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Abstract

In this paper we focus on the existence of 2-critical sets in the
latin square corresponding to the elementary abelian 2-group of order
2"™. It has been shown by Stinson and van Rees that this latin square
contains a 2-critical set of volume 4™ — 3™. We provide constructions
for 2-critical sets containing 4™ — 3" 41— (2F~1 4.2m~1 f gn—(k+m+1))
entries, where 1 <k <n and 1 < m < n — k. That is, we construct
2-critical sets for certain values less than 4" — 3" + 1 — 3. 2L7/31-1,
The results raise the interesting question of whether, for the given
latin square, it is possible to construct 2-critical sets of volume m,
where 4" — 3" + 1 —3.2l"/3171 <y < 4™ — 37,

1 Introduction

A critical set is a subset of entries of a latin square which uniquely deter-
mines the latin square and is minimal with respect to this property. Let C be
the collection of all critical sets of a latin square L and define the spectrum
to be spec(L) = {m | C is a critical set of L and |C| = m}. We say the
spectrum contains a hole if there exist £ < m < p such that £,p € spec(L),
but m ¢ spec(L). For the latin square B,, which corresponds to the addition
table for the integers mod n, where n is even, we know there exist critical
sets containing m entries where m € {"TZ, ”72 + 2, %2 +4,..., @ —n}or
where ”2;" —(n-2)<m< "22’”, [2]. Bate and van Rees [1] have conjec-
tured that for n even there exists no critical set in B,, containing n?/4 + 1
entries and hence have conjectured that the spectrum for B,, contains a




hole. In this paper we focus on the latin square corresponding to elemen-
tary abelian 2-group of order 2" and prove the existence of general families
of 2-critical sets (defined below) of various sizes. In an earlier paper [3]
we have shown that for n = 2 there exist 2-critical sets containing 5 and
7 entries, but no 6 element 2-critical set exists. For n = 3, we exhibited
examples which proved the existence of 2-critical sets containing m entries
where m € {37,35,34,...,27,26}. We were not able to find a 2-critical set
containing 25 or 36 entries. Note that a critical set in such a latin square
has at least 25 entries, [4].

These results raise the question of whether there are holes in spec(L)
where L is the latin square corresponding to the elementary abelian 2-group
of order 2". In this paper we seek to shed some light on this question by
providing constructions for 2-critical sets containing 4™ — 3" +1 — (2¢F—1 +
2m—1 4 gn—(k+m+1)) entries, where 1 <k <nand 1<m <n—k.

2 Definitions

A partial latin square P of order v is a v X v array with entries chosen from
the set V' ={0,...,v — 1} in such a way that each element of V' occurs at
most once in each row and at most once in each column of the array. Thus a
partial latin square may contain a number of empty cells. For ease of exposi-
tion, a partial latin square P will be represented by a set of ordered triples
P = {(i,j; P;j) | element P;; occurs in cell (i,7) of the array}. The vol-
ume of the partial latin square is |P|; that is, the number of non-empty
cells in P. Figure 1 provides examples of partial latin squares P, P», Ps,
respectively, of orders 2, 4 and 8 and volumes 1, 7 and 37. If every cell
of the v x v array is occupied the partial latin square is termed a latin
square. That is, a latin square L of order v is a v x v array with entries
chosen from the set V' ={0,...,v — 1} in such a way that each element of
V' occurs precisely once in each row and precisely once in each column of
the array. Figure 1 provides examples of latin squares Ly, Lo of orders 2
and 4 respectively.

The rows and columns of the array will be labelled 0 to v — 1. The set
of cells Sp = {(4, ) | (4,4; P;;) € P, for some P;; € V} is said to determine
the shape of P. Thus (z,y) € Sp implies that cell (z,y) is filled in the
partial latin square P and (z,y) ¢ Sp implies that cell (z,y) is empty in
P.

