the goal of our work
because the Oseledets space will consist of a constant function and a function
which is 1 on one of the intervals and −1 on the other, thereby indicating the
source of non-mixing.

In addition, there are examples in the existing literature showing the possi-
bilities of having more than one Oseledets space; that is, l ≥ 2. In the random
setting, there is an example by Froyland, Lloyd and Quas, [18, Theorem 5.1]; in
the deterministic case, there is one by Keller and Rugh [30, Theorem 1]. In fact,
it is a priori possible to have all sorts of combinations for number of exceptional
Lyapunov exponents (1 ≤ l ≤ ∞) and multiplicities (1 ≤ m1, . . . ,ml < ∞), in
a similar way that square matrices may have different Jordan normal forms.

In section 2 we give the proof of the semi-invertible multiplicative theorem.
In section 3 we introduce the fractional Sobolev spaces (as used in Baladi and
Gouëzel) and study the continuity properties of the map sending a Lasota-Yorke
map to its Perron-Frobenius operator. We then adapt the proof given by Baladi
and Gouëzel of quasi-compactness for a single map to the situation of a random
composition of one-dimensional expanding maps (using results of Hennion and
Buzzi) to show that the theorem of section 2 applies in this context. We also
present an application of Theorem A to piecewise expanding maps in higher
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dimensions, building on work of Cowieson [9]. Section 4 summarizes possible
directions for future work.

The paper has three appendices: Appendix A contains results about strong
measurability. Appendix B contains results about the Grassmannian of a sep-
arable Banach space. Appendix C collects some results from ergodic theory:
a useful characterization of tempered maps and a Hennion type theorem for
random linear systems.

1.3 Acknowledgments

The authors would like to thank Viviane Baladi, Chris Bose, Jérôme Buzzi, Jim
Campbell, and Karl Petersen for useful discussions, as well as Gary Froyland
and an anonymous referee for providing a wide range of helpful suggestions and
bibliographical references.

2 Oseledets splittings for random linear systems.

2.1 Preliminaries

We start by introducing some notation about random dynamical systems.

Definition 2.1. A separable strongly measurable random linear system

is a tuple R = (Ω,F ,P, σ,X,L) such that (Ω,F ,P) is a Lebesgue space, σ is
a probability preserving transformation of (Ω,F ,P), X is a separable Banach
space, and the generator L : Ω → L(X) is a strongly measurable map (see

Definition A.3). We use the notation L
(n)
ω = L(σn−1ω) ◦ · · · ◦ L(ω).

Definition 2.2. The index of compactness (or Kuratowski measure of non-
compactness) of a bounded linear map A : X → X is

‖A‖ic(X) = inf{r > 0 : A(BX) can be covered by finitely many balls of radius r},

where B denotes the unit ball in X.

Definition 2.3. Let R = (Ω,F ,P, σ,X,L) be a separable strongly measurable
random linear system. Assume that

∫

log+ ‖Lω‖dP(ω) < ∞. For each ω ∈ Ω,
the maximal Lyapunov exponent for ω is defined as

λ(ω) := lim
n→∞

1

n
log ‖L(n)

ω ‖,

whenever the limit exists. For each ω ∈ Ω, the index of compactness for ω
is defined as

κ(ω) := lim
n→∞

1

n
log ‖L(n)

ω ‖ic(X),

whenever the limit exists. Whenever we want to emphasize the dependence on
R, we will write λR(ω) and κR(ω).
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Lemma 2.4. Let R be as in Definition 2.3. λ(ω) is well defined for P-almost
every ω. The function ω 7→ λ(ω) is measurable and σ-invariant.

Proof. The sequence of functions {log ‖L
(n)
ω ‖}n∈N is subadditive. That is,

log ‖L(m+n)
ω ‖ ≤ log ‖L

(m)
σnω‖+ log ‖L(n)

ω ‖.

Since the composition of strongly measurable maps is strongly measurable by
Lemma A.5, and the sets Lr(X) = {A ∈ L(X) : ‖A‖ ≤ r} are S measurable by

Lemma A.2(1), then the map ω 7→ ‖L
(n)
ω ‖ is measurable. Measurability of the

map ω 7→ limn→∞ sup 1
n log ‖L

(n)
ω ‖ follows. By Kingman’s subadditive theorem

[33], the limit limn→∞
1
n log ‖L

(n)
ω ‖ exists for P-almost every ω ∈ Ω, and it is

σ-invariant.

Lemma 2.5. Let R be as in Definition 2.3. The index of compactness is finite,
submultiplicative and measurable, when L(X) is equipped with the strong σ-
algebra S. Thus, κ(ω) is well defined for P-almost every ω. The function ω 7→
κ(ω) is measurable and σ-invariant.

Proof. The index of compactness is bounded by the norm. Submultiplicativity is
straightforward to check. To show S-measurability of the index of compactness,
we present the argument given in Lian and Lu [34]. Let {xi}i∈N be a dense
subset of X and {yj}j∈N be a dense subset of B(X). Let U be the (countable)
set of finite subsets of {xi}i∈N. Let U =

⋃

i∈N
Ui. Then, one can check that

{A ∈ L(X) : ‖A‖ic(X) < r} =

∞
⋃

n=2

∞
⋃

i=i

∞
⋂

j=1

⋃

x∈Ui

{A : ‖A(yj)− x‖ < (1− 1/n)r},

(see [34, Lemma 6.5] for a proof.) Hence, A 7→ ‖A‖ic(X) is S-measurable. Thus,
P-almost everywhere existence, measurability and σ-invariance of κ follow just
like in the proof of Lemma 2.4.

Remark 2.6. If R has an ergodic base, then λ and κ are P-almost everywhere
constant. We call these constants λ∗(R) and κ∗(R), or simply λ∗ and κ∗ if
R is clear from the context. It follows from the definitions that κ∗ ≤ λ∗. The
assumption

∫

log+ ‖Lω‖dP(ω) < ∞ implies that λ∗ < ∞.

Definition 2.7. A strongly measurable random linear system with ergodic base
is called quasi-compact if κ∗ < λ∗.

2.2 Construction of Oseledets splitting

The following theorem was obtained by Doan [13] as a corollary of the two-sided
Oseledets theorem proved by Lian and Lu [34].

Theorem 2.8 (Doan [13]). Let R = (Ω,F , σ,P, X,L) be a separable strongly
measurable random linear system with ergodic base. Assume that log+ ‖L(ω)‖ ∈
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L1(Ω,F ,P) and that R is quasi-compact. Then, there exists 1 ≤ l ≤ ∞, num-
bers λ∗ = λ1 > · · · > λl > κ∗ (or in the case l = ∞, λ1 > λ2 > . . . > κ∗;
limn→∞ λn = κ∗), the exceptional Lyapunov exponents of R, multiplicities
m1, . . . ,ml, and a filtration X = V1(ω) ⊃ . . . ⊃ Vl(ω) ⊃ Vl+1(ω) of finite-
codimensional subspaces (in the case l = ∞ we have V1(ω) ⊃ V2(ω) ⊃ . . .)
defined on a full P-measure, σ-invariant subset of Ω satisfying:

1. For every 1 ≤ j ≤ l, LωVj(ω) ⊆ Vj(σω), and the codimension of Vj+1(ω)
in Vj(ω) is mj. Furthermore, LωVl+1(ω) ⊆ Vl+1(σω).

2. For every 1 ≤ j ≤ l and v ∈ Vj(ω) \ Vj+1(ω),

lim
n→∞

1

n
log ‖L(n)

ω v‖ = λj .

For every v ∈ Vl+1(ω),

lim sup
n→∞

1

n
log ‖L(n)

ω v‖ ≤ κ∗.

Remark 2.9. Combining the result of Lian and Lu [34] with Lemma B.15 and
the proof of [13], we obtain that the spaces Vj(ω) forming the filtration given by
Theorem 2.8 depend measurably on ω.

The main result of this section is the following.

Theorem 2.10 (Semi-invertible operator Oseledets theorem).
Let R = (Ω,F ,P, σ,X,L) be a separable strongly measurable random linear
system with ergodic invertible base. Assume that log+ ‖L(ω)‖ ∈ L1(Ω,F ,P)
and that R is quasi-compact. Let λ∗ = λ1 > · · · > λl > κ∗ be the exceptional
Lyapunov exponents of R, and m1, . . . ,ml ∈ N the corresponding multiplicities
(or in the case l = ∞, λ1 > λ2 > . . . with m1,m2, . . . the multiplicities).

Then, up to P-null sets, there exists a unique, measurable, equivariant split-
ting of X into closed subspaces, X = V (ω)⊕

⊕l
j=1 Yj(ω), where possibly V (ω)

is infinite dimensional and dimYj(ω) = mj. Furthermore, for every y ∈ Yj(ω)\

{0}, limn→∞
1
n log ‖L

(n)
ω y‖ = λj, for every v ∈ V (ω), lim supn→∞

1
n log ‖L

(n)
ω v‖ ≤

κ∗ and the norms of the projections associated to the splitting are tempered with
respect to σ (where a function f : Ω → R is called tempered if for P-almost every
ω, limn→±∞

1
n log |f(σnω)| = 0).

The proof of 2.10 occupies the rest of the section. First, we present Lemma
2.11, that allows us to choose complementary spaces in the filtration of Theorem
2.8. Then, Lemma 2.12 provides an inductive step that establishes the proof of
Theorem 2.10.

Lemma 2.11 (Existence of a good complement). Let the filtration V1(ω) ⊃
. . . ⊃ Vl+1(ω) be as in Theorem 2.8. Then, for every 1 ≤ j ≤ l, there exist mj

dimensional spaces Uj(ω) such that the following conditions hold.
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1. For P-almost every ω ∈ Ω, Vj+1(ω)⊕ Uj(ω) = Vj(ω).

2. The map ω 7→ Uj(ω) is (F ,BG(X)) measurable.

For j = 1, let U<j(ω) = {0}, and for 1 < j ≤ l, let U<j(ω) =
⊕j−1

i=1 Ui(ω).
Then,

3. ‖ΠUj‖Vj+1⊕U<j(·)‖, ‖ΠVj+1‖Uj⊕U<j(·)‖ ∈ L∞(Ω,F ,P).

Proof of Lemma 2.11. We proceed by induction on j. Fix some 1 ≤ j ≤ l.
If j > 1, assume the statement has been obtained for all 1 ≤ j′ < j. Let
V (ω) = Vj(ω), V+(ω) = Vj+1(ω) and k = mj . Also let U−(ω) = {0} if j = 1
and U−(ω) =

⊕

j′<j Uj′(ω) if j > 1. Let (xi)i∈N be a countable dense subset of
the unit sphere in X .

Let ǫ > 0 be a constant to be fixed later in the proof. For 1 ≤ l ≤ k, we
claim that we can inductively pick measurable families of vectors ul(ω) ∈ Vj(ω)
satisfying (a) ‖ul(ω)‖ = 1; (b) d(ul(ω),Wl(ω)) > 1−ǫ, whereWl(ω) = U<j(ω)⊕
V+(ω)⊕ span(u1(ω), . . . , ul−1(ω)).

Assume 1 ≤ l ≤ k and that u1(ω), . . . , ul−1(ω) have already been con-
structed. Let r1(ω) = min{i ∈ N : d(xi,Wl(ω)) > 1 − ǫ/2 and d(xi, V (ω)) <
ǫ/2}. Then define subsequent terms of a sequence (rs(ω))s≥1 by rs(ω) = min{i ∈
N : d(xi, xrs−1(ω)) < ǫ/2s; d(xi, V (ω)) < ǫ/2s}. Then (xrs(ω))s≥1 is a sequence
of measurable functions pointwise convergent to a measurable function ul(s)
satisfying the required properties.

To check the last condition, we let Πi = Πspan(ui(ω))‖Wi(ω). It follows from
the above that ‖Πi‖ ≤ 1/(1− ǫ). Also, ΠUj‖Vj+1⊕U<j(·) and ΠVj+1‖Uj⊕U<j(·) can
be expressed as a finite sum of compositions of Πi and I. The result follows.

As before, fix some 1 ≤ j ≤ l and let V (ω) = Vj(ω), V+(ω) = Vj+1(ω),
k = mj = codim(V+, V ), λ = λj and µ = λj+1.

Lemma 2.12. Let R = (Ω,F ,P, σ,X,L) be a separable strongly measurable
random linear system with ergodic invertible base. Let log+ ‖L(ω)‖ ∈ L1(Ω,F ,P)
and R be quasi-compact. Let U(ω) be a good complement of V+(ω) in V (ω), as

provided by Lemma 2.11. For n ≥ 0, let Y (n)(ω) = L
(n)
σ−nωU(σ−nω). Then, for

P-almost every ω the following holds.

1. (Convergence) As n → ∞, Y (n)(ω) converges to a k-dimensional space
Y (ω), which depends measurably on ω.

2. (Equivariant complement) V+(ω) ⊕ Y (ω) = V (ω). Hence, for all y ∈

Y (ω) \ {0}, limn→∞
1
n log ‖L

(n)
ω y‖ = λ. Furthermore, LωY (ω) = Y (σω).

3. (Uniqueness) Y (ω) is independent of the choice of U(ω).

Let Ỹ (ω) =
⊕

i≤j Yi(ω). Then,

4. (Temperedness) The norms of projections Π1(ω) := ΠV+‖Ỹ (ω) and Π2(ω) :=
ΠỸ ‖V+(ω) are tempered with respect to σ.
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Before proceeding to the proof of Lemma 2.12, let us collect some facts that
will be used in it. For j = 1, let U−(ω) = {0}, and for 1 < j ≤ l, let U−(ω) =
⊕j−1

i=1 Ui(ω). Then, we have that ΠV ‖U−(ω) = ΠV+‖U⊕U−(ω) + ΠU‖V+⊕U−(ω).
Also, by invariance of V (ω) under Lω , we have that

Lω◦ΠV ‖U−(ω) = (ΠV+‖U⊕U−(σω)+ΠU‖V+⊕U−(σω))Lω(ΠV+‖U⊕U−(ω)+ΠU‖V+⊕U−(ω)).

Let

L00(ω) = ΠV+‖U⊕U−(σω)LωΠV+‖U⊕U−(ω),

L01(ω) = ΠU‖V+⊕U−(σω)LωΠV+‖U⊕U−(ω),

L10(ω) = ΠV+‖U⊕U−(σω)LωΠU‖V+⊕U−(ω),

L11(ω) = ΠU‖V+⊕U−(σω)LωΠU‖V+⊕U−(ω).

Note that by invariance of V+, L01(ω) = 0, P-almost surely. Therefore, Lω ◦
ΠV ‖U−(ω) = L00(ω) + L10(ω) + L11(ω).

Let L
(n)
00 (ω) = ΠV+‖U⊕U−(σnω)L

(n)
ω ΠV+‖U⊕U−(ω), and define operatorsL

(n)
01 (ω)

and L
(n)
11 (ω) analogously. It is straightforward to verify the following identities.

L
(n)
00 (ω) = L00(σ

n−1ω) . . .L00(ω), (L00)

L
(n)
11 (ω) = L11(σ

n−1ω) . . .L11(ω). (L11)

By induction, we also have that

L
(n)
10 (ω) =

n−1
∑

i=0

L
(i)
00 (σ

n−iω)L10(σ
n−i−1ω)L

(n−i−1)
11 (ω). (L10)

Sublemma 2.13. Under the assumptions of Lemma 2.12, the following state-
ments hold.

