On bipartite 2-factorisations of K, — [
and the Oberwolfach problem

Darryn Bryant * Peter Danziger
The University of Queensland Department of Mathematics
Department of Mathematics Ryerson University
Qld 4072 Toronto, Ontario,
Australia Canada M5B 2K3
Abstract

It is shown that if Fy, F5, ..., F; are bipartite 2-regular graphs of order n and
a1, Qo,...,0 are non-negative integers such that oy +as+- - -+ay = ”T_Q, a; >3
is odd, and «; is even for i = 2,3,...,t, then there exists a 2-factorisation of
K, — I in which there are exactly «; 2-factors isomorphic to F; fori =1,2,...,t.
This result completes the solution of the Oberwolfach problem for bipartite 2-

factors.

1 Introduction

The Oberwolfach problem was posed by Ringel in the 1960s and is first mentioned
in [19]. It relates to specification of tournaments and specifically to balanced seating
arrangments at round tables. In this article we will provide a complete solution to
the Oberwolfach problem in the case where there are an even number of seats at each
table.

Let n > 3 and let F' be a 2-regular graph of order n. When n is odd, the Oberwol-
fach problem OP(F') asks for a 2-factorisation of the complete graph K,, on n vertices
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in which each 2-factor is isomorphic to F'. When n is even, the Oberwolfach problem
OP(F) asks for a 2-factorisation of K, — I, the complete graph on n vertices with the
edges of a 1-factor removed, in which each 2-factor is isomorphic to F.

In 1985, Haggkvist [21] settled OP(F) for any bipartite 2-regular graph F of order
n = 2(mod 4). The result is an immediate consequence of Lemma 6 below, and the
existence of Hamilton cycle decompositions of K,, for all odd m. Here we complete
the solution of the Oberwolfach problem for bipartite 2-factors by dealing with the
case n = 0 (mod 4). To do this we prove the following more general result on bipartite

2-factorisations of K,, — I.

Theorem 1 If Fy, Fy, ..., F; are bipartite 2-regular graphs of order n and oy, as, . . ., oy

are non-negative integers such that oy + ag + + -+ + = ”772, o > 3 s odd, and «;
1s even for1=2,3,...,t, then there exists a 2-factorisation of K, — I in which there

are exactly a; 2-factors isomorphic to F; fori=1,2,...,t.

For n = 0 (mod 4), we obtain a solution to the Oberwolfach problem OP(F) for
any bipartite 2-regular graph F' of order n by applying Theorem 1 with ¢t =1, F} = F

and ay = "T’Q Combining this with Haggkvist’s result we have the following theorem.

Theorem 2 If I is a bipartite 2-reqular graph of order n then there is a 2-factorisation
of K,,—1I in which each 2-factor is isomorphic to F'. That is, for any bipartite 2-reqular
graph F', OP(F) has a solution.

Throughout the paper, we will use the notation [ms,ms,...,m; to denote the
2-regular graph consisting of ¢ (vertex-disjoint) cycles of lengths mq, ma,...,m;. A
large number of special cases of the Oberwolfach problem have been solved, but the
general problem remains, for the most part, completely open. However, a recent result
[10] shows that for a sparse infinite family of values of n, OP(F) has a solution for

any 2-regular graph F' of order n. It is known that there is no solution to OP(F’) for

Fe{[3,3],[4,5],13,3,5],3, 3,3, 3]},
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but there is no other known instance of the Oberwolfach problem with no solution. In
particular, a solution is known for all other instances with n < 18, see [2, 7, 17, 18, 25].
The special case of the Oberwolfach problem in which all the cycles in F' are of uniform
length has been solved completely, see [4, 5, 23, 25]. The case where all the cycles
are of length 3 and n is odd is the famous Kirkman’s schoolgirl problem, which was
solved in 1971 [29]. A large number of other special cases of the Oberwolfach problem
have been solved, see [8, 13, 20, 22, 26, 27, 28, 31].

A generalisation of the Oberwolfach problem, known as the Hamilton-Waterloo
problem, asks for a 2-factorisation of K, (n odd) or K,, — I (n even) in which «; of
the 2-factors are isomorphic to F} and as of the 2-factors are isomorphic to Fy for all
non-negative o and «y satisfying oy + ap = ”T’l (n odd) or ay + ag = "T’Q (n even).
Results on the Hamilton-Waterloo problem can be found in [1, 11, 12, 15, 16, 21, 24].

If we apply Theorem 1 with ¢ = 2 then we obtain the following result which
settles the Hamilton-Waterloo problem for bipartite 2-factors of order n = 0 (mod 4)
except in the case where all but one of the 2-factors are isomorphic. Note that for
n = 0(mod 4) the number of 2-factors in a 2-factorisation of K, — I is odd. When
n = 2(mod 4) and the number of 2-factors of each type is even, a solution to the

Hamilton-Waterloo problem in the case of bipartite 2-factors can be obtained by

applying Lemma 6 below, and using the existence of Hamilton cycle decompositions

of Ky, for all odd m (with m = %), see [21].