A latin trade, T = {I,I'}, of volume s, is a pair of two disjoint partial
latin squares, of order v, such that
1. 8 =S8,

2. foreach r, 0 <r <v—1,{ly; | I;; EVA(rj;I;) €I} ={I}; | I}; €
V A (r,5;1;) € I'} and
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Figure 1: P, P, and P3; are partial latin squares of orders 2, 4 and 8
respectively, and Ly and Ls are latin squares of orders 2 and 4 respectively.

3. foreach ¢, 0 <c<wv—1,{lic | Lic € VAGi,c;Lic) € I} ={I}. | I}, €
VAG,eI,)el}.

In this paper we will be concerned with latin trades of volume 4. Such
latin trades correspond to 2 x 2 latin subsquares, which are called interca-
lates.

A critical set C of order v is a partial latin square which has the prop-
erties:

1. C is contained in precisely one latin square of order v;

2. For all z € C, C'\ {} is contained in at least two latin squares of order
n.

If a partial latin square has property 1 above then it is said to have a
unique completion (UC) and if a uniquely completable partial latin square
has property 2 above then it is said that every entry is essential for unique
completion. The following lemma is a well-know consequence of the defini-
tions of critical sets and latin trades.

LEMMA 1 Let L be a latin square of order v and C C L. The partial
latin square C is a critical set if and only if

1. for all latin trades {I,I'} of order v, such that I C L, INC # 0, and
2. for all z € C, there exists a latin trade {I,I'} of order v, with I C L,
such that INC = {z}.

Given a critical set C C L and an element =z € C, if there exists an in-



tercalate J C L such that J N C = {z}, then = is said to be 2-essential.
A critical set C' is said to be 2-critical if for all z € C, x is 2-essential.
The partial latin squares P;, P, and Ps given in Figure 1 are examples of
2-critical sets.

Let P; and L; be as defined in Figure 1. For n > 2, define

Lo=LixL, 1 = {(z,y;2),(@y+2"12+2"1),
(x+2" oy z+ 27 Y, (@ + 27y + 27N 2) |
(x,y;2) € Lp—1}, and

P,=P®P,1 = {(z,y;2),(w,v+2" Hw+2"1),
(u+ 2" vyw+ 277, (u+ 2" v+ 27 w) |
(u,v;w) € Py_1 and (z,y;2) € Lp_1}.

It should be noted that L, corresponds to the elementary abelian 2-group
of order 2". The 2™ x 2" arrays, L, and FP,, may be partitioned into
four quadrants as illustrated in Figure 2. Note L._; and P!_,, respec-
tively, are isomorphic copies of L, 1 and P, j, however each symbol
z € {0,...,2""1 — 1} has been replaced by = + 2"~ !.

Ly1 Ly Lyt Py
L%L—l Ly P71L—1 P
L, P,

Figure 2: The partitioning of L,, and P,.

In [5] Stinson and van Rees proved that P, is a 2-critical set in Ly,
In this paper we provide an alternative method of proof (Lemma 8). We
shall then modify P, to provide examples of families of 2-critical sets in
L,. The method of proof will be similar to that used for P,. In doing
so we will provide information about the spectrum of 2-critical sets in the
latin square corresponding to the elementary abelian 2-group of order 2.
However, before we present the proof of Lemma 8 we give two important
definitions and prove four useful lemmas.

DEFINITION 2 Let 0 < u < 2" and u; € {0,1} fori =1,2,...,n. We

say the vector [u1,us, ..., u,] is the binary representation for u if u = u; -
27l 4y 2" 24 4124, and we write u = [u1,us, . . ., uy). Let 0 <
v < 2" with v = [v1,v9,...,v,]. Then by the direct sum u ®v we mean the



integer w whose binary representation is [(u1 ®v1), (ua Bva), ..., (un Bvy,)].
Welet @ = (2" —1)@u. Note that 000 =0=1®1and 001 =1=1&0.

