Approximating invariant densities of metastable systems

Cecilia González Tokman* Brian R. Hunt† Paul Wright‡

February 21, 2010

Abstract

We consider a piecewise smooth expanding map of the interval possessing two invariant subsets of positive Lebesgue measure and exactly two ergodic absolutely continuous invariant probability measures (ACIMs). When this system is perturbed slightly to make the invariant sets merge, we describe how the unique ACIM of the perturbed map can be approximated by a convex combination of the two initial ergodic ACIMs. The result is generalized to the case of finitely many invariant components.

1 Introduction

Metastable systems are studied in relation with phenomena ranging from molecular [MDHS06] to oceanic [FPET07] dynamics. Typical trajectories of these systems remain in one of its almost invariant (metastable or quasi-stationary) components for a relatively long period of time, but eventually switch to a different component and repeat this behavior. Quantitative aspects of these phenomena have been studied through eigenvalue and eigenvector approximation techniques for Markov models [MSF05, FP08]. Here, we are concerned with rigorous approximation results for eigenvectors—in particular those that correspond to stationary measures of the dynamics—in a more general (non-Markov) setting.

Broadly, our setting concerns the approximation of absolutely continuous invariant probability measures (ACIMs) for certain hyperbolic maps with metastable states. These systems arise from perturbing an initial system
T_0 with two disjoint invariant sets I_l, I_r of positive Lebesgue measure. The initial map has two mutually singular ergodic ACIMs, μ_l and μ_r. When T_0 is perturbed in such a way that I_l and I_r lose their invariance and the perturbed map T_ϵ has only one ACIM μ_ϵ, we are interested in approximating μ_ϵ using μ_l and μ_r. Specifically, the systems we consider are piecewise C^2 expanding maps of an interval; see Figure 1.

Our results can be understood in the context of dynamical systems with holes as follows. As the invariance of the two initially invariant sets is destroyed by the perturbation, we think of the small set of points $I_l \cap T_{\epsilon}^{-1}I_r$ that switch from I_l to I_r, and likewise the set $I_r \cap T_{\epsilon}^{-1}I_l$, as being holes in the initially invariant sets. From this point of view we expect to be able to approximate μ_ϵ, for small ϵ, by a convex combination $\alpha \mu_l + (1-\alpha) \mu_r$ of the two initially invariant measures, with the ratio $\alpha/(1-\alpha)$ depending on the relative sizes of the holes.

![Figure 1: Dashed: initial system. Thick: metastable system.](image)

Before discussing our results, we present two illustrative examples. We begin with a simple random system. Consider the family of Markov chains in two states l and r, with transition matrices

$$Q_\epsilon = \begin{pmatrix} 1 - \epsilon_{l \rightarrow r} & \epsilon_{l \rightarrow r} \\ \epsilon_{r \rightarrow l} & 1 - \epsilon_{r \rightarrow l} \end{pmatrix},$$

where $\epsilon = (\epsilon_{l \rightarrow r}, \epsilon_{r \rightarrow l})$. We are interested in the behavior when $\epsilon \approx 0$. When $\epsilon = 0$, the two sets $I_l = \{l\}$ and $I_r = \{r\}$ are invariant, giving rise to the two ergodic stationary probability measures $\mu_l = \delta_l$ and $\mu_r = \delta_r$. When $\epsilon_{l \rightarrow r} > 0$, there is a unique stationary probability measure

$$\mu_\epsilon = \alpha_\epsilon \mu_l + (1-\alpha_\epsilon) \mu_r,$$

where $\frac{\alpha_\epsilon}{1-\alpha_\epsilon} = \frac{\epsilon_{r \rightarrow l}}{\epsilon_{l \rightarrow r}}$.

2
Observe that the ratio of the weights $\alpha/(1-\alpha)$, i.e. $\mu_r(I_l)/\mu_r(I_r)$, is equal to the inverse ratio of the sizes of the holes, $\epsilon_{r \to l}/\epsilon_{l \to r}$.

Next, we consider two billiard tables D_l, D_r in the plane, as indicated in Figure 2. For $* \in \{l, r\}$, let $T_* : I_* \circlearrowleft$ be the corresponding billiard map, i.e. the Poincaré map for the first return of the billiard flow to ∂D_*. We use $|\partial D_*|$ to denote the perimeter of D_*. A general reference for hyperbolic billiards is [CM06], where one can find the background for the assertions below. We use the usual coordinates (s, φ) on I_*, where s is arc length on ∂D_*, and $\varphi \in [-\pi/2, +\pi/2]$ is the angle between the outgoing velocity vector and the inward pointing normal vector to ∂D_*. Then it is well known that T_* leaves (normalized) Liouville measure μ_* invariant, where μ_* has the density $\phi_* := d\mu_*/dsd\varphi = [2|\partial D_*|]^{-1}\cos \varphi$. Next, for $\epsilon > 0$, let h_ϵ be a subsegment of $\partial D_l \cap \partial D_r$ of length ϵ, and let D_ϵ be the billiard table resulting after h_ϵ is removed. The corresponding density for the invariant Liouville measure of the billiard map is $\phi_\epsilon = [2(|\partial D_l| + |\partial D_r| - 2\epsilon)]^{-1}\cos \varphi$. Thus as $\epsilon \to 0$,

$$\phi_\epsilon \to \alpha \phi_l + (1-\alpha) \phi_r, \quad \text{where} \quad \frac{\alpha}{1-\alpha} = \frac{|\partial D_l|}{|\partial D_r|},$$

provided some care is taken to define all of the density functions involved on the same space. Note that if we define the holes $H_{*,\epsilon} := T_*^{-1}(h_\epsilon \times [-\pi/2, +\pi/2])$, then we can rewrite $\alpha/(1-\alpha) = \mu_r(H_{r,\epsilon})/\mu_l(H_{l,\epsilon})$, so that again the ratio of the weights equals the inverse ratio of the sizes of the holes. This example is most meaningful when T_l, T_r, and T_ϵ are all ergodic, which is the case for the tables in Figure 2; see §8.15 in [CM06].

![Figure 2: Two ergodic billiard tables connected by a hole.](image)

In our main result, Theorem 1, we extend the principle behind the examples above to the deterministic setting of piecewise C^2 expanding maps, under fairly general conditions described in §2. We show that as $\epsilon \to 0$
the invariant density \(\phi_\epsilon \) of \(T_\epsilon \) converges in \(L^1 \) to a convex combination of the ergodic invariant densities of \(T_0 \), with the ratio of the weights given by the limiting inverse ratio of the sizes of the holes. We emphasize that our results do not require any of the piecewise expanding maps involved to have a Markov partition.

The density \(\phi_\epsilon \) corresponds to an eigenvector with eigenvalue 1 for the Perron-Frobenius operator acting on a suitable space of functions. Our assumptions imply that for \(\epsilon > 0 \), the operator has 1 as a simple eigenvalue, and also another real simple eigenvalue slightly less than 1. In Theorem 2, we characterize the eigenvectors of this lesser eigenvalue by showing that asymptotically they lie on the line spanned by \(d\mu_l/dx - d\mu_r/dx \).