1. For P-almost every ω ∈ Ω,

lim
n→∞

1

n
log ‖L

(n)
00 (ω)‖ ≤ µ.

Furthermore, for every ǫ > 0 and P-almost every ω ∈ Ω, there exists
D1(ω) < ∞ such that for every i ≥ 0,

‖L
(i)
00 (σ

−iω)‖ ≤ D1(ω)e
i(µ+ǫ).

Applying this with ω replaced by σnω we obtain

‖L
(i)
00 (σ

n−iω)‖ ≤ D1(σ
nω)ei(µ+ǫ).

2. For every ǫ > 0 and P-almost every ω ∈ Ω, there exists D2(ω) < ∞ such
that for every n ∈ Z,

‖L10(σ
nω)‖ ≤ D2(ω)e

|n|ǫ.

12



3. For P-almost every ω ∈ Ω, and every u ∈ U(ω) \ {0},

lim
n→∞

1

n
log ‖L

(n)
11 (ω)u‖ = λ.

In particular, L11(ω)|U(ω) : U(ω) → U(σω) is invertible for P-almost every
ω. Furthermore, for every ǫ > 0 and P-almost every ω ∈ Ω, there exists
C(ω) < ∞ such that for every n ≥ 0, and every u ∈ U(σ−nω) satisfying
‖u‖ = 1

‖L
(n)
11 (σ−nω)u‖ ≥ C(ω)en(λ−ǫ).

Proof.
Proof of (1).

From the definition, ‖L
(n)
00 (ω)‖ ≤ ‖ΠV+‖U⊕U−(σnω)‖‖L

(n)
ω |V+(ω)‖‖ΠV+‖U⊕U−(ω)‖.

By Theorem 2.8, we have that limn→∞
1
n log ‖L

(n)
ω |V+(ω)‖ = µ. Using that

ΠV+‖U⊕U−(ω) is tempered with respect to σ, which follows from Lemma 2.11(3),
we get that for P-almost every ω,

lim
n→∞

1

n
log ‖L

(n)
00 (ω)‖ ≤ µ.

The second claim follows exactly like Claim C in the predecessor paper, [18].

Proof of (2).
‖L10(σ

nω)‖ ≤ ‖ΠV+‖U⊕U−(σn+1ω)‖‖Lσnω‖‖ΠU‖V+⊕U−(σnω)‖. Since log+ ‖Lω‖
is integrable with respect to P, using the Birkhoff ergodic theorem, one sees
that limn→±∞

1
|n| log ‖Lσnω‖ = 0 for P-almost every ω. Using again that

ΠU‖V+⊕U−(ω) and ΠV+‖U⊕U−(ω) are tempered with respect to σ, we get that
for P-almost every ω,

lim
n→±∞

1

|n|
log ‖L10(σ

nω)‖ = 0.

Thus, the claim follows.

Proof of (3).

We use the bases {u1(ω), . . . , uk(ω)} and {u1(σω), . . . , uk(σω)} constructed
in the proof of Lemma 2.11 to express L11|U(ω) : U(ω) → U(σω) in matrix form.
Recall that the norms of {u1(ω), . . . , uk(ω)} are bounded functions of ω. Also
from the proof of Lemma 2.11(1), we have that

∥

∥

∥

k
∑

i=1

aiui(ω)
∥

∥

∥
≥

3−k(1− 5ǫ)

2
max
1≤i≤k

|ai|.
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Condition (3) of Lemma 2.11 implies that the multiplicative ergodic theorem

of Oseledets [37] applies to L11. Hence, convergence of
1
n log ‖L

(n)
11 (ω)u‖ follows

from Equation (L11). Call this limit Λ. Thus, for every ǫ > 0 there exists a

constant D(ω, u) < ∞ such that ‖L
(n)
11 (ω)u‖ ≤ D(ω, u)en(Λ+ǫ).

On the one hand, by definition and invariance of V (ω), we have that

L
(n)
11 (ω) = ΠU‖V+⊕U−(σnω)L

(n)
ω ΠU‖V+⊕U−(ω)

= ΠU‖V+⊕U−(σnω)L
(n)
ω |V (ω)ΠU‖V+⊕U−(ω).

Therefore,

Λ = lim
n→∞

1

n
log+ ‖L

(n)
11 (ω)u‖

≤ lim
n→∞

1

n

(

log+ ‖ΠU‖V+⊕U−(σnω)‖+ log+ ‖L(n)
ω |V (ω)‖+ log+ ‖ΠU‖V+⊕U−(ω)‖

)

= λ.

The last equality follows from Theorem 2.8 and temperedness of ΠU‖V+⊕U−(ω)

with respect to σ.
On the other hand, for any u ∈ U(ω) \ {0},

‖L(n)
ω u‖ = ‖L

(n)
10 (ω)u+ L

(n)
11 (ω)u‖ ≤ ‖L

(n)
10 (ω)u‖+ ‖L

(n)
11 (ω)u‖

=
∥

∥

∥

n−1
∑

i=0

L
(i)
00 (σ

n−iω)L10(σ
n−i−1ω)L

(n−i−1)
11 (ω)u

∥

∥

∥
+ ‖L

(n)
11 (ω)u‖

≤
n−1
∑

i=0

∥

∥L
(i)
00 (σ

n−iω)
∥

∥

∥

∥L10(σ
n−i−1ω)

∥

∥

∥

∥L
(n−i−1)
11 (ω)u

∥

∥+ ‖L
(n)
11 (ω)u‖.

Let us estimate the first sum. In view of parts (1) and (2), we have that

n−1
∑

i=0

∥

∥L
(i)
00 (σ

n−iω)
∥

∥

∥

∥L10(σ
n−i−1ω)

∥

∥

∥

∥L
(n−i−1)
11 (ω)u

∥

∥

≤ D1(σ
nω)D2(ω)D(ω, u)

n−1
∑

i=0

ei(µ+ǫ)e(n−i−1)ǫe(Λ+ǫ)(n−i−1)

≤ D1(σ
nω)D2(ω)D(ω, u)

n−1
∑

i=0

e(n−1)(max(Λ,µ)+2ǫ).

Let M > 0 be such that P(D1(ω) < M) > 0. Then, by ergodicity of σ, for
P-almost every ω, there are infinitely many n such that D1(σ

nω) < M . For
every such n we have that

‖L
(n)
10 (ω)u‖ ≤ MD2(ω)D(ω, u)ne(n−1)(max(Λ,µ)+2ǫ).

Hence,

lim inf
n→∞

1

n
log ‖L

(n)
10 (ω)u‖ ≤ max(Λ, µ).
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By definition of Λ, we also know that

lim
n→∞

1

n
log ‖L

(n)
11 (ω)u‖ = Λ.

Therefore,

λ = lim
n→∞

1

n
log ‖L(n)

ω u‖ ≤ max(Λ, µ).

Recalling that µ < λ, we get that λ ≤ Λ. Combining with the argument above,
we conclude that λ = Λ as claimed.

The almost-everywhere invertibility of L11(ω)|U(ω) follows immediately.
The last statement follows as in the case of matrices in the predecessor paper

[18, Lemma 8.3].

The following lemma will be useful in the proof of Lemma 2.12(3).

Lemma 2.14. Assume Y ′(ω) is a measurable equivariant complement of V+(ω)

in V (ω). From Theorem 2.8, for every y′ ∈ Y ′(ω)\{0}, limn→∞
1
n log ‖L

(n)
ω y′‖ =

λ. Furthermore, for every ǫ > 0 and P-almost every ω ∈ Ω, there exists
C′(ω) > 0 such that for every n ≥ 0, and every y′ ∈ Y ′(ω) satisfying ‖y′‖ = 1,

‖L(n)
ω y′‖ ≥ C′(ω)en(λ−ǫ).

Proof. The proof follows from the corresponding statement for matrices due to
Barreira and Silva [5], as in [19, Lemma 19], with the only difference being
the choice of suitable bases for Y ′(ω), which in our setting may be done in a
measurable way similar to that used for the proof of Lemma 2.11.

Proof of Lemma 2.12.
Proof of (1).
The proof follows closely that presented in [18, Theorem 4.1], for the case of
matrices. First, we define

gn(ω) = max
u∈U(ω),‖u‖=1

‖L
(n)
10 (σ−nω)u‖

‖L
(n)
11 (σ−nω)u‖

.

Then, using the characterizations from (L11) and (L10) together with invertibil-
ity of L11(ω), we have that

gn(ω) ≤
n−1
∑

i=0

maxu∈U(σ−i−1ω),‖u‖=1 ‖L
i
00(σ

−iω)L10(σ
−i−1ω)u‖

minu∈U(σ−i−1ω),‖u‖=1 ‖L
i+1
11 (σ−i−1ω)u‖

.

Let ǫ < λ−µ
4 . Using Sublemma 2.13, we have that for P-almost every ω, there

is a constant C′(ω) < ∞ such that

gn(ω) ≤ C′(ω)

n−1
∑

i=0

e(µ−λ+3ǫ)i.
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Hence, M(ω) := supn∈N gn(ω) < ∞ for P-almost every ω.

Next, we show that the sequence of subspaces Y (n)(ω) = L
(n)
σ−nωU(σ−nω)

forms a Cauchy sequence in Gk(X).
Let m > n. By homogeneity of the norm, the expression

max{ sup
x∈Y (n)(ω)∩B

d(x, Y (m)(ω) ∩B), sup
x∈Y (m)(ω)∩B

d(x, Y (n)(ω) ∩B)}

coincides with

max{ sup
x∈Y (n)(ω)∩S(X)

d(x, Y (m)(ω) ∩B), sup
x∈Y (m)(ω)∩S(X)

d(x, Y (n)(ω) ∩B)},

where S(X) is the unit sphere in X .

First, let x ∈ Y (n)(ω) ∩ S(X). Then x = L
(n)
σ−nωu, with u ∈ U(σ−nω). Since

L
(m−n)
11 (σ−mω) is invertible for P-almost every ω, there exists u′ ∈ U(σ−mω)

such that L
(m−n)
σ−mω u′ = u+v, for some v ∈ V+(σ

−nω). Since v = L
(m−n)
10 (σ−mω)u′

and u = L
(m−n)
11 (σ−mω)u′, we have that ‖v‖ ≤ M(σ−nω)‖u‖.

Let y = L
(m)
σ−mωu

′ ∈ Y (m)(ω). Then, y = x+L
(n)
σ−nω(v). Also, ‖L

(n)
σ−nω(v)‖ ≤

D1(ω)e
n(µ+ǫ)M(σ−nω)‖u‖, with D1(ω) as in Sublemma 2.13(1). Using Sub-

lemma 2.13(3), we also have that

1 = ‖x‖ = ‖L
(n)
σ−nωu‖ ≥ C(ω)en(λ−ǫ)‖u‖.

Letting K(ω) = D1(ω)
C(ω) and α = λ−µ−2ǫ, we get that d(x, Y (m)(ω)) ≤ ‖y−x‖ =

‖L
(n)
σ−nω(v)‖ ≤ K(ω)M(σ−nω)e−αn. By the triangle inequality, d(x, Y (m)(ω) ∩

B) ≤ 2d(x, Y (m)(ω)). Therefore,

d(x, Y (m)(ω) ∩B) ≤ 2K(ω)M(σ−nω)e−αn. (5)

Second, let y ∈ Y (m)(ω) ∩ S(X). Then, y = L
(m)
σ−mωu

′ for some u′ ∈

U(σ−mω). Let L
(m−n)
σ−mω u′ = u+ v, with u ∈ U(σ−nω) and v ∈ V+(σ

−nω).
Using once again the definition of M(ω) at the beginning of the proof, we

have that ‖v‖ ≤ M(σ−nω)‖u‖, combined with Sublemma 2.13 we obtain that

‖L
(n)
σ−nωv‖ ≤ K(ω)M(σ−nω)e−αn‖L

(n)
σ−nωu‖.

On the other hand, since L
(n)
σ−nω(u+ v) = y, we have

‖L
(n)
σ−nωu‖ ≤ ‖y‖+ ‖L

(n)
σ−nωv‖ ≤ 1 +K(ω)M(σ−nω)e−αn‖L

(n)
σ−nωu‖.

Therefore, whenever K(ω)M(σ−nω)e−αn < 1, we have

‖L
(n)

σ−nωu‖ ≤
1

1−K(ω)M(σ−nω)e−αn
.
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Since L
(n)
σ−nωu ∈ Y (n)(ω), we have

d(y, Y (n)(ω)) ≤ ‖y − L
(n)
σ−nωu‖ = ‖L

(n)
σ−nωv‖ ≤

K(ω)M(σ−nω)e−αn

1−K(ω)M(σ−nω)e−αn
.

As before, we use the triangle inequality to conclude that

d(y, Y (n)(ω) ∩B) ≤
2K(ω)M(σ−nω)e−αn

1−K(ω)M(σ−nω)e−αn
. (6)

Combining (5) and (6), we get that

d(Y (n)(ω), Y (m)(ω)) ≤
2K(ω)M(σ−nω)e−αn

1−K(ω)M(σ−nω)e−αn
.

Therefore,

d(Y (m′)(ω), Y (m)(ω)) ≤
4K(ω)M(σ−nω)e−αn

1−K(ω)M(σ−nω)e−αn
for every m,m′ > n,

provided K(ω)M(σ−nω)e−αn < 1.
Since M(ω) < ∞ for P-almost every ω, there exists an A > 0 such that

P(M(ω) < A) > 0. By ergodicity of σ, for P-almost every ω, there exist
arbitrarily large values of n for which M(σnω) < A, proving that Y (m)(ω) is a
Cauchy sequence. Therefore, it is convergent. Let us call its limit Y (ω).

Measurability of Y (n)(ω) comes from Corollary B.14. Hence, measurabil-
ity of Y (ω) follows from the fact that the pointwise limit of Borel-measurable
functions from a measurable space to a metric space is Borel-measurable.
Proof of (2).
By closedness of Gk(X), we know that Y (ω) ∈ Gk(X). Since Y (ω) is the limit
of subspaces of V (ω) and V (ω) is closed, it follows that Y (ω) ⊂ V (ω). We
also have that V+(ω) is a k-codimensional subspace of V (ω). Hence, to show
that Y (ω) ⊕ V+(ω) = V (ω), we must show that Y (ω) ∩ V+(ω) = {0}. Let

x ∈ Y (n)(ω), with ‖x‖ = 1. Then, x = L
(n)
σ−nωu

′ for some u′ ∈ U(σ−nω). Writing
x = u + v, with u ∈ U(ω), v ∈ V+(ω), we have that ‖v‖ ≤ M(ω)‖u‖. Thus,
1 = ‖x‖ ≤ ‖u‖(1+M(ω)), which yields ‖u‖ ≥ 1

1+M(ω) . Since this holds for every

n, every x ∈ Y (ω) with ‖x‖ = 1 when decomposed as x = u+ v with u ∈ U(ω),
v ∈ V+(ω), also satisfies ‖u‖ ≥ 1

1+M(ω) . Therefore Y (ω) ∩ V+(ω) = {0}.

