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Abstract

We establish rigorous scaling laws for the average bursting time for
bubbling bifurcations of an invariant manifold, assuming the dynamics
within the manifold to be uniformly hyperbolic. This type of global bi-
furcation appears in nearly synchronized systems, and is conjectured to
be typical among those breaking the invariance of an asymptotically sta-
ble hyperbolic invariant manifold. We consider bubbling precipitated by
generic bifurcations of a fixed point in both symmetric and non-symmetric
systems with a codimension one invariant manifold, and discuss their ex-
tension to bifurcations of periodic points. We also discuss generalizations
to invariant manifolds with higher codimension, and to systems with ran-
dom noise.

1 Introduction

The goal of this article is to quantify how quickly an attracting invariant man-
ifold with internally chaotic dynamics loses stability through a bubbling bifur-
cation in a certain class of systems. This type of bifurcation occurs when the
invariant manifold ceases to be a asymptotically stable due to one of its embed-
ded orbits becoming unstable in a direction transverse to the manifold | ].
Under this circumstance, the invariant manifold can still attract a set of posi-
tive Lebesgue measure (and thus, support a physical measure). However, this
attractor is extremely sensitive to small perturbations that make the manifold
non-invariant. This scenario arises, for example, in physical systems with ap-
proximate (but not exact) symmetry, and can give rise to intermittent dynamics
called bubbling, where a trajectory spends most of its time near the manifold
but occasionally bursts away.

There are experimental results and formal calculations for particular models
that predict scaling laws for the average time between bursts and the size of the
perturbed attractor as a function of bifurcation parameters in generic bifurca-
tion scenarios, see | ] and references therein. Our results make rigorous
the theoretical predictions presented in | ], concerning scaling laws for
the average interburst time in terms of parameters and positive Lyapunov ex-
ponents of the bifurcating orbit. We prove the validity of similar scaling laws
for more general dynamical systems displaying bubbling bifurcations. These re-
sults are applicable to generic systems, as well as to systems that have inherent
symmetries.
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The scaling laws we describe involve two parameters. One is a normal param-
eter as defined in | ]. The normal parameter does not affect the invariant
manifold nor the dynamics within it; but does affect the dynamics transverse
to the manifold. The other parameter is a symmetry-breaking parameter that
we call ¢, which when nonzero, perturbs trajectories from the manifold that is
invariant for ¢ = 0. An example with two such parameters is as follows.

(Uns Vn) ¥ (Unt1,Vnt1) = (Gun, 0) + k(v — un), G(vn, q@) + k(u, —vy)). (1)

Here, the invariant manifold for ¢ = 0 is the synchronization manifold u = v.
The coupling strength k is a normal parameter.

In this article, we consider a model of such systems in the form of skew-
product as follows:

(xn;yn) = (xn+17yn+1) = (T(l'n)aF(xnvyrmpv q))v (2)

where p and g are the parameters of the model. We consider « and y to be co-
ordinates along and transverse to the invariant manifold, respectively, where we
have made the simplifying assumption that the dynamics of x are independent
of y and the parameters. We study the case of a uniformly hyperbolic base map
T with an invariant SRB (or physical) measure .

For ¢ = 0, we assume that the system has an invariant manifold {(z,y)y =
0}, that the corresponding invariant measure g X dp undergoes a bubbling bi-
furcation at a fixed point (z*,0) at p = 0 and that p is a normal parameter
in the sense of | ]. More generally, our results apply to systems that can
be written in the form (2) by a choice of coordinates in a neighborhood of an
invariant manifold. We discuss the scope of this model in §3.2. In more general
cases, the orbit losing stability could be a periodic orbit. At various points in
this paper we discuss how to extend our results to this case.

For ¢ = 0, trajectories in the basin of yu x &g visit every neighborhood of
(z*,0). For definiteness, we assume that (z*,0) is stable to perturbations of y
for p < 0 and unstable for p > 0. The results of | ] imply that generically,
when p > 0 is sufficiently small the invariant measure p x dq still has a basin of
attraction with positive Lebesgue measure. For p > 0 and g # 0, trajectories
that come close to (z*,0) can burst away from y = 0. Depending on the y
dynamics, trajectories that burst may come back close y = 0 and repeat the
bursting behavior, or they may remain away from y = 0. The former type of
dynamics is called bubbling and the latter, transient dynamics. The existence of
a physical or SRB measure for p > 0 and g # 0 and its dependence on parameters
is a difficult question. Some results in this direction, in the context of partially
hyperbolic diffeomorphisms, can be found in | | and references therein.
Our results do not distinguish between bubbling and transient phenomena, and
estimate the average time it takes for a trajectory initialized near y = 0 to
burst for the first time. In the case of bubbling, we expect this average bursting
time also to be representative of the average time between bursts. For the sake
of exposition, we refer to the bifurcation that leads to bursts as a bubbling
bifurcation, whether or not bubbling actually occurs.

The scaling of the average bursting time for small p and ¢ depends on the
type of bifurcation the fixed point (z*,0) undergoes when ¢ = 0 and p passes
through 0. As in | |, we consider both the case of a generic transcritical
bifurcation (Theorem 1) and of a generic pitchfork bifurcation (Theorem 2).



Our main results are stated in §2.2. We study two qualitatively different forms
of bursting: multiplicative and additive. In the former case, bursts are driven by
the dominant effect of the expansion parameter p. In the latter case, bursts occur
due to the accumulation of perturbations to the system, quantified by ¢. (In
[ ], these were called drift-dominated and noise-dominated, respectively.
We have adopted the new terminology to avoid possible confusion with other
common uses of the former terms.) We also distinguish between hard and soft
bifurcations. A hard bifurcation occurs when the maximum burst size changes
suddenly as p increases, while in a soft bifurcation the maximum burst size
increases gradually with p.

Besides providing a proof for the results predicted in | ], we extend
the range of parameters over which the scaling law is valid, obtaining uniform
bounds for the logarithm of the average bursting time, proportional to the sum
of positive Lyapunov exponents of the bifurcating fixed point in the invariant
manifold. Furthermore, we extend those results to more general dynamics: the
scaling law is valid for skew-product systems with uniformly hyperbolic maps in
the base variables (z) and for fiber (y) dynamics displaying a generic type of bi-
furcation explained in §2.1 (conditions (i)-(v)) and generalized in §3.2. These bi-
furcations include generic transcritical and pitchfork bifurcations of fixed points.
Period-doubling bifurcations can also be treated with our tools, since the second
power of a map with a period-doubling bifurcation gives a map with a pitch-
fork bifurcation. Notice that a saddle-node bifurcation is not possible because
the normal parameter assumption ensures that the fixed point persists on both
sides of the bifurcation. Transcritical bifurcations can occur when the system
is not symmetric with respect to reflection about the invariant manifold, while
systems with reflectional symmetry will commonly have pitchfork bifurcations.
As an example, the coupled system (1) is symmetric for ¢ = 0, but if one of the
coupling terms is eliminated it becomes asymmetric.

The structure of the paper is as follows. In Section 2, we first set up a
model system in §2.1 and derive a Taylor approximation to F' that we use in
the subsequent sections. We state the main results in §2.2, and discuss three
generalizations in §2.3; the case of a periodic bifurcating orbit in 2.3.1, the case
of multiple transverse directions in 2.3.2, and a case of systems with random
perturbations in 2.3.3. In Section 3 we analyze the dynamics and bifurcation
of the invariant manifold. In §3.1, we prove some quantitative results about
recurrence in hyperbolic systems that are relevant for our tasks. In §3.2, we dis-
cuss the mechanism of bubbling bifurcations and a generalization of the model
presented in §2.1 to which our results apply. In Section 4 we prove the main
results. In §4.1 we establish upper and lower bounds for the average bursting
time in the linear regime (where the nonlinear terms in the Taylor approxima-
tion are small). In §4.2 we complete the proofs, extending those results to the
nonlinear setting.

2 Statement of results

2.1 The model

Throughout this paper, we assume that we have a dynamical system with a
hyperbolic invariant manifold X that undergoes a bubbling bifurcation. In our



context, a bubbling bifurcation will be understood as the one that occurs when
a parameter crosses a value at which the invariant manifold loses asymptotic
stability. This loss of stability is due to one embedded orbit becoming unstable.
In the terminology of | ], at the bifurcation, the normal Lyapunov expo-
nent to the invariant manifold X becomes 0 on one orbit but remains negative
on other orbits.