Unlike the two examples above, in the setting of piecewise \(C^2 \) expanding maps we have no explicit formulas for the invariant densities; even their existence is nontrivial. Our methods rely on the fact that the densities of the ACIMs for \(T_\epsilon \) are of bounded variation [LY73]. Hence, they can be decomposed into regular and singular (or saltus) parts, as in [Bal07]. The key technical portions of our proofs include estimating and exploiting the locations and sizes of the jumps at the discontinuities of the invariant densities, which occur on the forward trajectories of the critical points of \(T_\epsilon \).

This work is related to other recent work involving metastable systems and piecewise expanding maps. Recently, [KL] studied metastable systems arising from piecewise smooth uniformly expanding maps with two invariant intervals. They perturbed such an initial map by a family of Markov operators close to the identity to produce a family of metastable systems for \(\epsilon > 0 \). The associated Perron-Frobenius operators acting on a suitable space of functions have 1 as a simple eigenvalue and another simple eigenvalue \(\rho_\epsilon < 1 \). As \(\epsilon \to 0 \), \(\rho_\epsilon \to 1 \), and the authors rigorously computed the derivative \(\lim_{\epsilon \to 0^+} (1 - \rho_\epsilon)/\epsilon \). This provides information on the stationary exchange rate between the metastable states. Their work may be used to show a corresponding result in our setting.

Our work is also related to current and ongoing investigations on linear response. These problems have the feature that, as Ruelle [Rue98] puts it, it is possible to formulate conjectures based on intuition or formal calculations, but the proofs often involve overcoming intricate technicalities. In our setting, we know that \(\mu_\epsilon(I_\iota_l) \to \alpha \) as \(\epsilon \to 0 \). A pertinent open problem would be to try and characterize the higher-order terms \(\mathcal{R}(\epsilon) := \mu_\epsilon(I_\iota_l) - \alpha \). We do not expect \(\mathcal{R}(\epsilon) \) to be differentiable at \(\epsilon = 0 \) in general. As shown in [BS08], linear response fails precisely when the perturbations \(T_\epsilon \) are transverse to the topological class of \(T_0 \), at least for certain piecewise expanding unimodal maps \(T_0 \) that are topologically mixing. Results of [Kel82] show that in that setting the unique ACIM \(\phi_\epsilon \) of \(T_\epsilon \) satisfies \(\| \phi_\epsilon - \phi_0 \|_{L^1} = O(\epsilon \log \epsilon) \), where \(\phi_0 \) is the unique ACIM of \(T_0 \). [Bal07] gives examples where this estimate is optimal.

Theorem 1 can also be regarded as a statement of stochastic stability
in the sense that as the size of the perturbation goes to zero, the invariant measures that describe the statistics of Lebesgue almost every orbit have a computable limit. In the uniformly hyperbolic setting, this phenomenon has been studied in the ergodic case; see for example [Via97]. In recent years, there has been work in studying stochastic stability outside the setting of uniformly hyperbolic systems. For example, in [AT05], the authors work at the boundary of expanding maps, in [AAV07] in the context of non-uniformly hyperbolic diffeomorphisms and [V´as07] treats diffeomorphisms with dominated splitting.

Another interesting problem for further research is to extend our results to higher dimensional piecewise hyperbolic maps. While we use techniques specific to one-dimensional maps, we are optimistic that the main elements of our proof, found in §3.2, can be generalized.

2 Statement of results

In this section, we define a class of dynamical systems with two nearly invariant (metastable) subsets. They are perturbations of a one-dimensional piecewise smooth expanding map with exactly two invariant subintervals I_l and I_r of positive Lebesgue measure. On each of these intervals, the unperturbed system has a unique ACIM. The perturbations break this invariance by introducing what we consider to be holes in the intervals; the hole(s) in I_l maps to I_r and vice versa. Each perturbed system will have only one ACIM, and we will determine an asymptotic formula for its density in terms of the invariant densities of the unperturbed system.

Let $I = [0,1]$. In this paper, a map $T : I \supset$ is called a piecewise C^2 map with $C = \{0 = c_0 < c_1 < \cdots < c_d = 1\}$ as a critical set if for each i, $T|_{(c_i,c_{i+1})}$ extends to a C^2 function on a neighborhood of $[c_i, c_{i+1}]$. We call T uniformly expanding if its minimum expansion, $\inf_{x \in I} |T'_0(x)|$, is greater than 1. As is customary for piecewise smooth maps, we consider T to be bi-valued at points $c_i \in C$ where it is discontinuous. In such cases we let $T(c_i)$ be both values obtained as x approaches c_i from either side, and $T(c_i \pm)$ the corresponding right and left limits. If $a, b \in C$, $T|_{[a,b]}$ will be used to specifically denote the restriction of T with $T|_{[a,b]}(a) = T(a_-)$ and $T|_{[a,b]}(b) = T(b_+)$.

We use Leb to denote normalized Lebesgue measure on I and L^1 to denote the space of Lebesgue integrable functions on I, with norm $|f|_{L^1} = \int_I |f(x)| \, dx$. Also, for $f : I \rightarrow \mathbb{C}$, we let $|f|_{\infty}$ be the supremum of f over I and $\text{var}(f)$ be the total variation of f over I; that is,

$$\text{var}(f) = \sup \left\{ \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| : n \geq 1, 0 \leq x_0 < x_1 < \cdots < x_n \leq 1 \right\}.$$

For clarity of presentation, we do not state our results under the broadest
possible assumptions. However, see §2.4 for a number of relaxations of the hypotheses below.

2.1 The initial system and its perturbations

We assume that the unperturbed system is a piecewise C^2 uniformly expanding map $T_0 : I \subset \mathbb{R}$ with $C_0 = \{0 = c_{0,0} < c_{1,0} < \cdots < c_{d,0} = 1\}$ as a critical set. There is a boundary point $b \in (0, 1)$ such that $I_l := [0, b]$ and $I_r := [b, 1]$ are invariant under T_0, i.e. for $* \in \{l, r\}$, $T_0|_{I_*} (I_*) \subset I_*$. The existence of an ACIM of bounded variation for $T_0|_{I_*}$ is guaranteed by [LY73]. We assume in addition:

(I1) Unique ACIMs on the initially invariant set.

$T_0|_{I_*}$ has only one ACIM μ_*, whose density is denoted by $\phi_* = \frac{d\mu_*}{dx}$.

The uniqueness of such an ACIM can be guaranteed by transitivity or by additional conditions described in [LY78]. From (I1), it follows that all ACIMs of T_0 are convex combinations of the ergodic ones, μ_l and μ_r.

We define the points in $H_0 := T_0^{-1}\{b\} \setminus \{b\}$ to be infinitesimal holes. These are all points that map to the boundary point b, except possibly b itself. Our reasons for excluding b from the set of infinitesimal holes will be explained in §2.4. An immediate consequence of this definition is that $H_0 \subset C_0$.

