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Abstract

It is shown that if F1, F2, . . . , Ft are bipartite 2-regular graphs of order n and

α1, α2, . . . , αt are non-negative integers such that α1+α2+· · ·+αt = n−2
2 , α1 ≥ 3

is odd, and αi is even for i = 2, 3, . . . , t, then there exists a 2-factorisation of

Kn−I in which there are exactly αi 2-factors isomorphic to Fi for i = 1, 2, . . . , t.

This result completes the solution of the Oberwolfach problem for bipartite 2-

factors.

1 Introduction

The Oberwolfach problem was posed by Ringel in the 1960s and is first mentioned

in [19]. It relates to specification of tournaments and specifically to balanced seating

arrangments at round tables. In this article we will provide a complete solution to

the Oberwolfach problem in the case where there are an even number of seats at each

table.

Let n ≥ 3 and let F be a 2-regular graph of order n. When n is odd, the Oberwol-

fach problem OP(F ) asks for a 2-factorisation of the complete graph Kn on n vertices
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in which each 2-factor is isomorphic to F . When n is even, the Oberwolfach problem

OP(F ) asks for a 2-factorisation of Kn− I, the complete graph on n vertices with the

edges of a 1-factor removed, in which each 2-factor is isomorphic to F .

In 1985, Häggkvist [21] settled OP(F ) for any bipartite 2-regular graph F of order

n ≡ 2 ( mod 4). The result is an immediate consequence of Lemma 6 below, and the

existence of Hamilton cycle decompositions of Km for all odd m. Here we complete

the solution of the Oberwolfach problem for bipartite 2-factors by dealing with the

case n ≡ 0 ( mod 4). To do this we prove the following more general result on bipartite

2-factorisations of Kn − I.

Theorem 1 If F1, F2, . . . , Ft are bipartite 2-regular graphs of order n and α1, α2, . . . , αt

are non-negative integers such that α1 + α2 + · · · + αt = n−2
2

, α1 ≥ 3 is odd, and αi

is even for i = 2, 3, . . . , t, then there exists a 2-factorisation of Kn − I in which there

are exactly αi 2-factors isomorphic to Fi for i = 1, 2, . . . , t.

For n ≡ 0 ( mod 4), we obtain a solution to the Oberwolfach problem OP(F ) for

any bipartite 2-regular graph F of order n by applying Theorem 1 with t = 1, F1 = F

and α1 = n−2
2

. Combining this with Häggkvist’s result we have the following theorem.

Theorem 2 If F is a bipartite 2-regular graph of order n then there is a 2-factorisation

of Kn−I in which each 2-factor is isomorphic to F . That is, for any bipartite 2-regular

graph F , OP(F ) has a solution.

Throughout the paper, we will use the notation [m1,m2, . . . ,mt] to denote the

2-regular graph consisting of t (vertex-disjoint) cycles of lengths m1,m2, . . . ,mt. A

large number of special cases of the Oberwolfach problem have been solved, but the

general problem remains, for the most part, completely open. However, a recent result

[10] shows that for a sparse infinite family of values of n, OP(F ) has a solution for

any 2-regular graph F of order n. It is known that there is no solution to OP(F ) for

F ∈ {[3, 3], [4, 5], [3, 3, 5], [3, 3, 3, 3]},
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but there is no other known instance of the Oberwolfach problem with no solution. In

particular, a solution is known for all other instances with n ≤ 18, see [2, 7, 17, 18, 25].

The special case of the Oberwolfach problem in which all the cycles in F are of uniform

length has been solved completely, see [4, 5, 23, 25]. The case where all the cycles

are of length 3 and n is odd is the famous Kirkman’s schoolgirl problem, which was

solved in 1971 [29]. A large number of other special cases of the Oberwolfach problem

have been solved, see [8, 13, 20, 22, 26, 27, 28, 31].

A generalisation of the Oberwolfach problem, known as the Hamilton-Waterloo

problem, asks for a 2-factorisation of Kn (n odd) or Kn − I (n even) in which α1 of

the 2-factors are isomorphic to F1 and α2 of the 2-factors are isomorphic to F2 for all

non-negative α1 and α2 satisfying α1 + α2 = n−1
2

(n odd) or α1 + α2 = n−2
2

(n even).

Results on the Hamilton-Waterloo problem can be found in [1, 11, 12, 15, 16, 21, 24].

If we apply Theorem 1 with t = 2 then we obtain the following result which

settles the Hamilton-Waterloo problem for bipartite 2-factors of order n ≡ 0 ( mod 4)

except in the case where all but one of the 2-factors are isomorphic. Note that for

n ≡ 0 ( mod 4) the number of 2-factors in a 2-factorisation of Kn − I is odd. When

n ≡ 2 ( mod 4) and the number of 2-factors of each type is even, a solution to the

Hamilton-Waterloo problem in the case of bipartite 2-factors can be obtained by

applying Lemma 6 below, and using the existence of Hamilton cycle decompositions

of Km for all odd m (with m = n
2
), see [21].

Theorem 3 If F1 and F2 are two bipartite 2-regular graphs of order n ≡ 0 ( mod 4)

and α1 and α2 are non-negative integers satisfying α1 + α2 = n−2
2

, then there is a 2-

factorisation of Kn−I in which α1 of the 2-factors are isomorphic to F1 and α2 of the

2-factors are isomorphic to F2, except possibly when n ≡ 0 ( mod 4) and 1 ∈ {α1, α2}.

