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Abstract

In this paper we take the latin square which corresponds to the abelian 2-group of order
2" and attempt to identify subsets which uniquely determine this square and are minimal
with respect to this property. In particular we are interested in the size of such subsets. We
give some general results and state some open questions. We also present a characterisation
of the problem in terms of colourings of the complete bipartite graph Kan gn.

1 2-critical sets

In this paper we focus on the latin square which corresponds to the abelian 2-group of order 2".
To this end we define a latin square L of order v to be a v X v array with entries chosen from
the set V = {1,...,v} in such a way that each element of V' occurs precisely once in each row
and precisely once in each column of the array. The latin squares corresponding to the abelian
2-groups of order 2! and 22 are given below.

11234
12 211143

1 _ 2 _
L_21 L_3412
413121

In general, we construct the latin square L™, n > 2, recursively by taking the direct product
of L' with a latin square L"~!. To explain this construction formally we will use the notation
L' to denote a copy of L™ ! where symbol z, 1 < z < 2”71, is relabelled z + 2"~ !. Then we
construct L™ by

e replacing symbol 1 in cell (1,1) of L' by a copy of L™
e replacing symbol 2 in cell (1,2) of L' by a copy of L7

e replacing symbol 2 in cell (2,1) of L' by a copy of L7,
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e replacing symbol 1 in cell (2,2) of L' by a copy of L™ .

Thus we have constructed a 2™ x 2" array which forms a latin square in which each of the
symbols 1,...,2" occurs precisely once in each row and once in each column. The array can be
partitioned as follows.

Ln—l L71171

L?_l Ln—l

It will be useful to number the rows and columns of a latin square and then used this notation
to identify certain subarrays in the latin square. So at times we will adjoin a head line and side
line to the latin square and the entries in this additional row and column will denote, respectively,
the column number and the row number. So for L' and L? above we have:

|1[2]3]4)]

12 1l1]2]3]4

L': 112 L? . 2]2]1]4]3
21211 313[4]1]2
41413121

Fix row 7 (column c) of L™ and assume that symbol z occurs in cell (r, j), for some j. For all
symbols 2z’ € {1,...,2"} \ {z} there exists j' # j such that symbol z' occurs in cell (r, ;") of L".
Further, for some 7’ # r symbol z" occurs in cell (7, ) and symbol z occurs in cell (', 5") of L™.
So in rows r and 7' and columns j and j' we have:

! ZI

This set of four cells (r, 5), (r, '), (', 7) and (7', 7') in L™ constitutes a copy of L' based on the
set of symbols {z,z'}. Such a latin subsquare is termed an intercalate. Thus for each entry of
the latin square L™ there exists 2™ — 1 intercalates which contain that entry.

We are interested in identifying a subset of entries of L™ which uniquely determines L™ and
is minimal with respect to this property.

So we define a partial latin square P of order v to be a v X v array with entries chosen from
the set V = {1,...,v} in such a way that each element of V' occurs at most once in each row
and at most once in each column of the array. The size of the partial latin square is the number
of non—-empty cells in P. We are specifically interested in identifying partial latin squares which
are contained in precisely one latin square, L™. In addition we require the property that when
any entry of the partial latin square is removed what remains is contained in at least two latin
squares, L™ and M, where L™ and M differ in an intercalate. Such partial latin squares are
termed 2-critical sets.



Stinson and van Rees [2] were the first to formally identify examples of 2-critical sets. They
showed that the partial latin square P? given below is contained in precisely one latin square of
order 4, that is, in L?. In addition they showed that if any entry is removed then the reduced
partial latin square is contained in at least two latin squares L? and M, where L? and M differ
in an intercalate. Note that the partial latin square P! given below is a trivial 2-critical set in
L.

1123
1 211

1 _ 2 _
P = P—3 1

Note that P? is a partial latin square of order 4 and size 7. Stinson and van Rees [2] were able
to generalise this construction. To explain their construction we introduce the notation P* ' to
represent a copy of P"~!, where each symbol z € {1,...,2"'} has been relabelled z +2"~!. The
partial latin square P™, n > 2, is obtained recursively by taking L' and

e replacing symbol 1 in cell (1,1) of L' by a copy of L™ !;

(1,1)
e replacing symbol 2 in cell (1,2) of L' by a copy of P *;
e replacing symbol 2 in cell (2,1) of L' by a copy of P/ !;
(2,2)

e replacing symbol 1 in cell (2,2) of L' by a copy of P*!.

Thus we have constructed a 2" x 2" array which forms a partial latin square where each of the
symbols 1, ..., 2" occurs at most once in every row and at most once in every column. The array
can be partitioned as follows.