To separate the dynamics on X from the transverse dynamics, we will work
with skew-product systems: we assume that (near X) the dynamical system
can be written in the form (2), where T : X  is a transitive C? Anosov
diffeomorphism or a uniformly expanding map, and F is C'*! in 2 and is C®
as a function of y,p and q. We let u be the SRB measure for T (see 3.1.1).

For ¢ = 0 we impose the following conditions:

(i) F(x,0,p,0) =0 for all  and p, so that X = {(z,y)|y = 0} is an invariant
manifold.

(ii) =* € X is a fixed point. We let A be the sum of positive Lyapunov
exponents of x* associated to T'.

(iii) X is asymptotically stable for p < 0, %—5(3},0, 0,0) > 0 for all z, %—Z(m*, 0,0,0) =

1 and %(m’ﬂ 0,0,0) > 0, so that p = 0 is a bifurcation value correspond-
ing to the loss of asymptotic stability of X.

We remark that the assumption that 88—1;(:10, 0,0,0) > 0 always holds if the map
(2) is a diffeomorphism, because then %—5(3:, 0, 0,0) must be nonzero for all z, and
if it is negative we consider the second iterate of (2). The following assumption
related to (iii) is generalized to the non-degeneracy condition (iii”) in §3.2.

(iii’) The global maximum of %—Z(~,0,0,0) is unique and occurs at z*. This

implies that the orbit (z*, 0(, 0,0) is the only orbit becoming unstable as p
passes through 0.

(iv) The bifurcation of the fixed point 2* as p goes through 0 is either a generic
transcritical bifurcation (in the asymmetric case) or a generic pitchfork
bifurcation (in the symmetric case, where F(z,y,p,0) = —F(x, —y,p,0)).

We also assume the non-degeneracy condition:

(v) %—Z(x*, 0,0,0) # 0, so that varying ¢ from 0 breaks the invariance of X
near x*.

With these requirements in mind, our model takes the following form:

Tpy1 = T(zy)
Yn+1 = F(Z‘na Yn» D, Q)
= (f(zn) + h(zn)P)yn + ag(zs) + Olay + p*y +pa + ¢ +y°),
(3)
2 .
where kf(:z:) = %—Z(I,O,O,O), g(x) = %—5(17,0,0,0), h(z) = %(LO,O,O). Notice
that %pf (2,0,0,0) =0 for all k£ > 1 by condition (i) above.
For definiteness, we assume ¢ > 0, and we think of ¢ as the strength of the
asymmetry in the system; we also refer to the term gg(z) as the kick. By (iii)




above, f(z*) =1 and h(z*) > 0, and by the non-degeneracy condition (v), we
have g(x*) # 0. In fact, without loss of generality, we assume g(z*) = 1 = h(z*).
This amounts to possibly rescaling ¢ and p, and possibly changing the sign of
Y.

For p > 0 and ¢ = 0, the invariant manifold X is no longer asymptotically
stable due to the fixed point x* becoming unstable in a direction transverse to
the manifold. However, since 0 < f(z) < 1 for x # z*, then most orbits close to
X continue to be attracted to X. This is due to the fact that when p is small,
the transverse dynamics is contracting outside a neighborhood of = = z*.

Let a(zx) = i%;f (2,0,0,0), where p € {2,3} corresponds to the most sig-
nificant non-linearity of the dynamics of z* for ¢ = 0, that is, p = 2 for a
transcritical bifurcation and p = 3 for a pitchfork bifurcation. Then a(z*) # 0,
and without loss of generality, we can rescale y to assume a(z*) = +1. The
remaining higher order terms involve only higher powers of y, p and q.

If the system does not have inherent symmetry constraints, we have gener-
ically that p = 2, and the bifurcation that z* goes through as p crosses 0 is a
transcritical bifurcation. In this case, we can write:

F(z,y,p,q) = (f(2)+h(x)p)y+q9(x)+a(z)y’ +Olqy+p°y+pa+a*+y°), (4)

with a(xz*) # 0.

On the other hand, if the system is symmetric with respect to changing the
sign of y, or if * undergoes a period-doubling bifurcation and we consider the
second iterate of the map, the generic value is p = 3 and the corresponding
generic bifurcation for z* is a pitchfork bifurcation. In this case, we can write:

F(z,y,p,q) = (f(x)+h(f6)p)y+qg(fv)+a(l‘)y3+b(w)y2+0(qy+p2y+pq+q2+y(4)),
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with a(z*) # 0 and b(z*) = 0 (of course, b(z) = 0 for all z if F(z,y,p,0) is an
odd function of y).

In both scenarios, the size of the bursts may be small and determined by
the size of the perturbation parameters. We call this case a soft transition; it
happens if ga(z*)g(z*) < 0 in the asymmetric case, and if a(z*) < 0 in the
symmetric case. If ga(z*)g(x*) > 0 in the asymmetric case or a(z*) > 0 in
the symmetric case, the size of bursts is not so limited; we call this case a hard
transition.

2.2 Main results

In order to state the results, we introduce some notation. For a fixed threshold
Y >0 and {(2n,Yn)}nez, trajectory of (2), we define its bursting time as:

(Y, 2o, yo) = minly,| > Y}.

Recall that g is the SRB measure for T' : X . For y, fixed, we define the
average bursting time as:

1
W) =5 [ r(Vay)du(e)dy.
Yo J X x[—yo,y0l
Since perturbations from the invariant manifold y = 0 are proportional to g,
we will generally consider yo to be of order ¢ and set 7(Y) := 7(Y, q). We will
simply write 7 when the threshold is clear from the context.



Remark 2.1. Our proofs also apply to the case where T is a nontransitive
Anosov diffeomorphism or, more generally, an Axiom A diffeomorphism, with
x* belonging to a hyperbolic attractor A. In this case, the basin of the SRB
measure j supported in A may no longer have full Lebesgue measure, and there
may be other SRB measures for T', supported away from A.

Our main result in the case of generic transcritical bifurcations (p = 2) is
the following.

Theorem 1. Consider a family of skew product systems as in (3), with F' as
in (4) satisfying all conditions in § 2.1 above (3). Assume that p,q > 0. Then,
there is a constant C' > 1 and a threshold Y independent of p and ¢ in the hard
transition case (qa(z*)g(z*) > 0), and proportional to max(p,,/q) in the soft
transition case (ga(z*)g(z*) < 0), such that the scaling of the bursting time
satisfies:

e (Multiplicative case). For each € > 0, if (p, 1%) is sufficiently close to (0,0)

~ 1
and ¢ > p?e P¢" | then

e (Additive case). There exists C > 0 independent of p,q and the map T
2
on X such that for (g, &-) sufficiently close to (0,0),
log7(Y)

1
1
q2

CIAL < CA.

(Recall that A is the sum of positive Lyapunov exponents of the fixed point z*.)
This result is proved in §4.2.1.

In the case of pitchfork bifurcations, which are generic for symmetric systems
(p = 3), the main result is:

Theorem 2. Consider a family of skew product systems as in (3), with F as
in (5) satisfying all conditions in Section 2.1 above (3). Assume that p,q > 0.
Then, there is a constant C > 1 and a threshold Y independent of p and ¢ in the
hard transition case (a(z*) > 0), and proportional to max(,/p, ¢/q) in the soft
transition case (a(x*) < 0), such that the scaling of the bursting time satisfies:

e (Multiplicative case). For each € > 0, if (p, pi%) is sufficiently close to (0, 0)

Tl

and g > p%e*pé , then

< (14 oA,

e (Additive case). There exists C > 0 independent of p,q and the map T
3
on X such that for (g, %) sufficiently close to (0, 0),



This result is proved in §4.2.2.

The results predicted in | ], with the additional hypothesis that ¢ is
not exponentially small compared to p, are consequences of Theorems 1 and 2.
These results are:

Corollary 3. Consider the following model systems of bubbling bifurcations:

{$n+1 = 22, (mod 1) (6)

Ynt1 = (f(xn) +p)yn +ayh +q for |y| <1 and p € {2,3},

where f(0) =1, 0 < f(z) < 1 for  # 0, a # 0, and parameters p,q > 0 are

~ 1
sufficiently small. In the multiplicative regime (pﬁ > q > pr1e?C7 | for
some C' > 1), for a threshold Y chosen as in the theorems above, the average
bursting time obeys the following scaling laws:

1 Y
&(2 =log2, when the coupling is asymmetric (p = 2) and
(1,-%)—(0,0) L log £—
4 p lalg
1 Y
L(S/Z =log2, when the coupling is symmetric (p = 3).
(p,~%)—(0,0) L ]og B7°
»2 P lal*/2q
We have included in the conclusion of Corollary 3 terms from | ] in-

volving a; while these terms do not affect the limits, they may make the limits
converge faster.