The second statement follows directly from Theorem 2.8.
To show invariance, we observe that LωY

(n)(ω) = Y (n+1)(σω). Also, by the
previous argument combined with Sublemma 2.13 , we have that for every n ≥ 0,
(Lω, Y

(n)(ω)) ∈ G(N, k, 0) for some N > 0 (see notation of Lemma B.13), and
(Lω, Y (ω)) ∈ G(N, k, 0) as well. Hence, by Lemma B.13, limn→∞ LωY

(n)(ω) =
LωY (ω). Thus, Lω(Y (ω)) = Y (σω).

Proof of (3).
Let Y−(ω) =

⊕

i<j Yi(ω). Assume Y ′(ω) is a measurable equivariant comple-
ment of V+(ω) in V (ω). We will show that Y ′(ω) = Y (ω) for P-almost every
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ω ∈ Ω. Let R(ω) = ΠV+‖Y⊕Y−(ω). Remark B.19 and Lemma B.20 imply that R
is (F ,S) measurable. Let h(ω) = ‖R(ω)|Y ′(ω)‖. Then, h is non-negative and,
in view of Lemma B.16, h is (S,B(R)) measurable.

We claim that for P-almost every ω, limn→∞ h(σnω) = 0. We will show
this in the next paragraph. Given this, we can finish the proof as follows. Let
Ei = {ω : h(ω) ≤ 1

i }. The claim implies that P-almost every ω, σnω ∈ Ei for
sufficiently large n. Hence, by the Poincaré recurrence theorem, P(Ω \ Ei) = 0
for all i ∈ N, and therefore, since h is non-negative, h(ω) = 0 for P-almost every
ω. This implies that Y ′(ω) ⊂ Y (ω)⊕Y−(ω). On the other hand, Y (ω), Y ′(ω) ⊂
V (ω), and by part (2), V (ω)∩Y−(ω) = {0}. So Y ′(ω) ⊂ Y (ω). Since Y (ω) and
Y ′(ω) have the same dimension, Y ′(ω) = Y (ω) as claimed.

The proof of limn→∞ h(σnω) = 0 proceeds as in [19, §3.2]. Let y′ ∈ Y ′(ω) \
{0}. Since R(ω)y′ ∈ V+(ω), Sublemma 2.13(1) implies that for every ǫ > 0,

there exists some D′(ω) < ∞ such that ‖L
(n)
ω R(ω)y′‖ ≤ D′(ω)en(µ+ǫ)‖y′‖. By

Remark 2.14, for every ǫ > 0, there exists some C′(ω) > 0 such that ‖L
(n)
ω y′‖ ≥

C′(ω)en(λ−ǫ)‖y′‖. Let ǫ < λ−µ
4 . Then,

‖L(n)
ω R(ω)y′‖

‖L
(n)
ω y′‖

≤ D′(ω)
C′(ω) e

−n(λ−µ−2ǫ) for

every n ≥ 0. Consider the closed sets

DN = {y′ ∈ Y ′(ω) : ‖L(n)
ω R(ω)y′‖ ≤ Ne−n(λ−µ−2ǫ)‖L(n)

ω y′‖ for all n ∈ N}.

Since
⋃

N∈N
DN = Y ′(ω), the Baire category principle implies that there exists

N ∈ N, y′ ∈ Y ′(ω) and δ > 0 such that Bδ(y′) ∩ Y ′(ω) ⊂ DN . By linearity of

Lω, B1(
y′

δ ) ∩ Y ′(ω) ⊂ DN .

Let x ∈ Y ′(ω) with ‖x‖ = 1. Then, ‖L
(n)
ω R(ω)(y

′

δ +x)‖ ≤ Ne−n(λ−µ−2ǫ)‖L
(n)
ω (y

′

δ +

x)‖ and ‖L
(n)
ω R(ω)(y

′

δ )‖ ≤ Ne−n(λ−µ−2ǫ)‖L
(n)
ω (y

′

δ )‖.

By invariance of V+(ω), Y (ω) and Y−(ω), we see thatR(σnω)L
(n)
ω = L

(n)
ω R(ω).

Hence,

‖R(σnω)L(n)
ω (x)‖ ≤ Ne−n(λ−µ−2ǫ)

(

‖L(n)
ω (

y′

δ
)‖+ ‖L(n)

ω (
y′

δ
+ x)‖

)

≤ 2Ne−n(λ−µ−2ǫ)C′′(ω)en(λ+ǫ)
(

‖
y′

δ
‖+ 1

)

,

where the existence of such C′′(ω) < ∞ is guaranteed by Theorem 2.8. Further-

more, using invariance of Y ′(ω), we get that L
(n)
ω (Y ′(ω)) = Y ′(σnω). Thus,

h(σnω) ≤
supx∈Y ′(ω)∩S1(X) ‖R(σnω)L

(n)
ω (x)‖

infx∈Y ′(ω)∩S1(X) ‖L
(n)
ω (x)‖

≤
2NC′′(ω)(‖ y′

δ ‖+ 1)

C′(ω)
e−n(λ−µ−4ǫ),

where the last inequality follows from the existence of constants C′(ω) and
C′′(ω) as before. By the choice of ǫ, we get that limn→∞ h(σnω) = 0 as claimed.
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Proof of (4).
We want to show that for i = 1, 2 and P-almost every ω ∈ Ω, the following holds

lim
n→±∞

1

n
log ‖Πi(σ

nω)‖ = 0.

Since the maps Πi(ω) are projections to non-trivial subspaces, it follows that
all the norms involved are at least 1. We will show upper bounds. In view of
Lemma C.2, it suffices to show

lim
n→∞

1

n
log ‖Πi(σ

−nω)‖ = 0.

It suffices to show that for each j, limn→∞
1
n log ‖ΠYj||Vj+1(σ−nω)‖ = 0, where

the map is defined on Vj(σ
−nω).

Fix j, and suppose 1/n log ‖ΠYj ||Vj+1(σ−nω)‖ 6→ 0 as n → ∞. Then there
exists a sequence n1 < n2 < . . . such that log ‖ΠYj||Vj+1(σ−niω)‖ > ǫni.

Pick δ < min(ǫ/2, (λj − λj+1)/2). Then, for P-almost every ω, there exist
C(ω), D(ω) and E(ω) such that

‖L(n)(σ−nω)|Vj+1‖ < C(ω)e(λj+1+δ)n for all n;

‖L(n)(σ−nω)(y)‖ > D(ω)e(λj−δ)n for all n and y ∈ B ∩ Yj(σ
−nω);

‖L(n)(σ−nω)|Vj‖ < E(ω)e(λj+δ)n for all n.

Now by hypothesis there exists a sequence yni+vni ∈ Yj(σ
−niω)⊕Vj+1(σ

−niω)
with ‖yni‖ ≈ 1, ‖vni‖ ≈ 1, but ‖yni + vni‖ < e−ǫni . Then, we have

‖L(ni)(σ−niω)(yni)‖ > D(ω)e(λj−δ)ni ;

‖L(ni)(σ−niω)(vni)‖ < C(ω)e(λj+1+δ)ni ;

‖L(ni)(σ−niω)(yni + vni)‖ < E(ω)e(λj+δ)ni‖yni + vni‖

< E(ω)e(λj+δ−ǫ)ni .

The triangle inequality gives

D(ω)e(λj−δ)ni < E(ω)e(λj+δ−ǫ)ni + C(ω)e(λj+1+δ)ni .

Since λj − δ > max(λj + δ − ǫ, λj+1 + δ) this gives a contradiction for suffi-
ciently large ni. Hence, limn→∞

1
n log ‖Π2(σ

−nω)‖ = 0 for P-almost every ω, as
claimed.

Using that Π1 +Π2 = Id, the corresponding statement for Π1 follows imme-
diately.

3 Oseledets splittings for random Piecewise Ex-

panding maps

In this section, we present an application of the semi-invertible operator Os-
eledets theorem, Theorem 2.10, to the setting of random piecewise expanding
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maps. It is worked out in considerable generality in the one-dimensional setting
and in a special case in higher-dimensions, based on results of Cowieson. The
main result of this section is Theorem 3.19.

We first discuss the class of piecewise expanding maps and random piecewise
expanding dynamical systems in §3.1. Then, fractional Sobolev spaces and
some of their relevant properties are briefly reviewed in §3.2. In §3.3, we recall
the definition of the transfer operator of a piecewise expanding map acting
on a fractional Sobolev space. Strong measurability is established in the one-
dimensional case. Quasi-compactness is proved in §3.5.

Convention

Throughout this section, C# will denote various constants that are allowed
to depend only on parameters d, p, t and α, as well as on a C∞ compactly
supported function η : Rd → [0, 1], that is chosen and fixed depending only on
the dimension d, as appears in Thomine [43] and Baladi and Gouëzel [2].

3.1 Random Piecewise Expanding Dynamical Systems

Definition 3.1. A map T is called a piecewise expanding C1+α map of a
compact region X0 ⊂ R

d if:

• There is a finite (ordered) collection of disjoint subsets of X0, O
1, . . . , OI ,

each connected and open in R
d, whose boundaries are unions of finitely

many compact C1 hypersurfaces with boundary, and whose union agrees
with X0 up to a set of Lebesgue measure 0;

• For each 1 ≤ i ≤ I, T |Oi agrees with a C1+α map Ti defined on a neigh-
bourhood of Oi such that Ti is a diffeomorphism onto its image.

• There exists µ > 1 such that for all x ∈ Oi, ‖DTi(x)(v)‖ ≥ µ‖v‖ for all
v ∈ R

d.

We define bT := I to be the number of branches of T . The collection
{O1, . . . , OI} is called the branch partition of T . The collection of C1+α expand-
ing maps of X0 will be denoted PE1+α(X0). The collection of C1+α expanding
maps with a particular branch partition P will be denoted by PE1+α(X0;P).
In the special case where d = 1 and X0 = [0, 1], we denote the collection of
maps satisfying the above conditions LY1+α. In this case, the elements of P are
intervals.

Finally, we define a metric dPE on PE1+α(X0) as follows. Let S, T ∈

PE1+α(X0). Let the branches for S be (OS
i )

bS

i=1 and for T be (OT
i )

bT

i=1 (recall
that a piecewise expanding map is assumed to consist of an ordered collection
of domains and maps). If bT 6= bS , or OS

i ∩ OT
i = ∅ for some i, we define

dPE(S, T ) = 1. Otherwise we define

dPE(S, T ) = max
i

‖(Si−Ti)|OS
i ∩OT

i
‖C1+α+max

i

∣

∣

∣
‖Si‖C1+α−‖Ti‖C1+α

∣

∣

∣
+max

i
dH(OS

i , O
T
i ),
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where dH denotes Hausdorff distance. In the one-dimensional case we call the
metric dLY. We endow PE1+α(X0) with the Borel σ-algebra.

Remark 3.2. There is a definition of distance for Lasota-Yorke maps, related
to the Skorohod metric, that has been previously used in the literature; see for
instance Keller and Liverani. [29]. That notion of distance is not adequate for
our purposes, because it allows maps to behave badly in sets of small Lebesgue
measure.

Definition 3.3. A random C1+α piecewise expanding dynamical sys-

tem on a domain X0 is given by a tuple (Ω,F ,P, σ, T ) where (Ω,F ,P, σ) is a
probability preserving transformation and T : Ω → PE1+α(X0) satisfying

R1. (Measurability) T : Ω → PE1+α(X0) given by ω 7→ Tω is a measurable
function.

R2. (Number of branches) The function ω 7→ bTω is P-log-integrable, bTω being
the number of branches of Tω.

R3. (Distortion) There exists a constant D such that ‖DTω‖α ≤ D for P-
almost every ω ∈ Ω.

R4. (Minimum expansion) There exists a < 1 such that for P-almost every
ω ∈ Ω, ‖µ−1

Tω
‖∞ ≤ a, where µTω (x) := inf‖v‖=1 ‖DTω(x)v‖.

R5. (Branch geometry) There exists a constant L such that for P-almost every
ω ∈ Ω, each branch domain Oi is bounded by at most L C1 hypersurfaces.

A random piecewise expanding dynamical system will denote a random C1+α

piecewise expanding dynamical system for some 0 < α ≤ 1. In the case where
d = 1 and X0 = [0, 1], we refer to these systems as random Lasota-Yorke

type dynamical systems. We will also refer to random C2 piecewise expand-
ing dynamical systems (with the obvious definition).

3.2 Fractional Sobolev spaces

Here we introduce spaces of functions suitable for our purposes. Their choice is
motivated by recent work of Baladi and Gouëzel [2]. Much of the development
in this subsection parallels that done in [2] (see also Thomine’s work [43], the
specialization of [2] to the expanding case).

While the other works consider the case of a single map, we work with ran-
dom dynamical systems. One new feature is that we need to ensure the strong
measurability of the family of Perron-Frobenius operators. In the context of a
single map, it is often sufficient to prove inequalities with constants depending
on the map, showing only that the constants are finite. A second new feature
in the random context is that one needs to maintain control of the quantities
describing compositions of maps as the inequalities are iterated.

For this reason we give references to the earlier works where possible and
emphasize those points where differences arise.
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Let t ≥ 0 and 1 < p < ∞. Let Ht
p(R

d), or simply Ht
p, be the image of

Lp(R
d) under the injective linear map Jt : Lp(R

d) → Lp(R
d) given by

Jt(g) = F−1(a−tF(g)),

where F denotes the Fourier transform, and at(ζ) := (1 + |ζ|2)
t
2 . Ht

p endowed
with the norm

‖f‖Ht
p
:= ‖F−1(atF(f))‖Lp(Rd)

is a Banach space known as (local) fractional Sobolev space. Thus, Jt is a sur-
jective isometry from Lp(R

d) to Ht
p. Since Lp(R

d) is separable and reflexive,
its isometric image Ht

p is also separable and reflexive. Also, the space of dif-

ferentiable functions with compact support, C∞
0 (Rd), is dense in Ht

p. See for
example Strichartz [41] and references therein for these and other properties of
Ht

p.
This subsection closely follows Baladi and Gouëzel. In what follows, we

assume that p > 1 and 0 < t < min{α, 1
p}. The following properties will be

used in the sequel. The first one is taken from Triebel [44, Corollary 4.2.2], and
concerns multiplication by Hölder functions. The second one is a refinement
of a result of Strichartz [41, Corollary II3.7], and deals with multiplication by
characteristic functions of intervals. The third one deals with multiplication by
characteristic functions of higher dimensional sets. The last one is related to
a result of Baladi and Gouëzel [2, Lemma 25], about composition with smooth
functions.

Lemma 3.4 (Multiplication by Cα functions). (Triebel [44, Corollary 4.2.2])
There exists a constant C#, depending only on t and α, such that for any g ∈
Cα(Rd,R), and for any f ∈ Ht

p, we have that fg ∈ Ht
p, with

‖gf‖Ht
p
≤ C#‖g‖Cα‖f‖Ht

p
.

Lemma 3.5 (Multiplication by characteristic functions in one dimension).

(a) (Strichartz [41, Corollary II3.7]) There exists some constant C# depend-
ing only on t and p such that for every f ∈ Ht

p, and interval I ′ ⊂ R,
‖1I′f‖Ht

p
≤ C#‖f‖Ht

p
.

(b) Let f ∈ Ht
p. Then, for every ǫ > 0 there exists δ > 0 such that whenever

I ′ ⊂ R is an interval of length at most δ, then ‖1I′f‖Ht
p
≤ ǫ.

