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Abstract: We consider finite-state Markov chains driven by stationary
ergodic invertible processes representing random environments. Our main
result is that the invariant measures of Markov chains in random envi-
ronments (MCREs) are stable under a wide variety of perturbations. We
prove stability in the sense of convergence in probability of the invariant
measure of the perturbed MCRE to the original invariant measure. Our
approach makes no assumptions on the transition matrix functions repre-
senting the Markov chains except measurability with respect to the random
environment. We also develop a new numerical scheme to construct rigorous
approximations of the invariant measures, which converge in probability as
the resolution of the scheme increases. This numerical approach is illus-
trated with an example of a random walk in a random environment.
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1. Introduction

1.1. Set-up

Let {P (ω), ω ∈ Θ} be a family of Markov transition probabilities acting on a
finite state space (X ,A), where A is the discrete σ-algebra. We call (Θ,B) the
set of environments on X and doubly-infinite stochastic sequences ~ω = {ωn :
n ∈ Z}, taking values in Θ, random environments. Corresponding to this we

have a forward stochastic sequence ~X = {Xn : n ∈ Z} in X . We require that
P (ω : x,E) is A×B-measurable as a function of (x, ω); this is satisfied provided
P (ω : x, y) is B-measurable in ω for each x, y ∈ X . If

P (Xn+1 ∈ E|X0, . . . , Xn, ~ω) = P (Xn+1 ∈ E|Xn, ωn),
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then ( ~X, ~ω) is a Markov chain in a random environment (MCRE). Given a reali-
sation ~ω of the environmental sequence, the sample paths of the Xns in X evolve
as time non-homogeneous Markov chains with one-step transition probabilities
from time n to n+ 1 given by P (ωn).

Using the shorthand Ω = Θ∞
−∞ =

∏∞
i=−∞ Θ and F = B∞

−∞ =
∏∞

i=−∞ B, we
define Ψ = X × Ω, endowed with the σ-algebra F = A × F . We assume that
~ω has a stationary ergodic distribution π on Ω. Let σ be the coordinate shift,
(σk~ω)n = (~ω)n+k. A transition probability on (Ψ,F) is defined by

Q(x, ~ω : {y} ×B) = P (ω0 : x, y)1B(σ~ω). (1.1)

Let µ = κ×π, where κ is a counting measure on X . The process (Ψ,F, µ,Q) is a
Markov process in the sense of Foguel (see [6]). The process Q acts on measures
ν on Ψ in the usual way: νQ(F ) =

∫
Q(ψ,F ) dν(ψ). We call a measure ν on

Ψ invariant if νQ = ν. Furthermore, if ν � µ is invariant, then its density
v := dν/dµ satisfies the fixed point equation L(v) = v, where L : L1(µ) 	 is the
linear operator defined by

Lv = d((vµ)Q)/dµ. (1.2)

That is, if λ(F ) =
∫
F
v(~ω)µ(d~ω), then Lv is the density of λQ with respect to

µ.
Cogburn [6] has proven existence of invariant measures ν � µ for Markov

chains in random environments. Our concern here is with the stability of such
invariant measures to perturbations, both in the random environment and the
family of transition probabilities.

We denote the finite state space as X = {1, . . . , d}, and for convenience in-
troduce stochastic matrices A(~ω) to denote the corresponding transition prob-
abilities, as follows.

[A(~ω)]xy := P (ω0 : x, y), for each 1 ≤ x, y ≤ d,

where [A]xy denotes the x, y entry of the matrix A. Thus,

Pn(ω0 : x, y) = [A(~ω)A(σ~ω) . . . A(σn−1~ω)]xy, for each n > 1, 1 ≤ x, y ≤ d.

1.2. Alternative viewpoint of the random environment and
applications

In the formulation presented above, the random environment process σ : Ω 	
is controlled by the left shift acting on a space of bi-infinite sequences. While
this point of view is very broad, it is sometimes possible and more convenient to
regard the environmental process as taking place on a more general probability
space. This is the case, for instance, when the stationary process generating the
environmental sequence ~ω comes from an invertible ergodic transformation T
on a probability space Θ, with T preserving a probability measure π̂.
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A simple example where the probability space also has smooth structure, and
at the same time illustrates the fact that no mixing conditions are imposed on
the random environment, is: T is an irrational circle rotation and π̂ is Lebesgue
measure. Indeed, in this case, invertibility of T allows one to identify sequences
~ω with single points ω ∈ Θ by projecting on the 0-th entry, and in the other
direction, by considering the full trajectory of ω ∈ Θ under T , ω 7→ ~ω = {Tnω :
n ∈ Z}. This procedure also provides an identification between π and π̂. This
possibility will be considered in various parts of §3 where, with a slight abuse
of notation that should not confuse the reader, Ω and π will denote Θ and π̂,
respectively.

With this alternative viewpoint, Markov chains in random environments arise
in analyses of time-dependent dynamical systems, such as models of stirred flu-
ids [13] and circulation models of the ocean and atmosphere [8, 2, 4]. In these
settings, one can convert the typically low-dimensional nonlinear dynamics into
infinite-dimensional linear dynamics by studying the dynamical action on func-
tions on the low-dimensional space, (representing densities of invariant measures
with respect to a suitable reference measure). The driven infinite-dimensional
dynamics is governed by cocycles of Perron-Frobenius operators. In numerical
computations, these operators are often estimated by large sparse stochastic
matrices [13] that involve perturbations in the form of discretisations of both
the low-dimensional space and the random environment, resulting in a finite-
state Markov chain in a random environment. Thus, the stability and rigorous
approximation of invariant measures of Markov chains in random environments
are important questions for applications in the physical and biological sciences.
Other application areas include multiple-timescale systems of skew-product type
(see eg. [27]), where the “random environment” is an aperiodic fast dynamics
that drives the slow dynamics. In computations, both the fast and slow dynam-
ics are approximated by discretised linear operators, leading to a Markov chain
in a random environment.

1.3. Related results

Markov chains in random environments were considered in the 80’s and 90’s
in a series of papers by Nawrotzki [23], Cogburn [5, 6] and Orey [25]. Central
limit theorems [7] and large deviation results [32] have also been proved in this
setting.

When Ω consists of a single point, one returns to the setting of a homogeneous
Markov chain. The question of stability of the stationary distribution of homo-
geneous Markov chains under perturbations of the transition matrix has been
considered by many authors [28, 22, 15, 14, 30, 31, 21]. These papers developed
upper bounds on the norm of the resulting stationary distribution perturbation,
depending on various functions of the unperturbed transition matrix, the un-
perturbed stationary distribution, and the perturbation. Our present focus is
somewhat different: for Markov chains in random environments we seek to work
with minimal assumptions on both the random environment and stochastic ma-
trix function, and our primary concern is whether one can expect stability of
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the invariant measures at all, and if so, in what sense. However, by enforcing
stronger assumptions or requiring more knowledge about the driving process
and the matrix functions, it may be possible to obtain bounds analogous to the
homogeneous Markov chain setting.

Invariant measures of finite-state MCREs may be studied via a very power-
ful and general framework of so-called multiplicative ergodic theorems. When
the matrices A(~ω) are invertible, the celebrated multiplicative ergodic theorem
(MET) of Oseledets [26] guarantees the π-a.e. existence of a measurable splitting
of Rd into equivariant subspaces, within which vectors experience an identical
asymptotic exponential growth rate, known as a Lyapunov exponent. A recent
extension [12] of the Oseledets theorem yields the same conclusion even when
the matrices are not invertible, a situation that is relevant for MCREs. In the
present setting of Markov chains in random environments, the maximal growth
rate is log 1 = 0, and the associated fastest growing Oseledets space corresponds
exactly to the density v(~ω) of the invariant measure of the MCRE with respect
to µ.