Recent surveys of results on the Oberwolfach problem, the Hamilton Waterloo

Problem, and on 2-factorisations generally, are [9] and [30].
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2 Preliminary results and notation

Let Γ be a finite group. A Cayley subset of Γ is a subset which does not contain the

identity and which is closed under taking of inverses. If S is a Cayley subset of Γ, then

the Cayley graph on Γ with connection set S, denoted Cay(Γ, S), has the elements of

Γ as its vertices and there is an edge between vertices g and h if and only if g = h+ s

for some s ∈ S.

We need the following two results on Hamilton cycle decompositions of Cayley

graphs. The first was proved by Bermond et al [6], and the second by Dean [14].

Both results address the open question of whether every connected Cayley graph of

even degree on a finite abelian group has a Hamilton cycle decomposition [3].

Theorem 4 ([6]) Every connected 4-regular Cayley graph on a finite abelian group

has a Hamilton cycle decomposition.

Theorem 5 ([14]) Every 6-regular Cayley graph on a cyclic group which has a gen-

erator of the group in its connection set has a Hamilton cycle decomposition.

A Cayley graph on a cyclic group is called a circulant graph and we will be using

these, and certain subgraphs of them, frequently. Thus, we introduce the following

notation. The length of an edge {x, y} in a graph with vertex set Zm is defined to be

either x− y or y− x, whichever is in {1, 2, . . . , bm
2
c} (calculations in Zm). When m is

even we call {{x, x+ s} : x = 0, 2, . . . ,m− 2} the even edges of length s and we call

{{x, x+ s} : x = 1, 3, . . . ,m− 1} the odd edges of length s.

For any m ≥ 3 and any S ⊆ {1, 2, . . . , bm
2
c}, we denote by 〈S〉m the graph with

vertex set Zm and edge set consisting of the edges of length s for each s ∈ S, that

is, 〈S〉m = Cay(Zm, S ∪ −S). For m even, if we wish to include in our graph only

the even edges of length s then we give s the superscript “e”. Similarly, if we wish

to include only the odd edges of length s then we give s the superscript “o”. For

example, the graph 〈{1, 2o, 5e}〉12 is shown in Figure 1.
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Figure 1: The graph 〈{1, 2o, 5e}〉12

For any given graph K, the graph K(2) is defined by V (K(2)) = V (K) × Z2 and

E(K(2)) = {{(x, a), (y, b)} : {x, y} ∈ E(K), a, b ∈ Z2}. If F = {F1, F2, . . . , Ft} is

a set of graphs then we define F (2) = {F (2)
1 , F

(2)
2 , . . . , F

(2)
t }. Observe that if F is a

factorisation of K, then F (2) is a factorisation of K(2).

Häggkvist proved the following very useful result in [21].

Lemma 6 ([21]) For any m > 1 and for each bipartite 2-regular graph F of order

2m, there exists a 2-factorisation of C
(2)
m in which each 2-factor is isomorphic to F .

Lemma 7 For each even m ≥ 8 there is a factorisation of Km into m−4
2

Hamilton

cycles and a copy of 〈{1, 3e}〉m.

Proof The cases m ≡ 0 ( mod 4) and m ≡ 2 ( mod 4) are dealt with separately. For

m ≡ 2 ( mod 4) observe that the mapping 0 1 2 3 4 5 6 7 8 · · · m− 3 m− 2 m− 1

0 m
2

m
2

+ 1 1 2 m
2

+ 2 m
2

+ 3 3 4 · · · m
2
− 2 m

2
− 1 m− 1


given by

ψ(x) =


x
2

x ≡ 0 ( mod 4)

m
2

+
⌊

x
2

⌋
x ≡ 1, 2 ( mod 4)

x−1
2

x ≡ 3 ( mod 4)
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is an isomorphism from 〈{1, 3e}〉m to 〈{1, m
2
}〉m. So in the case m ≡ 2 ( mod 4) it

is sufficient to show that 〈{2, 3, . . . , m
2
− 1}〉m has a Hamilton cycle decomposition.

This is straightforward as {〈{2, 3}〉m, 〈{4, 5}〉m, . . . , 〈{m
2
− 5, m

2
− 4}〉m, 〈{m

2
− 3, m

2
−

2, m
2
− 1}〉m} is a factorisation of 〈{2, 3, . . . , m

2
− 1}〉m in which each 4-factor has a

Hamilton cycle decomposition by Theorem 4, and the 6-factor has a Hamilton cycle

decomposition by Theorem 5 (since gcd(m
2
− 2,m) = 1 when m ≡ 2 ( mod 4)).

For the case m ≡ 0 ( mod 4), observe that {〈{4, 5}〉m, 〈{6, 7}〉m, . . . , 〈{m
2
− 2, m

2
−

1}〉m} is a 4-factorisation of 〈{4, 5, . . . , m
2
−1}〉m in which each 4-factor has a Hamilton

cycle decomposition by Theorem 4. Thus it is sufficient to show that 〈{2, 3o, m
2
}〉m has

a Hamilton cycle decomposition. But it is easy to see that 〈{2, 3o, m
2
}〉m ∼= Cay(Zm

2
×

Z2, {(1, 0), (m
4
, 0), (0, 1)}) and so the result follows by Theorem 4. �

3 Factorisations of the graph G2m

For each even m ≥ 8 we denote by G2m the 7-regular graph obtained from 〈{1, 3e}〉(2)m

by adding the edge {(x, 0), (x, 1)} for each x ∈ Zm. Observe that if F1, F2, . . . , Fm−4
2

are the Hamilton cycles in the factorisation of the complete graph with vertex set

Zm given by Lemma 7, then the 7-factor that remains when F
(2)
1 , F

(2)
2 , . . . , F

(2)
m−4

2

are

removed from the complete graph with vertex set Zm × Z2 is isomorphic to G2m. In

this section we will construct for each even m ≥ 8 and each bipartite 2-regular graph

F of order 2m, a factorisation of G2m into three 2-factors each isomorphic to F and

a 1-factor.