LEMMA 3 Let 0 < z,y < 2" with © = [z1,...,2,] and y = [y1,--.,Yn]-
Then (z,y) € Sp, if and only if there exists j, 1 < j < n, such that
x; =y; = 0. Moreover, the cell (x,y) contains the integer x &y in P,.

Proof: The result for n = 1 is trivial. Table 1 can be used to verify the
result for n = 2. In Table 1 a headline and sideline have been added to P,
these contain, respectively, column numbers and row numbers in binary
form. Assume that the result is true for P,_;. For all cells (z,y) of P,

| [ 0,0 [[0,1] | [1,0] [[1,1] ]

0,0] [ [0,0] [ [0,1] | [L,0]
0,1] [ ]0,1] [ [0,0

1,0] [[[L,0 [0,0]
1,1

Table 1: P, in binary representation.

where 0 < 2,y < 2”71, we have (z,y) € Sp, and note that z; = y; = 0.
For cell (z,y) where 0 < z < 2"~ ! and 277! < y < 2", we have z; # 11
and (z,y) € Sp, if and only if (z,y —2""') € Sp,_,. Thus by the inductive
hypothesis (z,y) € Sp, if and only if there exists j, 2 < j < n, such that
z; = y; = 0. Similarly one can verify the result for cell (z,y) where 2"~ <
z < 2" and 0 <y < 2" 1, For cell (z,y) where 2" ! < z,y < 2", we have
71 =y = 1 and (z,y) € Sp, if and only if (zx — 2771,y —2""1) € Sp,_,.
Hence by the inductive hypothesis (z,y) € Sp, if and only if there exists
J,2<j <n,such that z; =y; =0.

By the inductive hypothesis, for 0 < z,y < 2"!, the integer w =
(0@ 0).2" 1 + (2 ® y2).2" 2 + ... + (Tn ® yn) occupies cell (z,y). For
0<z<2"!and 27! <y < 2", the integer w = (0® 1).2"! + (22 @
Y2).2""2 + ... + (x5, ® yn) occupies cells (z,y) and (y,z), and for 2771 <
x,y < 27, the integer w = (1@ 1).2" 7! + (22 @ 42).2" 2 + ... + (Tn, D yn)
occupies cell (z,y). Thus the result holds for all n > 2.

LEMMA 4 Let 0 < z,y,2z < 2", such that (z,y) ¢ Sp, andy < z. Then
x @ z occurs in column y of P,.

Proof: Let z = [21,...,2,], ¥ = [Y1,---,Yn], and 2z = [21,...,2,]. Since
y < z there exists an i € {1,2,...,n} such that y; = 0 and z; = 1.
On the other hand (z,y) ¢ Sp, implies that z; = 1 by Lemma 3. So



ifw=20y®zand w = [w,ws,...,wy] then w; = 0 which leads to
(w,y) € Sp, by Lemma 3. Moreover, w @y =(z®@yd2)Dy=z® 2.

Since P, is symmetric we have the following.

COROLLARY 5 Let 0 < z,y,z < 2", such that (z,y) ¢ Sp, and z < z.
Then z @ y occurs in row z of P,.

DEFINITION 6 Let 0 < z,y < 2" with ¢ = [£1,%2,...,2Z,] and y =
[y1,Y2,--->Yn]- We define z xy to be the integer z € {0,1,2,...,2" — 1}
with binary representation [z1, 22, ..., 2], where for i = 1,2,...,n
{ lifz; =y; = 0and
Zi = .
x; otherwise.
It is easy to see that zxz = 2"—1, z%x(2"—1) = z and (2" —1)xz = 2"—1.
The next lemma, places x in the context of P,.

LEMMA 7 Let 0 <u,v < 2" such that (u,v) € Sp,. Then
(1) uxv#u and v*u #v.

()U*u—uzfandonlyzfu*v—v

3) ud (vxu) = (uxv) .