Theorem 3 If Fy and Fy are two bipartite 2-reqular graphs of order n = 0 (mod 4)
and aq and ag are non-negative integers satisfying oy + g = "T’Q, then there is a 2-
factorisation of K, — I in which oy of the 2-factors are isomorphic to Fy and oy of the

2-factors are isomorphic to Fy, except possibly when n =0 (mod 4) and 1 € {ay, as}.

Recent surveys of results on the Oberwolfach problem, the Hamilton Waterloo

Problem, and on 2-factorisations generally, are [9] and [30].



2 Preliminary results and notation

Let I' be a finite group. A Cayley subset of I' is a subset which does not contain the
identity and which is closed under taking of inverses. If S is a Cayley subset of I, then
the Cayley graph on T" with connection set S, denoted Cay(T",S), has the elements of
' as its vertices and there is an edge between vertices g and h if and only if g = h+ s
for some s € S.

We need the following two results on Hamilton cycle decompositions of Cayley
graphs. The first was proved by Bermond et al [6], and the second by Dean [14].
Both results address the open question of whether every connected Cayley graph of

even degree on a finite abelian group has a Hamilton cycle decomposition [3].

Theorem 4 ([6]) Every connected 4-reqular Cayley graph on a finite abelian group

has a Hamilton cycle decomposition.

Theorem 5 ([14]) Every 6-reqular Cayley graph on a cyclic group which has a gen-

erator of the group in its connection set has a Hamilton cycle decomposition.

A Cayley graph on a cyclic group is called a circulant graph and we will be using
these, and certain subgraphs of them, frequently. Thus, we introduce the following
notation. The length of an edge {z,y} in a graph with vertex set Z,, is defined to be

either x —y or y — x, whichever is in {1,2,..., |2

]} (calculations in Z,,). When m is

even we call {{z,z+ s} :2x=0,2,...,m — 2} the even edges of length s and we call
{{z,x+ s} 2 =1,3,...,m — 1} the odd edges of length s.

For any m > 3 and any S C {1,2,..., | %]}, we denote by (S),, the graph with
vertex set Z,, and edge set consisting of the edges of length s for each s € S, that
is, (S)m = Cay(Z,,,S U —=S). For m even, if we wish to include in our graph only
the even edges of length s then we give s the superscript “e”. Similarly, if we wish

to include only the odd edges of length s then we give s the superscript “o”. For
example, the graph ({1,2° 5°})15 is shown in Figure 1.
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Figure 1: The graph ({1,2°,5°})12

For any given graph K, the graph K® is defined by V(K®) = V(K) x Z; and
E(K®) = {{(x,a),(y,b)} : {z,y} € B(K), a,b € Zy}. It F = {F,F,,...,F} is
a set of graphs then we define F? = {Fl(Q)7 F2(2)’ ce Ft(Q)}. Observe that if F is a
factorisation of K, then F® is a factorisation of K.

Héggkvist proved the following very useful result in [21].

Lemma 6 ([21]) For any m > 1 and for each bipartite 2-reqular graph F of order

2m, there exists a 2-factorisation of C? in which each 2-factor is isomorphic to F.

m—4

Lemma 7 For each even m > 8 there is a factorisation of K, into ™= Hamilton

cycles and a copy of ({1,3°})m.

Proof The cases m =0 (mod 4) and m = 2 (mod 4) are dealt with separately. For
m = 2 (mod 4) observe that the mapping

0 1 2 3 4 D 6 78 - m—=3 m—2 m-—1
0™ m41 12 242 ™43 3 4 m_g m_] m—1
given by
5 z =0 (mod 4)
Y(@)=9 Z+[%2] 2=1,2(mod4)
1 z =3 (mod 4)



is an isomorphism from ({1,3°}),, to ({1,%})n. So in the case m = 2(mod 4) it
is sufficient to show that ({2,3,...,% — 1}),, has a Hamilton cycle decomposition.
This is straightforward as {({2,3})m, ({45} )m.-- -, ({5 =5 F —4})m, {F -3, % —
2,% — 1})m} is a factorisation of ({2,3,...,% — 1}), in which each 4-factor has a
Hamilton cycle decomposition by Theorem 4, and the 6-factor has a Hamilton cycle
decomposition by Theorem 5 (since ged(% — 2,m) = 1 when m = 2 (mod 4)).