In related work, Ochs [24] has linked convergence of Oseledets spaces to
convergence of Lyapunov exponents in a class of random perturbations of general
matrix cocycles. One of his standing hypotheses was that the matrices A(~ω)
were invertible, which is not a natural condition for the stochastic matrices
in MCREs. For products of stochastic matrices, the top Lyapunov exponent
is always 0, thus [24] yields convergence of the random invariant measures in
probability, provided the matrices are invertible. The type of perturbations that
we investigate generalise Ochs’ “deterministic” perturbations in the context of
stochastic matrices, which require Ω to be a compact topological space and σ to
be a homeomorphism. Moreover, the arguments of Ochs do not easily extend to
the noninvertible matrix setting. Our approach also enables the construction of
an efficient rigorous numerical method for approximating the random invariant
measure.

Another related result, regarding stability of so-called Oseledets splittings for
semi-invertible matrix cocycles under iid perturbations, was recently obtained in
[11]. The main result of [11] implies stability of invariant measures for MCREs
with iid environment. The present paper does not impose the iid condition,
indeed any ergodic random environment can be treated, and therefore the range
of environmental processes we can handle is considerably richer.

1.4. Summary of results and outline of the paper

We demonstrate stability of invariant measures for MCRE, in the sense of con-
vergence in probability. We show that the invariant measures are stable to the
following types of perturbations:

1. Perturbing the random environment:
The environmental process σ is perturbed.

2. Perturbing the transition matrix function:
The matrix function A is perturbed to a nearby matrix function.
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3. Stochastic perturbations:
The system is perturbed by convolving with a stochastic kernel close to
the identity.

4. Numerical schemes:
The system is perturbed by a Galerkin-type approximation scheme to
numerically compute an estimate of the invariant measure.

An outline of the paper is as follows. In Section 2 we provide natural con-
ditions under which the random invariant measure is unique. Section 3 pro-
ceeds through the four main types of perturbations listed above, deriving and
confirming the necessary boundedness and convergence conditions. Numerical
examples are given in Section 4. In Appendix A we present an abstract perturba-
tion lemma that forms the basis of our results, and verify the hypotheses of this
lemma in the stochastic matrix setting for the unperturbed MCRE. Appendix B
collects the longer technical proofs.

2. Uniqueness of invariant measures of MCREs

In this section, we derive an easily verifiable condition for Q to have a unique
invariant measure. Seneta [29] studied the coefficient of ergodicity in the con-
text of stochastic matrices. We refer the reader to references therein for earlier
appearances of related concepts.

Definition 2.1. LetM be a d×d stochastic matrix. The coefficient of ergodicity
of M is

τ(M) := sup
‖v‖1=1,

∑d
i=1[v]i=0

‖vM‖1.

One feature of this coefficient is that 1 ≥ τ(M) ≥ µ2, where µ2 is the second
eigenvalue ofM . In particular, when τ(M) < 1, the eigenspace corresponding to
µ1 = 1 is one-dimensional. In the random case, an analogous statement holds.

Lemma 2.2 (Uniqueness). Suppose τ̃(P ) :=
∫
τ(P (~ω))dπ(~ω) < 1. Then Q has

at most one invariant probability measure.

The proof of Lemma 2.2 is deferred until Appendix B.1. The following con-
sequence is relevant in our setting.

Corollary 2.3. Suppose there exist Ω̃ ⊂ Ω with π(Ω̃) > 0 and n ∈ N, such that
for every ~ω ∈ Ω̃, P (n)(~ω : x, y) := [P (~ω) · · ·P (σn−1~ω)]x,y are positive. Then Q
has at most one invariant measure.

Proof. The hypotheses of Lemma 2.2 hold for Qn, giving a unique invariant
probability measure for Qn. Since invariant probability measures for Q are also
invariant for Qn, the claim follows.

3. Perturbations

In this section, we consider a given MCRE, encoded by a tupleM = (Ω,F , π, σ,A,Rd),
as described in the introduction. We will refer to the MCRE as M. (Such an
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M is sometimes referred to as a random dynamical system [1].) We study sta-
bility properties of invariant measures under a variety of perturbations. The
results rely on a general perturbation result, Lemma A.1, which is presented in
Appendix A.

Throughout this section, we let V be the Banach space of d-dimensional

bounded measurable vector fields v : Ω → Rd, with norm ‖v‖∗ =
∣∣∣∑d

i=1 |vi|
∣∣∣
L∞(π)

=

||v(~ω)|`1 |L∞(π). A non-negative element v ∈ V may be regarded as the density

of a measure λ � µ. That is, λ(·) =
∫
v~ω(·) dπ(~ω), where v~ω = δ~ω × v(~ω) is

supported on {~ω} × {1, . . . , d}. The pre-dual of V will be denoted by W; see
Appendix A for details.

As introduced in §1, the linear operator L : L1(µ) 	 associated with the
MCRE M is defined in such a way that Lv is the density of λQ with respect to
µ. Thus, λ� µ is an invariant measure for the MCRE if and only if Lv = v. A
useful characterisation of L is given in Lemma A.5.

3.1. Perturbations of the random environment

We consider a sequence of environmental sequences governed by σn, n = 1, . . .,
that are “nearby” σ.

Proposition 3.1. Let {Mn}n∈N = {(Ω,F , πn, σn, A,Rd)}n∈N be a sequence of
MCREs, with πn equivalent to π for n ≥ 1, that satisfies

(I) limn→∞

∥∥∥dπn

dπ

∥∥∥
L∞(π)

= 1.

(II) limn→∞

∥∥∥d(σ−1
n )∗π
dπ

∥∥∥
L∞(π)

= 1.

(III) limn→∞ ‖g ◦ σ − g ◦ σn‖L1(π) = 0 for each g ∈ L1(π).

Then, for each n ≥ 1, the MCRE Mn has an invariant measure with density
vn ∈ V. Furthermore, there exists a subsequence of {vn}n∈N converging in prob-
ability to an L-invariant ṽ ∈ V. Therefore, the measure ν, characterised by
ṽ = dν/dµ, is invariant for the initial MCRE.

The proof of Proposition 3.1 will be deferred until §B.2.

Remark 3.2. In the context of Proposition 3.1, let us suppose the initial MCRE
M has a unique invariant measure ν � µ with density v; see §2 for a verifiable
criterion for uniqueness. Then, the sequence of {vn}n∈N converges in probability
to v, and it is not necessary to restrict to subsequences.

Remark 3.3.

(i) Conditions (I) and (II) are automatically satisfied whenever σ and σn
preserve a common ergodic invariant measure π.

(ii) The function
d(σ−1

n )∗π
dπ , appearing in condition (II), is related to the Perron-

Frobenius operator in dynamical systems. Whenever τ is non-singular with

respect to π (that is, π(A) = 0 implies π(τA) = 0), then d(τ)∗π
dπ = Pτ1,
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where Pτ : L1(π) is the Perron-Frobenius operator associated to τ (with
respect to the reference measure π).

(iii) Let us consider the alternative viewpoint of random environments intro-
duced in §1.2. If σ is an ergodic invertible π preserving transformation of
a metric space (Ω, ρ), then supω∈Ω ρ(ω, σn ◦σ−1ω) → 0 as n→ ∞, implies
‖g ◦ σ − g ◦ σn‖L1(π) for any g ∈ L1(π) (eg. Corollary 5.1.1 [19]).