Proof of (b). Since C∞
0 (R) is dense in Ht

p, there exists (using part (a)) g ∈
Cα(R) ∩ Ht

p such that ‖1I′(f − g)‖Ht
p
≤ ǫ/2 for all intervals I ′. By Lemma

3.4 we have ‖1I′g‖Ht
p
≤ C#‖g‖Cα‖1I′‖Ht

p
. If I ′ is of length at most δ, then

‖1I′‖Ht
p
≤ C#δ

1/p−t. Hence if δ > 0 is chosen sufficiently small we obtain that

for all intervals I ′ of length at most δ, ‖1I′g‖Ht
p
≤ ǫ/2 completing the proof.

Lemma 3.6 (Multiplication by characteristic functions of nice sets).
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(a) (Strichartz [41, Corollaries II3.7 and II4.2]) There exists some constant
C# depending only on t and p such that for every set O ⊂ R

d intersecting
almost every line parallel to some coordinate axis in at most L connected
components, and for every f ∈ Ht

p, we have that ‖1Of‖Ht
p
≤ C#L‖f‖Ht

p
.

(b) (Sickel [40, Proposition 4.8]) Let P be a branch partition as in Defini-
tion 3.1. Then, there exists a constant C depending on P such that for
every O ∈ P and every f in Ht

p, 1Of ∈ Ht
p with ‖1Of‖Ht

p
≤ C‖f‖Ht

p
.

Lemma 3.7 (Composition with C1 diffeomorphisms).

(a) (Thomine [43, Lemma 4.3]) Let A : Rd 	 be a linear map. Then, there
exists C# such that for any f ∈ Ht

p,

‖f ◦A‖Ht
p
≤ C#| detA|

− 1
p ‖A‖t‖f‖Ht

p
+ C#| detA|

− 1
p ‖f‖p.

(b) Let F : R
d 	 be a C1 diffeomorphism with ‖DF‖∞, ‖DF−1‖∞ < ∞.

Then, there exists C# such that for any f ∈ Ht
p,

‖f ◦ F‖Ht
p
≤ C#‖ det(DF−1)‖

1
p
∞ max{1, ‖DF‖t∞}‖f‖Ht

p
.

(c) Let f ∈ Ht
p. Then, for every ǫ > 0 there exists δ > 0 such that for every

diffeomorphism F : Rd → R
d with ‖F−Id‖C1 ≤ δ, we have ‖f◦F−f‖Ht

p
≤

ǫ.

Proof. Part (b) follows via interpolation; this result is related to Lemma 4.3 of
Thomine [43].

Now we prove (c). Let f ∈ Ht
p. In view of part (b) and the density of C∞

0 (Rd)
in Ht

p, we can find a g ∈ C∞
0 such that ‖f − g‖Ht

p
+ ‖(f − g) ◦F‖Ht

p
< ǫ/2. This

gives ‖f ◦ F − f‖Ht
p
≤ ǫ/2 + ‖g ◦ F − g‖Ht

p
.

We recall that for t ≤ s, Hs
p ⊆ Ht

p, and the inclusion is continuous (see for
example Strichartz [41, Corollary I1.3]). In particular, for each t ≤ 1, there
exists a constant C# such that for every g ∈ H1

p , ‖g‖Ht
p
≤ C#‖g‖H1

p
.

Since g ∈ C∞
0 (Rd), g, g◦F−g ∈ H1

p . LetK =
(

1+‖ det(DF−1)‖∞
)

Leb(supp(g)) < ∞.
Then

‖g ◦ F − g‖Ht
p

≤C#‖g − g ◦ F‖H1
p
≤ C#(‖g ◦ F − g‖Lp + ‖D(g ◦ F )−Dg‖Lp)

≤C#K
1/p

(

‖Dg‖∞‖I − F‖∞ + ‖D2g‖∞‖I − F‖∞ + ‖Dg‖∞‖1−DF‖∞
)

,

since Leb(supph) ≤ K for all h ∈ {g ◦F−g,Dg ◦F−Dg,Dg ◦F ·DF −Dg ◦F}.
Choosing δ sufficiently small makes the last expression smaller than ǫ

2 and hence,
‖f ◦ F − f‖Ht

p
≤ ǫ.
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3.3 Transfer operators

Given a map T ∈ PE1+α(X0) with branches Ti : Oi → X0, we let Qi = Ti(Oi)
and ξi be the inverse branch T−1

i : Qi → Oi. Assume p > 1 and 0 < t <
min(α, 1

p ).

We let Ht
p = Ht

p(X0) ⊂ Ht
p be the subspace of functions supported on the

domain X0, with the induced norm ‖f‖Ht
p
:= ‖f‖Ht

p
. In view of Lemma 3.6,

Ht
p is complete, and thus a Banach space. Lemma 3.6 shows that Ht

p is also
separable. We recall from Baladi [1, Lemma 2.2] that the inclusion Ht

p →֒ Lp is
compact.

Remark 3.8. We note that the space of functions of bounded variation, which
has been the most widely used Banach space to study Lasota-Yorke type maps, is
not separable. This is the reason to look for alternatives. In Baladi and Gouëzel
[2], the authors show, in particular, that the fractional Sobolev spaces Ht

p, are
suitable to study transfer operators associated to piecewise expanding maps.

Definition 3.9. The transfer operator, LT : Ht
p 	, associated to a map T ∈

PE1+α(X0) is defined for every f ∈ Ht
p by

LT f =

bT
∑

i=1

(

1OT
i
· f

)

◦ ξTi · |DξTi | =
bT
∑

i=1

1QT
i
· f ◦ ξTi · |DξTi |,

where |A| denotes the absolute value of the determinant of the linear map A.

Remark 3.10. The results of §3.2 imply that the linear operators correspond-
ing to composition with smooth functions, multiplication by characteristic func-
tions of elements of the branch partition and multiplication by Cα functions
are bounded in Ht

p. Clearly, Ht
p is invariant under L, and thus the transfer

operator acts continuously on Ht
p. Furthermore, if T ∈ PE1+α is onto, then

LT : Ht
p → Ht

p is onto. For example, given f ∈ Ht
p and letting g = |DT |·f◦T

∑bT

i=1 1
QT

i
◦T

gives LT g = f . Again by the results above, g ∈ Ht
p.

The following lemma provides a weak continuity property of the transfer
operator acting on a fractional Sobolev space for Lasota-Yorke maps.

Lemma 3.11. Let L(Ht
p) be endowed with the strong operator topology and

LY 1+α be endowed with the metric dLY1+α . Then, the map L sending a Lasota-
Yorke map to its transfer operator L : LY1+α → L(Ht

p) given by T 7→ LT is
continuous.

Proof. Let f ∈ Ht
p and T ∈ LY1+α. We will prove that limS→T ‖LSf −

LT f‖Ht
p
= 0. Let b = bT . Assume dLY1+α(S, T ) < 1. Then, by definition of

dLY1+α , bS = b . For each 1 ≤ i ≤ b, let QT∩S
i = QT

i ∩QS
i and Q

T\S
i = QT

i \QS
i .
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Then,

∥

∥

∥
LT f − LSf

∥

∥

∥

Ht
p

≤
b

∑

i=1

∥

∥

∥
1QT∩S

i
(f ◦ ξTi · |DξTi | − f ◦ ξSi · |DξSi |)

∥

∥

∥

Ht
p

+

b
∑

i=1

∥

∥

∥
1
Q

T\S
i

· f ◦ ξTi · |DξTi |
∥

∥

∥

Ht
p

+

b
∑

i=1

∥

∥

∥
1
Q

S\T
i

· f ◦ ξSi · |DξSi |
∥

∥

∥

Ht
p

.

We finish the proof by bounding the terms separately in the following lemma.

Sublemma 3.12.

(I) Bound on common branches. For every 1 ≤ i ≤ b,

lim
S→T

∥

∥

∥
1QT∩S

i
(f ◦ ξTi · |DξTi | − f ◦ ξSi · |DξSi |)

∥

∥

∥

Ht
p

= 0.

(II) Bound on remaining terms. For every 1 ≤ i ≤ b,

lim
S→T

∥

∥

∥
1
Q

T\S
i

· f ◦ ξTi · |DξTi |
∥

∥

∥

Ht
p

= 0 and lim
S→T

∥

∥

∥
1
Q

S\T
i

· f ◦ ξSi · |DξSi |
∥

∥

∥

Ht
p

= 0.

Proof of Sublemma 3.12 (I). We start by noting that we can fix a way of choos-
ing extensions of each Ti to a diffeomophism T̃i of R, in such a way that
‖S̃i − T̃i‖C1+α ≤ 2‖(Si − Ti)|QS

i ∩QT
i
‖C1+α . In what follows, we drop the tildes

for convenience. Using Lemmas 3.4, 3.5 and 3.7 repeatedly, we have

∥

∥

∥
1QT∩S

i
(f ◦ ξTi · |DξTi | − f ◦ ξSi · |DξSi |)

∥

∥

∥

Ht
p

≤ C#

∥

∥

∥
f ◦ ξTi · |DξTi | − f ◦ ξSi · |DξSi |

∥

∥

∥

Ht
p

≤ C#

∥

∥

∥
|DξTi | − |DξSi |

∥

∥

∥

Cα

∥

∥

∥
f ◦ ξTi

∥

∥

∥

Ht
p

+ C#

∥

∥

∥
DξSi

∥

∥

∥

Cα

∥

∥

∥
f ◦ ξTi − f ◦ ξSi

∥

∥

∥

Ht
p

≤ C#

(∥

∥

∥
|DξTi | − |DξSi |

∥

∥

∥

Cα

∥

∥

∥
f
∥

∥

∥

Ht
p

∥

∥

∥
DTi

∥

∥

∥

1
p

∞
+
(∥

∥

∥
DξTi

∥

∥

∥

Cα
+ 1

)∥

∥

∥
f ◦ ξTi − f ◦ ξSi

∥

∥

∥

Ht
p

)

,

where Ti := (ξTi )
−1, and in the last inequality we use the fact that

∥

∥DξSi
∥

∥

Cα <
∥

∥DξTi
∥

∥

Cα +1 whenever dLY1+α(S, T ) < 1. The first term goes to 0 as S → T be-

cause dLY1+α(S, T ) ≥ 1
2

∥

∥|DξSi |−|DξTi |
∥

∥

Cα . It remains to show that limS→T

∥

∥

∥
f ◦

ξTi −f ◦ξSi

∥

∥

∥

Ht
p

= 0. By Lemma 3.7(b), showing the above is equivalent to proving

that limS→T

∥

∥

∥
f−f◦ξSi ◦Ti

∥

∥

∥

Ht
p

= 0. This is a direct consequence of Lemma 3.7(c)

and the observation that limS→T

∥

∥

∥
ξSi ◦ Ti − Id

∥

∥

∥

C1
= 0.
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Proof of Sublemma 3.12 (II). Fix 1 ≤ i ≤ b. First, we observe that Leb(Q
S\T
i ) ≤

2dH(QS
i , Q

T
i ) ≤ 2(‖T ‖∞ + 1)dLY 1+α(S, T ). Since ξSi and ξTi are contracting,

then
lim
S→T

Leb
(

ξTi (Q
T\S
i )

)

= 0 and lim
S→T

Leb
(

ξSi (Q
S\T
i )

)

= 0. (7)

We now show that

lim
S→T

∥

∥

∥
1
Q

T\S
i

· f ◦ ξTi · |DξTi |
∥

∥

∥

Ht
p

= 0.

Being the set difference of two intervals, the set Q
T\S
i is either empty, or an

interval, or the union of two intervals. Thus, we let Q
T\S
i =

⋃

γi∈Γi
Q

T\S
γi be

the decomposition of Q
T\S
i into intervals, where #Γi ∈ {0, 1, 2}.

Let γi ∈ Γi. Using Lemmas 3.4 and 3.7(b), respectively, we obtain

∥

∥

∥
1
Q

T\S
γi

· f ◦ ξTi · |DξTi |
∥

∥

∥

Ht
p

≤ C#

∥

∥

∥
DξTi

∥

∥

∥

Cα

∥

∥

∥
1
Q

T\S
γi

· f ◦ ξTi

∥

∥

∥

Ht
p

≤ C#

∥

∥

∥
DξTi

∥

∥

∥

Cα

∥

∥

∥
DTi

∥

∥

∥

1
p

∞

∥

∥

∥
1
ξTi (Q

T\S
γi

)
f
∥

∥

∥

Ht
p

.

SinceQ
T\S
γi ⊆ Q

T\S
i , (7) implies that limS→T Leb(ξTi (Q

T\S
γi )) = 0. Lemma 3.5(b)

yields limS→T

∥

∥

∥
1
ξTi (Q

T\S
γi

)
f
∥

∥

∥

Ht
p

= 0. Therefore,

lim
S→T

∥

∥

∥
1
Q

T\S
γi

· f ◦ ξTi · |DξTi |
∥

∥

∥

Ht
p

= 0,

as claimed. Although the statements of Lemma 3.12(II) are not symmetric in
T and S, interchanging the roles of T and S in the proof just presented, and

recalling from (7) that limS→T Leb(ξSi (Q
S\T
γi )) = 0, we get that

lim
S→T

∥

∥

∥
1QS\T · f ◦ ξSi · |DξSi |

∥

∥

∥

Ht
p

= 0.

Let T = (Ω,F ,P, σ, T ) be a random piecewise expanding C1+α dynamical
system. Suppose that the following conditions are satisfied.

S1. (Parameters)Ht
p is the fractional Sobolev space defined in §3.2, with p > 1

and 0 < t < min{α, 1
p}.

S2. (Strong measurability) The map L sending ω to the transfer operator of
Tω, LTω , acting on Ht

p, is strongly measurable.

Then we call the tuple (Ω,F ,P, σ,Ht
p,L) the strongly measurable random

linear system associated to T . For brevity, we will use write Lω instead of LTω .
Also, the notation from §3.1 will be abbreviated. For example, instead of bTω ,
we will write bω, and so on.
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We note that Lemma 3.11 guarantees that for any random C1+α Lasota-
Yorke dynamical system, condition [S2] is automatically satisfied. A second
situation that we consider is that of a random piecewise expanding dynamical
system in higher dimensions with a fixed, suitably regular branch partition. In
this situation one sees directly that [S2] holds also.

3.4 Random Lasota-Yorke Inequalities

Given a collection C of subsets of a set, we recall that its intersection multi-
plicity is given by maxx∈

⋃
C #{C ∈ C : x ∈ C}. Given T ∈ PE1+α(X0), the

complexity of T at the end, denoted by Ce(T ), is the intersection multiplicity of

{T (OT
i )}1≤i≤bT . The complexity of T at the beginning, Cb(T ), is the intersection

multiplicity of {OT
i }1≤i≤bT . We note that in the one-dimensional Lasota-Yorke

case, Cb(T ) is always equal to 2 (even when compositions of maps are taken),
whereas in higher dimensions the complexity at the beginning can grow without
bound as maps are composed. Examples of Tsujii [45] and Buzzi [8] show that
this can lead to singular ergodic properties of the map including non-existence
of absolutely continuous invariant measures.