Remark 2.2. The function f(z) = cos(2rz) considered in [ | does not
meet our hypotheses because for technical reasons we have assumed f to be
positive. However, our proofs can be adapted to such an f.

2.3 Generalizations

Here, we discuss three generalizations of our results. The first one concerns the
replacement of the bifurcating fixed point by a periodic orbit. The second one
is about the case of multidimensional transverse direction, that is, when the
invariant manifold has codimension greater that one. The last one is to the case
of random additive noise.

2.3.1 Periodic bifurcating orbit.

In case the bifurcating orbit is periodic of period d instead of a fixed point,
after imposing non-degeneracy conditions, we could set up a model for bubbling
bifurcations similar to that of 2.1. In this situation, when = gets near the
periodic orbit, we would study the d-th power of T. The main difference with
the fixed point case is that instead of having just one fixed point to keep track
of, we would have d of them, and this introduces some technical difficulties.
Although we do not carry out in detail all the calculations needed for this
generalization, we do discuss the differences with the fixed point situation and
provide ideas of how to extend the theorems in this case; see Remarks 3.7, 3.9
and 4.8.



2.3.2 Multidimensional transverse direction.

In this section we discuss a generalization of our analysis to the case when the
codimension of the bifurcating invariant manifold X is larger than 1. As in hy-
potheses (i), (ii) and (iii) in §2.1, we assume that the attracting chaotic invariant
manifold disappears when a direction transverse to X becomes unstable, that
the orbit that first becomes unstable is a fixed point z*, and that the bifurcation
occurs at the parameter value p = 0.

Let 3 represent the multidimensional directions complementary to z. Our
model system (3) then becomes:

{mn+1 =T(x,)

—

gn-l—l = F(mnag’rupv q)

If Fis sufficiently smooth with respect to ¢/, p and ¢, we can bound the higher or-
der terms as before. Following | |, we impose the non-degeneracy condition
that for p = ¢ = 0, the fixed point z* has a unique neutrz}l direction transverse to
X with eigenvalue 1, and that all other eigenvalues of %—g (z*,0,0,0) have magni-
tude less than 1. We choose a norm defined by an inner product for ¢, such that
the corresponding norm of %—Zj(x*, 0,0,0) is equal to 1. Corresponding to (iii’),
we assume that there are functions f and h on X, with f having a unique max-
imum of 1 at = x*, such that | %(m,O,p,O)H = f(x) + h(z)p + O(p?). Then,

one can show that the largest eigenvalue of %—g(m*, 0,p,0) is 1+ h(z*)p+ O(p?).
We call ¥(p) the corresponding eigenvector for the adjoint to %—g(x*, 0,p,0), and

let g(z) = %—5(9:, 0,0,0). Then, we can bound the growth of the norm of ¥ as in
the one-dimensional case,

[Un+1] < (f(@n) + h(zn)p)|Gn| + allg(zn) ]| + O(q|¥n] +p2|?7n‘ +pg + q2 + |gn|2)

Thus, the analysis of §4.1.2 remains applicable. We can bound the growth of
the norm of ¢ from below in a similar way, with an additional error term of
order |z, — x*||¥y]-

Yn+1-U(p) = (f(zn) + h(zn)p)¥n v(p) + qg(zn) ¥(p)
+O0(q|Fn] + P*|Fn| + pq + @ + G + |20 — 2*||Fn])-

(If g(z*)- ¥(0) < 0, we change the sign of ¢.) In order for the analysis in §4.1.1 to
be applicable, the conditions that need to be satisfied are that g(z*)-7(0) # 0,
corresponding to (v), and, additionally, non-degeneracy conditions analogous
to (iv) making z* undergo a transcritical or pitchfork bifurcation. The main
remaining complication to adapting the arguments in § 4 is that there is no
analogue of Lemma 4.1 in this case, because the direction of ¢ can rotate while
T is away from z*.

2.3.3 Random perturbations.

The results of this paper can be generalized to some random dynamical sys-
tems, such as the case where the deterministic mismatch g(x,,) is replaced by a
stationary sequence of independent random variables g, [Gon]. We could also
treat the case of combined random noise and deterministic mismatch with our
methods.



3 Invariant manifold: dynamics and bifurcation

3.1 Dynamics on the invariant manifold

In this section, we present results we need for the base dynamics given by 7', a
transitive C? Anosov diffeomorphism. We assume 7T has a fixed point z*, and
derive quantitative dynamical properties that are used in our estimates in §4,
following references [ L | and | .

We note that all results of this section also apply to expanding maps. In
particular, the model system with base dynamics given by T'(z) = mz (mod 1)
is rich enough to give a good understanding of most of these properties. For
general T', the analysis we present is somewhat more involved.

3.1.1 Existence of Markov partitions and SRB measures.

Classical works of Sinai | | and Bowen | | show that uniformly hyper-
bolic dynamical systems have Markov partitions of arbitrarily small diameter.
Such partitions allow one to study the dynamics in symbolic terms, since all
invariant measures of hyperbolic systems are projections of invariant measures
on symbolic systems that are semi-conjugate to 7.

Moreover, given any point z € X, Pesin and Weiss show | , Thm. 3]
that, after possibly passing to a power of T', a Markov partition R can be chosen
in such a way that z is in the interior of a Markov rectangle. We will choose such
a special Markov partition with the hyperbolic fixed point z* in the interior of
a rectangle we call Ry.

Because of our hypotheses on T', there is always an invariant measure that
is physically relevant: the SRB or physical measure | , ]. We will
call it p. This measure is the one of interest for us, since its basin contains
a full Lebesgue measure set of trajectories. Another relevant property of p is
exploited in §3.1.3, namely, that the p measures of cylinders around a point
(see definition below) are asymptotically determined by the sum of positive
Lyapunov exponents.

For a fixed Markov partition R = {Ry,...,Rp_1} of (X,T), we denote by
w;(r) the index of the partition set to which T%(z) belongs, provided that T%(z)
belongs to only one partition set. Note that this is undefined on the set for
which T%(x) belongs to the boundary of a partition set, which has yu measure
zero | , Prop. 3.1]. We denote by Qr r the set of sequences (w;);ez C Xp
allowed by the dynamics of T. Cylinder sets are nonempty sets S C X of the
form S = {z € X|w;(x) = b,k < i < k+1}, up to a set of u measure zero,
for some k € Z, 1 > 0 and b; € {0,1,...,D — 1}. Such a cylinder set S has
length [+ 1 and is based at k. We write C(k, k+1) to denote the collection of all
cylinders of length [ 4+ 1 and base k. We say that two cylinders S; € C(k;, k),
i = 1,2, are determined by non-overlapping words if either k] < ks or kj < k.

Below, we use [P, to denote the probability of an event with respect to .
For example,

Pu(wi = b) = ul{x € X|wi(x) = b}).

We also use E,, for the expectation with respect to .



3.1.2 Expected hitting time.

For a ;1 measurable set S with p(S) > 0, let 7¢(z) be the first time the orbit
of = visits (or hits) S, that is, 75(x) = min{k > 0|T*(x) € S}. By ergodicity,
the hitting time 7g(x) is finite for p almost every z € X and defines a pu
measurable function on X. The following lemmas relate the expected hitting
time with w(S). The first one, which follows from | , 85], gives an upper
bound and holds for cylinder sets. The second one gives a lower bound and is
valid for all measurable sets S of sufficiently small measure.