(iv) The result here is considerably more general than Ochs [24] applied to
stochastic invertible matrices. Ochs considers Ω a topological space, σ a
homeomorphism, and A a continuous matrix function. Moreover, Ochs has
a further requirement that, in our language, σ and σn, n ≥ 0, all preserve
π. The convergence result in our setting is equivalent to Ochs (convergence
in probability).

Example 3.4. The following example fits in the alternative viewpoint of random
environments introduced in §1.2. Let Ω = TD = RD/ZD, the D-dimensional
torus and σ be rigid rotation by an irrational vector α ∈ RD, which preserves D-
dimensional volume π. Let σn(ω) = ω+αn, n ≥ 0 where αn ∈ RD is irrational,
and αn → α as n→ ∞. Then for any given stochastic matrix function A : Ω →
Md×d(R), one has vn → v in probability. If, for example, the A(ω) represent
a random walk on the finite set of states {1, . . . , d} where there is a positive
probability to remain in place and walk both left and right for each ω, then
A(d−1)(ω) is a positive matrix for all ω ∈ Ω and by Corollary 2.3 there is a
unique invariant probability measure for the MCRE. See Section 4 for numerical
computations.

3.2. Perturbations of the transition matrix function

We consider a sequence of matrix functions An, n ∈ N, that are nearby A.

Proposition 3.5. Let An : Ω → Md×d(R) be a sequence of measurable stochas-
tic matrix-valued functions that converge in measure to A; that is

lim
n→∞

π({~ω ∈ Ω : |An(~ω)−A(~ω)|`∞ > ε}) → 0 for each ε > 0.

For each n ≥ 1, the MCRE {Mn}n∈N := {(Ω,F , π, σ,An,Rd)}n∈N has an in-
variant measure with density vn ∈ V. Furthermore, there exists a subsequence
of {vn}n∈N converging in probability to an L-invariant ṽ ∈ V. Therefore, the
measure ν, characterised by ṽ = dν/dµ, is invariant for the initial MCRE.

If M has a unique invariant measure ν � µ, then one does not require
subsequences of {vn}n∈N in Proposition 3.5; see Remark 3.2.

Proof of Proposition 3.5. Existence of vn for π a.e. ~ω follows from the Multi-
plicative Ergodic Theorem [12]. As in the proof of Proposition 3.1, the linear
operators associated to Mn, L′

n : W 	 are defined by L′
nf(~ω) = An(~ω)f(σ~ω)

and by Lemma A.7 these are bounded. We need to check that ‖(L−L′
n)f‖ → 0
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as n→ ∞.

‖(L − L′
n)f‖ =

∫
max
1≤i≤d

|[(A(~ω)−An(~ω))f(σ~ω)]i| dπ(~ω)

≤
∫

|A(~ω)−An(~ω)|`∞ |f(σ~ω)|`∞ dπ(~ω).

Define Aε,n = {~ω ∈ Ω : |A(~ω)−An(~ω)|`∞ < ε}. Then∫
|A(~ω)−An(~ω)|`∞ |f(σ~ω)|`∞ dπ(~ω)

≤ ε

∫
Aε,n

|f(σ~ω)|`∞ dπ(~ω) +

∫
Ac

ε,n

|A(~ω)−An(~ω)|`∞ |f(σ~ω)|`∞ dπ(~ω)

≤ ε‖f‖+ 2

∫
Ac

ε,n

|f(~ω)|`∞ dπ(~ω).

Without loss, let f have unit norm ‖f‖ = 1, and select some δ > 0. Then
choosing ε = δ/2, there is an N such that for n ≥ N ,

∫
Ac

ε,n
|f(σ~ω)|`∞ dπ(~ω) <

δ/4 and thus ‖(L − L′
n)f‖ < δ for n ≥ N .

Hence, Lemma A.1 yields a weak-* limit for {vn}n∈N in (V, ‖ · ‖∗), and
Lemma A.8 shows that convergence takes place in probability.

Remark 3.6. In the context of stochastic matrices, Proposition 3.5 is analogous
to Ochs [24], except that we can additionally handle non-invertible matrices.

3.3. Stochastic perturbations

We now consider the situation where the MCRE is subjected to an averaging
process. In this section we assume that Ω is a compact metric space with metric
%. For example, if Ω = ΘZ, where Θ = {1, . . . , k} has the discrete metric,

ρ′(i, j) = 1 for i 6= j. Then, Ω is a compact metric space with metric ρ(~ω, ~ζ) :=
2−n, where n = min{|j| : ωj 6= ζj} (see e.g. [3, §1.4]).

For each n ≥ 1 let kn : Ω×Ω → R be a non-negative measurable function sat-
isfying

∫
kn(~ω, ~ζ) dπ(~ζ) = 1 for a.a. ~ω ∈ Ω. Define (Lnv)(~ω) =

∫
kn(~ω, ~ζ)v(σ

−1~ζ)A(σ−1~ζ) dπ(~ζ).
We first require existence of fixed points of Ln, which are invariant measures of
the corresponding MCRE.

Proposition 3.7. If for every ~ω1, ~ω2 ∈ Ω,
∫
|kn(~ω1, ~ζ) − kn(~ω2, ~ζ)| dπ(~ζ) ≤

Kn(%(~ω1, ~ω2)), where Kn is a function satisfying limx→0Kn(x) = 0, then Ln

has a fixed point vn ∈ V.

The proof of Lemma 3.7 is deferred to §B.2.

Example 3.8. The assumptions of Proposition 3.7 hold for the following nat-
ural random perturbations:

(i) An important example is finite-memory approximations of the random en-
vironment. Assume π =

∏∞
i=−∞ p, where p is a probability measure on Θ
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with full support, and let B̄r(~ω) be the closed ball of radius r centred at ~ω.
Then, the stochastic kernel

kn(~ω, ~ζ) = π(B̄2−n(~ω))−11B̄2−n (~ω)(~ζ),

satisfies the desired conditions. The corresponding MCRE Mn can only
“see” the stochastic sequences in the random environment on a window
[−n, n], and the matrices An(~ω) are applied in an average sense, depending
only ω−n, . . . , ωn.

(ii) kn is uniformly continuous and π is arbitrary. In this case, the assump-
tions of Proposition 3.7 follow immediately from the definition of uniform
continuity.

(iii) The following example fits in the alternative random environment set-
ting introduced in §1.2. Let Ω = TD, π be equivalent to Lebesgue mea-
sure, dπ/d(Leb) uniformly bounded above, and kn ∈ L1(Leb). In this
case, the statement follows from continuity of translations in L1(Leb)
(e.g. [16, Theorem 13.24]). This includes discontinuous kn, for example,
kn(ω, ζ) = π(Bεn)

−11Bεn
(ω−ζ), where 1Bεn

is the characteristic function
of an εn-ball centred at the origin. The linear operator Ln associated to
the MCRE Mn is performing a local averaging over an εn-neighbourhood.
Note that there are no assumptions on continuity of σ.

Proposition 3.9. Let vn ∈ V be a fixed point of Ln for n ≥ 0 as guaranteed by
Lemma 3.7. If for each f ∈ L1(π),

lim
n→∞

∫ ∣∣∣ ∫ kn(~ω, ~ζ)f(~ζ) dπ(~ζ)− f(~ω)
∣∣∣ dπ(~ω) = 0, (3.1)

then one may select a subsequence of {vn}n∈N converging in probability to ṽ ∈ V.
Further, ṽ is L-invariant, and therefore the measure ν, characterised by ṽ =
dν/dµ, is invariant for the initial MCRE.

If M has a unique invariant measure ν � µ, then one does not require
subsequences of {vn}n∈N in Proposition 3.9; see Remark 3.2.

Proof of Proposition 3.9. Firstly, one may check that

L′
nf(~ω) =

∫
kn(σ~ζ, σ~ω)A(~ω)f(σ~ζ) dπ(~ζ).