For the case m = 0 (mod 4), observe that {({4,5})m, {({6,7})m,...,({F —2,% —
1})m} is a 4-factorisation of ({4,5, ..., % —1}),, in which each 4-factor has a Hamilton
cycle decomposition by Theorem 4. Thus it is sufficient to show that ({2,3°, % }),, has

a Hamilton cycle decomposition. But it is easy to see that ({2,3°, 3 }), = Cay(Z=n

X
Z5,{(1,0),(£,0),(0,1)}) and so the result follows by Theorem 4. O

3 Factorisations of the graph Gy,

For each even m > 8 we denote by G, the 7-regular graph obtained from ({1, 36})53)

by adding the edge {(z,0), (x,1)} for each = € Z,,. Observe that if F}, F5, ... ,FmT—él
are the Hamilton cycles in the factorisation of the complete graph with vertex set

Ly, given by Lemma 7, then the 7-factor that remains when F1(2), F2(2), NN F& are

removed from the complete graph with vertex set 7Z,, X Zs is isomorphic to G;m. In
this section we will construct for each even m > 8 and each bipartite 2-regular graph
F of order 2m, a factorisation of G, into three 2-factors each isomorphic to F' and
a 1-factor.

We now define a family of subgraphs of (5, which are used extensively in the

results that follow. For each even r > 2 we define the graph J,,. (see Figure 2) to be

the graph with vertex set

V(JQT) = {U,l,UQ, e ,U,T+2} U {Ul, Vo, ... ;vr+2}



and edge set

E(JQT) = {{ui,vi} :2':3,4,...,7"+2} U
{{ui;ui—i-l}v {Uiavz'—&-l}? {Ui,UHl}, {Uiaui—‘rl} t1=2,3,...,r+ 1} U
{{Uz‘,uz‘+3}> {Uiavi+3}{uiavi+3}: {Uiaui-i-?)} e=1,3,...,r— 1}-

U U2 us U4 us Ur—1 Uy Up+1 Up4-2
. /
\

U1 v2 v3 V4 U5 Vr—1 Ur Ur+41 Ur4-2

Figure 2: The graph Js,

Notice that in the graph Jy, if we identify vertices u; with w,,1, us with w9, v;
with v,11, and vy with v, 19, then the resulting graph is isomorphic to Go,. For each

integer k > 0 define the mapping ¢, on the vertices of Jy, by
¢k(ul) = Uitk and ¢k(vl) = Uitk for 1 = 17 27 ce, T 27

and for any subgraph H of Jo, define H**) to be the graph with vertex set {¢y(7) : z €
V(H)} and edge set {{¢x(z), or(y)} : {z,y} € E(H)}. So in particular, Jo, U JSI™ =
Jo(r+s). For convenience we use the notation Jo, @ Jas to denote Jo, U JQ(:T). More
generally, if H is a subgraph of Jy. and H' is a subgraph of Jy, then we denote
HuUH®" by H © 4y H', or just H ® H' if the value of 7 is clear from the context.

A decomposition of a graph J is set of subgraphs whose edge sets partition the
edge set of J. If D ={H; :i=1,2,...,t} is a decomposition of Jy. and D' = {H] :
i=1,2,...,t}is a decomposition of Jo4, then we define DOD' by DD’ = {H; & H'; :
i=1,2,...,t}. It is clear that D @ D’ is a decomposition of Jo( ).

Let F' be a 2-regular graph of order 2r, and suppose there exists a decomposition

{H, Hs, H3, Hy} of Jy, such that



(1) V(Hy) = {ug,ug, ..., u.} U{vs,vg, ..., 0040},
(2) V(Hy) = {us, us, ..., U2} U{v1,09,..., 0.},
(3) V(H3) = {us,uyg, ..., Ui} U{vs, vy, ..., 0040},
(4) V(H4) = {U3, Ug,y .- ,Ur+2} U {U3, [ZP ,Ur+2},
(5) Hy = Hy~ Hy = F,

(6) H, is a 1-regular graph of order 2r.

Then we shall write Js,. — F', or just J +— F'if the value of r is clear from the context
(usually from the order of F') and refer to such a decomposition as a decomposition
J +— F. The next Lemma gives a method for adjoining such decompositions in a

natural way using the @ operation.

Lemma 8 If F and F' are 2-reqular graphs such that J — F and J — F’, then

J — F" where F" is the union of vertex-disjoint copies of F' and F'.

Proof LetD = {H;, Hy, H3, Hy} be a decomposition J — F and let D' = {H{, H}, H}, H}}
be a decomposition J — F’. Then D @& D’ is a decomposition J +— F”. Properties
(1)-(4) (in the definition of J +— F') ensure that H; and H] are vertex disjoint for
i € {1,2,3,4}, and that the corresponding properties hold for V(H; & H}). O

Lemma 9 Let m > 8 and let F' be a 2-reqular graph of order 2m. If J — F, then
there exists a factorisation of Gs,, into three 2-factors each isomorphic to F and a

1-factor.