We now define a family of subgraphs of G2m which are used extensively in the

results that follow. For each even r ≥ 2 we define the graph J2r (see Figure 2) to be

the graph with vertex set

V (J2r) = {u1, u2, . . . , ur+2} ∪ {v1, v2, . . . , vr+2}
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and edge set

E(J2r) = {{ui, vi} : i = 3, 4, . . . , r + 2} ∪

{{ui, ui+1}, {vi, vi+1}, {ui, vi+1}, {vi, ui+1} : i = 2, 3, . . . , r + 1} ∪

{{ui, ui+3}, {vi, vi+3}{ui, vi+3}, {vi, ui+3} : i = 1, 3, . . . , r − 1}.

s s s s s
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Figure 2: The graph J2r

Notice that in the graph J2r if we identify vertices u1 with ur+1, u2 with ur+2, v1

with vr+1, and v2 with vr+2, then the resulting graph is isomorphic to G2r. For each

integer k ≥ 0 define the mapping φk on the vertices of J2r by

φk(ui) = ui+k and φk(vi) = vi+k for i = 1, 2, . . . , r + 2,

and for any subgraphH of J2r defineH(+k) to be the graph with vertex set {φk(x) : x ∈

V (H)} and edge set {{φk(x), φk(y)} : {x, y} ∈ E(H)}. So in particular, J2r ∪ J (+r)
2s =

J2(r+s). For convenience we use the notation J2r ⊕ J2s to denote J2r ∪ J (+r)
2s . More

generally, if H is a subgraph of J2r and H ′ is a subgraph of J2s then we denote

H ∪H ′(+r) by H ⊕(+r) H
′, or just H ⊕H ′ if the value of r is clear from the context.

A decomposition of a graph J is set of subgraphs whose edge sets partition the

edge set of J . If D = {Hi : i = 1, 2, . . . , t} is a decomposition of J2r and D′ = {H ′
i :

i = 1, 2, . . . , t} is a decomposition of J2s, then we define D⊕D′ by D⊕D′ = {Hi⊕H ′
i :

i = 1, 2, . . . , t}. It is clear that D ⊕D′ is a decomposition of J2(r+s).

Let F be a 2-regular graph of order 2r, and suppose there exists a decomposition

{H1, H2, H3, H4} of J2r such that

7



(1) V (H1) = {u1, u2, . . . , ur} ∪ {v3, v4, . . . , vr+2},

(2) V (H2) = {u3, u4, . . . , ur+2} ∪ {v1, v2, . . . , vr},

(3) V (H3) = {u3, u4, . . . , ur+2} ∪ {v3, v4, . . . , vr+2},

(4) V (H4) = {u3, u4, . . . , ur+2} ∪ {v3, v4, . . . , vr+2},

(5) H1
∼= H2

∼= H3
∼= F ,

(6) H4 is a 1-regular graph of order 2r.

Then we shall write J2r 7→ F , or just J 7→ F if the value of r is clear from the context

(usually from the order of F ) and refer to such a decomposition as a decomposition

J 7→ F . The next Lemma gives a method for adjoining such decompositions in a

natural way using the ⊕ operation.

Lemma 8 If F and F ′ are 2-regular graphs such that J 7→ F and J 7→ F ′, then

J 7→ F ′′ where F ′′ is the union of vertex-disjoint copies of F and F ′.

Proof LetD = {H1, H2, H3, H4} be a decomposition J 7→ F and letD′ = {H ′
1, H

′
2, H

′
3, H

′
4}

be a decomposition J 7→ F ′. Then D ⊕ D′ is a decomposition J 7→ F ′′. Properties

(1)-(4) (in the definition of J 7→ F ) ensure that Hi and H ′
i are vertex disjoint for

i ∈ {1, 2, 3, 4}, and that the corresponding properties hold for V (Hi ⊕H ′
i). �

Lemma 9 Let m ≥ 8 and let F be a 2-regular graph of order 2m. If J 7→ F , then

there exists a factorisation of G2m into three 2-factors each isomorphic to F and a

1-factor.

Proof In J2m, identify vertices u1 with um+1, u2 with um+2, v1 with vm+1, and v2

with vm+2. Clearly, the resulting graph is isomorphic to G2m. If {H1, H2, H3, H4} is

the decomposition J 7→ F , then H1, H2 and H3 become the required 2-factors and

H4 becomes the required 1-factor. �
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Lemma 10 For each graph F in the following list we have J 7→ F .