Now, for f ∈ W,

‖L′
nf − L′f‖ =

∫ ∣∣∣∣∫ kn(σ~ζ, σ~ω)A(~ω)f(σ~ζ) dπ(~ζ)−A(~ω)f(σ~ω)

∣∣∣∣
`∞

dπ(~ω)

=

∫ ∣∣∣∣A(σ−1~ω)

(∫
kn(~ζ, ~ω)f(~ζ) dπ(~ζ)− f(~ω)

)∣∣∣∣
`∞

dπ(~ω)

≤
∫ ∣∣∣∣∫ kn(~ζ, ~ω)f(~ζ) dπ(~ζ)− f(~ω)

∣∣∣∣
`∞

dπ(~ω),
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since |A(σ−1~ω)|`∞ ≡ 1.
Lemma A.1 then yields a weak-* limit for {vn}n∈N in (V, ‖·‖∗), and Lemma A.8

shows that convergence takes place in probability.

Remark 3.10. The condition (3.1) is reminiscent of what has been called a
“small random perturbation” by Khas’minskii [17] and later Kifer [18], in the
context of deterministic dynamical systems governed by a continuous map T :
X → X. In this setting, one asks about whether limits of invariant measures of
stochastic processes formed by small random perturbations are invariant under
the deterministic map T . A sufficient condition for this to be the case is: for
each continuous f : X → R,

lim
n→∞

sup
x∈X

∣∣∣∣∫
X

Pn(x, dy)f(y)− f(Tx)

∣∣∣∣ = 0, (3.2)

where Pn : X ×B(X) → [0, 1] is a transition function (B(X) is the collection
of Borel-measurable sets in X).

3.4. Perturbations arising from a numerical Galerkin scheme

When one knows the invariant measure of the environmental process a priori,
one can in principle use finite-memory approximations, as in Example 3.8(i), to
perform finite computations of the invariant measure for the MCRE. In many
applications, however, the explicit knowledge of such a measure is not available.
The goal of this section is to present a numerical approach that is useful in the
context of random environments taking values on a manifold, as discussed in
§1.2.

In this setup, Lebesgue measure may be taken as a reference measure, even
when it is not necessarily preserved by the environmental process. This consid-
eration will allow us to prove convergence results for approximations that are
numerically computable.

Throughout this section, let us assume Ω is a compact smooth Riemannian
manifold, and let m be the natural volume measure, normalised on Ω. Suppose
σ : Ω 	 is invertible and it preserves an ergodic measure π. We assume that
π ≡ m and that h := dπ/dm is uniformly bounded above and below. For each
n, let Pn be a partition of Ω (mod m) into n non-empty, connected open sets
B1,n, . . . , Bn,n. We require that limn→∞ max1≤j≤n diam(Bj,n) = 0.

For each n, we define a projection Πn : V → V by

Πn(v) =
n∑

i=1

(
1

m(Bi)

∫
Bi

v(ω) dm(ω)

)
1Bi .

Using the standard Galerkin procedure we define a finite-rank operator Ln :=
ΠnLΠn.

This approach is related to Ulam’s method [33], a common numerical proce-
dure for estimating invariant measures of dynamical systems. We will introduce
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a new modification of the Ulam approach to numerically estimate the invariant
measures of the MCRE, or more precisely its density v(ω), simultaneously for
each ω ∈ Ω. We consider our numerical method to be a perturbation of the
original MCRE and apply our abstract perturbation machinery.

It will be useful to consider the m-predual of L, which we denote L′
m:
∫
Lv ·

f dm =
∫
v · L′

mf dm. It is easy to verify that L′
mf = A(ω)f(σω)h(ω)/h(σω).

We first consider condition (c) of Lemma A.1.

Lemma 3.11. The following conditions are satisfied.

1. L′
nf = Πn(L′

m(Πn(f · h)))/h.
2. L′

n is bounded.
3.
∫
|L′

nf − L′f |`∞ dπ → 0 as n→ ∞ for each f ∈ W.

We defer the proof of Lemma 3.11 to §B.2

3.4.1. Numerical considerations

We wish to construct a convenient matrix representation of Ln.

Lemma 3.12. Let Πn(v) =
∑n

i=1 v
i1Bi where vi ∈ Rd. Then the action of Ln

can be written

ΠnLΠn(v) =

n∑
j=1

(
n∑

i=1

viLn,ij

)
1Bj , (3.3)

where

Ln,ij =

∫
Bj∩σBi

A(σ−1ω) dm(ω)

m(Bj)
. (3.4)

The proof of Lemma 3.12 is deferred to §B.2.
We note that if A(ω) = Ai (a fixed matrix) for ω ∈ Bi ∩ σ−1Bj , then the

expression (3.4) simplifies:

Ln,ij =

∫
Bj∩σBi

A(σ−1ω) dm(ω)

m(Bj)

=

∫
Bj∩σBi

A(σ−1ω)/h(ω) dπ(ω)

m(Bj)

=

∫
σ−1Bj∩Bi

A(ω)/h(σω) dπ(ω)

m(Bj)

= Ai

∫
Bj∩σBi

1/h(ω) dπ(ω)

m(Bj)

= Ai
m(Bj ∩ σBi)

m(Bj)
.

One could for example for ω ∈ Bi replaceA(ω) with Āi = 1/m(Bi)
∫
Bi
A(ω) dm(ω)

for i = 1, . . . , n. Such a replacement would create an additional triangle inequal-
ity term in the proof of Lemma 3.11(3) to handle the difference Ā(ω)− A(ω),
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but using the argument of the proof of Lemma 3.5 we see that any replacement
that converges to A in probability, including the Ā replacement will leave the
conclusion of Lemma 3.11 (3) unchanged. Thus, supposing that we have made

such a replacement, and denoting Pij =
m(Bj∩σBi)

m(Bj)
, we may write

Ln =


P11A1 P12A1 · · · P1nA1

P21A2 P22A2 · · · P2nA2

...
...

. . .
...

Pn1An Pn2An · · · PnnAn

 , (3.5)

where each block is a d× d matrix. We now show that there is a fixed point of
Ln.

Lemma 3.13. For each n, the matrix Ln has a fixed point vn.

Proof. Let Sd
n = {x ∈ Rnd : x ≥ 0,

∑kd
i=(k−1)d+1 xi = 1, k = 1, . . . , n}. A fixed

point exists by Brouwer: the set Sd
n is convex and compact, and is preserved by

Ln. To see the latter, the first block of length d of the image of x = [x1| · · · |xn]
under Ln is given by

∑n
i=1 Pijx

iAi, where x
i is the ith block of length d. As

each Ai is row-stochastic, the sum of the entries of xiAi remains 1; further note
that

∑
i=1 Pij = 1 by the definition of P , so the summation is simply a convex

combination of the xiAi.

Numerically, one seeks a fixed point vn = [v1|v2| · · · |vn]Lij = [v1|v2| · · · |vn].
One can for example initialise with

v0n := [(1/d, . . . , 1/d)|(1/d, . . . , 1/d)| · · · |(1/d, . . . , 1/d)]

and repeatedly multiply by the (sparse) matrix Ln.
Lemma A.1 and Lemma A.8 yield the following.

Proposition 3.14. Let vn ∈ V be constructed as a fixed eigenvector of Ln

in (3.5), and considered to be a piecewise constant vector field on Ω, constant
on each partition element Bi, i = 1, . . . , n. Then, there exists a subsequence
of {vn}n∈N converging in probability to an L-invariant ṽ ∈ V. Therefore, the
measure ν, characterised by ṽ = dν/dµ, is invariant for the initial MCRE.