As is well-known, quasi-compactness can be derived from Lasota-Yorke type
inequalities of the form |||Lf ||| ≤ A‖f‖ + B|||f |||, where ||| · ||| is a stronger norm
than ‖ · ‖ and the inclusion (Y, ||| · |||) →֒ (Y, ‖ · ‖) is compact. Hennion’s theorem
shows that the essential spectral radius is governed by B.

The following Lasota-Yorke type inequality is based on results of Thomine
[43, Theorem 2.3]. In that work, rather than a random dynamical system, a
single dynamical system is considered. Thomine (and the previous work of
Baladi and Gouëzel) took a great deal of care to bound the ‘B’ term, but did
not need to control the ‘A’ term other than to say that it is finite. In our
context, we need the additional fact that A depends in a measurable way on
our dynamical system. That this holds can be seen by a careful examination of
the proofs of Thomine; and Baladi and Gouëzel. One feature of the proof that
needs attention is that these papers replace the norm ‖ · ‖Ht

p
by an equivalent

norm depending on properties of the map T n. In our context, we would obtain

results in different norms for different compositions T
(n)
ω . We avoid this at the

expense of increasing the A term. More specifically we make use of a bound of
the form

∑

m∈Z

‖ηm,ru‖
p
Ht

p
≤ C#

(

(1 + rpt)‖u‖pp + ‖u‖pHt
p

)

,

where (ηm,r)m∈Zd is a partition of unity of Rd obtained by scaling a fixed parti-
tion of unity by a factor r in the variable, and satisfies ηm,r(x) = η0,r(x+m/r).

Lemma 3.13 (Strong Lp −Ht
p Lasota-Yorke inequality).

Suppose R = (Ω,F ,P, σ,Ht
p,L) is a strongly measurable random linear system

associated to a random C1+α piecewise expanding dynamical system T . Then
there exists a constant CR, depending only on p, t, α, η and L (from Definition
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3.3), and a measurable function AR,n(ω) such that for every ω ∈ Ω, we have

‖L(n)
ω f‖Ht

p
≤ AR,n(ω)‖f‖p +BR,n(ω)‖f‖Ht

p
, (S-LY)

where

AR,n(ω) is a measurable function of ω; and

BR,n(ω) = CRn
(

Cb(T
(n)
ω )

)
1
p
(

Ce(T
(n)
ω )

)1− 1
p

‖|DT (n)
ω |

1
p−1µ−t

ω,n‖∞,

where µω,n(x) := inf‖v‖=1 ‖DT
(n)
ω (x)v‖.

This inequality will prove sufficient to control the index of compactness, but
does not give enough information to control the maximal Lyapunov exponent
since we have no control of the AR,n(ω) term. The following inequality reme-
dies the situation by providing an inequality with no A term, at the expense
of having a larger (but still log-integrable) B term. The availability of both
inequalities will allow us to apply Lemma C.5. The proof of the weak Lasota-
Yorke inequality is straightforward using some of the ingredients of the stronger
version.

Lemma 3.14 (Weak Lp −Ht
p Lasota-Yorke inequality).

Let R = (Ω,F ,P, σ,Ht
p,L) be a random Lasota-Yorke type dynamical system.

Then, for each n ∈ N there exists a P-log-integrable function ÃR,n : Ω → R such
that for every ω ∈ Ω,

‖L(n)
ω f‖Ht

p
≤ ÃR,n(ω)‖f‖Ht

p
. (W-LY)

3.5 Quasi-compactness

In this subsection we prove quasi-compactness by bootstrapping a strategy
of Buzzi [7] based on multiple Lasota-Yorke inequalities as elaborated in Ap-
pendix C.2.

Lemma 3.15. Let R = (Ω,F ,P, σ, T ) be a random piecewise expanding dynam-
ical system with ergodic base. Then the following hold:

1. There exist C∗
e < ∞ and C∗

b < ∞ such that for P-almost every ω ∈ Ω,

lim
n→∞

(Ce(T
(n)
ω ))

1
n = C∗

e ; and lim
n→∞

(Cb(T
(n)
ω ))

1
n = C∗

b ;

2. There exists χ < 1 such that for P-almost every ω ∈ Ω, limn→∞ ‖µ−1
ω,n‖

1
n
∞ =

χ. Furthermore, limn→∞ ‖|DT
(n)
ω |−1‖

1
n
∞ ≤ χd.

Proof. The sequences (Ce(T
(n)
ω ))n∈N, (Cb(T

(n)
ω ))n∈N, (‖µ

−1
ω,n‖∞)n∈N and (‖|DT

(n)
ω |−1‖∞)n∈N,

are submultiplicative. Log-integrability of Ce and Cb is assured by Definition 3.3
since we have Cb(Tω), Ce(Tω) ≤ log bω. Hence the existence of the limits follows
from the Kingman subadditive ergodic theorem [33]. That χ < 1 follows from

condition R4. The last statement follows from |DT
(n)
ω (x)|−1 ≤ µω,n(x)

−d.
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Lemma 3.16 (Quasi-compactness: Lasota-Yorke case). Let 0 < α < 1 and let
T be a C1+α random Lasota-Yorke dynamical system satisfying the additional
condition that the function ω 7→ log+ var(|DTω|−1) is P-integrable. Then there
exist parameters p > 1, 0 < t < min(α, 1

p ) such that the associated random linear
system, R, is quasi-compact with

κ∗ ≤
(

1−
1

p

)

(logC∗
e + logχ) + t logχ < λ∗ = 0.

Proof of Lemma 3.16. Since we are in the Lasota-Yorke case, strong measur-
ability of ω 7→ Lω follows from Lemma 3.11. We also have C∗

b = 1. By
Lemma 3.15, C∗

e < ∞. By hypothesis, χ < 1. Fix 0 < t < α. Now
if p is sufficiently close to 1, t satisfies t < min(α, 1/p) and the inequality
(

1− 1
p

)

(logC∗
e + logχ) + t logχ < 0 holds. By Lemma C.5, we see κ∗ < 0. On

the other hand we have ‖L
(n)
ω 1‖Ht

p
≥ C#‖L

(n)
ω 1‖p ≥ C#‖L

(n)
ω 1‖1 = C# so that

λ∗ ≥ 0. Accordingly Theorem 2.10 applies. Suppose for a contradiction that
λ∗ > 0.

Now the following are full measure sets: the set where the results of Theorem
2.10 hold; the set where the top Lyapunov exponent is λ∗; the set where the
results of Lemma C.5 hold using ‖ · ‖ = ‖ · ‖1 and ||| · ||| = ‖ · ‖BV (by Buzzi’s
argument [7]); and the set where the results of Lemma C.5 hold using ‖·‖ = ‖·‖p
and ||| · ||| = ‖ · ‖Ht

p
, because of Lemmas 3.13 and 3.14. Let the full measure set

obtained by intersecting these be denoted by Ω1.
Suppose ω ∈ Ω1 and let f be a non-zero element of Y1(ω). By standard

properties of Ht
p, f may be approximated arbitrary closely in ‖ · ‖Ht

p
be a

C∞ function g. Applying Lemma C.5 with ‖ · ‖1 and ‖ · ‖BV, (note that

‖L
(n)
ω g‖1 ≤ ‖g‖1 for all n), we get lim supn→∞

1
n log ‖L

(n)
ω g‖BV ≤ 0 and hence

lim supn→∞
1
n log ‖L

(n)
ω g‖p ≤ 0. Applying Lemma C.5 a second time using the

conclusion of the first application as hypothesis, we get lim supn→∞
1
n log ‖L

(n)
ω g‖Ht

p
≤

0. Letting π1 be the projection onto the top Lyapunov subspace, we have that

lim supn→∞
1
n log ‖L

(n)
ω (g−π1(g))‖Ht

p
< λ∗. Thus lim supn→∞

1
n log ‖L

(n)
ω π1(g)‖Ht

p
<

λ∗. By Theorem 2.10, this implies π1(g) is 0. Since g can be chosen arbitrarily
close to f and π1 is bounded, this is a contradiction.

We now show that results of Cowieson [9] may be exploited to give families
of random dynamical systems in higher dimensions for which one can establish
an Oseledets splitting for the Perron-Frobenius cocycle. The framework of [9]
has a key simplifying feature, namely that there is a fixed partition P of the
domain X0 into disjoint open pieces on each of which the map is continuous
and expanding. For this reason, the analogue of Lemma 3.12 is straightforward:
there is no issue with accounting for differences between partitions. On the
other hand a new difficulty appears in higher dimensions, namely that it is no

longer true a priori that the complexity at the beginning, Cb(T
(n)
ω ), is bounded

in n. The necessity of controlling Cb is demonstrated by results of Tsujii [45]
and Buzzi [8] and indeed Cb appears in Baladi and Gouëzel [2].
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Theorem 3.17 (Cowieson[9]). Let P be a fixed branch partition of a compact
region X0 ⊂ R

d. There is a quantity M and a dense Gδ subset, Cow(X0;P), of
PE2(X0;P) with the following property: For any n > 0 and T ∈ Cow(X0;P),
there is a neighbourhood U of T such that for any T1, T2, . . . , Tn ∈ U , Cb(Tn ◦
· · · ◦ T1) ≤ M .

Lemma 3.18 (Quasi-compactness: Cowieson case). Let d > 1, let X0 be a
compact region of Rd and let P be a branch partition of X0. Let T ∈ Cow(X0;P).
Then there exist parameters p > 1, 0 < t < 1/p, a constant τ < 0 and a
neighbourhood N of T with the following property:

Let T be a random C2 piecewise expanding dynamical system with ergodic
base. Suppose that for P-almost every ω, Tω has branch partition P and that
Tω ∈ N . Then if Lω is the corresponding family of transfer operators acting on
Ht

p(X0), then R, the random linear system associated to T , is quasi-compact
with

κ∗ ≤ τ < λ∗ = 0.

Proof. Let t = 1
2 , let T ∈ Cow(X0;P), and let k be the number of elements of

P . Let a < 1 be such that µ−1
T < a, where µT = essinfx∈X0,‖v‖=1 ‖DT (x)v‖,

and let M be as in guaranteed by Theorem 3.17. Let p > 1 be such that

k1−
1
p ad(1−

1
p )+t < 1. We may further assume that p < d/(d − 1). This fixes all

the data necessary to determine CR.

Let n0 be such that β := CRn0M
1/pkn0(1−

1
p )an0(d(1−

1
p )+t) < 1 and let τ =

log β/n0 so that τ < 0. We now apply Theorem 3.17 to deduce that there is a
neighbourhood N of T such that for all any n0-fold composition of elements of
N , each respecting the branch partition P , the complexity at the beginning is
bounded above by M . We further reduce N (to a smaller open neighbourhood
of T ) by requiring that µ−1

S < a for all S ∈ N .
Now if T is a random C2 piecewise expanding dynamical system where the

maps all belong to N then we have ensured that the quantity BR,n0 appearing
in Lemma 3.13 is at most en0τ . As in the proof of Lemma 3.16 we obtain κ∗ ≤ τ .

To see that λ∗ = 0, we argue as in Lemma 3.16. We initially apply Lemma
C.5 with ‖ · ‖ = ‖ · ‖L1 and ||| · ||| = ‖ · ‖BV to deduce for f ∈ C∞ (using

results from Cowieson’s paper [9]) that lim supn→∞
1
n log ‖L

(n)
ω f‖BV ≤ 0. Then,

since there are constants C#, C#(X0) such that for any function g supported
on X0, ‖g‖Ld/(d−1) ≤ C#‖g‖BV (see Giusti [22, Theorem 1.28]) and ‖g‖Lp ≤
C#(X0)‖g‖Ld/(d−1), we obtain sufficient conditions for the second application of
Lemma C.5, taking this time ‖ · ‖ = ‖ · ‖Lp and ||| · ||| = ‖ · ‖Ht

p
. The remainder

of the proof is exactly as in Lemma 3.16.

In view of the quasi-compactness just obtained, we can apply Theorem 2.10
to get our main application theorem, ensuring the existence of an Oseledets
splitting for random Lasota-Yorke dynamical systems or Cowieson-type random
piecewise expanding dynamical systems.

Theorem 3.19. Let R = (Ω,F ,P, σ, T ) be a random C1+α piecewise expand-
ing dynamical system satisfying the hypotheses of Lemma 3.16 or Lemma 3.18
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with parameters p and t. Then, there exist 1 ≤ l ≤ ∞, and exceptional Lya-
punov exponents 0 = λ1 > λ2 > · · · > λl > κ∗ ( in the case l = ∞, we
have limλn = κ∗), measurable families of finite-dimensional equivariant spaces
Y1(ω), . . . , Yl(ω) ⊂ X and a measurable equivariant family of closed subspaces
V (ω) ⊂ X defined on a full P measure, σ-invariant subset of Ω so that X =

V (ω) ⊕
⊕l

j=1 Yj(ω), for every f ∈ V (ω) \ {0}, limn→∞
1
n log ‖L

(n)
ω f‖Ht

p
≤ κ∗,

and for every f ∈ Yj(ω) \ {0}, limn→∞
1
n log ‖L

(n)
ω f‖Ht

p
= λj. Furthermore, the

norms of the associated projections are tempered with respect to σ.

Remark 3.20. We remark that in both the scenarios that we consider, the
existing proofs of Buzzi [7] and Cowieson [9] establish the existence of random
absolutely continuous invariant measures. One can check, using techniques such
as those in [7, Proposition 3.2] that their densities lie in the leading Oseledets
subspace, Y1(ω).

4 Future work

Several interesting questions remain open for future research. In relation to
previous works concerned with exponential decay of correlations, it is natural
to look for conditions that provide further information about the structure of the
Oseledets splitting, either in a general framework, or in the specific situation of
random composition of piecewise expanding maps. Of particular interest would
be to ensure simplicity of the leading Lyapunov exponent, and to obtain bounds
on the number of exceptional Lyapunov exponents, including finiteness. Some
progress has already been achieved in this direction in the settings of smooth
expanding maps (see work of Baladi, Kondah and Schmitt [4]) subshifts of finite
type (see work of Kifer [31, 32]) and piecewise smooth expanding maps of the
interval (see work of Buzzi [6]).

In a different direction, it would be interesting to investigate applications
of the abstract semi-invertible Oseledets theorem (Theorem 2.10) to a more
general class of expanding maps, allowing for non-constant branch partitions
and, more ambitiously, to piecewise hyperbolic maps.

Finally, we hope that the constructive approach to the identification of Os-
eledets spaces turns out to be useful for numerical studies of non-autonomous
dynamical systems. A possible alternative would be to first attempt to identify
the Oseledets filtration, perhaps using some existing numerical method. Then,
one could inductively approximate Oseledets spaces by (1) fixing a sufficiently
dense subset of a basis of a suitable Banach space, (2) pushing forward these
elements under a numerical approximation of the transfer operator and (3) sub-
tracting the projection along the corresponding level in the filtration to lower
Oseledets spaces, previously obtained by this procedure.
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A Strong measurability in separable Banach spaces

Let X be a separable Banach space and let BX be the standard Borel σ-algebra
generated by the open subsets of X . Fix a countable dense sequence x1, x2, . . .
inX for the remainder of this appendix. It is well known that any open subset of
X is a countable union of sets of the form Ui,j , where Ui,j := {x ∈ X : ‖x−xi‖ <
1/j}. Hence, BX is countably generated.