Lemma 3.1. There exists a constant U = U (T,R) > 1 such that for every
cylinder set S,

U
E,(T 2:/7' z)du(x) < ——.
Lemma 3.2. If u(S) < 1 then
1
E,(rs) == [ 7s(x)du(z) > .
ulrs) = [ ms(@)dn(e) > T
Proof. Let Sy, = {z € X|rs(z) = k}. Hence S, C T~%(S) and therefore

1(Sk) < u(S), which gives the lower bound

) oo k SN [e'S) Jj—1
Bu(rs) = Yo k() = 350 = -5 (s = 3 (1- Y utsi)
k=0

k=1 j=1 j=1k=j j=1 k=0
Liatsy ) 1 1
1 Las  (Lgey) +1)

> 1—ju(S)) = -+ e

D (-8 = Ly :

1 w(S) () +1 1 1—
N J(l_ (S)(Ls >)>< _1) W) 1
n(S) 2 n(S) 2 4p(S)
where the last inequality follows from the fact that p(S) < 1. O

3.1.3 Consecutive number of iterates near a fixed point.

It is necessary for our purposes to understand the distribution of the number
of consecutive iterates a trajectory spends in a neighborhood of the fixed point
x*. Following traditional notation, we let

Bi(n,e) := {z| dist(T’z, T%2) < € Vi = 0,1,...,n}.
A trajectory z stays within e of z* for n iterates if x € By«(n,€). Let Z :=
{A1 > A2 >+ > Adim x } be the Lyapunov spectrum of T at z*. Let

dim X
A= Z (M\i)+, where (\); := max(\,0), and y := oA
i=1

A lower bound on the number of iterates close to z* is given by:

Lemma 3.3. There exist constants C' = C(T') and ¢ = (=) such that for all
0 > 0 sufficiently small,

1(By=(n,6)) = CO¥x ™.
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Proof. It is shown in [ , § 4.4] that for ¢ > 0 sufficiently small there is
some constant C' = C(T¢)

p(Byx(n,€)) > Cx™".

Also, by Corollary 6.4.17 in | ], if € > 0 is sufficiently small, there is a
constant A = A(T) such that if z € B, (n,€) then for 0 < i < n, dist(T%z, z*) <
Aeeij‘min(i’"’i), where \ 1= min;—1 . dim x (|Ai]), the distance of = to 0. Fix
e > 0 and let ¢ = 2logx/X and k = f%] Then Aece=* < § and if
k > 0 we have

1(By+(1,8)) > p(Bye (n+ 2k, €)) > Cx~"F20) > 0oy, O

Obtaining upper bounds for the time spent close to x* requires a better
understanding of the dynamical properties of T. Let &y(x),&1(x),... be the
number of consecutive iterates the trajectory of x spends in successive visits to
a Markov rectangle Ry containing x* in its interior.

The following lemmas will be useful in §4.1.

Lemma 3.4. There is a constant A = A(T,R) > 0 such that for every k € N
and ¢t > 0 we have:
P&k > 1) < Ax ™"

Proof. This is a consequence of the so-called exponential cluster property for
uniformly hyperbolic systems (see e.g. | , ]): there are constants C'
and 0 < 1 such that given any two cylinders S € C(0,a) and S’ € C(0,b),

[Bu(SNT (")~ Pu(S)Pu(S")] < CB,(S)B,(S)0" .

(Notice that T-"(S") € C(n,n + b), so n — a represents the gap between the
symbols determined by membership in .S and those determined by membership
in T7™(S5").) In particular, there is a constant C such that for any two cylinders
S and S’ determined by non-overlapping allowed words, we have that S and S’
are independent up to a multiplicative factor C in the following sense:

P,(SNS") < CP,(S)P,(S') and hence P,(S|S") < CP,(S),

where by PP,,(S|S”) we mean the conditional probability P‘I}Eigﬁs;’).

To prove the lemma, we fix k£ and consider the following countable partition
Z (modulo sets of ;1 measure 0) of Q7 as follows. Each element of Z consists
of the cylinder set of sequences w that share all symbols up to 7, where 7 is
the start of the k-th sequence of 0’s. For example, for k = 1, sequences of the
form 101 ... and 1001... would belong to the same element of Z, but sequences
of the form 110... would be in a different element of the partition. This is a
partition modulo sets of p measure 0 since with probability 1, 7, < co.

By the exponential cluster property, we know that for any Z € Z,

Pu(&r = t[2) < CPL(01),

where 0; is the sequence consisting of ¢ zeros. Therefore,

Pu(‘fk >t) = Z Pu(@c 2 t‘Z)Pu(Z) < CPH<0t) Z PM(Z) = CPM(Ot)'
Zez ZeZ
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The lemma follows from the fact that for rapidly mixing systems, there exist
positive constants A\, A such that:

P,(0;) < Ae™ ™.

Furthermore, since p is an SRB measure, we can take A = logy = A | ]

Given a constant ¢ < 1, let ny := Z?:o ck_jfj.

Lemma 3.5. For ¢ < 1 fixed, there are constants B and 0 < 6 < 1, such that
whenever B <t, <t,

pre i=Pu(ne >t, n; >t for j=1,...k—1) < A0y~

Proof. First, we show that for any values of ¢,t;, the events {§; = ¢} and
{n; > t; for 0 < j < k} are independent up to a multiplicative factor C' given
by the exponential cluster property. Let us make use of the partition Z from
the proof of Lemma 3.4 and let Zg = {Z € Z :n; > t; for 0 < j < k}. We
remark that Zy is well defined, since for 0 < j < k, n; is constant y-almost
everywhere in each Z € Z. Thus, we have:

P.(ép=t,m; >t;for 0<j<k)= Z P& =t,m; > t; for 0 < j < k|Z)P,(2)
Zez

= Y Pu(k = t12)Pu(Z) < CPu(0)Py(n; > t; for 0 < j < k)
ZEZy
< CAX "Pu(n; > tj for 0 < j < k).

Now, using Lemma 3.4 as the base step, valid for all t,,, we will prove our
result by induction. Assume we know that for some k,t. and ¢ we have that
pr < AGFx~t. Then, for k + 1 we have:

per1 S Y aso Pul€r = s > =2y >t for j=0,... k)
+P, (k1 >t —cty,my; > ti for j=0,...,k)

<SS CAXT)(AGF Y~ C2)) 4 O (Ax—(=et)) (AR x )
< A9kA0< x(%fl) n 1)X_tX_(1_C)t*'

1
X(zfl)fl

This establishes the inductive step and the result provided

X(%fl)
0= AC’< Ee— + 1))((16)3 and B is large enough that 6 < 1.
X e -
The proof of the second statement is similar and we omit it. O

Let Np =& +& + - + &

Lemma 3.6. For 3 sufficiently large and 0 < ¢t < x?/? | there is a constant
0 < 0 < 1 such that

fir(t) ;== P (Np >t + kB, N; > jBfor j =0,....k—1) < AGFy .
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Proof. By an argument analogous to the proof of Lemma 3.5, the events {&, > ¢}
and {N; > jg for 0 < j < k} are independent up to a multiplicative factor C.
Using Lemma 3.4 as the base step, valid for all ¢, we will proceed by induction.
The base step follows from Lemma 3.4. Assume we know that for some k and
t fun(t) < AOFx~t. For k + 1 we have:

fr+1(t) < thjﬂ CP,(Ekr1 = 8)fu(t + B — 8) + CP,(Eky1 > [t + B])fix(0)
< AékCAX—(t-i-ﬁ) (t + B+ 1) < Aék—l—lx—t,

provided 6 := AC (t + B8+ 1))([3 . For any choice of (3, this last inequality gives
explicit restrictions on the allowed size of ¢ in order for 6 < 1. In particular, for
sufficiently large /3, the argument is valid for any t < /2. O

Remark 3.7. The analysis of this section dealt with the dynamics close to
a fixed point x* of T. Results of this section can be adapted to study the
dynamics close to a periodic orbit of period d after taking the d-th power of T
This extension is not completely trivial, since in this case we would have d fixed
points z7,...,x}); to simultaneously keep track of. However, straightforward
extensions of the arguments in §3.1.3, yield similar bounds for the analogue
of &, K, Ni in this setting. In this case, A would be replaced by the sum of
positive Lyapunov exponents of the periodic orbit and y = e* would change
accordingly.

3.2 Bifurcation of the invariant manifold

In this section, we discuss the genericity of conditions (iii) and (iii’) of §2.1
about the bifurcation of the invariant manifold when ¢ = 0. While condition
(iii’) is non-generic, we will weaken it to a condition (iii”) that we characterize
as a non-degeneracy assumption.