• [m] for each m ∈ {8, 12, 16, . . .}

• [4,m] for each m ∈ {4, 8, 12, . . .}

• [m,m′] for each m ∈ {6, 10, 14, . . .} and each m′ ∈ {6, 10, 14, . . .}

• [4,m,m′] for each m ∈ {6, 10, 14, . . .} and each m′ ∈ {6, 10, 14, . . .}

• [4, 4, 4]

Proof The proof of this lemma is given at the end of Section 4. �

Lemma 11 If F is a bipartite 2-regular graph of order 2m where m ≥ 8 is even,

then there is a factorisation of G2m into three 2-factors each isomorphic to F , and a

1-factor.

Proof Let F be a bipartite 2-regular graph of order 2m where m ≥ 8 is even.

We only need to show that there is a decomposition of F into 2-regular subgraphs

F1, F2, . . . , Ft such that Lemma 10 covers J 7→ Fi for i = 1, 2, . . . , t. The result then

follows as we can use Lemma 8 to obtain J 7→ F , and then use Lemma 9 to obtain

the required factorisation of G2m.

Observe that sincem is even, the number of cycles of length congruent to 2 ( mod 4)

in F is even. If F ∼= [4, 4, . . . , 4] then F can be decomposed into copies of [4, 4] and

[4, 4, 4] (m ≥ 8 implies F 6∼= [4]). Hence we can assume that F has a subgraph which

is isomorphic to either [m] where m ≥ 8 and m ≡ 0 ( mod 4), or to [m,m′] where

m ≡ m′ ≡ 2 ( mod 4).

If the number of 4-cycles in F is even, then clearly there is a decomposition of

F in which each subgraph is either [4, 4], [m] where m ≥ 8 and m ≡ 0 ( mod 4), or

[m,m′] where m ≡ m′ ≡ 2 ( mod 4). On the other hand, if the number of 4-cycles in

F is odd, then there is a decomposition of F in which one subgraph is either [4,m]

where m ≥ 8 and m ≡ 0 ( mod 4), or [4,m,m′] where m ≡ m′ ≡ 2 ( mod 4), and each
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other subgraph is either [4, 4], [m] where m ≥ 8 and m ≡ 0 ( mod 4), or [m,m′] where

m ≡ m′ ≡ 2 ( mod 4). All of these are covered by Lemma 10. �

We can now prove our main Theorem, which we restate for convenience.

Theorem 1 If F1, F2, . . . , Ft are bipartite 2-regular graphs of order n and α1, α2, . . . , αt

are non-negative integers such that α1 + α2 + · · · + αt = n−2
2

, α1 ≥ 3 is odd, and αi

is even for i = 2, 3, . . . , t, then there exists a 2-factorisation of Kn − I in which there

are exactly αi 2-factors isomorphic to Fi for i = 1, 2, . . . , t.

Proof The conditions guarantee that n ≡ 0 ( mod 4) and the result is known to hold

for n ∈ {4, 8, 12}, see [25]. For n ≡ 0 ( mod 4) and n ≥ 16, let F be the factorisation

of Kn
2

given by Lemma 7 and let I be the 1-regular graph with V (I) = V (Kn
2
)× Z2

and E(I) = {{(v, 0), (v, 1)} : v ∈ V (Kn
2
)}. Then F (2) ∪ {I} is a factorisation of

Kn into n−8
4

4-factors, each isomorphic to C
(2)
n
2

, a 6-factor isomorphic to 〈{1, 3e}〉(2)n
2

,

and a 1-factor. Moreover, the union of the 6-factor and the 1-factor is a 7-factor

isomorphic to Gn. The result now follows by appropriate applications of Lemma 6 to

each 4-factor, and Lemma 11 to the 7-factor. �

4 Decompositions of J2r

The sole purpose of this section is to prove Lemma 10. In what follows, the cy-

cle with vertices x1, x2, . . . , xt and edges x1x2, x2x3, . . . , xt−1xt and xtx1 is denoted by

(x1, x2, . . . , xt), the path with vertices x1, x2, . . . , xt and edges x1x2, x2x3, . . . , xt−1xt is

denoted by 〈x1, x2, . . . , xt〉, and the 1-regular graph whose vertices are x1, x2, . . . , xt, y1, y2, . . . , yt

and edges are x1y1, x2y2, . . . , xtyt is denoted by {x1y1, x2y2, . . . , xtyt}.

We obtain the necessary decompositions J 7→ F required for Lemma 10 by using

the operation ⊕ to combine various ingredient decompositions, but in a slightly more

general way than we did in Lemma 8. Now, our ingredient decompositions will be into

subgraphs which are vertex-disjoint unions of paths and cycles, and each copy of F in

10



our decomposition J 7→ F will be a union of some of these subgraphs. For example,

a copy of F = [4, 14, 18] in our decomposition J 7→ F might be H1 ⊕H ′
1 ⊕H ′′

1 ⊕H ′′′
1

where H1, H
′
1, H

′′
1 and H ′′′

1 are as shown in Figure 3.

��
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Figure 3: The vertex sets of the graphs H1, H
′
1, H

′′
1 and H ′′′

1 will be such that their

union is isomorphic to the graph [4, 14, 18].

The intuition behind the notation we will soon define is that in this example

• H1 would be represented by “[4, 8”,

• H ′
1 would be represented by “6, 6”,

• H ′′
1 would be represented by “4” and

• H ′′′
1 would be represented by “8]”

so that H1 ⊕H ′
1 ⊕H ′′

1 ⊕H ′′′
1 , being isomorphic to the graph [4, 14, 18], is represented

as [4, 8 ⊕ 6, 6 ⊕ 4 ⊕ 8].