We denote by L(X) the set of bounded linear operators from X to X . The
strong operator topology, SOT(X), on L(X) is the topology generated by the
sub-base {Vx,y,ǫ = {T : ‖T (x)− y‖ < ǫ}}.

Definition A.1. The strong σ-algebra on L(X) is the σ-algebra S generated
by sets of the form Wx,U = {T : T (x) ∈ U}, with x ∈ X and U ⊂ X open.

For r ∈ R, let Lr(X) denote the linear maps from X to itself with norm at
most r. That is, Lr = {T ∈ L(X) : ‖T ‖ ≤ r}.

Lemma A.2.

1. For every r ∈ R, Lr ∈ S.

2. S is countably generated.

3. An open set in the strong operator topology lies in S.

4. The strong σ-algebra is the Borel σ-algebra of the strong operator topology
SOT(X).

5. An open set in Ln(X) (in the relative topology) is the union of countably
many sets of the form Bi,j,m,n (with terminology introduced in the proof).

Proof. We first show that Lr ∈ S. Let

L̃r =
⋂

j

{T : ‖T (xj)‖ ≤ r‖xj‖}

=
⋂

j

⋂

k

{T : ‖T (xj)‖ < (r + 1/k)‖xj‖} .

Then, L̃r is a countable intersection of sets in the sub-base and therefore L̃r ∈ S.
We claim that Lr = L̃r. Notice that if ‖T ‖ ≤ r, then T ∈ L̃r. Conversely let
T ∈ L̃r and x ∈ X , let xj → x. Since T is bounded we have T (xj) → T (x).
Since ‖T (xj)‖ ≤ r‖xj‖ and ‖xj‖ → ‖x‖ we see that ‖T (x)‖ ≤ r‖x‖. Since this

holds for all x, we see that ‖T ‖ ≤ r. Thus, Lr = L̃r, as claimed.
Set Vi,j,m = {T : ‖T (xi)− xj‖ < 1/m}. This clearly belongs to S. We claim

that an open set U ⊂ L(X) in the strong operator topology is the union of sets of
the form Bi,j,m,n = Vi,j,m∩Ln. Let U be open and let T ∈ U . Then U contains
a basic open neighbourhood of T , that is, a set of the form {S : ‖S(yi)−T (yi)‖ <
ǫi for i = 1, . . . , s} (where y1, . . . , ys are elements of X). Let n > ‖T ‖ and let
m > max(3/ǫi). Choose xki such that ‖xki − yi‖ < min(1/(2mn), ǫi/(3n)) and
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xℓi such that ‖xℓi − T (yi)‖ < min(ǫi/3, 1/(2m)). Let C =
⋂s

i=1 Bki,ℓi,m,n. By
an application of the triangle inequality if S ∈ C, then we have

‖S(yi)− T (yi)‖ ≤ ‖S(yi)− S(xki)‖+ ‖S(xki)− xℓi‖+ ‖xℓi − T (yi)‖

≤ n‖yi − xki‖+ 1/m+ ǫi/3 < ǫi,

so that we see C ⊆ U . We also have

‖T (xki)− xℓi‖ ≤ ‖T (xki)− T (yi)‖+ ‖T (yi)− xℓi‖

≤ ‖T ‖‖xki − yi‖+ 1/(2m) ≤ 1/m,

so that T ∈ C. It follows that any open set U may be expressed as a countable
union of finite intersections of S-measurable sets of the form Bi,j,m,n, so that
open sets belong to S, proving (3). (5) is proved similarly.

Since S is generated by sets that are open in the strong operator topology,
it follows that S is also generated by the (Bi,j,m,n), proving (2).

We have shown that S contains all open sets in the strong operator topology.
By definition it is generated by a collection of sets that are open in the strong
operator topology. It follows that S is the Borel σ-algebra of SOT(X).

Definition A.3. A map T : Ω → L(X) is called strongly measurable if for
every x ∈ X, the map T (·)(x) : Ω → X given by ω 7→ T (ω)(x) is (F ,BX)
measurable.

Lemma A.4. T : Ω → L(X) is strongly measurable if and only if it is (F ,S)-
measurable.

Proof. Recall that since X is separable, both BX and S are countably generated
Borel σ-algebras. BX is generated by Ui,j := {x ∈ X : ‖x− xi‖ < 1/j} (where
{xi}i∈N is a dense set inX) and in view of Lemma A.2, S is generated by the sets
Bi,j,m,n = Vi,j,m∩Ln (where Vi,j,m = {T : ‖T (xi)−xj‖ < 1/m}). Furthermore,
it is straightforward to check that

T−1(Vx,y,ǫ) = {ω : |T (ω)(x)− y| < ǫ} = T (·)(x)−1(Bǫ(y)), (8)

where Vx,y,ǫ = {T : ‖T (x)− y‖ < ǫ}.
Assume that T : Ω → L(X) is strongly measurable. To show it is (F ,S)

measurable, it suffices to show that T−1(Bi,j,m,n) ∈ F . This follows from (8) and
the fact that Ln =

⋂

j

⋂

k {T : ‖T (xj)‖ < (n+ 1/k)‖xj‖}, which was established
in the proof of Lemma A.2(1).

For the converse, suppose that T : Ω → L(X) is (F ,S) measurable. To show
it is strongly measurable, we have to show that for every x ∈ X and i, j ∈ N,
T (·)(x)−1(Ui,j) ∈ F . Equation (8) gives that T (·)(x)−1(Ui,j) = T−1(Vx,xi,1/j).
Since Vx,xi,1/j ∈ S by Lemma A.2(3), the result follows.

Lemma A.5. The composition of strongly measurable maps is strongly mea-
surable.
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Proof. In view of Lemma A.4, it suffices to show that the composition map
Ψ : L(X)× L(X) → L(X) given by Ψ(T, S) = T ◦ S is (S ⊗ S,S) measurable.
We claim that for every n ∈ N, the restriction of Ψ to Ln(X) × L(X) is con-
tinuous with respect to (τn(X), SOT(X)), where τn(X) is the product topology
on Ln(X)×L(X), and where Ln(X) is endowed with the subspace topology of
SOT(X). Since L(X) is

⋃

n∈N
Ln(X), the result then follows from Lemma A.2.

By Lemma A.2(2), the claim will follow from showing that for every x, y, ǫ,
the set Ψ−1(Vx,y,ǫ)∩(Ln(X)×L(X)) lies in τn(X). Let (T0, S0) ∈ Ψ−1(Vx,y,ǫ)∩
(Ln(X) × L(X)). Then, ‖T0 ◦ S0(x) − y‖ < ǫ. Let δ < ǫ − ‖T0 ◦ S0(x) − y‖.
Then, for (T, S) ∈

(

VS0(x),T0◦S0(x),
δ
2
∩ Ln(X)

)

× Vx,S0(x),
δ
2n
, we have

‖T ◦ S(x)− y‖ ≤ ‖T ◦ S(x)− T ◦ S0(x)‖ + ‖T ◦ S0(x)− T0 ◦ S0(x)‖ + ‖T0 ◦ S0(x) − y‖

< n
δ

2n
+

δ

2
+ ‖T0 ◦ S0(x) − y‖ < ǫ.

Thus, Ψ(T, S) ∈ Vx,y,ǫ and Ψ−1(Vx,y,ǫ) is open in τn(X), as claimed.

Let Φ: L(X)×X → X be given by (T, x) 7→ T (x).

Lemma A.6.

1. The restriction of Φ to Ln(X)×X is continuous, where Ln(X) is endowed
with the subspace topology of SOT (X).

2. Φ is S × BX-measurable.

3. If τ : Ω → L(X), given by ω 7→ Tω, is strongly measurable and f : Ω → X,
given by ω 7→ xω, is measurable, then ω 7→ Tω(xω) is measurable.

Proof. Let U be an open subset of X and let A = Φ−1U ∩ (Ln(X) ×X). Let
(T, x) ∈ A, so that T (x) ∈ U and T ∈ Ln(X). Since U is open there exists an
ǫ > 0 such that Bǫ(T (x)) ⊂ U .

Now let N = {S ∈ Ln(X) : ‖S(x)−T (x)‖ ≤ ǫ/2}. If (S, y) ∈ N ×Bǫ/(2n)(x)
then we see

‖Φ(S, y)− Φ(T, x)‖ = ‖S(y)− T (x)‖ ≤ ‖S(y)− S(x)‖ + ‖S(x)− T (x)‖

≤ n‖y − x‖+ ǫ/2 < ǫ.

It follows that N ×Bǫ/(2n)(x) is a subset of A so that A is open in the relative
topology on Ln(X)×X , hence proving (1).

If U is open, then Φ−1(U) =
⋃

n Φ
−1(U) ∩ (Ln(X)×X). By the above, the

set Φ−1(U)∩ (Ln(X)×X) is open in the relative topology on Ln(X)×X . Since
Ln(X) × X has a countable neighbourhood basis with respect to the relative
topology (see Corollary 5), Φ−1(U) may be expressed as the countable union of
products of S-measurable sets with BX measurable sets. Therefore it is S×BX-
measurable, proving (2).

Let τ : Ω 7→ L(X) be strongly measurable and f : ω 7→ xω be measurable.
Let θ(ω) = (Tω, xω). Then the map ω 7→ Tω(xω) may be factorized as Φ ◦ θ. It
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is therefore sufficient to show that θ−1Φ−1U is measurable for any open set U in
X . We showed above that Φ−1U is S×BX-measurable so it suffices to show that
θ is measurable. By definition, S × BX is generated by sets of the form A× B
with A ∈ S and B ∈ BX . The preimage of A × B under θ is τ−1(A) ∩ f−1B
which is, by assumption, the intersection of two measurable sets. Hence S ×BX

is generated by a collection of sets whose preimages under θ are measurable and
hence θ is measurable.

B The Grassmannian of a Banach space

This appendix collects some results about Grassmannians that we need in Sec-
tion 2.

Let X be a Banach space. A closed subspace Y of X is called complemented
if there exists a closed subspace Z such that X is the topological direct sum of
Y and Z, written X = Y ⊕ Z. That is, for every x ∈ X , there exist y ∈ Y and
z ∈ Z such that x = y+z, and this decomposition is unique. The Grassmannian
G(X) is the set of closed complemented subspaces of X . We denote by Gk(X)
the collection of closed k-codimensional subspaces of X (these are automatically
complemented). We denote by Gk(X) the collection of k-dimensional subspaces
of X (these are automatically closed and complemented). We equip G(X) with
the metric d(Y, Y ′) = dH(Y ∩B, Y ′∩B) where dH denotes the Hausdorff distance
and B denotes the closed unit ball in X . We let B∗ denote the closed unit ball
in X∗. We denote by BG the Borel σ-algebra coming from d.

There is a natural map⊥ from G(X) to G(X∗), namely Y ⊥ = {θ ∈ X∗ : θ(y) =
0 for all y ∈ Y }. We use the same notation for the map from G(X∗) to G(X)
given by W⊥ = {y ∈ Y : θ(y) = 0 for all θ ∈ W}. Notice that if X is a reflexive
Banach space, then the two notions of ⊥ on X∗ agree. It is well known that for a
closed subspace Y of X , Y ⊥⊥ = Y (that Y ⊆ Y ⊥⊥ follows from the definitions;
that Y ⊥⊥ ⊆ Y follows from the Hahn-Banach theorem).

The following result may be found in Kato [27, IV §2].

Lemma B.1. The maps ⊥ from G(X) to G(X∗) and from G(X) to G(X∗) are
homeomorphisms.

Definition B.2. If Y ∈ Gk(X), we will say a basis {y1, . . . , yk} for Y is a nice
basis if ‖yi‖ = 1 and d(yi, span(y1, . . . , yi−1) = 1 for each i. A subset of size k
will be called ǫ-nice if 1− ǫ < ‖yi‖ < 1+ ǫ and d((yi, span(y1, . . . , yi−1)) > 1− ǫ
for each i > 1. Clearly if ǫ < 1 an ǫ-nice set is linearly independent. If a set is
ǫ-nice and a basis, we call it an ǫ-nice basis.

Lemma B.3. Each element of Gk(X) has a nice basis.

Proof. Let Y ∈ Gk(X). We make the inductive claim that for each m ≤ k
we can find a sequence of elements y1, . . . , ym of norm 1 satisfying the claim
for 1 ≤ i ≤ m. The base case is easy: let y1 be any vector in Y of length 1.
Suppose we have vectors y1, . . . , ym satisfying the claim where m < k. Let W
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be the subspace of Y spanned by y1, . . . , ym. Let x ∈ Y \W (such an x exists
because W is an m-dimensional subspace of Y and hence a proper subspace of
Y ). By compactness there is a w ∈ W minimizing ‖x−w‖. Then let ym+1 be a
normalized version of x − w. This completes the inductive step and hence the
proof.

Lemma B.4. Let {y1, . . . , yk} be ǫ-nice (with ǫ < 2−k−2). If ‖
∑

aiyi‖ ≤ 1
then |ai| ≤ 2k+1−i for each i.

Proof. Suppose for a contradiction that y =
∑

aiyi satisfies ‖y‖ = 1 and |ai| >
2k+1−i for some i. Let i be the largest such index. Set z =

∑

j≤i ajyj. Then

‖z − y‖ ≤
∑

j>i |aj |(1 + ǫ) ≤ (2k+1−i − 2)(1 + ǫ). On the other hand by the

defining property of yi we have ‖z‖ ≥ |ai|(1 − ǫ)2 > 2k+1−i(1 − 2ǫ). The
triangle inequality then shows that ‖y‖ > 2 − 2k+3−iǫ > 1, which contradicts
the assumption.

Lemma B.5. Let y1, . . . , yk be an ǫ-nice basis for a k-dimensional space Y
(with ǫ < 2−k−2), then if W is a space such that d(yi,W ) < δ/2k+2, then
supy∈Y ∩B d(y,W ∩B) < δ.

Proof. Let d(yi, wi) < δ/2k+2. Given y ∈ Y ∩B, y may be expressed as
∑

aiyi
with |ai| ≤ 2k+1−i, by Lemma B.4. Let w =

∑

aiwi. Then ‖y − w‖ ≤
∑

2k+1−iδ/2k+2 < δ/2. It follows that ‖w‖ < 1 + δ/2 so letting w′ = w if
‖w‖ ≤ 1 and w/‖w‖ otherwise, we have ‖w′ − w‖ < δ/2. Since w′ ∈ W ∩B we
deduce d(y,W ∩B) < δ so that supy∈Y ∩B d(y,W ∩B) < δ as required.

For ǫ < 2−k−2, let NBǫ
k(X) ⊂ Xk be the set of k−dimensional ǫ−nice

subsets of X .

Corollary B.6. If ǫ < 2−k−2, then the function from NBǫ
k(X) to Gk(X) given

by (y1, . . . , yk) 7→ span(y1, . . . , yk) is continuous.

Proof. By Lemma B.5, if (y1, . . . , yk), (y
′
1, . . . , y

′
k) ∈ NBǫ

k(X) are such that
‖yi − y′i‖ < 2−(k+2)δ, then d(Y, Y ′) < δ, where Y = span(y1, . . . , yk) and Y ′ =
span(y′1, . . . , y

′
k).