4 udv=(uxv)® (v*ru).

(5) I ={(u,v;u®v), (u,v*xu;u® (vxu)), ((uxv),v; (urv) ®v),(uxv,v*

u; (uxv) ® (vru))} is an intercalate in L, and P, NI = {(u,v;u®v)}.

Proof: Points 1, 2, 3 and 4 are easily verified and can be used to verify
that I C L,. We need to prove that {(u,v *xu;u @ (v *u)), ((u*v),v; (u*
) ®v), (urxv,vxu;(uxv)® (vrxu))}NP, =

Assume that (u,w) € Sp,, where w = v xu. Then there exists j €
{1,...,n} such that u; = 0 = w;. By the definition of x we see that if
w; = 0 then v; = 0, but this gives a contradiction as u; = 0 = v; implies
wj = 1. The other two cases can be dealt with in a similar manner.

LEMMA 8 For all n > 2, the partial latin square P, is a 2-critical set of
volume 4™ — 3".

Proof: Fixz € {0,...,2"—1}. Let R be alatin square of order 2" such that
P, C R. Row z of P, can be completed as follows. For z = 2" —1,...,0,
assume (z,z;2 @ 2) € L, \ P,. Lemma 4 implies for all y < z either
(z,y) € Sp, or entry x @ z occurs in column y of P,. So (z,y;z @ 2) ¢ R,
for all y < 2. Hence (z,2;z @ z) € R. Consequently row z of P, is UC to
row z of L,. As x takes all values 0,...,2" — 1 we see that P, is UC to
L,,. Property 5 of Lemma 7 ensures that each entry of P, is 2-essential.
Thus P, is a 2-critical set in L,,.



3 New 2-critical sets

Since P, is UC if we add an entry, say (z,y;x®y), then P, U{(z,y;2Dy)}
is still UC. In this section we construct 2-critical sets which contain the
entry (z,y;z @ y) and for which the volume is strictly less than 4™ — 3.
For the remainder of this section it will be assumed that x and y are
fixed integers such that 0 < z,y < 2™ and (z,y) ¢ Sp,. In addition
we will use the notation z = [z1,z2,...,z,] for the binary expansion of
an integer x, where 0 < x < 2™ — 1. We shall define three important
sets of columns A(z,y), D(z,y) and D'(z,y). The set A(z,y) is a set of
columns which are used to identify the non-essential entries in row z of
P, U{(x,y;z ®y)}. It transpires that these entries can be identified with
empty cells of the form (w,y), where w > . Likewise, the set A(y,z) is a
set of rows which are used to identify the non-essential entries in column
y of P, U{(z,y;z ®y)} and corresponds to empty cells of the form (z,w),
where w > y. In a similar, fashion D(z,y) identifies columns containing
non-essential cells which contain the entry z@®y and D' (z,y) identifies those
which are essential.

DEFINITION 9 Let 0 < z,y < 2™ — 1 such that (z,y) ¢ Sp,. If z =
2" — 1 we define A(z,y) = 0. Otherwise, let x; = 0 if and only if ¢ €
{i1,12,...,ik}, where i, = max{i1,4a,...,ix}. In addition, let E = {i |
xz; = y; = 1}. Define A(z,y) to be the set of integers z = [21, 22, . .-, 2n]
such that, for i =1,...,n,

1 if i€E
% 0 if i¢ ({ir,is...,ixk—1}UE).

We note that for all z € A(z,y) we have z;, = x;, =0, where z and z
are as in Definition 9. So (z,z;x @ z) € P, by Lemma 3.

LEMMA 10 Let z € A(z,y) # 0 and (z,w) ¢ Sp, .
(1) Ify<w, then (@®wdz2,2;2Pw) € P,.
(2) Ifw<y, then (x® 2@ w,w;z® 2) € P,.