The assumption in condition (iii) that X is asymptotically stable for p < 0
implies that the Lyapunov exponent, equal to the average of log %—5, is non-
positive for all invariant measures of T' when p < 0. Recall that f(z) =
%—Z(w, 0,0,0) > 0, and observe that f is Lipschitz by our smoothness hypoth-
esis for F. Then by continuity, the average of log f(z) is nonpositive for all
invariant measures of T, and further (by condition (iii) again) the average is
zero for the delta measure at x*. Thus, among all invariant measures of T, the
average of log f(x) is maximized at the bifurcating orbit. It has been conjec-
tured [ | and numerically supported [ | that generically, maximizing
(optimal) invariant measures occur at measures with periodic support. In this
respect, we expect in general the loss of stability of X to occur at a periodic
orbit, and for simplicity we consider the case of a fixed point z*. Furthermore,
it is a topologically generic property of Lipschitz and smooth functions | ]
to have a unique maximizing invariant measure. Condition (iii’) makes the
stronger assumption that pointwise the maximum of log f(z) occurs at z*. We
can easily weaken this assumption by requiring that it be true for some change
of coordinates. Specifically, we consider

g=n(x)y, withn(x) >0 for all x € X and n(z*) = 1. (7)
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Under such coordinate change, the evolution equations for system (3) and pa-
rameters p = ¢ = 0 become:

n =T n
:ij +1 B N(:E )~ (8)
Yn4+1 = F(ﬂfn,yn7070)a

with F(z,7,0,0) = n(T(x))F(x,0,0,0)+5 225 f ()4 O(52). The correspond-
ing coefficient of the linear term in the Taylor expansion of F with respect to 7
becomes:

Thus, condition (iii’) can be replaced by

(iii”) There exists a change of coordinates of the form (7) for which f has a
unique global maximum at x*.

The following lemma suggests that it is plausible to expect such a change of
coordinates.

Lemma 3.8. Let f : X — R be a positive Lipschitz function. Suppose that
among all T invariant measures, the average of log f is maximized at (the mea-
sure supported on) a fixed point x*. Then, there exists a change of coordinates
of the form (7) for which the global maximum of f occurs at z*.

Proof. Let ¢(z) = log f(x). This is well defined and Lipschitz, since f is positive
and Lipschitz. Existence of a change of coordinates § = n(z)y changing f into

f is equivalent to having a solution to the following co-homological equation:

O(w) = ¢(x) + P(T(x)) — V(x), (9)
where ¢(z) = log f(x) and (z) = logn(z).
When T is uniformly hyperbolic, the normal form theorem [ , 4.7]

ensures the existence of a Lipschitz solution v to (9) with the following property.

$(z") = d(x) + (T (x)) = (x) =: §(x).

Therefore, the change of coordinates from f to f given by f(z) = e¥®) f(z) has
a global maximum at z*. O

With this result in mind, condition (iii”) is similar to the assumption that
the average of log f(x) over invariant measures of T has a unique maximum at
T*.

Remark 3.9. Lemma 3.8 extends to the case when the average of log f over
the space of 1" invariant measures is maximized at a periodic orbit z7,...,z};
after a coordinate change, the global maximum of f occurs at all d points of the
orbit. In this case, our non-degeneracy assumption is that f is maximized only
at these d points.

4 Proof of main results

All results in this section refer to dynamical systems of the form (3), satisfying
assumptions (i)-(v) in §2.1 as well as either (iii’) in §2.1 or (iii”) in §3.2.
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4.1 Average bursting time in the linear regime

The goal of this section is to derive a scaling law for the logarithm of the average
bursting time 7, valid for burst amplitudes small enough that we can use a linear
approximation to the y dynamics. We consider the effect of nonlinear terms in
the following section. We set a threshold y value Y, and investigate the average
time it takes for an initial condition starting close to X to burst (or escape) to
the threshold.

When p is small, Lebesgue almost all orbits of T" will spend most of their time
in the region in which f(x)+ h(z)p < 1, so that the y dynamics are contracting
near y = 0. However, since z* is in the support of u, the = trajectory of
Lebesgue almost every orbit will visit arbitrarily small neighborhoods of x* and
thus remain close to z* for arbitrarily long period of time, eventually resulting
in a burst.

A quantitative understanding of this statement allows us to find a cylinder
set S C X such that whenever the = trajectory enters it, the trajectory is
guaranteed to reach the threshold Y. From this, we obtain an upper bound for
the average bursting time in terms of u(.9), since once in S, the time it takes to
burst is relatively negligible.

The lower bound needs further work, since in order to establish it, an under-
standing of all possible escape routes to the threshold Y is needed. In this part,
we will identify a set S’ C X (not necessarily a cylinder but a union of cylinders)
such that the x coordinate of any trajectory that escapes must visit S’ before
escaping. The definition of the set S’ depends on the fact that trajectories may
escape not only through one long sequence of expansive iterates, but instead
could follow a sequence of alternating expanding and contracting periods. We
note that our results will show that the former is asymptotically the most likely
escape route, provided ¢ is bounded below as in the multiplicative cases of The-
orems 1 and 2. The set S’ also depends on an intermediate y threshold that is
presented in §4.1.2.

In order to establish upper and lower bounds on the average bursting time,
we restrict ourselves to finding lower and upper bounds on the measure of tra-
jectories that initiate a burst, pu(S) and p(S’). This is enough for our purposes,
in view of Lemmas 3.1 and 3.2.

We introduce two parameters for the threshold size: o = % quantifies the
number of iterates to reach the threshold for z = 2* and p = 0, ignoring higher
order terms. The non-linearity parameter s = ﬁ;ﬂ’,g) measures the size of the
dominant non-linear term Y, relative to the largest term in the linearization
of yn4+1 — yn at z, = z*. Note that p,q and s determine Y and hence a.

Next, we bound the higher order terms in (3) by oply| + (g, where o and ¢
can be made arbitrarily close to 0 by making p, ¢ and s small. In particular, we
assume (,o0 < 1.

Throughout this section, we write 7 = 7(Y) = 7(ag), and recall that A =
Z?:;X()\i)Jr = log x is the sum of positive Lyapunov exponents of z* for T.
We also recall that ¢A is upper bound on the kick ¢(g(x) + (). Let 0 < c < 1

be an upper bound on f(z) + h(z)p for x ¢ Ry and define I(z) = %
los 3 Al(pa)
and K(p,a) = m[i(lpa)egxfimlﬂwan =)+ ywa say that parameters

p, a satisfy condition (x) if « is sufficiently large and either pa < %log% or
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po > % log% and K(p,«) > 1. We remark that when pa is sufficiently large and
log %

p,q and s are sufficiently small, K(p, ) > 1 if k(p) := %epx > a. The main

result of this section is the following.

Theorem 4. For sufficiently small parameters p, ¢ and s such that the threshold
size « satisfies condition (%), there is a constant C' > 1 independent of p, ¢ and
the map T on X such that

cA < BT0) oy

5 log(1 + pa)
Moreover, in the limit that & — oo and either pa — 0 or pa — oo, C' can be
taken arbitrarily close to 1.

In order to prove the theorem, we first show that there is a manifold X_z, :=
X x {—£&q}, with & = O(1) that gets mapped above itself (in the y direction),
therefore preventing all initial conditions starting above it to escape the strip
X X [—ag,aq] from below. Then, we establish the upper and lower bounds in
84.1.1 and §4.1.2, respectively.

Lemma 4.1. There is a constant £ independent of p and ¢ such that the image
of any initial condition (zg,yo) of (3) with yg > —F&q satisfies y; > —kq for all
sufficiently small p and q. Moreover, in this case, there exists £ > 0 independent
of p and ¢ such that every trajectory for which yo > —&Kq that remains in the
set |x — x*| < % for a sufficiently long number of iterates ng, independent of p
and g, reaches a positive y value, that is y,, > 0.

Proof. Consider Z sufficiently small so that when |zg — 2*| < & we have that
g(xg) > %, h(xg) < %, and such that there is 0 < r < 1 depending only on f
such that for |z —z*| > Z, f(x9) < 1—2r. When p and ¢ are sufficiently small,
142p > f(xo) + (h(zo) + o)p for |xg —z*| < Z, and 0 < f(xg) + (h(zg) —0)p <
1—r for |[zg — 2*| > 2. Let & > M. For |zg — 2*| < & and
Yo = —Rq, y1 = —qi(1 + 2p) + (3 — ¢)g. Hence, if p and ¢ are sufficiently
small, { < % and y; > —Rq. For |zg — z*| > & and yg > —FKq, we have
y1 > —Rq(1 —7) + g(mingex{g(z)} — ). If p and ¢ are sufficiently small, { < 1
and by the choice of &, y; > —RKq.