Proof In Jy,, identify vertices u; with w11, us with w10, v1 with v,,41, and vy
with v,,49. Clearly, the resulting graph is isomorphic to Goy,. If {Hy, Hy, Hs, Hy} is
the decomposition J +— F', then H;, Hy and H3 become the required 2-factors and

H, becomes the required 1-factor. [l



Lemma 10 For each graph F in the following list we have J +— F'.

e [m] for each m € {8,12,16,...}

[4,m] for each m € {4,8,12,...}

[m,m/] for each m € {6,10,14,...} and each m’' € {6,10,14,...}

[4,m, m'] for each m € {6,10,14,...} and each m’ € {6,10,14, ...}

[4,4,4]
Proof The proof of this lemma is given at the end of Section 4. O

Lemma 11 If F is a bipartite 2-regular graph of order 2m where m > 8 1is even,
then there is a factorisation of Ga,, into three 2-factors each isomorphic to F, and a

1-factor.

Proof Let F be a bipartite 2-regular graph of order 2m where m > 8 is even.
We only need to show that there is a decomposition of F' into 2-regular subgraphs
F,Fs, ..., F; such that Lemma 10 covers J — F; for : = 1,2,...,t. The result then
follows as we can use Lemma 8 to obtain J — F', and then use Lemma 9 to obtain
the required factorisation of G,,.

Observe that since m is even, the number of cycles of length congruent to 2 (mod 4)
in Fiseven. If = [4,4,... 4] then F' can be decomposed into copies of [4,4] and
[4,4,4] (m > 8 implies F' 2 [4]). Hence we can assume that F' has a subgraph which
is isomorphic to either [m] where m > 8 and m = 0(mod 4), or to [m,m’] where
m=m'=2(mod 4).

If the number of 4-cycles in F' is even, then clearly there is a decomposition of
F in which each subgraph is either [4,4], [m] where m > 8 and m = 0 (mod 4), or
[m, m'] where m = m’ = 2 (mod 4). On the other hand, if the number of 4-cycles in
F is odd, then there is a decomposition of F' in which one subgraph is either [4, m]

where m > 8 and m = 0 (mod 4), or [4,m,m'| where m =m’ = 2 (mod 4), and each
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other subgraph is either [4,4], [m] where m > 8 and m = 0 (mod 4), or [m, m’] where

m =m' =2 (mod 4). All of these are covered by Lemma 10. O

We can now prove our main Theorem, which we restate for convenience.

Theorem 1 If F, Fs, ..., F; are bipartite 2-reqular graphs of order n and aq, aa, . . ., o
are non-negative integers such that oy + ag + -+ + a = ”772, oy > 3 s odd, and «;
1s even for1=2,3,...,t, then there exists a 2-factorisation of K, — I in which there

are exactly o; 2-factors isomorphic to F; fori=1,2,... t.

Proof The conditions guarantee that n = 0 (mod 4) and the result is known to hold
for n € {4,8,12}, see [25]. For n = 0(mod 4) and n > 16, let F be the factorisation
of Kz given by Lemma 7 and let I be the 1-regular graph with V(I) = V(K= ) x Zs
and E(I) = {{(v,0),(v,1)} : v € V(K=)}. Then F@ U {I} is a factorisation of
K,, into an8 4-factors, each isomorphic to C(%Q), a 6-factor isomorphic to ({1, 36}>(%2),
and a 1-factor. Moreover, the union of the 6-factor and the 1-factor is a 7-factor
isomorphic to GG,,. The result now follows by appropriate applications of Lemma 6 to

each 4-factor, and Lemma 11 to the 7-factor. O

4 Decompositions of J,

The sole purpose of this section is to prove Lemma 10. In what follows, the cy-

cle with vertices x1, zo, ..., z; and edges x 29, X223, ..., x;_12; and x,x1 is denoted by

(21,22, ...,x), the path with vertices 1, z, ..., x; and edges x1xq, Toxs, ..., Ty 12y IS

denoted by (x1, xs, ..., z;), and the 1-regular graph whose vertices are x1, Za, ..., T, Y1, Y2, - - -, Yt
and edges are x1yy, Taya, . . ., 2y is denoted by {z1y1, Taya, . .., Teys}-

We obtain the necessary decompositions J — F' required for Lemma 10 by using
the operation @ to combine various ingredient decompositions, but in a slightly more
general way than we did in Lemma 8. Now, our ingredient decompositions will be into

subgraphs which are vertex-disjoint unions of paths and cycles, and each copy of F'in
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our decomposition J +— F will be a union of some of these subgraphs. For example,
a copy of F' = [4,14, 18] in our decomposition J +— F might be H; & H| © H{ ® HY’

where Hy, H|, H/ and H{" are as shown in Figure 3.

CIIIDCD

" "
H 1 H 1

Figure 3: The vertex sets of the graphs Hy, Hj, HY and H{" will be such that their
union is isomorphic to the graph [4, 14, 18].

The intuition behind the notation we will soon define is that in this example
e H; would be represented by “[4,8”,

e [ would be represented by “6,6”,

e H{ would be represented by “4” and

e H{” would be represented by “8]”

so that Hy & Hy & HY & HY", being isomorphic to the graph [4, 14, 18], is represented
as [4,8 @ 6,6 ® 4 @ 8|

We need to ensure that the vertex sets of the paths and cycles, and in particular
the end-vertices of the paths, in our ingredient decompositions are such that the
desired 2-regular graphs are indeed obtained when the ingredient decompositions are
combined using the operation &. It is routine, though somewhat tedious, to check
that the following definitions ensure that this is the case.