(I2) No return of the critical set to the infinitesimal holes.

For every $k > 0$, $(T_0^k C_0) \cap H_0 = \emptyset$.

This is a non-degeneracy condition that may be difficult to check for specific systems. However, one can show that any piecewise C^2 expanding map of the interval can be approximated by maps satisfying (I2), by making arbitrarily small C^2 perturbations.

In general, functions of bounded variation are only defined modulo a countable set. However, as we will see in §4.2, condition (I2) implies that ϕ_* can be defined so that it is continuous at each of the infinitesimal holes in I_*. Thus it is meaningful to discuss the values of ϕ_* at such points.

(I3) Positive ACIMs at infinitesimal holes.

ϕ_l is positive at each of the points in $H_0 \cap I_l$, and ϕ_r is positive at each of the points in $H_0 \cap I_r$.

For example, this will be the case if $T_0|_{I_l}$ and $T_0|_{I_r}$ are weakly covering, see [Liv95].
(I4) **Restriction on periodic critical points.**

Either

(I4a) \(\inf_{x \in I \cap C_0} |T'_0(x)| > 2 \), or

(I4b) \(T_0 \) has no periodic critical points, except possibly that 0 or 1 may be fixed points.

Because \(T_0 \) may be bi-valued at points in \(C_0 \), a critical point \(c_{i,0} \) is considered periodic if there exists \(n > 0 \) such that \(c_{i,0} \in T^n_0(c_{i,0}) \). Condition (I4) is necessary in order to ensure that the perturbed systems defined below satisfy uniform Lasota-Yorke estimates. Since we cannot exclude the possibility of the forward orbit of a critical point containing other critical points, these uniform estimates do not follow directly from the original paper [LY73], but rather from later works, see §4.2.

For what follows, we consider \(C^2 \)-small perturbations \(T_\epsilon : I \supset I_0 \) for \(\epsilon > 0 \). This means that a critical set for \(T_\epsilon \) may be chosen as \(C_\epsilon = \{ 0 = c_{0,\epsilon} < c_{1,\epsilon} < \cdots < c_{d,\epsilon} = 1 \} \), where for each \(i \), \(\epsilon \mapsto c_{i,\epsilon} \) is a \(C^2 \) function for \(\epsilon \geq 0 \). Furthermore, there exists \(\delta > 0 \) such that for all sufficiently small \(\epsilon \), there exists a \(C^2 \) extension \(\hat{T}_{i,\epsilon} : [c_{i,\epsilon} - \delta, c_{i+1,\epsilon} + \delta] \to \mathbb{R} \) of \(T_\epsilon |_{(c_{i,\epsilon}, c_{i+1,\epsilon})} \), and \(\hat{T}_{i,\epsilon} \to \hat{T}_{i,0} \) in the \(C^2 \) topology. We also assume:

(P1) **Unique ACIM.**

For \(\epsilon > 0 \), \(T_\epsilon \) has only one ACIM \(\mu_\epsilon \), with density \(\phi_\epsilon := d\mu_\epsilon / dx \).

(P2) **Boundary condition.**

The boundary point does not move, and no holes are created near the boundary; precisely,

(P2a) If \(b \notin C_0 \), then necessarily \(T_0(b) = b \). We assume further that for all \(\epsilon > 0 \), \(T_\epsilon(b) = b \).

(P2b) If \(b \in C_0 \), we assume that \(T_0(b_-) < b < T_0(b_+) \), and also that \(b \in C_\epsilon \) for all \(\epsilon \).

If the boundary point does move under the perturbation, condition (P2) often can be satisfied by performing a smooth change of coordinates close to the identity; see §2.4.

2.2 Main results

The central question of this study is, for small \(\epsilon \), how can we asymptotically approximate \(\mu_\epsilon \) by a convex combination of \(\mu_l \) and \(\mu_r \)? To that end, let \(H_{l,\epsilon} := I_l \cap T_{-1,\epsilon}(I_r) \) and \(H_{r,\epsilon} := I_r \cap T_{-1,\epsilon}(I_l) \). We refer to these sets as \(\text{holes} \). Once a \(T_\epsilon \)-orbit enters a hole, it leaves one of the invariant sets for \(T_0 \) and continues in the other. As \(\epsilon \to 0 \), the holes converge (in the Hausdorff metric) to the infinitesimal holes from which they arise.

7
Condition (P1) ensures that for $\epsilon > 0$, at least one of the holes has positive Lebesgue measure. In view of (I3), without loss of generality, we suppose that $\mu_l(H_{l,\epsilon}) > 0$ and define

$$\text{l.h.r.} = \lim_{\epsilon \to 0} \frac{\mu_r(H_{r,\epsilon})}{\mu_l(H_{l,\epsilon})},$$

if the limit exists. (l.h.r. stands for limiting hole ratio.)

Theorem 1 (Approximation of the invariant density). Consider the family of perturbations T_ϵ of T_0 under the assumptions stated in §2.1. Suppose that l.h.r. above exists. Then as $\epsilon \to 0$,

$$\phi_\epsilon \xrightarrow{L^1} \alpha \phi_l + (1 - \alpha) \phi_r, \quad \text{where} \quad \frac{\alpha}{1 - \alpha} = \text{l.h.r..}$$

We allow for l.h.r. = $+\infty$, in which case $\alpha = 1$. Several straightforward generalizations of the above result are discussed in §2.4.

Remark 1. The limit l.h.r. will always exist as long as the perturbations open up holes $H_{l,\epsilon}$ whose size is truly first order in ϵ: For simplicity, suppose that there are only two infinitesimal holes, $h_l \in I_l$ and $h_r \in I_r$. Then we can always write $H_{s,\epsilon} = (h_s - a_s \epsilon + o(\epsilon), h_s + b_s \epsilon + o(\epsilon))$ for $s \in \{l, r\}$, and if $a_l + b_l > 0$, then

$$\text{l.h.r.} = \frac{\phi_s(h_r)(a_r + b_r)}{\phi_l(h_l)(a_l + b_l)}.$$

For example, this will be the case if $T_\epsilon = T_0 + \epsilon g + o(\epsilon)$ for some smooth function g with $g(h_l) > 0$.

The case when the limit l.h.r. does not exist is addressed in §2.4.