We need to ensure that the vertex sets of the paths and cycles, and in particular

the end-vertices of the paths, in our ingredient decompositions are such that the

desired 2-regular graphs are indeed obtained when the ingredient decompositions are

combined using the operation ⊕. It is routine, though somewhat tedious, to check

that the following definitions ensure that this is the case.

We begin with decompositions into graphs which will act like H1 in Figure 3. A

decomposition {H1, H2, H3, H4} of J2r is called a left-end decomposition if each of H1,

H2 and H3 is the vertex-disjoint union of a number (possibly zero) of cycles and a

path, H4 is a 1-regular graph with vertex set V (J2r) \ {u1, u2, v1, v2}, and
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(1) V (H1) = V (J2r) \ {v1, v2, ur+2} and the end-vertices of the path in H1 are vr+1

and vr+2.

(2) V (H2) = V (J2r) \ {u1, u2} and the end-vertices of the path in H2 are ur+1 and

vr+2.

(3) V (H3) = V (J2r)\{u1, u2, v1, v2} and the end-vertices of the path in H3 are ur+1

and vr+1.

IfD is a left-end decomposition {H1, H2, H3, H4} of J2r in whichH1 consists of cycles of

lengths a1, a2, . . . , at and a path of length a, H2 consists of cycles of lengths b1, b2, . . . , bt

and a path of length b, and H3 consists of cycles of lengths c1, c2, . . . , ct and a path of

length c, then we will say that D is a decomposition of type

J 7→ [a1, a2, . . . , at, a+ [b1, b2, . . . , bt, b+ [c1, c2, . . . , ct, c.

Lemma 12 There exist decompositions of the following types

J 7→ [8 + [9 + [7 which we denote by L1.

J 7→ [4, 8 + [4, 9 + [4, 7 which we denote by L2.

J 7→ [6, 6 + [6, 7 + [6, 5 which we denote by L3.

J 7→ [10, 6 + [10, 7 + [10, 5 which we denote by L4.

J 7→ [4, 6, 6 + [4, 6, 7 + [4, 6, 5 which we denote by L5.

J 7→ [4, 10, 6 + [4, 10, 7 + [4, 10, 5 which we denote by L6.

Proof The decomposition L1 = {H1, H2, H3, H4} is given by

H1 = 〈v5, u5, u4, u1, v4, u3, u2, v3, v6〉 H2 = 〈u5, u6, u3, v2, v3, u4, v1, v4, v5, v6〉

H3 = 〈u5, v6, u3, u4, v4, v3, u6, v5〉 H4 = {u3v3, u4v5, v4u5, u6v6}.
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The decomposition L2 = {H1, H2, H3, H4} is given by

H1 = (u1, u4, u5, v4) ∪ 〈v7, u7, v6, v3, u2, u3, u6, v5, v8〉

H2 = (v1, u4, v5, v4) ∪ 〈u7, u8, u5, v6, u3, v2, v3, u6, v7, v8〉

H3 = (u3, u4, v3, v4) ∪ 〈u7, v8, u5, u6, v6, v5, u8, v7〉

H4 = {u3v3, u4v4, u5v5, u6u7, v6v7, u8v8}.

The decomposition L3 = {H1, H2, H3, H4} is given by

H1 = (u1, u4, u3, u2, v3, v4) ∪ 〈v7, u7, v6, u6, u5, v5, v8〉

H2 = (v1, u4, v3, v2, u3, v4) ∪ 〈u7, u8, u5, v6, v5, u6, v7, v8〉

H3 = (u4, u5, v8, u8, v5, v4)) ∪ 〈u7, u6, v3, u3, v6, v7〉

H4 = {u3u6, v3v6, u4v5, v4u5, u7v8, v7u8}.

The decomposition L4 = {H1, H2, H3, H4} is given by

H1 = (u1, u4, u5, v5, u6, v6, v3, u2, u3, v4) ∪ 〈v9, u9, v8, v7, u8, u7, v10〉

H2 = (v1, u4, v3, v2, u3, u6, u7, v8, v5, v4) ∪ 〈u9, u10, v7, v6, u5, u8, v9, v10〉

H3 = (u3, u4, v4, v3, u6, u5, v8, u8, v5, v6) ∪ 〈u9, v10, v7, u7, u10, v9〉

H4 = {u3v3, u4v5, v4u5, u6v7, v6u7, u8u9, v8v9, u10v10}.

The decomposition L5 = {H1, H2, H3, H4} is given by

H1 = (u1, u4, u5, v4) ∪ (u2, u3, u6, v5, v6, v3) ∪ 〈v9, u9, v8, v7, u8, u7, v10〉

H2 = (v1, u4, v5, v4) ∪ (v2, u3, v6, u5, u6, v3) ∪ 〈u9, u10, v7, u7, v8, u8, v9, v10〉

H3 = (u3, u4, v3, v4) ∪ (u6, u7, u10, v10, v7, v6) ∪ 〈u9, u8, v5, u5, v8, v9〉

H4 = {u3v3, u4v4, u5u8, v5v8, u6v7, v6u7, u9v10, v9u10}.