For the second statement, we know that if |zg — 2*| < & and yy > —FRq, then
Y1 — Yo = (3 — ¢ — 2pi)q. The result follows from the fact that we can apply
the estimate repeatedly, as long as |z; — 2| < Z. O

4.1.1 Upper bound for the bursting time.

In this section, we take an initial condition (xg,yo) starting above the manifold
X x {—Rq} and find a neighborhood of x = z* so that whenever the trajectory
remains in it for a sufficiently long number of iterates, it is guaranteed to escape.

First, we present a simple upper bound useful in the additive case. Another
upper bound will be obtained in Proposition 4.3 by taking into account the
expansiveness close to z*.

Proposition 4.2. For any € > 0, if p,q and s are sufficiently small, and « is

sufficiently large, we have:
log T

PR (1+e)A.
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Proof. Assume L—1is a Lipschitz constant for | f|+[g[-+|h[. Let 0 < 6<1,¢>0
sufficiently small and Z = min{%‘s, i—i} Then, for p,q and s sufficiently small,

if |z —2*| < & we have g(x) —¢ > 0 > 0 and f(z)+ (h(z)—0)p > 1 - Lz > 17%.
In this situation, for |z, — x*| < z and y, < ag we have:

Yns1 = (F(@n) + h(@a)p)yn — oPlynl + a(g(zn) = ) = yn + (1 — €)dq.

Therefore, a trajectory starting with a positive y value reaches the threshold if

a a(l+2e
(1—6’)§ H
iterates. Thus, in this setting, we can take S = Bm*(i,ﬁ + mng) as a surely
escaping set, where ng = O(1) is as in Lemma 4.1. By Lemmas 3.1 and 3.3, it
follows that there is a constant U = U(T) such that for sufficiently large «, an
upper bound on the logarithm of the average bursting time is

!’ ~
) =: 1 consecutive

it stays in the region |z —z*| < Z for at least

(14 3€)a

logT < A +1logU — log 2.

Since ¢’ > 0 may be arbitrarily small and 4 can be made arbitrarily close to 1
for p, ¢ and s sufficiently small, the statement follows. O

Proposition 4.3. For any € > 0, if p,q and s are sufficiently small and pa
sufficiently large, an upper bound on the logarithm of the average bursting time
is given by:

log T

— < (1+¢)A.
5 log(1 + pa) ( )

Proof. Using the Lipschitz assumptions on f, g and h, we can find £ > 0 to be
specified later, and 0 > 0 so that for |z — 2*| < & we have f(x) + (h(z) — o)p >
14 4p for some 0 < 4 < 1—0¢ and g(z) — ¢ > 6 > 0. By the choices of % and Z,
every trajectory with initial condition yo > —kq that is in the region |x —a*| < Z
for ng iterates we have that y,, > 0. Hence, if the trajectory remains in the
region |z — z*| < Z for another iterate, we will have that

Yno+1 > (f(xno) + h(xno )p)yn + g(xno)q - U|pyno| - Cq
= (L+p)yn, + 64,

and if |z — *| < & for another n consecutive iterates,

~\n 8 5
Ynotn 2= (1 +'Yp)n:TZ ~ Fp
Hence, all orbits that remain in the region |z — x*| < & for time

n:=ng+  ————
log(1 + 4p)

will reach the threshold agq within 7 steps.

Thus, in this setting, we can take S = B,«(Z,n) as a surely escaping set. By
Lemma 3.3, we know that there are constants C' = C(T') and ¢ = ¢(T') such
that:

u(S) > Caex ™.
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Thus, by Lemma 3.1 we have that there is a constant U = U(T) such that an
upper bound on the average bursting time 7 = 7(Y) is:

T < Ui~ ?X" + 7. (10)

Therefore, there is a constant U = U(T) such that for any € > 0, if p, ¢ and
s are sufficiently small and « sufficiently large, we have:

10M

€
< — 2 7).
logT < (1+2)A(n0+log(1 :yp))JrlogU(l log &)

Furthermore, we can make 4 and ) arbitrarily close to 1 by making %,p, q
and s sufficiently small and pa sufficiently large. Choosing & = m, the
O

proposition follows.

4.1.2 Lower bound for the bursting time.

To get a lower bound for the bursting time, we need to consider different escape
routes. For a given yg, in order for a trajectory starting at height less than goq
to escape, it needs to get total expansion by a factor of o := % This expansion
can be achieved in one long sequence of expansive iterates, which corresponds to
the case presented in the previous subsection, or in several expansive sequences.

An important characteristic of our model is that the linearized contraction
rate between any two expansive sequences is bounded above by some factor
0 < ¢ < 1 independent of p and «, and that it takes a long time to recover from it.
These consideration will allow us to show that the measure of initial conditions
that initiate an escape is comparable to the measure of initial conditions that
escape in just one sequence of expansive iterates.

The goal of this section is to find a set S’ C X that every escaping orbit must
visit in order to escape. More precisely, the last time a trajectory lies below an
intermediate threshold (specified below) before escaping, its 2 coordinate must
lie in S’. In order to define S, we will consider the x dynamics in symbolic terms.
For this, we fix a Markov partition R for T', as in §3.1. Growth in the y term
happens when a trajectory spends a long time in the expansive neighborhood of
2*. When a transition from expansive to non-expansive sequence (or vice versa)
occurs, there is a contraction as described above. We will represent a point =

in X by two sequences of numbers: &y(x),&1(z),..., indicating the number of
consecutive iterates the x trajectory spends in a Markov rectangle containing
the fixed point z* and & (z),&(z),. .., indicating the number of consecutive

iterates the x trajectory spends outside of it. We also let N := &+ &1+ -+ &
and Ny, := & + - + &. All of these numbers can be thought of as random
variables on the Borel probability space (X, u). Our set S’ will be defined in
terms of consecutive sequences of €.

Remark 4.4. In the case of the maps T(z) = mz (mod 1), there exists a
Markov partition for which the sequence of &; corresponds to a sequence of iid
geometric random variables on the Borel probability space (X, u). In this case,
calculations can be done directly, using only properties of elementary discrete
probability distributions.

In general, the random variables &; are not independent. However, the ex-
ponential cluster property (also known as ¥ mixing property with exponential
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decay) used in §3.1.3 allows one to show, in our parameter range, that the to-
tal probability of escape can be still compared with the probability of escaping
through only one long sequence of consecutive expanding iterates. This was
estimated in §4.1.1.

First, we establish a lower bound in the average bursting time in terms of pa,
that is of special interest in the case when the multiplicative effect is negligible
(small pa). Later, in Proposition 4.6, we establish a sharper lower bound for
the multiplicative case (large pa).

We set A = ||g]lec + ¢ = O(1), so that gA is a global upper bound on the
kick. For the Markov partition R, we let Ry be the rectangle containing x*,
and define Ag = sup,cp,{9(x)} + ¢, so that ¢A¢ bounds the kick on Ry. We
recall that the partition R can be chosen with arbitrarily small radius. Hence,
Ay can be made as close to 14 ¢ as desired. Also, let I = sup,c g {h(z) +o};
then I' can be made arbitrarily close to 1 + o.

Proposition 4.5. Let I[(z) = —%-. Then, for any € > 0 such that if « is

e*—1
sufficiently large and p, ¢ and s are sufficiently small, we have:

logT > (1 — €)l(pa)Ac.

Proof. To establish this, we let Ay = l((l_f%. We also fix B > 0 as in
the statement of Lemma 3.5 and choose time 0 to be the last time that the y
trajectory is below Bgq, so that for n > 1, y, never goes back below Bg before
exceeding the threshold Y. Notice that for x, € Ry,

Ynt1 < (fzn) + (h(zn) + 0)p)yn + ¢B0 < (1+Tp)yn + qAo.