If M has a unique invariant measure ν � µ, then one does not require
subsequences of {vn}n∈N in Proposition 3.14; see Remark 3.2.

Remark 3.15. The expression (3.5) is related to the constructions in [10] (The-
orem 4.2) and [9] (Theorem 4.8). In [10], the focus was on estimating the top
Lyapunov exponent of a random matrix product driven by a finite-state Markov
chain, rather than approximating the top Oseledets space. In [9], the matrices
A were finite-rank approximations of the Perron-Frobenius operator, mentioned
in the introduction, and one sought an equivariant family of absolutely continu-
ous invariant measures of random Lasota-Yorke maps (piecewise C2 expanding
interval maps) with a Markovian random environment. In the present paper,



Froyland and González-Tokman/Stability and approximation of invariant measures of MCREs13

we are able to handle non-Markovian random environments and require no as-
sumptions on the transition matrix function beyond measurability. Propositions
3.14 and 3.5 have enabled a very efficient numerical approximation of the in-
variant measure for the MCRE by exploiting perturbations in both the random
environment and the transition matrix function.

4. Numerical Examples

In this section we illustrate our results with numerical experiments. To empha-
sise the fact that no independence is assumed in the random environmental
process, we explore a class of MCREs where the random environment is given
by an irrational circle rotation.

More precisely, let Ω = S1, α /∈ Q, and σ(ω) = ω + α (mod 1) for x ∈ Ω.
We set π to Lebesgue on S1; σ preserves π and is ergodic. For each ω ∈ Ω, the
matrix A(ω) describes a nearest-neighbour random walk on states {1, . . . , d}.

To give a specific example, for 1 < i < d, we allow possible transitions to
states i − 1, i, i + 1 with conditional probabilities Ai,i−1(ω), Ai,i(ω), Ai,i+1(ω)
given by {

0.8− 1.2ω, 0.1 + ω, 0.1 + 0.2ω, 0 ≤ ω < 1/2;
0.3− 0.2ω, 1.1− ω,−0.4 + 1.2ω, 1/2 ≤ ω ≤ 1.

For i = 1, Ai,i−1(ω) = 0 and Ai,i(ω), Ai,i+1(ω) are given by{
0.9− 0.2ω, 0.1 + 0.2ω, 0 ≤ ω < 1/2;
1.4− 1.2ω, 1.1− ω,−0.4 + 1.2ω, 1/2 ≤ ω ≤ 1.

For i = d, Ai,i+1(ω) = 0 and Ai,i−1(ω), Ai,i(ω) are given by{
0.8− 1.2ω, 0.2 + 1.2ω, 0 ≤ ω < 1/2;
0.3− 0.2ω, 0.7 + 0.2ω, 1/2 ≤ ω ≤ 1.

Roughly speaking, the closer ω is to 0, the greater the tendency to walk left; the
closer ω is to 1, the greater the tendency to walk right; and the closer ω is to
1/2, the greater the tendency to remain at the current state. The matrix A is a
continuous function of ω, except at ω = 0, however, our theoretical results only
require A to be a measurable function of ω, so we can also handle very irregular
A.

Using n = 5000 partition elements for Ω and d = 10, we form the (sparse) ma-
trix Ln in (3.5), and compute the fixed left eigenvector; each of these operations
takes less than 1 second in MATLAB. Figure 1 shows a numerical approxima-
tion of the random invariant measure using the approach of Section 3.4. The
ω-coordinates are along the x-axis, and for a fixed vector v(ω) ∈ R10, the 10
components are plotted as differently coloured vertical bars. The value of v(ω)i
is equal to the height of the ith coloured vertical bar at x-coordinate ω; note the
total height is unity for all ω ∈ Ω.

Let us consider first Figure 1(a), where α = 1/(20
√
2) ≈ 0.0354. This value of

α represents a relatively slow evolution of random environment coordinates. The
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peak probabilities to be in state 1, the left-most state (dark blue), occur around
ω = 0.5, after the driven random walk has been governed by many matrices
favouring walking to the left (from ω = 0 up to ω = 0.5). Once the driving
rotation passes ω = 0.5, the random walk matrices now favour movement to
the right, and probability of being in state 1 (dark blue) decreases, while the
probability of being in state 10, the right-most state, (dark red) increases, the
latter finally reaching a peak around ω = 1. This high probability of state 10
continues for one more iteration of σ, but once ω again passes α, the probability
of being in state 10 quickly declines as the matrices again favour movement to
the left.

Figure 1(b) reduces the resolution of the approximation from 5000 bins on
Ω to 500. One sees that the result is still very accurate, with only the very fine
irregularities beyond the resolution of the coarser grid unable to be captured.

Figures 1(c),(d) show approximations of the invariant measure with an iden-
tical setup to Figure 1(a), except that α = 1/π, 1/

√
2, respectively. These ro-

tations are relatively fast and so one does not see the unimodal “hump” shape
in Figure 1(a); nevertheless, it is clear that there is a complicated interplay
between the driving map σ and the resulting invariant measures.

Appendix A: A general perturbation lemma and MCREs

We begin with an abstract stability result for fixed points of linear operators.

Lemma A.1. Let (B, ‖ · ‖) be a separable normed linear space with continuous
dual (B∗, ‖ · ‖∗). Let L : (B∗, ‖ · ‖∗) 	 and Ln : (B∗, ‖ · ‖∗) 	, n = 1, . . . be linear
maps satisfying

(a) there exists a bounded linear map L′ : (B, ‖ · ‖) 	 such that (L′)∗ = L,
(b) for each n ∈ N there is a vn ∈ (B∗, ‖ · ‖∗) such that Lnvn = vn, which we

normalise so that ‖vn‖∗ = 1 (where ‖vn‖∗ = supf∈B,‖f‖=1 |vn(f)|),
(c) for each n = 1, . . ., there exists a bounded linear map L′

n : B 	 such that
(L′

n)
∗ = Ln, satisfying ‖(L′ − L′

n)f‖ → 0 as n→ ∞ for each f ∈ B.

Then there is a subsequence vnj
∈ B∗ converging weak-* to some ṽ ∈ B∗; that

is, vnj (f) → ṽ(f) as j → ∞. Moreover, Lṽ = ṽ.

Proof. The existence of a weak-* convergent subsequence follows from (b) and
the Banach-Alaoglu Theorem. To show that Lṽ = ṽ, for f ∈ B we write

(Lṽ − ṽ)(f) = (Lṽ − Lvn)(f) + (Lvn − Lnvn)(f) + (vn − ṽ)(f). (A.1)

Writing the first term of (A.1) as |(ṽ − vn)(L
′f)| this term goes to zero by

boundedness of L′ and weak-* convergence of vn to ṽ. Writing the second term
as |vn(L′ −L′

n)(f)| and applying (c), we see this term vanishes as n→ ∞. The
third term goes to zero as n→ ∞ by weak-* convergence of vn to ṽ.

Remark A.2. Condition (a) is equivalent to L bounded and weak-* continuous;
that is, Lvi → Lv weak-* if vi → v weak-* where v, vi ∈ B∗ (see eg. Theorem
3.1.11 [20]).
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Remark A.3. Condition (b) of Lemma A.1 may be replaced by

(b’) limn→∞
‖Lnvn−vn‖∗

‖vn‖∗
= 0.

Indeed, this condition would only add an extra term in Equation (A.1), that
would also vanish as n→ ∞.

A.1. Application to MCREs

We now begin to define the objects (B, ‖ · ‖) and its dual, and the operator L
and its pre-dual L′ in the setting of MCREs. Let us recall that Ω is the space
of bi-infinite sequences ~ω = {ωn : n ∈ Z} with entries ωn ∈ Θ, and the shift
σ : Ω 	 is an invertible, ergodic π-preserving transformation of Ω.