The decomposition L6 = {H1, H2, H3, H4} is given by

H1 = (u1, u4, u5, v4) ∪ (u2, u3, v6, v5, v8, u8, v7, u7, u6, v3)∪

〈v11, u11, v10, v9, u10, u9, v12〉

H2 = (v1, u4, v5, v4) ∪ (v2, u3, u6, u5, u8, u9, v10, v7, v6, v3)∪

〈u11, u12, v9, v8, u7, u10, v11, v12〉

H3 = (u3, u4, v3, v4) ∪ (u5, v6, u6, v5, u8, u7, v10, u10, v7, v8)∪

〈u11, v12, v9, u9, u12, v11〉

H4 = {u3v3, u4v4, u5v5, u6v7, v6u7, u8v9, v8u9, u10u11, v10v11, u12v12}.
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�

Given the above usage of the term “left-end decomposition”, the natural name

for the decomposition given in the following lemma is a right-end decomposition. The

subgraphs in the decomposition (other than the one that is 1-regular) are like H ′′′
1 in

Figure 3.

Lemma 13 There exists a decomposition {H1, H2, H3, H4} of J8 where

(1) H1 is a path of length 8 from v1 to v2 with vertex set V (J8) \ {u1, u5, u6}

(2) H2 is a path of length 7 from u1 to v2 with vertex set V (J8) \ {u2, v1, v5, v6}

(3) H3 is a path of length 9 from u1 to v1 with vertex set V (J8) \ {u2, v2}

(4) H4 is a 1-regular graph with vertex set V (J8) \ {u1, u2, v1, v2}.

We denote the decomposition given in Lemma 13 by R and we say that R is a

decomposition of type

J 7→ 8] + 7] + 9].

Proof The decomposition R = {H1, H2, H3, H4} is given by

H1 = 〈v1, v4, u4, v5, v6, v3, u2, u3, v2〉 H2 = 〈u1, u4, u3, u6, u5, v4, v3, v2〉

H3 = 〈u1, v4, u3, v6, u5, v5, u6, v3, u4, v1〉 H4 = {u3v3, u4u5, v4v5, u6v6}.

�

The following lemma gives a decomposition in which the subgraphs (other than

the one that is 1-regular) are like H ′′
1 in Figure 3.

Lemma 14 There exists a decomposition {H1, H2, H3, H4} of J4 where

(1) H1 is a pair of vertex-disjoint paths from v1 and v2 to v3 and v4 such that

V (H1) = V (J4) \ {u1, u4}.
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(2) H2 is a pair of vertex-disjoint paths from u1 and v2 to u3 and v4 such that

V (H2) = V (J4) \ {u2, v1}.

(3) H3 is a pair of vertex-disjoint paths from u1 and v1 to u3 and v3 such that

V (H3) = V (J4) \ {u2, v2}.

(4) H4 is a 1-regular graph with vertex set V (J4) \ {u1, u2, v1, v2}.

We denote the decomposition given in Lemma 14 by C and we say that C is a decom-

position of type

J 7→ 4 + 4 + 4.

Proof The decomposition C = {H1, H2, H3, H4} is given by

H1 = 〈v1, v4〉 ∪ 〈v2, u3, u2, v3〉 H2 = 〈u1, u4, u3〉 ∪ 〈v2, v3, v4〉

H3 = 〈u1, v4, u3〉 ∪ 〈v1, u4, v3〉 H4 = {u3v3, u4v4}.

�

The following lemma gives a decomposition in which the subgraphs (other than

the one that is 1-regular) are like H ′
1 in Figure 3.

Lemma 15 There exists a decomposition {H1, H2, H3, H4} of J12 where

(1) H1 is a pair of vertex-disjoint paths, one of length 6 from v1 to v2, and one of

length 6 from v7 to v8 such that V (H1) = V (J12) \ {u1, u8}.

(2) H2 is a pair of vertex-disjoint paths, one of length 5 from u1 to v2, and one of

length 7 from u7 to v8 such that V (H2) = V (J12) \ {u2, v1}.

(3) H3 is a pair of vertex-disjoint paths, one of length 7 from u1 to v1, and one of

length 5 from u7 to v7 such that V (H3) = V (J12) \ {u2, v2}.

(4) H4 is a 1-regular graph with vertex set V (J12) \ {u1, u2, v1, v2}.
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We denote the decomposition given in Lemma 15 by M and we say that M is a

decomposition of type

J 7→ 6, 6 + 5, 7 + 7, 5.

Proof The decomposition M = {H1, H2, H3, H4} is given by

H1 = 〈v1, v4, u4, v3, u2, u3, v2〉 ∪ 〈v7, u7, v6, v5, u6, u5, v8〉

H2 = 〈u1, u4, u5, v6, v3, v2〉 ∪ 〈u7, u8, v5, v4, u3, u6, v7, v8〉

H3 = 〈u1, v4, v3, u6, v6, u3, u4, v1〉 ∪ 〈u7, v8, v5, u5, u8, v7〉

H4 = {u3v3, u4v5, v4u5, u6u7, v6v7, u8v8}.

�

For convenience, we summarise the results of Lemmas 12, 13, 14 and 15 in the

following lemma.

Lemma 16 The following decompositions exist and are of the type indicated.

L1 : J 7→ [8 + [9 + [7 L2 : J 7→ [4, 8 + [4, 9 + [4, 7

L3 : J 7→ [6, 6 + [6, 7 + [6, 5 L4 : J 7→ [10, 6 + [10, 7 + [10, 5

L5 : J 7→ [4, 6, 6 + [4, 6, 7 + [4, 6, 5 L6 : J 7→ [4, 10, 6 + [4, 10, 7 + [4, 10, 5

C : J 7→ 4 + 4 + 4 M : J 7→ 6, 6 + 5, 7 + 7, 5

R : J 7→ 8] + 7] + 9]

Most of the decompositions J 7→ F that we need can be obtained from the de-

compositions given in Lemma 16 by using the ⊕ operation, but we also need a few

other small decompositions and these are given in the following lemma.