First, we consider only escaping trajectories for which & < « for all i before
escaping. The measure of the remaining escaping trajectories will be included
directly in the final estimate. Then, by induction on &, for £ < «,

1+Tp)s—1 elré — 1 .
ye —yo(1+Tp)t < qu¥ < qAo——— < qAoé.
I'p I'p

Next, for z,, ¢ Ry we have y,11 < cy, + ¢A, so by induction on é,

. qA
Yere < S (yo(1+Tp)* +qlof) + 1—¢o

Let ¢ = ¢(1 4+ T'p)®. Then ¢ < 1 if p,q and s are sufficiently small and pa <
%log % By induction, we obtain:

k
~k qA k-
YN+8, S C Yo+ W + qAO jZO jfj

If the threshold Y = aq is reached within k£ > 1 expansive sequences, then
recalling that yo < Bg we must have:

k

Zék7j£->a7~Eka _ A .
= 7T A Ao(1 —¢)(1— &)
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In this context, we will say that a trajectory escapes by route k if k + 1 is the
smallest integer for which the above holds. The set S’ mentioned above consists
of the union of trajectories that may initiate an escape by route k over all k € N,
and those for which there exists some 7 with §; > « before escaping. We let ¢
be the smallest so that &, > «, and denote its measure by fi,.

To bound fi,, we use the proof of Lemma 3.5 with ¢ = a and ¢ = ¢ defined
above. Adding over ¢, we get that } i, < AX_C“7 for some constant A
independent of p,q and a.

Given any € > 0, if « sufficiently large (depending on € but independent of p
and ¢), we can apply Lemma 3.5 with ¢t = (1 —e)Ai0 > B and t, = B. We obtain
that the measure uy of x trajectories that initiate an escape by route k decays
exponentially with k. For k = 1, Lemma 3.4 implies that pu; < AX_(l_E)%O.

Combining the previous two paragraphs, we get that there exists some con-
stant L such that the total measure x(S’) is bounded by

u(s') < Ly I3,

Recalling that ¢ — 0 as (p,q,s) — (0,0,0) and that Ay can be chosen
arbitrarily close to 1 by choosing R appropriately, and (p, g, s) sufficiently close
to (0,0,0), we combine the previous estimate with Lemma 3.2, and conclude
that for « sufficiently large, pa < %log% and p,q and s sufficiently small we
have:

logT > (1 — €)l(pa)Acr. O
logj _ Al(pe)
Recall that K (p, ) i= ——Lefx e wemo0ioey,

Proposition 4.6. Let € > 0. For sufficiently small p, ¢, s and sufficiently large
a such that K(p,a) > 1, a lower bound on the scaling of log 7 is:

log7 > (1—€)(1 - Z(pa))Alog(l;m),

where [(pa) — 0 as pa — oo.

Remark 4.7. The restriction on the size of « in terms of p can be improved
by taking into account the fact that typically, trajectories spend a long time
outside of the expanding region before coming back to it. This would allow
larger thresholds a. However, sufficiently large values of o would still need to
be excluded. Therefore, we only present the argument as stated in Proposition
4.6.

Proof of Proposition 4.6. Now we fix B > 0, to be specified later, and for the
moment choose time 0 to be the first time that the y trajectory exceeds Bq and
Y, never goes back below Bg before escaping. After a sequence of expansions
corresponding to a block of length £ followed by a contraction, similarly to the
proof of Proposition 4.5, we have:

Yere £
= < ((1 +Tp)f + G 0 1>C+ B0

Yo

— —£
< (414 gy + 0

< (1+Fp)5(1+ Basge + gyg)c.
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Let E(p) :=log(1 + I'p). Then, by induction on k,

y ~
log <N+N) < NiE(p) + klogc+ 5, log (1 + 5l + Aé’@)

Yo
< Nk(E(p) + ABO) +k(logc+ B(lA)>

Therefore, for a trajectory to initiate an escape without returning to the region
y < Bq before reaching the threshold, we need to have the following inequality
holding for some k,I:

167 A0 A
= <« — — B _
log 2 < (Nie+1 Nll)<E(p) B ) + k(logc-l— B(1 - C)c)
Equivalently,

A
log o log c+ 5=0y:
Niy — N _ > EX _ _ L
S = Bp+5f B(p)+ 5

= MO(%Z% B) + kﬁ(po) = Mk(aap7B)‘

We will say that such a trajectory escapes by route k. This condition de-
pends only on the x dynamics and will be used to bound the total measure of
trajectories that initiate an escape by route k from above. In this setting, we
define the set S’ C X as the union of all trajectories that can initiate an escape
by route k over all £ € N.

By Lemma 3.6, we know that if 3 is sufficiently large and My is not expo-
nentially large in 3, there is a constant 0 < 6 < 1 such that

(N1 — Ni—1 > My + kB) < AGFx Mo,

Now, we set B = %ﬁ)‘m), and let I(z) = %. For p,q and s suffi-

ciently small, the restriction in the sizes relative of My and [ is satisfied as long
as

log § al(pa)
1 X Ty " 2o+

K(p,a)=——
pal(pa)

Then, by Lemma 3.2, the measure of S’ is bounded by (S") < 1’:‘0-X_M°. In

consequence, for sufficiently small p, g and s we have:

log(1+pa)—loglog(l+pa)
— "Tlog(14T'p)+Ag I+pa + IOg

aTog(1+pa)
B log(1+pa) i 7 log(1+4pa)
> (1 G)Aip(l-i-[(pa)) = (1= e)(1 = U(pa) ) A==

log T - —log4

A
1-6

O

If parameters p, o satisfy condition (%), upper and lower bounds from Propo-
sitions 4.3 and 4.6 combined yield Theorem 4.

Remark 4.8. In case the bifurcating orbit is periodic, {7, ..., z}}, the corre-
sponding f and & in the analogue of Equation (3) for 7 have the same value
at all points of the bifurcating periodic orbit. Furthermore, there are smooth
conjugacies between the fiber maps restricted to small neighborhoods of the d
fixed points. In general, we would not be able to normalize g simultaneously
at all d points; instead, we would normalize g so that its maximum value on
the periodic orbit is 1. The estimates for the lower bound would need to be
modified accordingly. The ones for the upper bound remain valid.
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4.2 Proof of scaling laws

In this section, we extend the linear analysis presented in §4.1 to the nonlinear
setting, and complete the proof of the results stated in §2.2. We also obtain
results that are valid in a parameter range broader than that of Theorems 1 and
2, as claimed in the introduction.

With the normalizations described in §2.1 and after possibly rescaling y, the
y dynamics on the fiber over the fixed point z* is described as follows. In the
case of transcritical bifurcations (general case), Equation (4) becomes

Ynt1 = (1+p)yn £y + O(qyn + P°Yn + pa + > + 4), (11)

and in the case of pitchfork bifurcations (symmetric case), Equation (5) becomes

Ynt1 = (L +P)yn £ Y2 + O(qyn + P*yn + pa + ¢* + ypb). (12)

In | ], Zimin, Hunt and Ott have classified the effect of the nonlineari-
ties depending on whether they accelerate or confine the burst. They call them
hard and soft transitions, respectively. We will analyze these two scenarios. We
also distinguish between multiplicative (drift-dominated) and additive (noise-
dominated) bubbling phenomena, which occur depending on the relative sizes
of the parameters p and ¢q. Roughly speaking, when the effect of p is dominant,
we call it multiplicative bubbling, and when it is negligible, we call it additive
bubbling.

We note that the analysis from §4.1.2 is applicable in the nonlinear setting
since it deals with a lower bound for the bursting time. On the other hand, we
have to adjust the upper bound estimates from §4.1.1 to incorporate nonlinear
terms.

4.2.1 Asymmetric case: generic transcritical bifurcation.

Here, we show two scaling laws valid for generic asymmetric bubbling bifurca-
tions. They are valid for a threshold Y independent of p and ¢ in the hard
transition case (a(z*)g(z*) > 0), proportional to p in the multiplicative case of
soft transition (a(z*)g(z*) < 0), and to /g in the additive case of soft transi-
tion, as will be shown in the proofs. In this setting, the y dynamics of the fixed
point z* can be written as (11).

Multiplicative bubbling.

Proposition 4.9. If p? > 4q > ﬁ, there exists a constant C' > 1 independent
of p, g such that if (p, q) is sufficiently close to (0,0),

C—lA < IOgT(Y)

ST oA S CA.

Furthermore, for any ¢ > 0, if (p, Z%) is sufficiently close to (0, 0),
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Proof. Assume is p? > 4q. The attracting fixed point of the y dynamics is our
threshold of interest in the soft transition case (a = —1). Since y. & p, we set
a= r%, for some 0 < 7 < 1. In this case, the parameter s introduced in §4.1 is
simply r = s, s0 s — 0 if r — 0.