Remark 2. An alternative definition of l.h.r. is as a limit of a ratio of escape rates: For $s \in \{l, r\}$, we can consider a dynamical system with a hole, where orbits stop upon entering the hole, by using the unperturbed map $T_0|I_s$ with $H_{s,\epsilon}$ as the hole. See [DY06] for an exposition of such systems. Let $R_{s,\epsilon}$ be the exponential escape rate of Lebesgue measure and suppose that there is only one infinitesimal hole in each initially invariant interval. Then as $\epsilon \to 0$,

$$\mu_s(H_{s,\epsilon}) / R_{s,\epsilon} \to 1. \quad \text{[BY08, KL]}$$

Next, let L_ϵ be the Perron-Frobenius operator associated with T_ϵ acting on the Banach space $BV = \{ f : I \to \mathbb{C} : \text{var}(f) < \infty \}$ with the variation norm, and let $\sigma(L_\epsilon)$ denote the spectrum of L_ϵ. It follows from e.g. [Kel89, Thm. 8.3(b)] that \mathcal{L}_0 has one as an isolated eigenvalue of multiplicity two. Furthermore in [KL99] the authors show that for fixed small $\delta > 0$ and for

\footnote{In fact, we work in the quotient space obtained by identifying two functions of bounded variation if they differ on at most a countable set. As no confusion arises, we use the same notation for a function and its equivalence class.}
every $\epsilon > 0$ small enough, $\sigma(\mathcal{L}_\epsilon) \cap B_\delta(1)$ consists of exactly two eigenvalues, 1 and $\rho_\epsilon < 1$, each of multiplicity 1. As $\epsilon \to 0$, $\rho_\epsilon \to 1$ and the total spectral projection of \mathcal{L}_ϵ associated with $\sigma(\mathcal{L}_\epsilon) \cap B_\delta(1)$ converges (at a given rate in an appropriate norm) to the total spectral projection of \mathcal{L}_0 associated with $\sigma(\mathcal{L}_0) \cap B_\delta(1)$. Note that in §4.2 we will verify that a uniform Lasota-Yorke inequality (7) holds in our setting. This is the only assumption of [KL99] that is neither trivial nor well-known in our context.

Theorem 2 (Characterization of the eigenspace corresponding to the lesser eigenvalue). For each $\epsilon > 0$ small enough, there is a unique real-valued function $\psi_\epsilon \in BV$ satisfying $\mathcal{L}_\epsilon \psi_\epsilon = \rho_\epsilon \psi_\epsilon$, $|\psi_\epsilon|_{L^1} = 1$, and $\int_I \psi_\epsilon dx > 0$. As $\epsilon \to 0$,

$$\psi_\epsilon \xrightarrow{L^1} \frac{1}{2} \phi_l - \frac{1}{2} \phi_r.$$

Remark 3. Suppose μ_l and μ_r are both mixing for T_0. Given a typical initial density $f \in BV$ (i.e. one with nonzero coefficient of ψ_ϵ when expressed as a linear combination of eigenvectors), as $\mathcal{L}_n f \rightarrow \phi_\epsilon$, the deviation $\mathcal{L}_n f - \phi_\epsilon$ becomes approximately proportional to ψ_ϵ for n large. In this case, Theorem 2 implies roughly that for ϵ small, $\mathcal{L}_n^\epsilon f$ becomes close to a linear combination of ϕ_l and ϕ_r more quickly than it comes close to the specific linear combination $\alpha \phi_l + (1 - \alpha) \phi_r$.

2.3 Examples

The three piecewise linear maps shown in Figure 3 satisfy assumptions (I1)-(I4) from §2.1. In all three cases, normalized Lebesgue measure restricted to the left or right intervals is the unique ACIM of the corresponding restricted system.

![Figure 3: Piecewise linear maps giving rise to metastable systems.](image)

Adding a small C^2 perturbation $g : I \times [0, \epsilon_0) \to I$ such that $g(\cdot, 0) \equiv 0$ and for $\epsilon \neq 0$, $g(b, \epsilon) = 0$, $g(h_l, \epsilon) > 0$ and $g(h_r, \epsilon) < 0$ gives a one-parameter family of perturbations $T_\epsilon := T_0 + g(\cdot, \epsilon)$ satisfying assumptions (P1) and (P2).
If \(\lim_{\epsilon \to 0} \frac{\text{Leb}(H_{\epsilon})}{\text{Leb}(H_{\epsilon}^c)} = \text{l.h.r.} \), by Theorem 1, the invariant densities \(\phi_\epsilon \) associated to \(T_\epsilon \) satisfy

\[
\phi_\epsilon \overset{L^1}{\to} \alpha \text{Leb}|_{I_l} + (1 - \alpha) \text{Leb}|_{I_r}, \quad \text{where} \quad \frac{\alpha}{1 - \alpha} = \text{l.h.r.}
\]

The possibility \(\text{l.h.r.} = \infty \) is allowed, and in this case,

\[
\phi_\epsilon \overset{L^1}{\to} \text{Leb}|_{I_l}.
\]

Other initial maps \(T_0 \) for which Theorems 1 and 2 are applicable are shown in Figure 4.

![Figure 4: Examples of initial maps \(T_0 \) which give rise to metastable systems for which our results hold.](image)

2.4 Generalizations

Our results extend, with essentially the same proofs, to yield the following straightforward generalizations.

Multiple invariant sets.

We can also allow \(T_0 \) to have \(m \geq 2 \) invariant sets of positive Lebesgue measure \(I_1, \ldots, I_m \), provided it has a unique ACIM \(\phi_i = d\mu_i/dx \) on each \(I_i \). The invariant sets may be intervals or a union of intervals. See Figure 5. For simplicity, we limit ourselves to the case when, for \(\epsilon > 0 \), all of the transitions between the initially invariant sets are first order in \(\epsilon \), i.e. for \(i \neq j \), \(\mu_i(I_i \cap T_\epsilon^{-1}I_j) \) is either identically 0 or equals \(\epsilon \cdot \beta_{i,j} + o(\epsilon) \) for some \(\beta_{i,j} > 0 \). In this case, under assumptions that are straightforward generalizations of (I1)-(I4), (P1) and (P2), the unique invariant density \(\phi_\epsilon \) of \(T_\epsilon \) converges as \(\epsilon \to 0 \) to a convex combination of the \(\phi_i \). The coefficients may be determined from the corresponding coefficients of the stationary measure for the finite state Markov chain whose transition matrix has the off-diagonal entries \(\epsilon \cdot \beta_{i,j} \).

(One can easily check that the stationary measure for this Markov chain is independent of \(\epsilon \) for all small \(\epsilon > 0 \), and also that our assumptions imply
that the transition matrix is irreducible and hence has a unique stationary
measure.)

If \(m > 2 \), the analogue of Theorem 2 says only that the eigenfunctions
for \(T_\epsilon \) whose eigenvalues approach 1, but are distinct from 1, limit on the
space of linear combinations of invariant densities for \(T_0 \) with integral 0.

Figure 5: Initial maps \(T_0 \) which give rise to metastable systems for which
our results can be generalized. The initially invariant sets are
\(I_1 = [0, 1/4] \cup [1/2, 3/4] \) and \(I_2 = [1/4, 1/2] \cup [3/4, 1] \) (left) and \(I_1 = [0, 1/4] \), \(I_2 = [1/4, 3/4] \)
and \(I_3 = [3/4, 1] \) (right).

Boundary condition.