Proof: (1) Since y < w there exists an 7 € {1,2,...,n} such that y; =0
and w; = 1. Now (z,y) ¢ Sp, implies that ; = 1. So z; = 0 by Definition
9. Therefore, x; & w; ® z; = z; = 0 and the result follows by Lemma, 3.

(2) Since w < y there exists an 7 € {1,2,...,n} such that w; = 0 and
y; = 1. Now (z,w) ¢ Sp, implies that z; = 1. So z; = 1 by Definition 9.

Therefore, x; ® z; ® w; = w; = 0 and the result follows by Lemma 3.

Since P, is symmetric we have the following.



COROLLARY 11 Let z € A(y,z) # 0 and (w,y) ¢ Sp, .
(1) If x < w, then (z,y ®w ® z;y Dw) € P,.
(2) If w < z, then (w,y ® 2z D w;y ® z) € P,.

LEMMA 12 Ifz,w € A(x,y), then (z® 20w, z;zdw), (B zdw, w; zd
z) € P,.

Proof: Let z; = 0 if and only if ¢ € {i1,...,ix} and i) = max{i1,..., i}
By Definition 9 for all z,w € A(x,y) we have z;, = w;, = 0. Consequently,
Ziy, @ 2, Dw;y, =0and (220w, 2), (x®2z®w,w) € Sp,. The result now
follows.

Since P, is symmetric we have the following.

COROLLARY 13 If z,w € A(y,z), then (z,y ® z D w;y ® w), (w,y &
2@ w;y B z) € P,.

DEFINITION 14 Let (z,y) ¢ Sp, and k¥ = max{i | z; = y; = 1}. If
y = &, define D(z,y) = 0, otherwise define D(z,y) to be the set of integers

z=[z1,-..,4%n] such that, for i =1,...,n,

1 if T; = 0,

0 if i=k.
We also define D'(z,y) = 0 if y = Z, otherwise we define D'(z,y) to be the
set of integers z = [21,..., 2,] such that, for i =1,...,n,

1 if T; = 0,

Zi = 0 if Y = 0,
1 if i=k.

LEMMA 15 Let x,y be as in Definition 14. Then D(z,y) is well-defined.
Moreover, if z € D(x,y) and u =z ®y ® z then

(1) ZeD(x,y) andz <2<y,

(2) ($7 Z), (ua y) ¢ SP" ) and

(3) (u,z2) € Sp, .

Proof: Since (z,y) ¢ Sp, by Lemma 3 there is no ¢ € {1,2,...,n} such
that z; = y; = 0. So D(z,y) is well-defined. Parts (1) and (2) are easy to
see. For Part (3) note that up =2, O yr @2, = 1D 1@ 2, = 2, = 0. Now
the result follows by Lemma 3.

Similar to Lemma 10 we have the following result.



LEMMA 16 Let z€ D(z,y) #0, u=z Dy ® 2z and (u,w) ¢ Sp, .
(1) Ify<w then (ud®wd z,2;udw) € Pp.
(2) Ifw<y then (udzdw,w;ud z) € P,.

Proof: (1) Since y < w there exists an 7 € {1,2,...,n} such that y; =0
and w; = 1. So z; = 1 since (z,y) ¢ Sp, and z; = 0 by Definition 14.
Therefore, u; = x; ® y; ® z; = 1. This implies u; & w; ® z; = z; = 0. Now
the result follows by Lemma 3.

(2) Since w < y there exists an i € {1,2,...,n} such that w; = 0 and
y; = 1. So u; = 1 since (u,w) ¢ Sp,. Now u; = z; ® y; ® z; implies
that z; = z;. This leads to z; = z; = 1 by Definition 14. Therefore,
u; B z; ®w; = w; = 0. Now the result follows by Lemma 3.

We are now in a position to prove our main result.

THEOREM 17 Let (z,y) ¢ Sp,. Then

Py(z,y) = (PoU{(z,ys209)})\{(z, 520 2)]|2€ Alz,y)}
U{(z,4520y) [z € Ay, 2)} U{(z Dy D 2,252 D y) |
z € D(z,y)})

18 a 2-critical set.