We begin with decompositions into graphs which will act like H; in Figure 3. A
decomposition {Hy, Hy, Hy, Hy} of Jy, is called a left-end decomposition if each of Hy,
H, and Hj is the vertex-disjoint union of a number (possibly zero) of cycles and a

path, Hy is a 1-regular graph with vertex set V (Js,) \ {u1, us,v1,v2}, and

11



(1) V(Hy) =V (J2r) \ {v1,v2, 42} and the end-vertices of the path in H; are v,

and v, 9.

(2) V(Hy) =V (J2) \ {u1,u2} and the end-vertices of the path in Hy are u,,; and

Upr42.

(3) V(Hs) =V (Jo) \ {u1, ug, v1,v9} and the end-vertices of the path in Hs are u, 1

and v, 1.

If D is a left-end decomposition { Hy, Hy, H3, Hy} of Jo, in which H; consists of cycles of
lengths ay, as, ..., a; and a path of length a, Hs consists of cycles of lengths by, by, ..., b;
and a path of length b, and Hj3 consists of cycles of lengths ¢1, s, ..., ¢ and a path of
length ¢, then we will say that D is a decomposition of type

J v [ay, a9, ... a, a4+ [b1,ba, ... by, b+ [c1,c,. .., ¢, C

Lemma 12 There exist decompositions of the following types

J +— [8 4+ [9+ [7 which we denote by L;.

J— [4,8+[4,94 [4,7 which we denote by L.

J +—[6,6+[6,7+ [6,5 which we denote by Ls.

J +— [10,6 + [10,7 + [10,5 which we denote by L.

J—[4,6,6+ [4,6,7+ [4,6,5 which we denote by Ls.

J +—[4,10,6 4 [4,10,7 + [4,10,5 which we denote by Lg.
Proof The decomposition £ = {H;, Hy, Hs, H,} is given by

Hl - <U5,U5,U47U1,U4,U3,’U,2,U3,’U6> H2 == <U5,U6,U3,U2,’U3’U4,U1,U4,U5,U6>

Hjz = <U5,U6,U3,U4,U4,U3,U67U5> Hy = {U3U3>U4U5,U4U5,U6UG}-
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The decomposition Lo = {Hy, Hy, H3, H4} is given by
Hy = (u1, ug, us, v4) U (U7, Uz, U6, U3, Ug, U3, Ug, Vs, Us)
H2 = (Ul, Uy, Vs, U4) U <U7, us, us, Vg, Uz, V2, Vs, Ug, U7, ’Ug)
Hsz = (us3, ug, v3,v4) U (ur, vs, Us, Ug, Vg, Us, Us, U7)
Hy = {u3v3, ugvy, usvs, Uglz, VeU7, Ugls }-
The decomposition L3 = {Hy, Hs, H3, H,} is given by
H1 = (U,l, Ug, Uz, U2, Vs, ’U4) U <’U77 Uy, Vg, Ug, Uz, Vs, Ug)
Hy = (v1,u4,v3, V2, ug, V1) U (U7, ug, us, Vs, Us, Us, U7, Us)
Hjz = (U4,U57U8,U8,U5,U4)) U <U7,U6;U3,U37UG,U7>
H4 = {U,3U6, V3Vg, U4 V5, VgUs5, UTVS, U7U8}.
The decomposition L4 = {H;, Hy, H3, Hy4} is given by
H1 = (U,l, Uy, U5, Vs, Ug, Vg, U3, U2, U3, U4) U <U9, Ug, Vg, U7, Ug, Uy, U10>
H2 == (Ul, Uyg, V3, Vg, Us, Ug, U7, Vg, Us, U4) U <U,g, U190, U7, Vg, U5, U, Vg, 1)10>
Hs = (us, ug, v4, V3, Ug, Us, Us, Usg, Vs, Vs) U (Ug, V10, U7, U, U10, Vg)
H, = {U3U37 U4Vs5, VaUs, UsU7, VsUT, UgUY, VgV, Ulovlo}-
The decomposition L5 = {H;, Hy, H3, H4} is given by
Hy = (uy, uq, us, vq) U (ug, us, Ug, Vs, Vs, v3) U (Vg, Ug, Vg, V7, Us, Uz, V10)
H2 = (Ul, Uy, Vs, 'U4) U (Ug, us, Vg, Us, Ug, ’U3) U <U9, U9, V7, U7, Vg, Ug, Vg, U10>
Hs = (ug, ug,v3,v4) U (ug, 7, U10, V10, V7, V) U (Ug, Us, Vs, Us, Vg, Vg)
Hy = {U3U3, U4Vy, UsUg, UsVs, UsUT, VsUT, U910, Ugulo}-