Lemma B.7. (Symmetry of closeness in Gk(X) and Gk(X)). Let Y and W be
elements of Gk(X). Suppose that maxy∈Y ∩B d(y,W ∩ B) = r < 3−k/4. Then
one obtains maxw∈W∩B d(w, Y ∩B) < 4 · 3kr and hence d(W,Y ) < 4 · 3kr.

Let Y and W be elements of Gk(X). Suppose that maxy∈Y ∩B d(y,W ∩B) =
r < 3−k/8. Then, d(W,Y ) < 8 · 3kr.

Proof. Using Lemma B.3, let y1, . . . , yk be a nice basis for Y . By assumption
there exist elements w1, . . . , wk of W ∩B such that ‖wi − yi‖ < r.
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We first give a lower bound for ‖
∑k

i=1 aiwi‖. Let M = maxi 3
i|ai| and

assume that M = 3j|aj |. Then we have

∥

∥

∥

∥

∥

k
∑

i=1

aiwi

∥

∥

∥

∥

∥

≥

∥

∥

∥

∥

∥

j
∑

i=1

aiwi

∥

∥

∥

∥

∥

−

∥

∥

∥

∥

∥

∥

k
∑

i=j+1

aiwi

∥

∥

∥

∥

∥

∥

≥

∥

∥

∥

∥

∥

j
∑

i=1

aiyi

∥

∥

∥

∥

∥

−

∥

∥

∥

∥

∥

j
∑

i=1

ai(wi − yi)

∥

∥

∥

∥

∥

−
k

∑

i=j+1

3−iM

≥ |aj | − r

j
∑

i=1

|ai| − 3−jM/2

≥ M(3−j/2− r/2) ≥ (3−k/4)M,

where for the first term of the third inequality we used the definition of nice
basis. In particular if

∑

aiwi ∈ B, we have |M | ≤ 4 · 3k so that |ai| ≤ 4 · 3k−i.
Now given w ∈ W ∩B, write w =

∑

aiwi and let y =
∑

aiyi. Then ‖w− y‖ ≤
∑

|ai|‖wi−yi‖ ≤ 2·3kr. Rescaling y to move it inside B if necessary we obtain a
point y′ ∈ Y ∩B with ‖w−y′‖ ≤ 4·3kr. It follows that maxw∈W∩B d(w, Y ∩B) ≤
4 · 3kr as required.

A similar argument using the proof of Lemma B.1 gives the result in Gk.

Lemma B.8. If ǫ < 2−k−2 , the set NBǫ
k(X) ⊂ Xk is open.

Proof. Let (y1, . . . , yk) ∈ NBǫ
k(X). Let ǫ′ < ǫ be such that for every 1 ≤ j ≤ k,

1− ǫ′ ≤ ‖yj‖ ≤ 1 + ǫ′ and d(yj , span(y1, . . . , yj−1) ≥ 1− ǫ′.
Let r > 0 and (w1, . . . , wk) ∈ Πk

i=1Br(yi). Then, for every 1 ≤ j ≤ k we
have 1− ǫ′−r ≤ ‖wj‖ ≤ 1+ ǫ′+r and, if r > 0 is sufficiently small, Lemmas B.5
and B.7 imply that d(span(y1, . . . , yj), span(w1, . . . , wj)) ≤ 2j+43jr.

It follows from the triangle inequality that

d(wj , span(w1, . . . , wj−1)) ≥d(yj , span(y1, . . . , yj−1))− ‖yj − wj‖

− 2‖wj‖d(span(y1, . . . , yj), span(w1, . . . , wj)).

Hence, d(wj , span(w1, . . . , wj−1)) ≥ 1 − ǫ′ − r − (1 + ǫ′ + r)2j+53jr. Thus,
choosing r sufficiently small, the above yields that (w1, . . . , wk) satisfies all the
conditions of an ǫ-nice basis.

Lemma B.9. (Disconnectedness of G(X)). If Y ∈ Gj(X) and dim(Y ′) > j then
d(Y, Y ′) ≥ 2−j/8. If Y ∈ Gj(X) and codim(Y ′) > j then d(Y, Y ′) ≥ 2−j/16.

Proof. We have

d(Y, Y ′) = max( max
y∈Y ∩B

d(y, Y ′ ∩B), max
y′∈Y ′∩B

d(y′, Y ∩B)).

Suppose that the first term is less than 2−j/8. Let y1, . . . , yj be a nice basis
for Y (as provided by Lemma B.3). Let ‖wi − yi‖ < 2−j/8 and let W be the

37



space spanned by the wi. Lemma B.5 guarantees that supy∈Y ∩B d(y,W ∩B) <
1/2. Since W is at most j-dimensional whereas dim(Y ′) > j, let z ∈ Y ′ ∩ B
satisfy d(z,W ) = 1. Now for y ∈ Y ∩ B, d(z,W ) ≤ d(z, y) + d(y,W ), so
using d(y,W ) ≤ 1/2 we see that d(z, y) ≥ 1/2. We have therefore shown that
maxy′∈Y ′∩B d(y′, Y ) ≥ 1/2 under the assumption that the first term of d(Y, Y ′)
is small. In either case we see that d(Y, Y ′) is bounded below by 2−j/8. The
second statement follows from Lemma B.1.

Corollary B.10. Suppose that Y ∈ Gk(X), Y ′ ∈ Gk′(X) and supy∈Y ∩B d(y, Y ′∩
B) < ǫ. Then, if ǫ is sufficiently small, we have that k′ ≥ k. Similarly, suppose
that Y ∈ Gk(X), Y ′ ∈ Gk′

(X) and supy∈Y∩B d(y, Y ′ ∩ B) < ǫ. Then, if ǫ is
sufficiently small, we have that k′ ≤ k.

Proof. We present the proof of the second statement, which is the one used.
The proof of the first one is entirely analogous.

Let ǫ < 3−k/8, and assume the hypotheses hold. We want to show that
k′ ≤ k. Assume on the contrary that k′ > k, and pick Ỹ ⊂ Y such that Ỹ ∈
Gk′

(X). Then, supy∈Ỹ ∩B d(y, Y ′ ∩B) ≤ supy∈Y∩B d(y, Y ′ ∩B) < ǫ. In view of

Lemma B.7, d(Ỹ , Y ′) < 3k
′

8ǫ, so supy′∈Y ′∩B d(y′, Y ∩B) ≤ supy′∈Y ′∩B d(y′, Ỹ ∩

B) < 3k
′

8ǫ. So d(Y, Y ′) < 3k
′

8ǫ. If ǫ is sufficiently small, this contradicts
Lemma B.9. Thus, k′ ≤ k.

Lemma B.11. If X is separable, then Gk(X) is separable.

Proof. Let x1, x2, . . . be a dense sequence in B. Then the collection of linearly
independent k-element subsets of {x1, x2, . . .} is also countable. Let Y ∈ Gk(X).
Let y1, . . . , yk be a nice basis for Y (as in Lemma B.3). Then given ǫ > 0, let
(xij )

k
j=1 ∈ B be chosen so that ‖xij −yj‖ ≤ ǫ/2k+2. Let W = span(xi1 , . . . , xik ).

Lemma B.5 implies that maxy∈Y ∩B d(y,W ) < ǫ. Then Lemma B.7 implies that
d(Y,W ) ≤ 4 · 3kǫ, so the separability is established.

Lemma B.12. If X∗ is separable, then Gk(X) is separable.

Proof. Lemma B.1 implies that Gk(X) is homeomorphic to Gk(X
∗). The result

follows from Lemma B.11.

Lemma B.13. Let Φ : L(X) × G(X) → G(X) be given by Φ(T,W ) = T (W ).
For 0 ≤ l ≤ k, let

G̃(n, k, l) = {(T,W ) ∈ Ln(X)× Gk(X) : dim(Ker T ∩W ) ≥ l}.

This is a closed subset of Ln(X) × Gk(X), where Ln(X) is endowed with the
restriction of the strong operator topology on L(X). Also, let

G(n, k, l) = G̃(n, k, l) \ G̃(n, k, l+ 1)

= {(T,W ) ∈ Ln(X)× Gk(X) : dim(Ker T ∩W ) = l}.

Then, Φ|G(n,k,l) : G(n, k, l) → Gk−l(X) is continuous.
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Proof. To see that G̃(n, k, l) is a closed set, suppose that T ∈ Ln(X), W ∈
Gk(X) and dim(KerT ∩W ) = s < l. Let {Tw1, . . . , Twk−s} be a nice basis for
T (W ). Let M = max ‖wi‖. Let Uδ = {S ∈ Ln(X) : ‖S(wi) − T (wi)‖ < δ} (a
relatively open subset of Ln(X)), and let V ∈ Gk(X) be such that d(W,V ) < δ.
Then in particular V contains elements v1, . . . , vk−s such that ‖vi −wi‖ < Mδ.
Now we have ‖S(vi)− T (wi)‖ ≤ ‖S‖‖vi−wi‖+ ‖S(wi)− T (wi)‖ ≤ (nM +1)δ.
By Lemma B.8, if ǫ > 0 and δ is small enough, then {Sv1, . . . , Svk−s} is an
ǫ-nice basis of span(Sv1, . . . , Svk−s) ⊂ S(V ). In particular, S(V ) has dimension
at least k−s. It follows that dim(KerS∩V ) ≤ s, so G̃(n, k, l)c ⊂ Ln(X)×Gk(X)
is open.

Let (T,W ) ∈ G(n, k, l), and let r > 0. Let {Tw1, . . . , Twk−l} be a nice
basis for T (W ), and let M and Uδ as in the previous paragraph. We claim

that if δ > 0 is sufficiently small and (S, V ) ∈
(

Uδ × BG(W, δ)
)

∩ G(n, k, l),

then d(T (W ), S(V )) < r. Indeed, let ǫ > 0. The previous argument shows
that if δ is sufficiently small and ‖vi − wi‖ < Mδ for each 1 ≤ i ≤ k − l, then
{Sv1, . . . , Svk−l} is an ǫ-nice basis for S(V ) such that ‖S(vi)−T (wi)‖ ≤ (nM+
1)δ. Hence, by the proof of Corollary B.6, d(T (W ), S(V )) < 2k+2(nM + 1)δ.
Taking δ < r

2k+2(nM+1) yields the claim.

Corollary B.14. The map Φk : L(X)×Gk(X) → G≤k(X) given by Φk(T,W ) =
T (W ) is (S ⊗ BG ,BG)-measurable.

Proof. Let us note that L(X)×Gk(X) =
⋃

n∈N

⋃k
l=0 G(n, k, l). Also, G(n, k, l) is

S⊗BG measurable, as Ln(X) is S measurable, and G(n, k, l) is the difference of
two closed sets in Ln(X)×Gk(X), by Lemma B.13. Since Φ|G(n,k,l) is continuous
again by Lemma B.13, then Φk is (S ⊗ BG ,BG)-measurable.

Lemma B.15. Let X be separable, Π : X → Y a surjective bounded linear
map, and k ≥ 0. Then, the restriction of the induced map Πk : Gk(X) → G(Y )
to Π−1(Gj(Y )) is continuous for every j ≥ 0. Furthermore, Πk is measurable.

Proof. First, we note that since Π is surjective, Y is separable and for every
W ∈ Gk(X), Πk(W ) ∈ G≤k(Y ).

For every 0 ≤ j, the set Gk(X) ∩ Π−1
k (G≤j(Y )) is relatively open in Gk(X).

To see this, letW ∈ Gk(X)∩Π−1
k (Gj(Y )). By the above, j ≤ k. LetW ′ ∈ Gk(X)

be such that d(W,W ′) ≤ δ. By the open mapping theorem, there exists r > 0
such that rBΠk(W ) ⊂ Πk(W ∩ BX). Let z ∈ Πk(W ) ∩ BY . Then, there exist

w ∈ W ∩ 1
rBX and w′ ∈ W ′∩ 1

rBX such that Πw = z and ‖w−w′‖ ≤ δ
r . Hence,

‖Πw −Πw′‖ ≤ ‖Π‖δ
r . Thus,

sup
z∈Πk(W )∩BY

d(z,Πk(W
′) ∩BY ) ≤ 2 sup

z∈Πk(W )∩BY

d(z,Πk(W
′)) <

2‖Π‖δ

r
.

If δ is sufficiently small, Corollary B.10 implies that W ′ ∈ Π−1
k (G≤j(X)).

It follows from the proof in the previous paragraph and Lemma B.7 that the
restriction of Πk to Π−1

k (Gj(Y )) is continuous.
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The fact that Πk : Gk(X) → G(Y ) is measurable follows from the previous
two paragraphs.

Lemma B.16. The function ν : L(X)×Gk(X) → R given by ν(R, Y ) = ‖R|Y ‖
is measurable when L(X) is endowed with the strong σ-algebra S.

Proof. By Lemma A.2, it suffices to show continuity of ν as restricted to Ln(X)×
Gk(X), where Ln(X) is endowed with the restriction of the strong operator
topology. Let Y ∈ Gk(X) and let R ∈ Ln(X). Let ǫ > 0 and let δ < ǫ/(n+k2k).
Let {y1, . . . , yk} be a nice basis for Y . Let N = {S ∈ Ln(X) : ‖S(yi)−R(yi)‖ <
δ} and let W ∈ Gk(X) satisfy d(W,Y ) < δ. Now given w ∈ B ∩W , there exists
a y ∈ B ∩ Y such that ‖w− y‖ < δ (or conversely given y ∈ B ∩ Y , there exists
a w ∈ B ∩W such that ‖w − y‖ < δ). We then have

‖S(w)‖ ≤ ‖R(y)‖+ ‖S(y)−R(y)‖+ ‖S(w)− S(y)‖ and

‖S(w)‖ ≥ ‖R(y)‖ − ‖S(y)−R(y)‖ − ‖S(w)− S(y)‖.

It follows that |‖S(w)‖ − ‖R(y)‖| ≤ ‖S(y)−R(y)‖+ ‖S(w)− S(y)‖.
The second term of the right side is bounded above by nδ. For the first term,

notice that by Lemma B.4, y may be expressed as a linear combination of yi’s
with coefficients bounded above by 2k. Hence the first term is bounded above
by k2kδ. It follows that |‖S(w)‖ − ‖R(y)‖| ≤ (n+ k2k)δ.

By taking y ∈ Y ∩ B for which ‖R(y)‖ = ‖R|Y ‖ it follows that ‖S|W ‖ >
‖R|Y ‖ − ǫ. Similarly taking w ∈ W ∩ B for which ‖S(w)‖ = ‖S|W‖ we obtain
‖R|Y ‖ > ‖S|W‖ − ǫ so that |‖R|Y ‖ − ‖S|W ‖| < ǫ as required.

A pair of closed complemented subspaces Y, Z of X is called complementary
if Y ∩ Z = {0} and Y ⊕ Z = X . By the closed graph theorem, any pair of
complementary spaces (Y, Z) specifies a bounded linear map ΠY ‖Z , which is
the projection onto Y along Z, having kernel Z and image Y . By symmetry,
the map ΠZ‖Y is also a linear and bounded projection.

For k ≥ 0, let

Compk(X) = {(Y, Z) ∈ Gk(X)× Gk(X) : Y ∩ Z = {0}, Y ⊕ Z = X},

and let Comp(X) =
⋃

k≥0 Compk(X) be the set of complementary subspace
pairs of X of finite dimension/codimension.