The hard transition case (a = 1), where no attractor is given by the local
analysis, corresponds to the scenario where a linear regime takes place and then
it is replaced by a nonlinear one. We set a threshold o = r2 to separate the
linear and nonlinear behaviors, for some r > 0 independent of p and q.

Let us take an initial condition yo = %. Assuming p is small and ¢ is small
but not extremely small compared to p, %kz(p) > %, Theorem 4 implies the
following scaling for sufficiently small r:

Cln < 108TUD) oy
S log(1+ =)

which, in turn, implies:

log(1 + 2
o1 g( q )A< log 7(rp)

log(1 4+ £) Llog(1+ £) <

q P q

In the hard transition case, the burst is not confined in a small region. It
may be of order one. In this setting, we also investigate the average bursting
time associated to a threshold Y, which is determined by the y value at which
the higher order terms become significant, for example of size %yQ. To bound
log 7(Y") from below, we use 7(Y) > 7(rp) for rp < Y. We choose a threshold
Y <1, that is reached for all sufficiently small values of p and ¢ and such that
the higher order terms are bounded by %y2 forrp<y<Y.

To find an upper bound on the scaling of log 7, we extend the analysis in
§4.1.1. There we found n such that if x spends n consecutive iterates in the
region |z — z*| < Z, then at the end of those iterations, y > ag = rp. We can
guarantee that y > Y if « spends ¢ additional iterates in the region |z — z*| < Z,
where we determine ¢ as follows. When |z, — 2*| < Z and mp < y, < Y,
Yn + 292 < yn+1 < (1+2p)yn + 5y2. Hence, we have that y,41 < Sy,.

Calling the time at which y exceeds rp time 0, we can bound from below the
solution of our original difference equation with the solution y(¢) of a differential
equation inductively if we can check y(0) = rp and y(n + 1) < y(n) + 2y(n)%

For values n < —ngp - *332, this is the case for the solution of
3 9
)= —y°, 0) =rp.
Y 329 y(0) =rp

This solution is given by y(t) = —+
32 (Y—rp) 32

3t
Tp 32
From this, we conclude that an extra t = . T S B % < 35—2 iterates

P P D
in the non-contracting region would oblige a burst of size Y. Thus, proceding

as in (10), for p, ¢ and r sufficiently small, we have the following bounds:

log(1 + 2
o1 1 qZ)A< log 7(¥) <C<1+1 ; )A
log(1 + £-) %log(l—&—%) rlog(1+ £-)

In particular, if we fix a sufficiently small value for r, the first statement follows.
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We obtain the second statement, corresponding to the asymptotic scaling
for log 7(Y) in the parameter regime considered in | ], p? > q as follows.

For any € > 0, if (p, q) is sufficiently close to (0,0) and % sufficiently large, we

can let r = 1 11 — and obtain from the previous bounds:
oglog F-
1 Y
1—en<87) 44 ga O
e’y

Additive bubbling.

Proposition 4.10. If p? < 4gq, there exists a constant C>1 independent of
p,q such that if (p, q) is sufficiently close to (0,0),

Proof. Assume p? < 4q. In the case of a soft transition (¢ > 0), the attracting
fixed point for the y dynamics is y. ~ \/q. Our threshold of interest is of the
order of ,/q. Hence, we choose o = rﬁ. In this case, r = /s and condition s
is small when r is small.

In the hard transition case, the linear term is negligible with respect to
the kick. Therefore nonlinear terms become significant when the kick becomes
negligible, and no intermediate regime is governed by the expansive linear term.
In this setting, we investigate the threshold ag = r,/q ~ y., which separates
the constant and nonlinear behaviors.

In both cases we first require to reach a = ﬁ, for some 0 < r < 1 sufficiently
small, corresponding to the predominance of the linear regime. From Theorem
4, if p,q and r are sufficiently small, we obtain:

log 7(r,/q)

C'1-rA< ~
Va

< CA.

In the hard transition case, by reasoning similarly to the multiplicative case,
we obtain that to pass from the linear setting to the threshold Y of order 1,

33\2/6 extra iterates in the non-contracting region suffice. Hence, we have:

log 7(Y) 32
= K — .
T < A(Cr + 3r)

1
q2

Clr(1—-7r)A <

Hence, if we fix a sufficiently small value for r, Proposition 4.10 follows. L]

4.2.2 Symmetric case: generic pitchfork bifurcation.

Here, we show two scaling laws valid for generic pitchfork bubbling bifurcations.
They are valid for a threshold Y independent of p and ¢ in the hard transition
case (a(x*) > 0), proportional to /p in the multiplicative case of soft transition
(a(z*) < 0), and to ¥/q in the additive case of soft transition, as will be shown in
the proofs. In this setting, the y dynamics of the fixed point z* can be written
as (12).
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Multiplicative bubbling.
Proposition 4.11. If p? > %qQ
independent of p, g such that if (p, q) is sufficiently close to (0, 0),

and ¢ > W\/f)’ there exists a constant C' > 1

é_lA < IOgT(Y)

— < CA.
Slog(1+25)

Njw

Furthermore, for any e > 0, if (p, pT) is sufficiently close to (0,0),
log 7 (Y
1—en <87 4o
2
2 log(1+2%)
Proof. Assume p3 > %qQ. The soft transition case occurs when ¢ = —1. In
this situation, the cubic equation has three real roots and the continuation of

N

the fixed point 0, y« ~ /P, is stable. In this case, we set a = r 7 where r

corresponds to /s, and therefore s is small when 7 is.

The hard transition case occurs when a = 1. The threshold corresponding to
a=rY2 corresponds to the transition between linear and nonlinear behaviors.

The analysis is similar to the previous subsection. Let us take an initial
condition yg = 1%. Assuming that p is small and %k‘(p) > é, by Theorem 4 we
get:

log 7(r
A BTOVD) oy
2
% log(1 + &~)

As in the asymmetric case, when the transition is hard, we are also interested
in bursts up to order one, whose size Y is determined by higher order terms,
but independent of p and q. We choose it in such a way that the higher order
terms are bounded by 1y® for r\/p <y < Y. In this case, if |z, — 2*| < & and
Yn > 7y/D, we know that y,, + 2y3 < yny1 < (142p)yn + 5v5.

Asin §4.2.1, %= > 3 and we consider the differential equation:
Yn+1 8

3
0—110g(1 + r%)

3
p2
log(1+ &~)

9 4 _
%y ) y(O) = 7"\/17,

with solution given by y(t) = 4 /ﬁpﬁpt.
256

Y=

This function bounds from below the solution of our system up to t = 913; -
%8. This is the time it takes the solution of the differential equation to reach

Y. Hence, we get that an extra ¢t = 91T228p iterates in the non-contracting region

would oblige a burst of size Y. Thus, if p, ¢ and r are sufficiently small, we have
the following bounds:

3
log(1 + r2=
o1 | logT(Y <C<1+1 )A.
)

3
p2 1 pz 2 p2
log(1+ £>) > log(1+E5=) r?log(1+ £

wjeo
wjeo

Hence, if we fix a sufficiently small value for r, the first statement follows.
Furthermore, we obtain the asymptotic scaling for log 7(Y") in the parameter
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regime considered in | 1, p? > g, as follows. For any € > 0, if (p,q) is
3

sufficiently close to (0,0) and % sufficiently large, we can let r = —L— and

obtain from the previous bounds:
log7(Y)

(I-eA< =
%10g(1 + %)

< (1+¢)A. O

Additive bubbling.

Proposition 4.12. If p3 < %QQ, there exists a constant C > 1 independent of

p, ¢ such that if (p, ¢) is sufficiently close to (0,0),

Proof. Assume p3 < %q? Analogously to the asymmetric case, we first consider
the linear regime, determined by the fact that y. ~ {/q. We set the threshold
aq = r¢/q. In this setting, » = /s, and from Theorem 4, for € > 0, if p,q and r
are sufficiently small, we obtain:
log 7(r
11— pya < 08TV oy

T

Wi

q

As above, in the hard transition case, to pass from the linear setting to a thresh-

old Y of order 1, 912282 extra iterates in the non-contracting region suffice.
r<q3

Hence, for sufficiently small p, g and r we have:

_ 3 log 7(Y) 128
1
C™r(l— gr)A < T < <CT t3,2 )A.

2
q3

Hence, if we fix a sufficiently small value for r, Proposition 4.12 follows. O
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