Proof: Let R be a latin square, of order 2", such that P,(z,y) C R. First
we prove

{(z,z;2®2) | z € Alz,y)} U{(z,5520y) | z € Ay, 2)} C R.

Forw =2"-1,...,y + 1, let (z,w;2 ® w) € L, \ P,. If (z,v) ¢ Sp,
and v < w then Lemma 4 implies that « & w occurs in column v of P,. So
(z,v;z®w) ¢ R. Part (1) of Lemma 10 implies that ®w occurs in column
z of P, for all z € A(z,y). So (z,z;2 ® w) ¢ R. Hence (z,w;z ®w) € R
forw=2"-1,...,y+ 1.

Now if z € A(z,y) then by Lemma 12 for all w € A(z,y) \ {z} we have
(z@zw,w;z®2) € P,. So (z,w;z ® z) ¢ R. In addition, Part (2)
of Lemma 10 implies that for all w < y such that (z,w) ¢ Sp, we have
(z@z0w,w;z®2) € P,. So (z,w;z®z) ¢ R. Hence (z,2;2® 2) € R for
z € Az,y).

Similarly one can prove that (z,y;2 @ y) € R for z € A(y,z). Hence

(Pr(2,y) U{(z, 2,2 @ 2) | 2 € A(z,9)} U{(2,4;2® y) | 2 € Ay, 2)}) C R.

Secondly, we prove {(z @y ® z,2;2 D y) | 2 € D(z,y)} C R. For w =
2"—1,...,y+1,let (z®YyDz, w; cPYyD2zdw) € L, \ Py, where z € D(z,y). If



(zy®z,v) ¢ Sp, and v < w then Lemma 4 implies that z®y®z®w occurs
in column v of P,. So (z @y ® z,v;2 Dy ® 2B w) ¢ R. Part (1) of Lemma
16 implies that  ® y @ z @ w occurs in column z of P, for all z € D(z,y).
So(z@y®z,2;2@YyD2zdw) ¢ R. Hence (z Dy Dz, w;2Qydzdw) € R
forw=2"-1,...,y+ 1.

Now Part (2) of Lemma 16 implies that if z € D(z,y) then z & y
occurs in column w for all w < y such that (z ® y ® z,w) ¢ Sp,. So
(z0y®z,w;20y) ¢ R. Hence (z®y®d2,2;2Dy) € R. Therefore P, C R.
Now by Lemma 8 we must have R = L,.

To prove every entry is 2-essential we divide the elements of P,(z,y)
into five groups:

Group G1, the entry (z,y;z ® y);

Group G2, (u,v;u®v) € P,(z,y) such that u®v =z ®y and v € D'(x, y).
Group G3, (z,v;x ®v) € P,(x,y) such that v # y and vxx = y.

Group G4, (u,y;u ®y) € P,(x,y) such that u # z and u xy = z.

Group G5, all other entries.

For the entry (z,y;x ® y) we proceed as follows. If y # T we take
z € D(z,y) and define

I={(z,;20y), (DY D2,270y), TSy D 2,y;202),(z,2;2® 2)}-

Then I is the required intercalate by Lemma 15. If y = z and z # 2" — 1
then we take z € A(z,y) and define

I={(z,1520Y),( 0y ®2,270Y), (DY D2,y 0 2), (2,220 2)}.
If y =% and = 2™ — 1 then we take 2z € A(y, z) and define
I={(z,y;70Y),(2,70y D 2,7 DY), (2,20 Y D 25y @ 2),(2,4;2 DY) }.

Consider an entry (u, v; u®v) of Group G2. Since v € D'(x, y) it follows
that 4 € D(z,y). In addition, u ® v =z ® y implies 7 = z ® y ® u. Define

I={(uv,v;z®y), ®,8;7 DY), (uv,42" —1),(D,v;2" - 1)}.