The restriction that the boundary point does not move when \(T_0 \) is perturbed
is inessential; when it is relaxed, it simply means that the metastable states
for \(T_\epsilon \) are slight perturbations of the initial invariant sets. In this case, a
smooth change of coordinates restores the hypothesis (P2). For example,
when \(b \notin C_0 \) assumption (P2a) is actually superfluous, although the definitions in the statement of Theorem 1 must be modified slightly. As remarked
earlier, necessarily \(T_0(b) = b \). Furthermore, the graph of \(T_0 \) intersects the
diagonal transversely at this point. Thus for all small \(\epsilon > 0 \), there is a
unique point \(b_\epsilon \) near \(b \) satisfying \(T_\epsilon(b_\epsilon) = b_\epsilon \). Then the quasi-invariant sets
for \(T_\epsilon \) are \(I_{l,\epsilon} := [0, b_\epsilon] \) and \(I_{r,\epsilon} := [b_\epsilon, 1] \), and the corresponding holes are
defined by \(H_{l,\epsilon} := I_{l,\epsilon} \cap T_\epsilon^{-1}(I_{r,\epsilon}) \) and \(H_{r,\epsilon} := I_{r,\epsilon} \cap T_\epsilon^{-1}(I_{l,\epsilon}) \). Aside from these minor modifications, the statements and proofs of our main results
remain the same.

When \(b \in C_0 \), (P2b) can be relaxed by no longer requiring that \(b \in C_\epsilon \)
for all \(\epsilon \). In this case, when \(\epsilon > 0 \), \(C_\epsilon \) contains a point \(b_\epsilon \) that converges
to \(b \) as \(\epsilon \to 0 \), and the quasi-invariant sets and holes must be redefined
as above. However, it is still essential to assume that no holes are created
near the boundary, which we enforce with the assumption that \(T_0(b_-) < b < T_0(b_+) \). For example, if
\(T_\epsilon(x) = [(3x \mod 1/2) + 3\epsilon] \cdot 1_{x<1/2} + [(-3x \mod 1/2) + 1/2 - \epsilon] \cdot 1_{x>1/2} \), then all of our assumptions aside from (P2) hold,
with \(b = 1/2 \), \(\mu_\epsilon = \text{Leb} |_{I_\epsilon} \), and \(L.H.R. = 1/3 \). However, as \(\epsilon \to 0 \), \(\phi_\epsilon \xrightarrow{L^1} \phi_r \).
The difficulty is that orbits ejected from \(I_r \) by \(T_\epsilon \) immediately return to \(I_r \).
Multiple limiting densities.

When the limit \(l.h.r. \) in §2.2 does not exist, we let

\[
\liminf_{\epsilon \to 0} \frac{\mu_r(H_{r,\epsilon})}{\mu_l(H_{l,\epsilon})}, \quad \limsup_{\epsilon \to 0} \frac{\mu_r(H_{r,\epsilon})}{\mu_l(H_{l,\epsilon})}.
\]

Since the function \(\frac{\mu_r(H_{r,\epsilon})}{\mu_l(H_{l,\epsilon})} \) is continuous in \(\epsilon > 0 \), our arguments show that the set of limit points for \(\phi_\epsilon \) as \(\epsilon \to 0 \) is precisely

\[
\left\{ \frac{\tilde{\alpha}}{1 - \tilde{\alpha}} \phi_l + (1 - \tilde{\alpha}) \phi_r : \frac{\tilde{\alpha}}{1 - \tilde{\alpha}} \in [l.h.r., l.h.r.] \right\}.
\]

3 Proofs of the main theorems

In this section, we state the main properties of the invariant densities of the initial system and its perturbations. Then, we present the proofs of Theorems 1 and 2. For notational convenience, we will assume that there are only two infinitesimal holes, \(h_l \in I_l \) and \(h_r \in I_r \); the proof without this restriction is essentially unchanged.

3.1 Properties of the invariant densities

Here we record some of the relevant characteristics of the density functions \(\phi_\epsilon, \phi_l, \phi_r \). First, if \(f \in BV \), we can – and will – choose a representative of \(f \) with only regular discontinuities, i.e. for each \(x \), \(f(x) = (\lim_{y \to x^-} f(y) + \lim_{y \to x^+} f(y))/2 \). Then, following [Bal07], we can uniquely decompose \(f = f^{reg} + f^{sal} \) into the sum of a regular and a singular (or saltus) part. Here \(f^{reg} \) is continuous with \(\text{var}(f^{reg}) \leq \text{var}(f) \), and \(f^{sal} \) is the sum of at most countably many step functions. We write \(f^{sal} = \sum_{u \in S} s_u H_u \), where \(S \) is the discontinuity set of \(f \), \(s_u \) is the jump of \(f \) at \(u \), and \(H_u(x) = -1 \) if \(x < u \), \(-\frac{1}{2}\) if \(x = u \) and 0 if \(x > u \). This representation imposes the boundary condition \(f^{sal}(1) = 0 \). Furthermore, \(\text{var}(f^{sal}) = \sum_{u \in S} |s_u| \leq \text{var}(f) \).

Proposition 1 (Key facts about the invariant densities). There exists \(\epsilon_0 > 0 \) such that:

(i) **Uniform bound on the variations of the invariant densities.**

\[
\sup_{0 < \epsilon < \epsilon_0} \text{var}(\phi_\epsilon) < +\infty.
\]

Also, \(\text{var}(\phi_l), \text{var}(\phi_r) < +\infty. \)

(ii) **Uniform bound on the Lipschitz constant of the regular parts.**

For \(0 < \epsilon < \epsilon_0 \), each of the \(\phi_\epsilon^{reg} \) is Lipschitz continuous with constant \(\text{Lip}(\phi_\epsilon^{reg}) \), and

\[
\sup_{0 < \epsilon < \epsilon_0} \text{Lip}(\phi_\epsilon^{reg}) < +\infty.
\]
Also, ϕ_{l}^{reg} and ϕ_{r}^{reg} are Lipschitz.

(iii) Approximate continuity near the infinitesimal holes.
For $* \in \{l, r\}$, for each $\eta > 0$, there exists $\delta > 0$ such that for all $0 < \epsilon < \epsilon_0$,

$$\text{var}_{[h_* - \delta, h_* + \delta]}(\phi_{l}^{sal}_\epsilon) := \text{the variation of } \phi_{l}^{sal}_\epsilon \text{ over } [h_* - \delta, h_* + \delta] < \eta.$$

Also, ϕ_* is continuous at h_*. The proof of Proposition 1 is technical, and so we defer it until §4.2.

3.2 Proofs
We recall that for any $C_1, C_2 > 0$, \{f \in BV : $|f|_{L^1} \leq C_1$, $\text{var}(f) \leq C_2$\} is pre-compact in L^1. This fact will be used repeatedly in what follows.

Proof of Theorem 1
Using (i) of Proposition 1, we are able to choose a sequence of values ϵ' converging to 0 such that $\phi_{\epsilon'}$ converges in L^1 to some function, which we denote by ϕ_0. Using the fact that ϕ_{ϵ} is a fixed point of the Perron-Frobenius operator L_ϵ associated to T_ϵ (see §4.1 for the definition), one can verify that ϕ_0 is an invariant density for T_0, and so there exists α such that $\phi_0 = \alpha \phi_l + (1 - \alpha) \phi_r$. We will verify that necessarily $\alpha/(1 - \alpha) = l.h.r$. From this it follows that there is exactly one limit point of ϕ_{ϵ} as $\epsilon \to 0$, and Theorem 1 follows.