Lemma 17 The following decompositions exist.

J 7→ [8] J 7→ [12] J 7→ [4, 4] J 7→ [4, 8] J 7→ [4, 12] J 7→ [6, 6]

J 7→ [6, 10] J 7→ [10, 10] J 7→ [4, 4, 4] J 7→ [4, 6, 6] J 7→ [4, 6, 10] J 7→ [4, 10, 10]
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Proof The decomposition J 7→ [8] is given by

H1 = (u1, u4, v3, u2, u3, v6, v5, v4) H2 = (v1, u4, u3, v2, v3, u6, u5, v4)

H3 = (u3, v4, v3, v6, u5, u4, v5, u6) H4 = {u3v3, u4v4, u5v5, u6v6}.

The decomposition J 7→ [12] is given by

H1 = (u1, u4, u5, v5, v8, v7, u6, v6, v3, u2, u3, v4)

H2 = (v1, u4, v3, v2, u3, u6, u5, u8, u7, v6, v5, v4)

H3 = (u3, u4, v4, v3, u6, v5, u8, v7, u7, v8, u5, v6)

H4 = {u3v3, u4v5, v4u5, u6u7, v6v7, u8v8}.

The decomposition J 7→ [4, 4] is given by

H1 = (u1, u4, v5, v4) ∪ (u2, u3, v6, v3) H2 = (v1, u4, u5, v4) ∪ (v2, u3, u6, v3)

H3 = (u3, u4, v3, v4) ∪ (u5, u6, v5, v6) H4 = {u3v3, u4v4, u5v5, u6v6}.

The decomposition J 7→ [4, 8] is given by

H1 = (u1, u4, v5, v4) ∪ (u2, u3, u6, u5, v8, v7, v6, v3)

H2 = (v1, u4, u5, v4) ∪ (v2, u3, v6, u7, u8, v5, u6, v3)

H3 = (u3, u4, v3, v4) ∪ (u5, v6, v5, v8, u7, u6, v7, u8)

H4 = {u3v3, u4v4, u5v5, u6v6, u7v7, u8v8}.

The decomposition J 7→ [4, 12] is given by

H1 = (u1, u4, u5, v4) ∪ (u2, u3, u6, v5, v8, u8, v9, v10, v7, u7, v6, v3)

H2 = (v1, u4, v5, v4) ∪ (v2, u3, v6, u5, u8, u7, u10, u9, v8, v7, u6, v3)

H3 = (u3, u4, v3, v4) ∪ (u5, u6, v6, v5, u8, v7, u10, v9, u9, v10, u7, v8)

H4 = {u3v3, u4v4, u5v5, u6u7, v6v7, u8u9, v8v9, u10v10}.

The decomposition J 7→ [6, 6] is given by

H1 = (u1, u4, v3, u2, u3, v4) ∪ (u5, v5, v8, v7, u6, v6)

H2 = (v1, u4, u3, v2, v3, v4) ∪ (u5, u6, v5, v6, u7, u8)

H3 = (u3, v3, u6, u7, v7, v6) ∪ (u4, v4, u5, v8, u8, v5)

H4 = {u3u6, v3v6, u4u5, v4v5, u7v8, v7u8}.
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The decomposition J 7→ [6, 10] is given by

H1 = (u7, u8, v7, v8, v9, v10) ∪ (u1, u4, u5, v5, u6, v6, v3, u2, u3, v4)

H2 = (u5, u8, u9, u10, v7, v6) ∪ (v1, u4, v3, v2, u3, u6, u7, v8, v5, v4)

H3 = (u7, u10, v9, u9, v10, v7) ∪ (u3, u4, v4, v3, u6, u5, v8, u8, v5, v6)

H4 = {u3u4, u4v5, v4u5, u6v7, v6u7, u8v9, v8u9, u10v10}.

The decomposition J 7→ [10, 10] is given by

H1 = (u1, u4, u5, v5, u6, v6, v3, u2, u3, v4) ∪ (u7, u8, v7, v8, u9, v9, v12, v11, u10, v10)

H2 = (v1, u4, v3, v2, u3, u6, u7, v8, v5, v4) ∪ (u5, v6, v7, u10, u9, u12, u11, v10, v9, u8)

H3 = (u3, u4, v4, v3, u6, u5, v8, u8, v5, v6) ∪ (u7, v7, v10, u9, v12, u11, v11, u12, v9, u10)

H4 = {u3u4, u4v5, v4u5, u6v7, v6u7, u8u9, v8v9, u10u11, v10v11, u12v12}.

The decomposition J 7→ [4, 4, 4] is given by

H1 = (u1, u4, u5, v4) ∪ (u2, u3, u6, v3) ∪ (v5, v6, v7, v8)

H2 = (v1, u4, v5, v4) ∪ (v2, u3, v6, v3) ∪ (u5, u6, u7, u8)

H3 = (u3, u4, v3, v4) ∪ (u5, v6, u7, v8) ∪ (v5, u6, v7, u8)

H4 = {u3v3, u4v4, u5v5, u6v6, u7v7, u8v8}.