Recall that V denotes the Banach space of d-dimensional bounded measurable

vector fields v : Ω → Rd, with norm ‖v‖∗ =
∣∣∣∑d

i=1 |vi|
∣∣∣
L∞(π)

= ||v(~ω)|`1 |L∞(π).

Associated with V is the Banach space W of d-dimensional integrable functions
f : Ω → Rd, with norm ‖f‖ = |max1≤i≤d |fi||L1(π) = ||f |`∞ |L1(π).

Lemma A.4. (V, ‖ · ‖∗) and (W, ‖ · ‖) are Banach spaces and (V, ‖ · ‖∗) =
(W, ‖ · ‖)∗.

Proof. Given Banach spaces Xi, one can identify (X1 ⊕ · · · ⊕Xd)
∗ with (X∗

1 ⊕
· · · ⊕X∗

d ), and with the right identification x∗(y) =
∑d

i=1 x
∗
i (yi), [20, Theorem

1.10.13].
For the norms, note that using the usual formula for ‖ · ‖∗ in terms of ‖ · ‖

one has

‖v‖∗ = sup
‖f‖=1

∣∣∣∣∫ v(~ω) · f(~ω) dπ(~ω)
∣∣∣∣ = sup

f :
∫
maxi |fi| dπ≤1

∣∣∣∣∣
∫ d∑

i=1

vi(~ω)fi(~ω) dπ(~ω)

∣∣∣∣∣
≤ sup

f :
∫
maxi |fi| dπ≤1

∫ d∑
i=1

|vi(~ω)| max
1≤i≤d

|fi(~ω)| dπ(~ω)

≤

∣∣∣∣∣
d∑

i=1

|vi(~ω)|

∣∣∣∣∣
L∞(π)

· sup
f :
∫
maxi |fi| dπ≤1

∣∣∣∣max
1≤i≤d

|fi|
∣∣∣∣
L1(π)

=

∣∣∣∣∣
d∑

i=1

|vi|

∣∣∣∣∣
L∞(π)

.

The reverse inequality may be obtained as follows. For each j ∈ N, let fj,i =
sgn(vi(ω))

π(Ωj)
1Ωj

, where Ωj =

{
ω ∈ Ω :

∑d
i=1 |vi(ω)| ≥ (1− 1/j)

∣∣∣∑d
i=1 |vi|

∣∣∣
L∞(π)

}
.

Then, ‖fj‖ = 1 and∣∣∣∣∫ v(ω) · fj(~ω) dπ(~ω)
∣∣∣∣ = ∫ d∑

i=1

vi(~ω)fj,i(~ω) dπ(~ω)

=
1

π(Ωj)

∫
Ωj

d∑
i=1

|vi(ω)|dπ(~ω) ≥ (1− 1/j)

∣∣∣∣∣
d∑

i=1

|vi|

∣∣∣∣∣
L∞(π)

.
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Letting j → ∞, we get that ‖v‖∗ ≥
∣∣∣∑d

i=1 |vi|
∣∣∣
L∞(π)

.

Let L : V → V be the linear operator defined in equation (1.2) by Lv =
d((vµ)Q)/dµ, where Q is as defined in equation (1.1). The following character-
isation of L will be used repeatedly.

Lemma A.5. The action of the linear operator L on v ∈ L1(µ) may be expressed
as follows:

(Lv)(~ω) = v(σ−1~ω)A(σ−1~ω).

Proof. Let λ = vµ. Then, by definition, Lv = d(λQ)/dµ. Let us compute

λQ({y} ×B) =

∫
Q((x, ~ω), {y} ×B)[v(~ω)]xdµ(x, ~ω)

=

∫
[A(~ω)]x,y1B(σ~ω)[v(~ω)]xdµ(x, ~ω)

=

∫
[A(σ−1~ω)]x,y1B(~ω)[v(σ

−1~ω)]xdµ(x, ~ω)

=

∫
[v(σ−1~ω)A(σ−1~ω)]z1{y}×B(z, ~ω)dµ(z, ~ω),

where the third equality follows from the fact that π is σ-invariant and µ = κ×π.
Thus, d(λQ)/dµ = v(σ−1~ω)A(σ−1~ω).

Lemma A.6. The operator L has ‖ · ‖∗-norm 1.

Proof. Using Lemma A.5, one has

‖Lv‖∗ =

∣∣∣∣∣
d∑

i=1

|[Lv]i|

∣∣∣∣∣
∞

=

∣∣∣∣∣
d∑

i=1

|[v ◦ σ−1 ·A ◦ σ−1]i|

∣∣∣∣∣
∞

≤

∣∣∣∣∣
d∑

i=1

|[v ◦ σ−1]i|

∣∣∣∣∣
∞

= ‖v‖∗.

The inequality holds as A(~ω) is row-stochastic for each ~ω, and the inequality is
sharp if v ≥ 0.

The following lemma shows that condition (a) of Lemma A.1 holds.

Lemma A.7. The operator L′ : W → W defined by L′f = A(~ω)f(σ~ω) satisfies
(L′)∗ = L and ‖L′‖ ≤ 1.

Proof. One has

(Lv)(f) =
∫
v(σ−1~ω)A(σ−1~ω)f(~ω) dπ(~ω) =

∫
v(~ω)A(~ω)f(σ~ω) dπ(~ω) = v(L′f),

where L′f = A(~ω)f(σ~ω). Moreover,

‖L′f‖ =

∫
max
1≤i≤d

|[A(~ω)f(σ~ω)]i| dπ(~ω) ≤
∫

|A(~ω)|`∞ |f(σ~ω)|`∞ dπ(~ω) = ‖f‖,

as each A(~ω) is a row-stochastic matrix with |A(~ω)|`∞ = 1 (| · |`∞ is the max-
row-sum norm).
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To conclude this section we have the following connection between weak-*
convergence in L∞ and convergence in probability.

Lemma A.8. Let g, gn ∈ L∞(π) for n ≥ 0. Then,

1. gn → g weak-* ⇒ gn → g in probability.
2. If additionally, |gn|∞, n ≥ 0, are uniformly bounded then gn → g weak-*

⇔ gn → g in probability.

Remark A.9. In this paper our interest is in v ∈ V such that for each ~ω ∈ Ω,
v(~ω) represents a 1 × d probability vector (so |v(~ω)|`1 = 1 for π-a.e. ~ω). Thus,
‖v‖∗ = 1 and we will always be in situation (2) of Lemma A.8 where statements
of convergence may be regarded in either a weak-* sense or in probability. In
the context of invariant measures for Markov chains in random environments,
vn → v in probability means limn→∞ π({~ω ∈ Ω : |vn(~ω)− v(~ω)|`1 > ε}) = 0 for
each ε > 0.

Proof of Lemma A.8. Let us start with (1). After replacing gn with gn − g, it
suffices to show that if gn ∈ L∞ and

∫
gnf dπ → 0 as n → ∞ for each f ∈ L1,

then |gn| → 0 in probability. We show the contrapositive: Suppose |gn| does not
converge to 0 in probability. We will show

∫
|gn|f dπ does not converge to zero

for every f ∈ L1 and get a contradiction.
By assumption, there exists some ε > 0 such that π({~ω : |gn(~ω)| ≥ ε}) 9 0.