Now for $\epsilon' > 0$, $\mu_{\epsilon'}(H_{l,\epsilon'}) = \mu_{\epsilon'}(H_{r,\epsilon'})$, because $I_l = H_{l,\epsilon'} \cup (I_l \setminus H_{l,\epsilon'})$ and $T_{\epsilon'}^{-1}(I_l) = H_{r,\epsilon'} \cup (I_l \setminus H_{l,\epsilon'})$ are disjoint unions (modulo sets of zero Lebesgue measure), and $\phi_{\epsilon'} = d\mu_{\epsilon'}/dx$ is an invariant density for $T_{\epsilon'}$. We will show that as $\epsilon' \to 0$,

$$\mu_{\epsilon'}(H_{l,\epsilon'}) = \alpha \mu_l(H_{l,\epsilon'}) + o(1) \cdot \mu_l(H_{l,\epsilon'}), \quad (1)$$

$$\mu_{\epsilon'}(H_{r,\epsilon'}) = (1 - \alpha) \mu_r(H_{r,\epsilon'}) + o(1) \cdot \mu_r(H_{r,\epsilon'}), \quad (2)$$

from which the equation $\alpha/(1 - \alpha) = l.h.r.$ and hence Theorem 1 follows immediately.

We prove only Equation (1), since the proof of Equation (2) is analogous. Write

$$\mu_{\epsilon'}(H_{l,\epsilon'}) = \int_{H_{l,\epsilon'}} \phi_{l,\epsilon'} \, dx = \alpha \int_{H_{l,\epsilon'}} \phi_{l} \, dx + \int_{H_{l,\epsilon'}} (\phi_{l,\epsilon'} - \alpha \phi_l) \, dx$$

$$= \alpha \mu_l(H_{l,\epsilon'}) + O\left(\sup_{x \in H_{l,\epsilon'}} |\phi_{l,\epsilon'}(x) - \alpha \phi_l(x)|\right) \cdot \text{Leb}(H_{l,\epsilon'}).$$

But as $\epsilon' \to 0$, $H_{l,\epsilon'} \to h_l$ in the Hausdorff metric, and then $\mu_l(H_{l,\epsilon'})/\text{Leb}(H_{l,\epsilon'}) \to \phi_l(h_l) > 0$, because ϕ_l is continuous at h_l. Thus our proof is completed by the following:
Lemma 1. As $\epsilon' \to 0$,

$$\sup_{x \in H_{1,\epsilon'}} |\phi_{\epsilon'}(x) - \alpha \phi_l(x)| \to 0.$$

Although this uniform convergence might at first seem surprising, Proposition 1 (ii) and (iii) essentially say that near h_l, $\{\phi_{\epsilon'}\}$ behaves like a family of equicontinuous functions.

Proof. We proceed by contradiction. Suppose that there exists $C > 0$ and a subsequence $\epsilon'' \to 0$ of the ϵ' values such as that for each ϵ'', there is a point $x_{\epsilon''} \in H_{1,\epsilon''}$ with $|\phi_{\epsilon''}(x_{\epsilon''}) - \alpha \phi_l(x_{\epsilon''})| > C$. Necessarily, $x_{\epsilon''} \to h_l$ as $\epsilon'' \to 0$.

We restrict all functions of interest to the left subinterval I_l. Set $\gamma_{\epsilon''} := \phi_{\epsilon''}^{reg} - \alpha \phi_l^{reg}$ and $\omega_{\epsilon''} := \phi_{\epsilon''}^{sal} - \alpha \phi_l^{sal}$, so that $\phi_{\epsilon''} - \alpha \phi_l = \gamma_{\epsilon''} + \omega_{\epsilon''}$. Using (ii) of Proposition 1, let L be such that for all sufficiently small ϵ'', $\text{Lip}(\gamma_{\epsilon''}) \leq 5$. Next, we use (iii) with $\eta = C/5$ and make sure to choose the corresponding $\delta < C/(5L)$ small enough so that $\var_{[h_l - \delta, h_l + \delta]}(\alpha \phi_l^{sal}) < C/5$ as well. Thus $\var_{[h_l - \delta, h_l + \delta]}(\omega_{\epsilon''}) \leq 2C/5$. Then if $x \in [h_l - \delta, h_l + \delta]$, and ϵ'' is sufficiently small, $x_{\epsilon''} \in [h_l - \delta, h_l + \delta]$ and

\[
\begin{align*}
|\gamma_{\epsilon''}(x) + \omega_{\epsilon''}(x)| &\geq |\gamma_{\epsilon''}(x_{\epsilon''}) + \omega_{\epsilon''}(x_{\epsilon''})| - |\gamma_{\epsilon''}(x) + \omega_{\epsilon''}(x_{\epsilon''}) - \gamma_{\epsilon''}(x_{\epsilon''}) - \omega_{\epsilon''}(x_{\epsilon''})| \\
&\geq C - [L \cdot 2\delta + 2C/5] \geq C/5.
\end{align*}
\]

But this contradicts that $\gamma_{\epsilon''} + \omega_{\epsilon''} = \phi_{\epsilon''} - \alpha \phi_l \xrightarrow{L^1} 0$. \qed

Proof of Theorem 2

First, we observe that the results of [KL99] guarantee that for small $\epsilon > 0$, $\rho_\epsilon < 1$ is a simple eigenvalue of multiplicity 1. Hence there are exactly two real-valued eigenfunctions, $\pm \psi_\epsilon$, satisfying $L_\epsilon \psi_\epsilon = \rho_\epsilon \psi_\epsilon$ and $|\psi_\epsilon|_{L^1} = 1$. But for such functions, $\int \psi_\epsilon \, dx = \int L_\epsilon \psi_\epsilon \, dx = \rho_\epsilon \int \psi_\epsilon \, dx$, so $\int \psi_\epsilon \, dx = 0$. We have the following uniform bound on their variations, whose proof we defer until §4.2.

Lemma 2 (Uniform bound on the variations of the ψ_ϵ). There exists $\epsilon_1 > 0$ such that $\sup_{0 < \epsilon < \epsilon_1} \text{var}(\psi_\epsilon) < +\infty$.

Let ψ_0 be any limit point in L^1 of ψ_ϵ as $\epsilon \to 0$. Then, since $\rho_\epsilon \to 1$, it follows that ψ_0 is invariant under L_0, and is thus a linear combination of ϕ_l and ϕ_r. Since $|\psi_0|_{L^1} = 1$ and $\int \psi_0 \, dx = 0$, necessarily $\psi_0 = \pm \frac{1}{2} \phi_l \mp \frac{1}{2} \phi_r$. Hence we can uniquely specify ψ_ϵ by the condition $\int_l \psi_\epsilon \, dx > 0$, and Theorem 2 follows.
4 Proofs of the properties of the densities

In order to prepare for the proofs of Proposition 1 and Lemma 2, it will be convenient to first show how to derive such properties for an invariant density of a single, fixed piecewise expanding map. We do this in §4.1. Then, in §4.2, we prove Proposition 1 and Lemma 2 by showing how such estimates can be made uniformly for the family of maps T_{ϵ}, $\epsilon \geq 0$.