The decomposition Lg = {Hy, Hy, H3, Hy} is given by

H1 = (Ul, Uy, Us, U4) U (Ug, us, Vg, U5, Ug, U, U7, U7, Ug, ’U3)U
(Uu, U11, V10, V9, U10, Uy, 1)12>

Hy = (v1, ua, vs,v4) U (2, ug, ug, us, s, g, V19, U7, Vg, V3)U
<U11,U12,U9,U8,U77U107U11,U12>

Hy = (us,uq,vs,v4) U (us, Vg, Us, Vs, Us, Uz, V10, U10, V7, Vg )U
<U11,U12,U9,U9>U12>U11>

Hy = {U3U3, UgVy, UsVs5, UgV7, VeUT, UgVY, UgUg, U10U11, V10V11, U12U12}-
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O

Given the above usage of the term “left-end decomposition”, the natural name
for the decomposition given in the following lemma is a right-end decomposition. The
subgraphs in the decomposition (other than the one that is 1-regular) are like H{” in

Figure 3.

Lemma 13 There exists a decomposition {Hy, Hy, Hs, Hy} of Jg where
(1) Hy is a path of length 8 from vy to vy with vertex set V(Jg) \ {u1, us, ug}
(2) Hsy is a path of length 7 from uy to vy with vertex set V(Jg) \ {ua,v1, vs, v}
(3) Hs is a path of length 9 from uy to vy with vertex set V(Jg) \ {u2,ve}

(4) Hy is a 1-regular graph with vertex set V (Jg) \ {u1, ug, v, v2}.

We denote the decomposition given in Lemma 13 by R and we say that R is a
decomposition of type

J— 8]+ 17 +9].

Proof The decomposition R = {Hy, Hy, H3, Hy} is given by

Hl - <U1,’U47U4,U5,U6,U3,U2,U3,U2> HQ - <U1,U47U3,UG,U57’U47U3,’U2>

Hjz = <U1,U4,U3,U6,U5,U5,U6,03,U4yv1> Hy = {U3U3,U4U5,U4U5,U606}-

O

The following lemma gives a decomposition in which the subgraphs (other than

the one that is 1-regular) are like H{ in Figure 3.

Lemma 14 There exists a decomposition {Hy, Hy, Hs, Hy} of Jy where

(1) Hy is a pair of vertex-disjoint paths from vy and vy to vy and vy such that

V(Hy) =V (Js) \ {ur, us}.
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(2) Hy is a pair of vertez-disjoint paths from wy and vy to ug and vy such that

V(Ha) =V (Ja) \ {uz,v1}.

(8) Hs is a pair of vertez-disjoint paths from wy and vy to ug and vs such that

V(Hg) = V(J4) \ {UQ,’UQ}.
(4) Hy is a 1-regular graph with vertex set V (Jy) \ {uy, ug, vy, v2}.

We denote the decomposition given in Lemma 14 by C and we say that C is a decom-

position of type
J—4+44+4.

Proof The decomposition C = {H,, Hy, H3, H,} is given by

Hy = (v1,v4) U (va, u3, ug,v3) Hy = (u1, g, us) U (va, U3, Va)

Hjs = (uy,vg,us) U (v1, uq,v3) Hy = {usvs, ugvy}.
[l

The following lemma gives a decomposition in which the subgraphs (other than

the one that is 1-regular) are like Hj in Figure 3.

Lemma 15 There exists a decomposition {Hy, Hy, Hs, Hy} of Jio where

(1) Hy is a pair of vertex-disjoint paths, one of length 6 from vy to vy, and one of
length 6 from vy to vg such that V(Hy) =V (Jia) \ {u1,us}.

(2) Hs is a pair of vertex-disjoint paths, one of length 5 from uy to ve, and one of
length 7 from uy to vs such that V(Hy) =V (Jia) \ {uz,v1}.

(8) Hs is a pair of vertex-disjoint paths, one of length 7 from uy to vy, and one of
length 5 from u; to vy such that V(Hs) =V (Jia) \ {uz, va}.

(4) Hy is a 1-reqular graph with vertex set V(Ji2) \ {u1, uz, v1,vs2}.
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We denote the decomposition given in Lemma 15 by M and we say that M is a
decomposition of type

J—6,64+5,7+7,5.

Proof The decomposition M = {Hy, Hy, H3, H,} is given by

H1 = <U1,U4,U47U3,UQ,U3,UQ> U <’U7,U,7,U6,’U5,U6,U5,U8>
Hy = (uq, uq, us, ve, v3, v2) U (uz, us, Vs, Vs, Uz, Ug, U7, Us)
Hjz = <U17U4,U37U6,U6,U3,U4,U1> U <U77718,U5,U5,U877J7>
Hy=A{

U3v3, U4Vs5, V4Us, UsUT, VeU7, U8U8}-

O

For convenience, we summarise the results of Lemmas 12, 13, 14 and 15 in the

following lemma.