So there exists a sequence of sets En = {|gn| ≥ ε} with π(En) 9 0 as n → ∞.
Thus, lim supn π(En) > 0. Note that |gn| ≥ ε1En for n ≥ 0. Let E = lim supEn,
note that Fatou’s lemma yields π(E) ≥ lim supn π(En) > 0, and set f = 1E .
Then

∫
|gn|f dπ ≥ ε

∫
1En1E dπ = επ(En ∩ E) for all n ≥ 0. To finish, we will

show that lim supπ(En ∩E) > 0.
We proceed by contradiction. Let 0 < δ be such that lim supn π(En) > δ.

Suppose lim supπ(En ∩ E) = 0. Then, there exists N0 ∈ N such that for every
n ≥ N0, π(En ∩ E) < δ/2. From the definition of lim sup, x ∈ E if and only
if there is an infinite sequence {nj} such that x ∈ Enj for all j ≥ 1. Thus,
for every x /∈ E there exists tx ∈ N such that x /∈ En for every n > tx. Let
t : Ω → N ∪ {∞} be the function x 7→ tx if x /∈ E and t(x) = ∞ if x ∈ E. That
is, t is the supremum of n such that x ∈ En. Since the sets En are measurable,
so is t. Hence, there exists N1 such that π(x ∈ Ω \ E : tx > N1) < δ/2.

Let n > max(N0, N1) be such that π(En) > δ. On the one hand, we have
π(En ∩ E) < δ/2. On the other hand, π(En \ E) ≤ π(x /∈ E : tx ≥ n) < δ/2.
Thus, π(En) < δ/2 + δ/2, which yields a contradiction.

Now we show the remaining part of (2). Let ε > 0. If π(|gn−g| > ε) → 0, then
|
∫
f(gn−g)dπ| ≤ ‖f‖1ε+δf (ε)‖gn−g‖∞, where δf (ε) := sup{Γ:π(Γ)≤ε}

∫
Γ
|f |dπ.

In particular, δf (ε) → 0 as ε→ 0, and the claim follows.
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Appendix B: Uniqueness and stability proofs

B.1. Uniqueness proof

Proof of Lemma 2.2. We argue by contradiction. Suppose there exist v1, v2 ∈ V
distinct fixed points of L. The set of ~ω ∈ Ω such that v1(~ω) and v2(~ω) are
linearly dependent is σ invariant, so by ergodicity of σ it has measure 0 or 1.
The latter is ruled out because v1 and v2 are distinct normalised fixed points.
Hence, v1(~ω)− v2(~ω) 6= 0 for π-a.e. ~ω. Thus,

τ̃(A) ≥
∫

‖(v1 − v2)(~ω)A(~ω)‖1
‖(v1 − v2)(~ω)‖1

dπ

=

∫
‖(v1 − v2)(σ~ω)‖1
‖(v1 − v2)(~ω)‖1

dπ.

However, the last expression is bounded below by 1, as the following sublemma,
applied to f(~ω) = ‖(v1 − v2)(~ω)‖1, shows.

Sublemma B.1. Let f ≥ 0 be such that f◦σ
f is a π-integrable function. Then,∫

f(σ~ω)

f(~ω)
dπ ≥ 1.

Proof. Jensen’s inequality yields∫
f(σ~ω)

f(~ω)
dπ ≥ exp

(∫
log f(σ~ω)− log f(~ω)dπ

)
= 1,

where the equality follows from σ-invariance of π.

B.2. Stability proofs

Proof of Proposition 3.1. The strategy of proof is to verify the hypotheses of
Lemma A.1, including the slight variation of hypothesis (b) given in Remark A.3.
This will yield a weak-* limit for {vn}n∈N in (V, ‖ · ‖∗), and Lemma A.8 then
shows that in fact convergence takes place in probability.

In view of Lemma A.5, if µn = κ× πn and λ = vµn, then the density of λQn

with respect to µn is given by (L̃nv)(~ω) = v(σ−1
n ~ω)A(σ−1

n ~ω). For each n, the
existence of a fixed point of L̃n is guaranteed at π a.a. ~ω by the Multiplicative
Ergodic Theorem [12]. Let us call such a fixed point vn.

Since πn and π are equivalent, we can also study the evolution under Mn

of densities with respect to µ. Let us call this operator Ln. That is, Lnv =
d(vµQn)/dµ. Let ρn = dπn/dπ. It is straightforward to check that

Lnv(~ω) = ρn(~ω)L̃n(ρ
−1
n (~ω)v(~ω)) =

ρn(~ω)

ρn(σ
−1
n ~ω)

v(σ−1
n ~ω)A(σ−1

n ~ω).
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In particular,

|Lnvn(~ω)− vn(~ω)|`1 ≤
∣∣∣ ρn(~ω)

ρn(σ
−1
n ~ω)

− 1
∣∣∣|vn(~ω)|`1 . (B.1)

Thus,

‖Lnvn − vn‖∗ ≤
∥∥∥ ρn(~ω)

ρn(σ
−1
n ~ω)

− 1
∥∥∥
L∞(π)

‖vn‖∗. (B.2)

Hence, hypothesis (I) of Proposition 3.1 ensures that condition (b’) of Re-
mark A.3 is satisfied.

Now we verify condition (c) of Lemma A.1. Notice that∫
Lnv(f)dµ =

∫
ρn(~ω)

ρn(σ
−1
n ~ω)

v(σ−1
n ~ω)A(σ−1

n ~ω)f(~ω)dµ

=

∫
ρn(σn~ω)

ρn(~ω)
v(~ω)A(~ω)f(σn~ω)d(Id× σ−1

n )∗µ.

Thus, since
d(Id×σ−1

n )∗µ
dµ (j, ~ω) =

d(σ−1
n )∗π
dπ (~ω) for every j ∈ X , we get that

L′
nf(~ω) =

ρn(σn~ω)

ρn(~ω)
A(~ω)f(σn~ω)

d(σ−1
n )∗π

dπ
(~ω).

Therefore,

‖(L′ − L′
n)f‖ ≤

∫
max
1≤i≤d

|[A(~ω)(f(σ~ω)− f(σn~ω))]i| dπ(~ω)

+
∥∥∥ρn(σn~ω)
ρn(~ω)

d(σ−1
n )∗π

dπ
(~ω)− 1

∥∥∥
L∞(π)

∫
max
1≤i≤d

|[A(~ω)f(σn~ω)]i| dπ(~ω).

The first term goes to zero as n → ∞ by (III), since the entries of A(~ω) are
bounded between 0 and 1. The second term also goes to zero by virtue of (I)
and (II).

Proof of Lemma 3.7. Let Sd−1
+,1 = {x ∈ Rd : x ≥ 0,

∑d
i=1 xi = 1}, and Sd−1

+,1 =

{v ∈ V : v(~ω) ∈ Sd−1
+,1 , ~ω ∈ Ω}. For v ∈ Sd−1

+,1 ,

d∑
i=1

[Lnv(~ω)]i =

∫ d∑
i=1

[v(σ−1~ζ)A(σ−1~ζ)]ikn(~ω, ~ζ) dπ(~ζ) =

∫
kn(~ω, ~ζ) dπ(~ζ) = 1,
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for π-a.e. ~ω; thus Ln preserves Sd−1
+,1 . For v ∈ Sd−1

+,1 we have

d∑
i=1

|[Lnv(~ω1)− Lnv(~ω2)]i|

≤
∫ d∑

i=1

|[v(σ−1~ζ)A(σ−1~ζ)]i(kn(~ω1, ~ζ)− kn(~ω2, ~ζ))| dπ(~ζ)

≤
∫

|kn(~ω1, ~ζ)− kn(~ω2, ~ζ)| dπ(~ζ)

≤ Kn(%(~ω1, ~ω2)).

Fixing n, let v0 be an arbitrary element of Sd−1
+,1 and define vnm = (1/m)

∑m−1
l=0 Ll

nv0.