Lemma B.17. Let (Y, Z) ∈ Comp(X) and Y ′ ∈ G(X). Then,

‖ΠZ‖Y |Y ′‖ ≤ 2‖ΠZ‖Y ‖d(Y, Y
′).

Proof. Let y′ ∈ Y ′ and ǫ > 0. Let y ∈ Y be such that ‖y′ − y‖ ≤ d(y′, Y ) + ǫ.
Then,

‖ΠZ‖Y (y
′)‖ = ‖ΠZ‖Y (y

′ − y)‖ ≤ ‖ΠZ‖Y ‖(d(y
′, Y ) + ǫ) ≤ ‖ΠZ‖Y ‖

(

2‖y′‖d(Y ′, Y ) + ǫ).

Letting ǫ → 0, the result follows.
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Lemma B.18. The map Ψ : Comp(X) → L(X) given by Ψ(Y, Z) = ΠZ‖Y is
continuous, where Comp(X) carries the product topology induced by the metric
on G(X) and L(X) is endowed with the norm topology.

Remark B.19. Since the norm topology is finer than the strong operator topol-
ogy on L(X), Lemma B.18 yields that Ψ is also continuous when L(X) is en-
dowed with the strong operator topology.

Proof of Lemma B.18. Let ǫ > 0. Let (Y, Z) ∈ Comp(X) and x ∈ X . Since
dimY < ∞, then Y ∩ ∂B is compact. Hence, ζ := infy∈Y ∩∂B d(y, Z) > 0.

Let δ < min{ 1
3 ,

ζ
8+2ζ } and (Y ′, Z ′) ∈ Comp(Z) such that d(Y, Y ′), d(Z,Z ′) <

δ. Then, infy′∈Y ′∩∂B d(y′, Z ′) ≥ ζ
2 . Indeed, let y

′ ∈ Y ′ ∩ ∂B, and let y ∈ Y ∩B
be such that ‖y′ − y‖ < δ. Then, 1− δ < ‖y‖ < 1 + δ. Let z ∈ Z be such that
‖y − z‖ < d(y, Z) + δ. Then, ‖z‖ ≤ 2‖y‖+ δ < 3 and

d(y′, Z ′) ≥ d(y, Z)− ‖y − y′‖ − d(z, Z ′) ≥ ζ(1 − δ)− δ − 3δ ≥
ζ

2
.

We claim that ‖ΠY ′‖Z′‖ < 2
ζ and ‖ΠZ′‖Y ′‖ < 2

ζ +1. Indeed, let x ∈ X∩∂B, and

write x = y′ + z′, with y′ ∈ Y ′ and z′ ∈ Z ′. Then, 1 = ‖y′ + z′‖ ≥ d(y′, Z ′) ≥
ζ
2‖y

′‖, so that ‖y′‖ ≤ 2
ζ and the first claim follows. The second claim follows

from the triangle inequality.

Let M = max{‖ΠY ‖Z‖, ‖ΠZ‖Y ‖}. Assume also that δ < ǫ
4M

(

2
ζ + 1

)−1
.

Then, if (Y ′, Z ′) ∈ Comp(Z) is such that d(Y, Y ′), d(Z,Z ′) < δ, we have that

∣

∣‖ΠZ‖Y ‖ − ‖ΠZ′‖Y ′‖
∣

∣ ≤ ‖ΠZ‖Y −ΠZ′‖Y ′‖

≤ ‖
(

ΠZ‖Y −ΠZ′‖Y ′

)

|Z′‖‖ΠZ′‖Y ′‖+ ‖
(

ΠZ‖Y −ΠZ′‖Y ′

)

|Y ′‖‖ΠY ′‖Z′‖

≤ ‖ΠY ‖Z |Z′‖‖ΠZ′‖Y ′‖+ ‖ΠZ‖Y |Y ′‖‖ΠY ′‖Z′‖

≤ 2M(d(Z,Z ′) + d(Y, Y ′))
(2

ζ
+ 1

)

< ǫ,

where the third inequality follows from the fact that ΠY ‖Z + ΠZ‖Y = Id, and
the fourth one follows from Lemma B.17 and the claim above.

Lemma B.20. Let

NI(X) =
⋃

k,k′≥0

{(Y, Z) ∈
(

Gk(X)× Gk′

(X)
)

∪
(

Gk(X)× Gk′ (X)
)

∪
(

Gk(X)× Gk′ (X)
)

: Y ∩ Z = {0}}

be the set of pairs of subspaces of X of finite dimension/codimension with trivial
intersection.

Then, the map Ψ′ : NI(X) → G(X) be given by Ψ′(Y, Z) = Y ⊕ Z is
continuous.
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Proof. Let (Y, Z) ∈ NI(X). Let W ∈ G(X) be such that (Y ⊕ Z,W ) ∈
Comp(X), so that Y⊕Z⊕W = X . Also, letM = max(‖ΠY ‖Z⊕W ‖, ‖ΠZ‖Y⊕W ‖).

Let δ > 0 and Y ′, Z ′ ∈ G(X) be such that d(Y, Y ′), d(Z,Z ′) < δ. Let
y ∈ Y, z ∈ Z be such that ‖y + z‖ ≤ 1. Then ‖y‖, ‖z‖ ≤ M . Therefore, there
exist y′ ∈ Y ′ and z′ ∈ Z ′ such that ‖y−y′‖, ‖z−z′‖ < Mδ. Hence, ‖(y+z)−(y′+
z′)‖ ≤ ‖y−y′‖+‖z−z′‖ ≤ 2Mδ. Therefore, supx∈(Y⊕Z)∩B d(x, Y ′⊕Z ′) ≤ 2Mδ,
and by the triangle inequality, supx∈(Y⊕Z)∩B d(x, (Y ′ ⊕ Z ′) ∩ B) ≤ 4Mδ. If
δ is sufficiently small, Lemma B.9 implies that (co)dimY = (co)dimY ′ and
(co)dimZ = (co)dimZ ′. Hence, using Lemma B.7, we get that d(Y ⊕ Z, Y ′ ⊕
Z ′) < M̃δ, where M̃ depends on M , k and k′. Hence, Ψ′ is continuous.

C Some facts from ergodic theory

C.1 A characterization of tempered maps

This appendix provides a characterization of tempered maps, based on the fol-
lowing theorem.

Theorem C.1 (Tanny). Let T be an ergodic measure-preserving transforma-
tion of a probability space (X,B, µ). Let f : X → R be a non-negative measurable
function. Then either f(T nx)/n → 0 for µ-almost every x; or lim sup f(T nx)/n =
∞ for µ-almost every x.

The proof of the following lemma is based on a very concise proof of Tanny’s
theorem, attributed to Feldman, that appears in a Lyons, Pemantle and Peres
[35].

Lemma C.2. Let T be an invertible ergodic measure-preserving transformation
of a probability space (X,B, µ). Let f : X → R be a non-negative measurable
function. Then f(T−nx)/n → 0 for µ-almost every x as n → ∞ if and only if
f(T nx)/n → 0 for µ-almost every x as n → ∞.

Proof. Suppose that f(T−nx)/n → 0. Let ǫ > 0. There exists for µ-almost every
x an L such that n ≥ L implies f(T−nx)/n < ǫ. Fixing a sufficiently large L, the
set A = {x : f(T−nx)/n < ǫ for all n ≥ L} has measure at least 1/2. Now we
apply the Birkhoff ergodic theorem to 1A. For almost every x, there exists an n0

such that for n ≥ n0 one has (1/n)(1A(x) + . . .+ 1A(T
n−1x)) ∈ [2/5, 3/5]. Fix

such an x and let n0 be the corresponding quantity. Then let N > max(n0, 5L).
We then have

#{0 ≤ i < N : T i(x) ∈ A} ≤ 3N/5.

On the other hand we have

#{0 ≤ i < 2N : T i(x) ∈ A} ≥ 4N/5.

It follows that there exists i ∈ [N+L, 2N) with T i(x) ∈ A. The fact that T i(x) ∈
A tells us that f(TNx) < ǫ(i−N) < ǫN . It follows that f(TNx)/N < ǫ. Since
this holds for all large N and ǫ was arbitrary we deduce that f(T nx)/n → 0.

The converse statement follows immediately.
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Combining the proof of Lemma C.2 with Tanny’s theorem, we get the fol-
lowing.

Theorem C.3. Let T be an invertible ergodic measure-preserving transforma-
tion of a probability space (X,B, µ). Let f : X → R be a non-negative measurable
function. Then one of the following holds:

• f(T nx)/n → 0 for µ-almost every x as n → ±∞; or

• lim supn→∞ f(T nx)/n = ∞ and lim supn→∞ f(T−nx)/n = ∞ for µ-
almost every x.

Proof. In view of Tanny’s theorem, it is sufficient to show that if f(T−nx)/n → 0
a.e. then f(T nx)/n → 0 a.e. This follows from Lemma C.2.

C.2 Random version of Hennion’s theorem

In this appendix, we present a result that allows us to bound the index of com-
pactness and maximal Lyapunov exponent of some random dynamical systems
satisfying certain Lasota-Yorke type inequalities. We remark that many parts
of this lemma essentially appear in Buzzi [7]. We have modified the conclusion
and weakened the hypotheses in one place. This result is based on the following
theorem of Hennion [24].

Theorem C.4 (Hennion). Let (X, ‖ · ‖) be a Banach space and suppose that
Y is a closed subspace of X. Let Y be equipped with a finer norm |||.||| (such
that ‖y‖ ≤ |||y||| for all y ∈ Y ) such that the inclusion of (Y, ||| · |||) →֒ (Y, ‖ · ‖)
is compact. Suppose that L is a linear operator such that L(X) ⊂ X and
L(Y ) ⊂ Y . Suppose further that for all y ∈ Y , one has the inequality

|||L(y)||| ≤ A‖y‖+B|||y|||.

Then the index of compactness of L is bounded above by 2B.

Lemma C.5. Let (X, ‖ · ‖) be a Banach space and let Y be a closed subspace.
Let ||| · ||| be a finer norm on Y such that the inclusion of (Y, ||| · |||) →֒ (Y, ‖ · ‖)
is compact. Let σ : (Ω, µ) → (Ω, µ) be an invertible ergodic measure preserving
dynamical system and let (Lω)ω∈Ω be a family of linear maps, each mapping X

to X and Y to Y continuously. As usual, let L
(n)
ω = Lσn−1ω ◦ . . . ◦ Lω.

Suppose we have the following inequalities:

(Strong L-Y) |||Lωf ||| ≤ A(ω)‖f‖+B(ω)|||f ||| for all f ∈ Y ;

(Weak L-Y) |||Lω ||| ≤ C(ω),

where A(ω), B(ω) and C(ω) are measurable functions, C(ω) is log-integrable
and

∫

logB(ω) dµ(ω) < 0.
Then there exists a full measure subset Ω1 ⊂ Ω with the following properties:

1. limn→∞(1/n) log |||L
(n)
ω |||ic ≤

∫

logB(ω) dµ(ω) for all ω ∈ Ω1;
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2. For ω ∈ Ω1, suppose that f ∈ Y satisfies

lim sup
n→∞

(1/n) log ‖L(n)
ω f‖ ≤ 0. (9)

Then lim supn→∞(1/n) log |||L
(n)
ω f ||| ≤ 0.

Proof. For the first statement, notice that applying the strong Lasota-Yorke

inequality we obtain inductively |||L
(n)
ω f ||| ≤ B(σn−1) . . . B(ω)|||f ||| + D‖f‖ for

a constant D depending on ω and n. From Hennion’s theorem, we deduce

|||L
(n)
ω |||ic ≤ 2B(σn−1ω) . . . B(ω). Taking logarithms, the conclusion then follows

from the ergodic theorem.
We now show the second statement. There exists a δ > 0 such that for any

set S of measure at most δ, one has
∫

S(logC − logB) dµ < −
∫

logB dµ. Now
since A is measurable, there exists a K > 0 such that µ({ω : A(ω) ≥ K}) < δ.

Set B̃(ω) = B(ω) if A(ω) ≤ K and C(ω) otherwise. Set Ã(ω) = min(A(ω),K).
We see that we have a hybrid Lasota-Yorke inequality obtained by applying the
strong Lasota-Yorke inequality for cases in which A(ω) ≤ K and the weak in-
equality otherwise:

|||Lωf ||| ≤ Ã(ω)‖f‖+ B̃(ω)|||f |||. (10)

The advantage of this is that we still have
∫

log B̃ dµ < 0 and Ã is now
uniformly bounded by K.

Applying the ergodic theorem (with the transformation being σ−1) we obtain
a measurable function F (ω) such that for P-almost every ω, we have

B̃(σ−1ω) . . . B̃(σ−kω) ≤ F (ω) for all k ≥ 0. (11)

Let β >
∫

logC. Applying the ergodic theorem once more, we obtain, for
P-almost every ω, the bound

C(σn+k−1ω) . . . C(σnω) ≤ H(σnω)eβk for all n, k ≥ 0. (12)

There exists a B > 0 such that H(ω)F (ω) < B on a set of positive measure.
By the ergodic theorem, for all δ > 0, for almost every ω, there exists an n0

such that

∀N > n0, ∃n ∈ [N(1− δ), N) withH(σnω)F (σnω) < B. (13)

Now let Ω1 be the set of full measure on which the conditions above hold.
Fix an ω ∈ Ω1 and let f ∈ Y satisfy (9). Let ǫ > 0 be arbitrary. Then by the
hypotheses, there exists a constant L such that

‖L(n)
ω f‖ ≤ Leǫn/2 for all n ≥ 0. (14)

Now by iterating (10), we obtain the bound (valid for all f ∈ Y )
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|||Ln
ωf ||| ≤ B̃(σn−1ω) . . . Ã(ω)|||f ||| + B̃(σn−1ω) . . . B̃(σω)Ã(ω)‖f‖+

. . .+ B̃(σn−1ω)Ã(σn−2ω)‖L(n−2)
ω f‖+ Ã(σn−1ω)‖L(n−1)

ω f‖.

Using the inequalities B̃(σn−1ω) . . . B̃(σn−kω) ≤ F (σnω) (from (11)), the
fact that Ã(ω) ≤ K, and (14), we obtain an upper bound of the form

|||Ln
ωf ||| ≤ MF (σnω)eǫn/2, (15)

for a suitable constant M .
Combining this with (12) we obtain

|||Ln+k
ω f ||| ≤ MF (σnω)H(σnω)eǫn/2eβk (16)

We can therefore obtain a bound for |||Lm
ω f ||| by minimizing the above over

possible decompositions m = n + k. Let n0 be as in (13) where δ is taken to
be ǫ/(2β) and suppose m > n0 is given. Then there exists a k < ǫ/(2β)m such
that F (σm−kω)H(σm−kω) ≤ B so that

|||Lm
ω f ||| ≤ MBeǫm/2eβk < MBeǫm.

It follows that lim supN→∞(1/N)|||L
(N)
ω f ||| ≤ ǫ. Since ǫ is arbitrary, the proof

is complete.
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[41] R. Strichartz. Multipliers on fractional Sobolev spaces. J. Math. Mech.,
16:1031–1060, 1967.

[42] P. Thieullen. Fibrés dynamiques asymptotiquement compacts. Exposants
de Lyapounov. Entropie. Dimension. Ann. Inst. H. Poincaré Anal. Non
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