Lemma 16 The following decompositions exist and are of the type indicated.

Lo:J [B+[9+](7 Ly:J > [4,84+[4,9+[4,7
Ls:J—[6,6+1[6,7+1[6,5 Ly:J— [10,6 +[10,7 + [10,5
Ls:J v [4,6,6+[4,6,7+[4,6,5|Le:J— [4,10,6+[4,10,7 + [4,10,5
C:J—4+4+4 M:J—6,6457+17,5

R:J 8+ 7 +9

Most of the decompositions J +— F' that we need can be obtained from the de-
compositions given in Lemma 16 by using the @ operation, but we also need a few

other small decompositions and these are given in the following lemma.

Lemma 17 The following decompositions exist.

J — [§] J — [12] J— 4,4 J— 4,8 J—[4,12] J +— 16, 6]
J—[6,10] J+—[10,10] J+ [4,4,4] J+— [4,6,6] J+— [4,6,10] J+— [4,10,10]
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Proof The decomposition J +— [8] is given by

Hl - (U1,U4,U3,UQ,U37U6,U5,’U4) H2 - (U17U4,U3,U2,U37U6,U5,U4>

Hs = (U3,U47U3,U6,U5,U4,U5,U6) Hy = {U3U3,U4U47U5057U6U6}-

The decomposition J +— [12] is given by

= (ul,U4,'U/5,U5,Ug,'U7,UG,’U67U3,U2,U3,U4)
= (U1,U4,U3,02,U3,U67U5,U8,U77U6705,U4)
= (U37U4,U4,03,U67U5;US,U7,U7,U8,U5,UG)

= {u3v3, usVs, VyUs, Ugll7, VgU7, UsUs }.

The decomposition J +— [4,4] is given by

Hl - <U1,U4,U5,’U4) U (UQ,U37U6,U3> H2 - (’Ul,U4,Ux5,U4) U (’UQ,Ug,UG,’U:;)

Hjy = (us, uq, vs,v4) U (us, ug, vs,v6) Hy = {usvs, usvg, usvs, ugves }-

The decomposition J +— [4, 8] is given by

H,
H,
Hj
H,

(ula U4,’U5,’U4) U (UQ,Ug,UG, U5,’U8,’U7,/06,/U3)
(Ulv Uy, U5,U4) ) (U27 us, Vg, U7, U8, Us, Ug, U3)
(us, ug, v3,v4) U (us, vg, Vs, Vs, Uz, U, U7, Ug)

{U3U3, U4Vy, UsVs, UgVg, UTUT, Usvs}-

The decomposition J +— [4,12] is given by

Hl = (U17U4,U5,'U4) U (UQ,Ug,UG,U5,U8,U8,'U9,U10,717,U7,U67’U3>

Hy = (v1, ug, vs, v4) U (va, us, Vs, Us, Us, U, Uig, Ug, Vs, V7, Ug, U3)

Hjs = (us, uyg, v3,v4) U (us, ug, Vs, Us, Us, U7, U0, Vg, Ug, V10, Uz, Us)

H, = {U3U3, U4gVyg, UsV5, UsU7, VU7, UgUY, UgV9, Ulovlo}-

The decomposition J +— [6, 6] is given by

Hy
H,
Hj
Hy

(ula Uyg, V3, U2, U3, U4) U (U57 U5, Ug, U7, Ug, Uﬁ)
(Ula Uy, U37U27U37'U4) U (u57u67 U5, Vg, U7,U8)
(Ug, U3, Ug, U7, VT, UG) U (U4, Uy, U5,’U8,U8,U5)

{U3U6, V3V, U4Us, V4 V5, UTVS, U7U8}~
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The decomposition J — [6,10] is given by

H, = (ur, ug, vr,vs, Vg, V19) U (U1, Ug, Us, Vs, Ug, Vg, U3, U, Us, Vyg)
H2 = (u5,u8,u9,u10,v7,’v6) U (’Ul,U4,'U3,UQ,'LLg,UG,U7,U8,U57U4>
Hs = (U7,U107097U97U107U7) ) (U3,U4,U4,U37U6,U57U8>U87U5,U(&)

Hy = {U3U4, U4V5, V4U5, UsVT, VeUT, UgV9, UgUg, U10010}~
The decomposition J +— [10,10] is given by

Hl - (ul,U,4,U5,'U5,UG,U67U3,U2,U3,U4) U (u7au87v77U87u9a1}9;1)1271)117'“107'010)
Hy = (U17U4,U3702>U3,U6,U7>UB>U5,U4) U (Us,%,?}?,U10,U97U127U117010,U9,U8)
us, U4, V4, U3, Ug, Us, Vg, Ug, Us, UG) U (U?, U7, V10, U9, V12, U11, V11, U12, V9, ulO)