Before beginning, we remark that if $f \in BV$, then for each x, $|f|_{\infty} \leq |f(x)| + \text{var}(f) \leq |f(x)| + \text{var}(f)$. Integrating, we find that $|f|_{\infty} \leq |f|_{L^1} + \text{var}(f)$. We will use this fact repeatedly below.

4.1 Properties of an invariant density for a single piecewise expanding map

Let $T: I \rightarrow I$ be a piecewise C^2 uniformly expanding map, with $C = \{0 = c_0 < c_1 < \cdots < c_d = 1\}$ as a critical set. Let L be the associated Perron-Frobenius operator, i.e., the transfer operator acting on densities. We begin by briefly reviewing a method for finding an invariant density of T. Such a method was introduced in [LY73]; see Chapter 3 in [Bal00] for a more modern exposition. Let $\lambda_T = \inf_{x \in I} |T'(x)| > 1$ be the minimum expansion and $D_T = \sup_{x \in C} |T''(x)| / |T'(x)|$ be the distortion of T. Then if $f \in BV$, $x /\in TFC$, $L^n f(x) = \sum_{i=1}^d f(\xi_i(x)) |\xi'_i(x)| 1_{J_i}(x), \tag{3}$

where $J_i = T|_{c_{i-1, c_i}}([c_{i-1}, c_i])$ and $\xi_i = (T|_{c_{i-1, c_i}})^{-1} : J_i \rightarrow [c_{i-1}, c_i]$. One can show that there exists constants $\beta \in (0, 1)$ and C_{LY} such that for each $n \geq 1$ and $f \in BV$, the following Lasota-Yorke inequality holds:

$$ \text{var}(L^n f) \leq C_{LY} \beta^n \text{var}(f) + C_{LY} |f|_{L^1}. \tag{4} $$

In fact, β can be chosen as any number greater than λ_T^{-1}, although we will not use this fact. Set $F_n = \frac{1}{n} \sum_{k=0}^{n-1} L^k 1$. Then $F_n \xrightarrow{L^1} \phi$, where $\phi \in BV$ is the density of an ACIM for T. Using Helly’s Theorem, one has that $\text{var}(\phi) \leq C_{LY}$.

We wish to characterize the properties of the regular and singular terms in the decomposition $\phi = \phi^{reg} + \phi^{sal}$. First, let us define a hierarchy on the set of points in the postcritical orbits $S = \cup_{k \geq 1} T^k C$ by $\#(u) := \inf\{k \geq 1 : u \in T^k C\}$. The following characterization is motivated by the discussion of the invariant densities for unimodal expanding maps found in [Bal07] and [BS08]. In particular, in [BS08, §3.3] a norm is introduced on the sequence of jumps of ϕ along the postcritical orbit with weights that grow exponentially in $\#(u)$.

Lemma 3. Given the hypotheses above,
(a) \(\phi^{reg} \) is Lipschitz continuous. Furthermore, there exists a constant
\(C_{dis} = C_{dis}(\lambda_T, D_T) \) such that \(\text{Lip}(\phi^{reg}) \leq C_{dis}(1 + C_{LY}) \). \(C_{dis}(\lambda_T, D_T) \) can be defined so that it depends continuously on \(\lambda_T > 1, D_T \geq 0 \).

(b) The discontinuity set of \(\phi \) is a subset of \(S = \bigcup_{k \geq 1} T^k C \). If we write
\(\phi^{sal} = \sum_{u \in S} s_u H_u \), then for each \(m \geq 0 \), \(\sum_{\{u \in S : \#(u) > m\}} |s_u| \leq \lambda_T^{-m} C_{LY} \).

Proof. We begin by noting from Equation (3) that \(F_n \) is smooth except possibly at points in \(\bigcup_{1}^{n-1} T^k C \). Write \(F_n^{sal} = \sum_{u \in S} s_u H_u \). Then we can show that \(|s_{u,n}| \) decays uniformly exponentially fast in \(\#(u) \), i.e.

Sublemma. For each \(m, n \geq 0 \), \(\sum_{\{u \in S : \#(u) > m\}} |s_{u,n}| \leq \lambda_T^{-m} C_{LY} \).

Proof of the Sublemma. If \(m \geq n \), \(\sum_{\#(u) > m} |s_{u,n}| = 0 \), and \(\sum_{\#(u) > 0} |s_{u,n}| = \text{var}(F_n^{sal}) \leq \text{var}(F_n) \leq C_{LY} \). Since \(F_n = \frac{n - 1}{n} LF_{n-1} + \frac{1}{n} \), if \(\#(u) > 1 \) we see from Equation (3) with \(f = F_{n-1} \) that \(|s_{u,n}| \leq \frac{n - 1}{n} \lambda_T^{-1} \sum_{\{v \in S : T v = u\}} |s_{v,n-1}| \). Thus if \(0 < m < n \),

\[
\sum_{\#(u) > m} |s_{u,n}| \leq \sum_{\#(u) > m} \frac{n - 1}{n} \lambda_T^{-1} \sum_{\{v \in S : T v = u\}} |s_{v,n-1}| \\
\leq \frac{n - 1}{n} \lambda_T^{-1} \sum_{\#(u) > m - 1} |s_{u,n-1}| \leq \cdots \\
\leq \frac{n - m}{n} \lambda_T^{-m} \sum_{\#(u) > 0} |s_{u,n-m}| \leq \lambda_T^{-m} C_{LY}.
\]

In the inequalities above, we use the fact that if \(\#(u) > 1 \), then \(T^{-1}(u) \) does not contain any critical points.

Using a diagonalization argument, we may find a subsequence \(n_j \) such that for each \(u, s_{u,n_j} \) converges as \(n_j \to \infty \) to some number, which we write as \(\hat{s}_u \). In particular, for each \(m, \sum_{\#(u) > m} |s_{u,n_j}| \leq \lambda_T^{-m} C_{LY} \), and \(F_n^{sal} \overset{L^1}{\to} F_{\hat{s}} \), where we define \(F_{\hat{s}} = \sum_{u \in S} \hat{s}_u H_u \). Furthermore, a standard distortion estimate (see for example the proof of Proposition 3.3 in [Bal07]) shows that there exists a constant \(C_{dis} \) such that for each \(n \geq 0 \), \(\text{Lip}(\{L^n 1\}^{reg}) \leq C_{dis} |L^n 1|_{\infty} \leq C_{dis} (1 + \text{var}(L^n 1)) \). Here, \(C_{dis} \) depends only on the minimum expansion and on the distortion of \(T \). In particular, \(\sup_{n \geq 1} \text{Lip}(F_{n}^{reg}) \leq C_{dis} (1 + C_{LY}) \). By the Arzelà-Ascoli Theorem, we may find a continuous function \(F^{reg} \) such that some subsequence of \(\{F_{n_j}^{reg}\} \) converges in \(L^\infty \) to \(F^{reg} \).