The sequence vnm of Rd-valued functions is uniformly bounded coordinate-wise
below by 0 and above by 1. Further,

d∑
i=1

|[L2
nv(~ω1)− L2

n(~ω2)]i|

≤
∫ ∫ d∑

i=1

|[v(σ−1~ρ)A(σ−1~ρ)A(σ−1~ζ)]i

·(kn(σ−1~ζ, ~ρ)(kn(~ω1, ~ζ)− kn(~ω2, ~ζ)))| dπ(~ρ)dπ(~ζ)

≤
∫ ∫

kn(σ
−1~ζ, ~ρ)|kn(~ω1, ~ζ)− kn(~ω2, ~ζ)| dπ(~ρ)dπ(~ζ)

≤ Kn(%(~ω1, ~ω2)).

By induction, one has the same result for all powers of Ln and so one has that
the sequence vnm is equicontinuous coordinate-wise. By Arzela-Ascoli, we can
extract a subsequence vnmj

that converges uniformly to some ṽn. We show that
ṽn is a fixed point of Ln via a triangle inequality of the form ‖ṽn − vnm‖∗ +
‖vnm − Lnv

n
m‖∗ + ‖Lnv

n
m − Lnṽ

n‖∗. The first term goes to zero by uniform
convergence, the second by telescoping, and the last because ‖Ln‖ = 1 and by
uniform convergence of vnm to ṽn.

Proof of Lemma 3.11 (1). We repeatedly use the fact that
∫
Πnv · f dm =

∫
v ·

Πnf dm.∫
ΠnLΠnv(ω) · f(ω) dπ(ω) =

∫
ΠnLΠnv(ω) · f(ω)h(ω) dm(ω)

=

∫
v(ω) ·Πn(L′

m(Πn(f(ω)h(ω)))) dm(ω)

=

∫
v(ω) ·Πn(L′

m(Πn(f(ω)h(ω))))/h(ω) dπ(ω).
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Proof of Lemma 3.11 (2).

‖L′
nf‖ =

∫ ∣∣∣∣Πn

(
A(ω)Πn(f(σω)h(σω))h(ω)

h(σω)

)
/h(ω)

∣∣∣∣
`∞

dπ(ω)

=

∫ ∣∣∣∣Πn

(
A(ω)Πn(f(σω)h(σω))h(ω)

h(σω)

)∣∣∣∣
`∞

dm(ω)

≤ 1

infω∈Ω h(ω)

∫ ∣∣∣∣A(ω)Πn(f(σω)h(σω))h(ω)

h(σω)

∣∣∣∣
`∞

dm(ω), by Sublemma B.2

≤ 1

infω∈Ω h(ω)

∫ ∣∣∣∣Πn(f(σω)h(σω))h(ω)

h(σω)

∣∣∣∣
`∞

dm(ω), since |A(ω)|`∞ ≤ 1

≤
supω∈Ω h(ω)

infω∈Ω h(ω)2

∫
|Πn(f(σω)h(σω))|`∞ dm(ω)

≤
supω∈Ω h(ω)

infω∈Ω h(ω)3

∫
|f(σω)h(σω)|`∞ dm(ω), by Sublemma B.2

≤
supω∈Ω h(ω)

2

infω∈Ω h(ω)4

∫
|f(σω)|`∞ dπ(ω)

≤
supω∈Ω h(ω)

2

infω∈Ω h(ω)4
‖f‖.

Sublemma B.2. Let f ∈ W. Then ‖Πnf‖ ≤ (infω∈Ω h(ω))
−1‖f‖.

Proof. Without loss, we consider the situation where Pn consists of a single
element, namely all of Ω. The argument extends identically to multiple-element
partitions.

‖Πnf‖ =

∫
max
1≤i≤d

∣∣∣∣∫ fi dm

∣∣∣∣ dπ
≤

∫
max
1≤i≤d

(∫
|fi| dm

)
dπ

= max
1≤i≤d

(∫
|fi| dm

)
≤

(
inf
ω∈Ω

h(ω)

)−1 ∫
max
1≤i≤d

|fi| dπ

=

(
inf
ω∈Ω

h(ω)

)−1

‖f‖.

Proof of Lemma 3.11 (3). We will use the facts that ‖Πn‖ ≤ (infω∈Ω h(ω))
−1
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(Sublemma B.2) and |A(ω)|`∞ ≤ 1 for each ω ∈ Ω.∫ ∣∣∣∣Πn

(
A(ω)Πn(f(σω)h(σω))h(ω)

h(σω)

)
/h(ω)−A(ω)f(σω)

∣∣∣∣
`∞

dπ(ω)

=

∫ ∣∣∣∣Πn

(
A(ω)Πn(f(σω)h(σω))h(ω)

h(σω)

)
−A(ω)f(σω)h(ω)

∣∣∣∣
`∞

dm(ω)

≤
∫ ∣∣∣∣Πn

(
A(ω)Πn(f(σω)h(σω))h(ω)

h(σω)

)
−Πn (A(ω)f(σω)h(ω))

∣∣∣∣
`∞

dm(ω)

+

∫
|Πn (A(ω)f(σω)h(ω))−A(ω)f(σω)h(ω)|`∞ dm(ω)

≤ 1

infω∈Ω h(ω)

∫ ∣∣∣∣A(ω)Πn(f(σω)h(σω))h(ω)

h(σω)
−A(ω)f(σω)h(ω)

∣∣∣∣
`∞

dm(ω)(B.3)

+

∫
|(Πn(f(σω)h(ω))− f(σω)h(ω))|`∞ dm(ω).

The second term goes to zero as n→ ∞ as |Πng−g|L1(m) → 0 for any g ∈ L1(m).
Continuing with the first term,

(B.3) ≤
(
inf
ω∈Ω

h(ω)

)−1 ∫
|Πn(f(σω)h(σω))h(ω)− f(σω)h(σω)h(ω)|`∞ dm(ω),

which also goes to zero as n→ ∞ as above.

Proof of Lemma 3.12.

ΠnLΠn(v) =

n∑
j=1

(
1

m(Bj)

∫
Bj

(
n∑

i=1

vi1Bi(σ
−1ω)

)
A(σ−1ω) dm(ω)

)
1Bj

=
n∑

j=1

(
n∑

i=1

vi
1

m(Bj)

∫
Bj

1σBi(ω)A(σ
−1ω) dm(ω)

)
1Bj

=

n∑
j=1


n∑

i=1

vi

∫
Bj∩σBi

A(σ−1ω) dm(ω)

m(Bj)︸ ︷︷ ︸
Ln,ij

1Bj

=
n∑

j=1

(
n∑

i=1

viLn,ij

)
1Bj .
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[32] T. Seppäläinen. Large deviations for Markov chains with random transi-
tions. The Annals of Probability, 22(2):713–748, 1994.

[33] S. Ulam. Problems in Modern Mathematics. Interscience, 1964.
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(a) α = 1/(20
√
2), n = 5000. (b) α = 1/(20

√
2), n = 500.
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(c) α = 1/π, n = 5000. (d) α = 1/
√
2, n = 5000.

Fig 1. Numerical approximations of the invariant measure ν =
∫
vω dπ(ω), where π = Leb

and vω = δω ×v(ω), for the Markov chain in a random environment described in Section 5.1.
Shown are cumulative distributions of vn(ω) ∈ R10 vs. ω for different random environments
(different α) and different numerical resolutions (different n). As n → ∞, the vn(ω) converge
in probability to the π-a.e. unique collection {v(ω)}ω∈Ω, which is equivariant: v(ω)A(ω) =
v(σω) π-a.e.