The decomposition J 7→ [4, 6, 6] is given by

H1 = (u1, u4, u5, v4) ∪ (u2, u3, u6, v5, v6, v3) ∪ (u7, v7, v10, v9, u8, v8)

H2 = (v1, u4, v5, v4) ∪ (v2, u3, v6, u5, u6, v3) ∪ (u7, u8, v7, v8, u9, u10)

H3 = (u3, u4, v3, v4) ∪ (u5, v5, u8, u9, v9, v8) ∪ (u6, v6, u7, v10, u10, v7)

H4 = {u3v3, u4v4, u5u8, v5v8, u6u7, v6v7, u9v10, v9u10}.

The decomposition J 7→ [4, 6, 10] is given by

H1 = (u1, u4, u5, v4) ∪ (u9, u10, v9, v10, v11, v12) ∪ (u2, u3, v6, v5, v8, u8, v7, u7, u6, v3)

H2 = (v1, u4, v5, v4) ∪ (u7, v8, v9, u12, u11, u10) ∪ (v2, u3, u6, u5, u8, u9, v10, v7, v6, v3)

H3 = (u3, u4, v3, v4) ∪ (u9, v9, v12, u11, v11, u12) ∪ (u5, v6, u6, v5, u8, u7, v10, u10, v7, v8)

H4 = {u3v3, u4v4, u5v5, u6v7, v6u7, u8v9, v8u9, u10v11, v10u11, u12v12}.
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The decomposition J 7→ [4, 10, 10] is given by

H1 = (u1, u4, u5, v4) ∪ (u2, u3, v6, v5, v8, u8, v7, u7, u6, v3)∪

(u9, u10, v9, v10, u11, v11, v14, v13, u12, v12)

H2 = (v1, u4, v5, v4) ∪ (v2, u3, u6, u5, u8, u9, v10, v7, v6, v3)∪

(u7, v8, v9, u12, u11, u14, u13, v12, v11, u10)

H3 = (u3, u4, v3, v4) ∪ (u5, v6, u6, v5, u8, u7, v10, u10, v7, v8)∪

(u9, v9, v12, u11, v14, u13, v13, u14, v11, u12)

H4 = {u3v3, u4v4, u5v5, u6v7, v6u7, u8v9, v8u9, u10u11, v10v11, u12u13, v12v13, u14v14}.

�

We are now able to prove Lemma 10, which we restate for convenience.

Lemma 10 For each graph F in the following list we have J 7→ F .

• [m] for each m ∈ {8, 12, 16, . . .}

• [4,m] for each m ∈ {4, 8, 12, . . .}

• [m,m′] for each m ∈ {6, 10, 14, . . .} and each m′ ∈ {6, 10, 14, . . .}

• [4,m,m′] for each m ∈ {6, 10, 14, . . .} and each m′ ∈ {6, 10, 14, . . .}

• [4, 4, 4]

Proof First we deal with the case J 7→ [m] for all m ≥ 8 with m ≡ 0 ( mod 4) and

the case J 7→ [4,m] for all m ≥ 4 with m ≡ 0 ( mod 4). The decompositions J 7→ [8],

J 7→ [12], J 7→ [4, 4], J 7→ [4, 8] and J 7→ [4, 12] are given in Lemma 17, and for

each m ≥ 16 with m ≡ 0 ( mod 4), the decompositions L1 ⊕ C ⊕ C ⊕ · · · ⊕ C ⊕R and

L2⊕C ⊕C ⊕ · · ·⊕C ⊕R with m−16
4

occurrences of C gives us J 7→ [m] and J 7→ [4,m]

respectively.

We now deal with the cases J 7→ [m,m′] and J 7→ [4,m,m′] for all m,m′ ≥ 6 with

m ≡ m′ ≡ 2 ( mod 4). We can assume without loss of generality that m ≤ m′. The

decompositions J 7→ [6, 6], J 7→ [6, 10], J 7→ [10, 10], J 7→ [4, 6, 6], J 7→ [4, 6, 10] and
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J 7→ [4, 10, 10] are given in Lemma 17. For each m′ ≥ 14 with m′ ≡ 2 ( mod 4), the

decompositions

• L3 ⊕ C ⊕ C ⊕ · · · ⊕ C ⊕R,

• L4 ⊕ C ⊕ C ⊕ · · · ⊕ C ⊕R,

• L5 ⊕ C ⊕ C ⊕ · · · ⊕ C ⊕R and

• L6 ⊕ C ⊕ C ⊕ · · · ⊕ C ⊕R

with m−14
4

occurrences of C give us J 7→ [6,m′], J 7→ [10,m], J 7→ [4, 6,m] and

J 7→ [4, 10,m′] respectively. The decompositions

L1 ⊕ C ⊕ C ⊕ · · · ⊕ C ⊕M⊕ C ⊕ C ⊕ · · · ⊕ C ⊕R

and

L2 ⊕ C ⊕ C ⊕ · · · ⊕ C ⊕M⊕ C ⊕ C ⊕ · · · ⊕ C ⊕R,

each with m−14
4

occurrences of C followed by M and then a further m′−14
4

occurrences

of C, give us J 7→ [m,m′] and J 7→ [4,m,m′] respectively for all m,m′ ≥ 14 with

m ≡ m′ ≡ 2 ( mod 4).

Finally the decomposition J 7→ [4, 4, 4] is given in Lemma 17. �
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