Then I is the required intercalate.

Consider an entry (z,v;z @ v) of Group G3. Let z = [x1,%Z2,...,24],
z; = 0 if and only if i € {i1,42,...,ir} and let i), = max{i1,i2,..., ik}
Since vxz =y and (z,y) ¢ Sp, it follows that v; = y; for i ¢ {i1,i2,...,x}
and if for some ¢ we have x; = y; = 1 then v; = 1. This information and the
fact v ¢ A(z,y) imply v;, = 1. Let z = Z®w. Then it is straightforward to
see that z € A(z,y). Moreover, t &2 Pv =T DvHv = 2" — 1. Define

I={(z,v;2®v),(2®z20v,2; 2D V), (x,2; 2D 2), (D 2zDv,v;2 D 2)}.

10



Then I is the required intercalate.

One can prove that the entries of Group G4 are also 2-essential in a
similar manner.

The intercalates given in Part 5 of Lemma 7 prove that each of the
entries in Group G5 are 2-essential.

Therefore P, (z,y) is a 2-critical set.

COROLLARY 18 Let 0 < z <y < 2" — 1 and (z,y) ¢ Sp,. Suppose
that x = [z1,22,...,2,] ond y = [y1,Y2,---,Yn], where z; = 0 if and only
if i € {i1,42,...,ir} and y; = 0 if and only if j € {j1,J2,...,Jm}. Then
there exists a 2-critical set of volume ¢(x,y) and order 2", where

4n 30 41 — (2k—1 4 om—1 2n—(k+m+1))
if x#yandy #2"—1;
B 4n _3n 41 — (2k—1 + 2n—(k+1))
o@y) = if z#£0andy=2"—1;
4n—3n 41— 2n-!
if x=00r2"—1, andy =2" — 1.

Proof: First note that if £ = 2" —1 then |A(z,y)| = 0 otherwise |A(z, y)|
2%~1 by Definition 9 and if x = § then |D(z,y)| = 0 otherwise |D(z, y)]
2n—(k+m+1) Ly Definition 14. Now the result follows by Theorem 17.

REMARK 19 Let 0< a,b< 2" — 1.
1. Let n = 0 (mod 3), a; = 0 if and only if i € {1,2,...,n/3} and
b = 0if and only if j € {n/3+1,...,2n/3}. Then for all z,y €
{0,1,...,2™ — 1} we have

¢(z,y) < $(a,b) =4" — 3" +1—3.2"/371,

2. Let n = 1 (mod 3), a; = 0 if and only if ¢ € {1,2,...,[n/3]|} and
bj = 0 if and only if j € {|n/3] +1,...,2- |[n/3]}. Then for all
z,y € {0,1,...,2" — 1} we have

$(w,y) < dla,b) = 4" — 3" +1 4. 207D/,
3. Let n =2 (mod 3), a; =0if and only if ¢ € {1,2,...,[n/3] + 1} and
b; = 0if and only if j € {|n/3] +2,...,2- [n/3] + 2}. Then for all
z,y € {0,1,...,2" — 1} we have

$(x,y) < pla,b) = 4" = 3" +1—5.20072/31,
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In summary, if we use the above techniques to construct 2-critical sets
in the latin square corresponding to the elementary abelian 2-group of
order 2", then the volume of the 2-critical set is less than or equal to
4n—3n41-3.2l/31-1 Essentially, we took the 2-critical set of order 2" and
volume 4" — 3", constructed by Stinson and van Rees [5], added an entry
and obtained a new 2-critical set by deleting at least 2L7/3] 4 2ln/3]-1 _1
entries. These results raise the interesting question of whether, in the latin
square corresponding to the elementary abelian 2-group of order 2", there
exists a 2-critical set of volume m where 4® — 3" +1 —3.2l?/31-1 <« <
4m — 3™,
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