H3 == (
H, = {U3U4, U4V5, V4U5, UsUT, VsUT, UgUY, UgVg, U10U11, V10V11, U12U12}'
The decomposition J — [4,4, 4] is given by

Hy = (uq, ug, us, vq) U (uz, us, ug, vs3) U (vs, vg, v7, Ug)
Hy = (v1,u4,v5,v4) U (v, us, V6, v3) U (us, us, Uz, Us)
Hs = (ug, w4, v3,v4) U (us, v6, ur, vg) U (s, ug, 7, Us)

Hy = {U3U3, UV, UsVs5, UgUg, UTV7, Usvs}-
The decomposition J — [4, 6, 6] is given by

Hy = (uq, ua, us, va) U (ug, us, g, Vs, V6, v3) U (uz, v7, V19, Vg, Us, Us)
Hy = (v1, U4, v5,v4) U (Va, u3, Vs, Us, Ug, U3) U (U7, us, vz, Us, Uy, U1o)
Hs = (ug, w4, v3,v4) U (us, Vs, us, g, Vg, vs) U (Ug, Vg, U7, V10, U10, U7)

H, = {U3U3, U4Vy, UsUS, UsVg, UsUT, VsUT, U9V10, Ugulo}-
The decomposition J — [4,6, 10] is given by
Hl — (Ul, Uyg, Us, U4) U (Ug, U10, V9, V10, V11, U12> U (Ug, us, Vg, Vs, Ug, Ug, U7, U7, Ug, U3)
Hy = (01, U4,U57U4) U (U7,Us7vga Uiz, U11, U10) U (02,U37U6, Us, Ug, Ug, V10, VU7, Us, U3)

H3 = (Ug,U4,U3, U4) U (Ug,Ug, Ul2aullavll7ul2) U (U5, Vg, Ug, Us, Us, U7, V10, U10, U77U8)

Hy, = {U37J37 U4Vy, UsVs5, UgU7, VeUT, UgVY, UglUg, U10V11, V10U11, U12U12}-

18



The decomposition J +— [4, 10, 10] is given by

H, = ul,u4,u5,v4) U (UQ,U3,U67U5,UB7U8>U7,U7,U6703)U

Ug, U10, V9, V10, U11, V11, V14, V13, U12, U12)
, U, V5, Va) U (Va, U3, Ug, Us, Us, Ug, V1o, V7, Vg, U3)U
7

(

(
Hy= (u

(

(

(

U ,U877)9>U12>U11>U14>U13:?112,U11,Ulo)

Hs = (us,us,vs,v4) U (us, vg, tg, s, Us, Uz, V19, U10, V7, Vg)U
Ug,UQ,U12,U11,1114,U13,U137U147U11,U12)
Hy = {U303> U4Vy, U5Vs5, UsV7, VelUT, UgV9, VglUg, U10U11, V10V11, U12U13, V12V13, U14U14}-
O

We are now able to prove Lemma 10, which we restate for convenience.
Lemma 10 For each graph F in the following list we have J — F.

e [m] for each m € {8,12,16,...}

e [4,m]| for each m € {4,8,12,...}

e [m,m'] for each m € {6,10,14,...} and each m’ € {6,10,14,...}

o [4,m,m'] for each m € {6,10,14,...} and each m’ € {6,10,14,...}

o [4,4,4]

Proof First we deal with the case J — [m] for all m > 8 with m = 0(mod 4) and
the case J +— [4,m] for all m > 4 with m = 0(mod 4). The decompositions J — [§],
J — [12], J +— [4,4], J — [4,8] and J — [4,12] are given in Lemma 17, and for
each m > 16 with m = 0 (mod 4), the decompositions £L; ®CHCd--- B C & R and
LywC®CH---®CBR with 2 occurrences of C gives us J — [m] and J — [4, m]
respectively.

We now deal with the cases J — [m,m/] and J — [4, m, m’] for all m,m’ > 6 with
m =m' = 2(mod 4). We can assume without loss of generality that m < m'. The

decompositions J — [6,6], J — [6,10], J — [10,10], J — [4,6,6], J — [4,6,10] and
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J — [4,10,10] are given in Lemma 17. For each m’ > 14 with m’ = 2 (mod 4), the

decompositions
e LsBCPCD---BDCDR,
¢ L,®CHCH---BCHR,
e L BCHCH---dCPHR and
e LidCBCB---BCOBR

with 2= occurrences of C give us J — [6,m], J — [10,m], J — [4,6,m] and

J — [4,10,m’] respectively. The decompositions
LyOCOCD-- - DCOMBCPBCD---DCDR

and

LydCBCD-- - BCOMPBCHBCD---DCDR,

each with m%M occurrences of C followed by M and then a further % occurrences

of C, give us J — [m,m’] and J +— [4,m,m’] respectively for all m,m’ > 14 with
m=m'=2(mod 4).

Finally the decomposition J +— [4,4,4] is given in Lemma 17. O
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