By the uniqueness of the decomposition \(\phi = \phi^{reg} + \phi^{sal} \), we conclude that \(\phi^{reg} = F^{reg} \) and \(\phi^{sal} = F^{sal} \). Lemma 3 follows.

\(\square \)
4.2 Proofs of Proposition 1 and Lemma 2

We prove only the claims about \(\phi_\epsilon \) for \(\epsilon > 0 \), and leave the claims about \(\phi_l, \phi_r \) to the reader.

Let \(L_\epsilon \) be the Perron-Frobenius operator \((3)\) associated to \(T_\epsilon \). The first key step is to prove that the \(L_\epsilon \) with \(\epsilon \) sufficiently small satisfy Lasota-Yorke inequalities with uniform constants. Let \(\lambda_\epsilon \) and \(D_\epsilon \) be the minimum expansion and distortion of \(T_\epsilon \), respectively. Then as \(\epsilon \to 0 \), \(\lambda_\epsilon \to \lambda_0 \) and \(D_\epsilon \to D_0 \). Furthermore, \(T_\epsilon \) is a piecewise \(C^2 \) uniformly expanding map that is a small \(C^2 \) perturbation of \(T_0 \), and the two critical sets \(C_\epsilon, C_0 \) are \(\epsilon \)-close together. This is not sufficient to guarantee uniform Lasota-Yorke inequalities, see for example [Kel82, §6] or [Bla92]. However, such uniform inequalities do follow with the additional assumption (I4), which guarantees that either (a) we have \(\lambda_0 > 2 \) or (b) \(T_0 \) has no periodic critical points, except possibly the points in \(\partial I \) as fixed points. We assume the former case in our presentation here, and comment on the latter case at the end of this section.

Fix \(\lambda \in (2, \lambda_0) \). The original proof from [LY73] shows that if \(f \in BV \) is real-valued,

\[
\text{var}(L_\epsilon f) \leq (2\lambda_\epsilon^{-1})\text{var}(f) + C_\epsilon |f|_{L^1},
\]

(5)

where

\[
C_\epsilon = D_\epsilon/\lambda_\epsilon + 2 \max_i |c_{i+1,\epsilon} - c_{i,\epsilon}|^{-1}.
\]

(Compare also [Liv95][§2].) Iterating, we find that for sufficiently small \(\epsilon \), for all such \(f \) and \(n \geq 1 \),

\[
\text{var}(L^n_\epsilon f) \leq \beta^n \text{var}(f) + C_{LY} |f|_{L^1},
\]

(6)

with \(\beta = 2\lambda^{-1} \) and \(C_{LY} = 2C_0/(1-2\lambda^{-1}) \). Similar estimates can be made for complex-valued \(f \) by applying (6) to the real and imaginary parts separately. Since each \(T_\epsilon \) has a unique ACIM, we know from our discussion in §4.1 that for sufficiently small \(\epsilon > 0 \), \(\frac{1}{n} \sum_{k=0}^{n-1} L_\epsilon^k \to \phi_\epsilon \) as \(n \to \infty \). It follows from Lemma 3 that \(\text{var}(\phi_\epsilon) \) and \(\text{Lip}(\phi_\epsilon^{reg}) \) are uniformly bounded.

Next, we prove (iii). Given \(\eta > 0 \), choose \(n \) large enough that \(\lambda^{-n}C_{LY} < \eta \). Using (12), we can choose \(\delta > 0 \) so small that for \(0 < k \leq n \), \((T_\epsilon^k C_0) \cap [h_* - 2\delta, h_* + 2\delta] = \emptyset \). It follows that for \(\epsilon \) sufficiently small, \((T_\epsilon^k C_\epsilon) \cap [h_* - \delta, h_* + \delta] = \emptyset \) as well. Using part (b) of Lemma 3 with \(m = n \), we then see that \(\text{var}([h_* - \delta, h_* + \delta](\phi_\epsilon^{sal})) < \eta \).

Finally, to prove Lemma 2, we use Equation (6) with \(f = \psi_\epsilon, n \) chosen so large that \(\beta^n < 1/2 \), and \(\epsilon \) chosen so small that \(\rho^n_\epsilon > 3/4 \). It follows that \(\text{var}(\psi_\epsilon) \leq C_{LY}/(\rho^n_\epsilon - \beta^n) \leq 4C_{LY} \).
Modifications when the minimum expansion is not bigger than two

If, in assumption (I4), the minimum expansion of T_0 is $\lambda_0 \leq 2$, one derives Lasota-Yorke estimates for L_0 by first fixing N large enough so that $\lambda_0^N > 2$. Then the arguments from [LY73] used above will yield a Lasota-Yorke estimate for L_0^N, and this can be interpolated to give similar estimates for L_0. One can try to obtain uniform estimates for L_ϵ, but the arguments used above will only work if the critical points for T_ϵ^N are in a one-to-one correspondence with and very close to those of T_0^N, compare Equation (5), as would be the case if $C_0 \cap (\cup_{k=1}^{N-1} T_k C_0) = \emptyset$.

![Figure 6: Creation of small intervals of differentiability.](image)

Unfortunately, this will never be the case in our setting, at least when $b \in C_0$. This is because the infinitesimal holes in H_0 are necessarily critical points, and they are mapped to b by T_0. Because at least some of the infinitesimal holes must be mapped across the boundary point when $\epsilon > 0$, this means that necessarily T_ϵ^2 will have more critical points than T_0^2, and these additional critical points will create very short intervals on which T_ϵ^2 is smooth; see Figure 6. However, this problem can be dealt with using assumption (I4b). Specifically, in [BY93] it is shown that because of the restriction on the periodic critical points, the growth in the number of the very short intervals on which T_ϵ^n is smooth as n increases can be controlled, and that uniform Lasota-Yorke estimates can still be made. Precisely, there exists $\epsilon_0 > 0$ and constants $\beta \in (0, 1)$, C_{LY} such that for each $\epsilon \in [0, \epsilon_0]$, $n \geq 1$ and $f \in BV$,

$$\text{var}(L_\epsilon^n f) \leq C_{LY} \beta^n \text{var}(f) + C_{LY} |f|_{L^1}. \quad (7)$$

The proof of this is essentially identical to the proof of Lemma 3.2 in [Bal00] (see also her Remark 3.4, and compare the proof of Lemma 8 in [BY93]), and so we omit it. The rest of the proofs of Proposition 1 and Lemma 2 proceed as above.
Acknowledgments

The authors would like to especially acknowledge D. Dolgopyat for suggesting this project and for helpful conversations. They also thank M. Demers for helpful conversations, and the referees for thoughtful comments.

References