Ln—l Pln—l

Plnfl Pn—l

Since the cells corresponding to the intersection of rows 1 to 2"~ with columns 1 to 2"~! contain

a complete copy of L"!, and since P! is contained in the unique latin square L', one can use

induction to prove that the partial latin square P™ is contained in a unique latin square L". In

addition, Stinson and van Rees showed that if any entry of P™ is removed, the reduced partial

latin square is contained in a latin square of order 2" which differs from L™ in an intercalate.
Stinson and van Rees work raises many question. For instance:

Question 1: If P is a 2—critical set contained in L™, what is the size of P?

Using the Stinson and van Rees construction we can see that it is possible to construct a
2-critical set P™ of size 4" — 3™.



Question 2: Does there exist a 2—critical set P in L", of order 2", where the size of P is greater
than 4™ — 37

Since L™ can be partitioned into 2272 intercalates and any 2-critical set must intersect every
intercalate in L", we see that all 2-critical sets must be of size greater than or equal to 22772 =
gn=t,

Question 3: For what values t > 2272 does there exist a 2-critical set P of size ¢, in the latin
square L™, of order 2™7

2 A graphical representation

It is interesting to note that the above combinatorial configuration may be represented as an
edge colouring of the complete bipartite graph K, ,. We present the details of this representation
in the hope that it may shed some light on the above questions.

A latin square L may be represented as a v—colouring of the edges of the complete bipartite
graph K,,. That is, if V] U V; represents the vertex set of K,, where V; = {ry,...,r,} and
Vo ={c1,...,¢,}, then for 1 < 4,5 < v, the edge {r;,c;} is coloured e, 1 < k < v, if symbol &
occurs in cell (4, j) of L.

The latin square L' corresponds to bipartite graph Ky o, where Vi = {r1, 72} and Vo = {c1, 2}
Further, edges {r1,c1} and {ry,c2} are coloured e; and edges {r1,c,} and {rs, c;} are coloured
eo. Denote this graph by GL*.

Figure 1: The graph GL!

For n > 2, the bipartite graph GL"™ corresponding to L" is obtained from GL' by:

e replacing vertices r; and ¢; by the sets of vertices {r1,...,7on-1} and {ci,...,con-1} re-
spectively, and by replacing vertices ro and ¢y by the sets of vertices {rgn-1,1,...,7: } and
{cgn-141,...,Con} Tespectively;

e replacing edge {ry,c;} in GL! by a copy of GL"! on vertex set {ry,...,ron1} U {cy, ...,
con—1} and using colours ey, . .., €gn—1;

e replacing edge {ry,c;} in GL' by a copy of GL"™! on vertex set {ron-1,1,...,79n} U
{egn-141,...,con } and using colours ey, ..., eon-1;



e replacing edge {r1,cy} in GL! by a copy of GL"! on vertex set {ry,...,Ton-1} U {cCon-141,
..., Con} and using colours egn-1,1,...,€9n;

e replacing edge {ro,c;} of GL' by a copy of GL™! on vertex set {rgn-1,1,...,79n} U
{c1,...,con-1} and using colours egn-1,1, ..., €on.

The bipartite graph G P? corresponding to P? is a subgraph of GL? and can be obtained from
GL! by:

e replacing each of the vertices 71 and c¢; by the sets of vertices {ry,r2} and {c1,co}, re-
spectively, and replacing each of the vertices 7y and ¢y by the sets of vertices {r3,r4} and
{es, 4}, respectively;

e the edge {ri,c;} in GL' is replaced by a copy of GL' on the vertex set {r,ro} U {c1, c2}
using colours e; and ey; and

e the edges {r1,co}, {r2,c1} and {ry, cy} of GL! are replaced by the edges {ri,cs}, {r3, c1},
and {r3, c3}, coloured e3, e3 and e; respectively.

Roughly speaking, for n > 3, GP™ can be obtained from GL! by replacing each vertex by

2"~1 new vertices and replacing edge {r1, c;} by a copy of GL"~! using colours ey, ..., ey-1, and
replacing edges {ri,co}, {r2,c1} and {rs, c2} by copies of GP"~! using colours egn-1,1,...,€on,
€gn-111,...,€9n and ej,..., egn—1, respectively.

We know that the subgraph G'P™ can be completed to precisely one edge colouring of the
complete bipartite graph Kon on, namely GL", and if we remove any edge {r,,c,} coloured e,
the reduced subgraph can be completed to at least two distinct edge colourings of the bipartite
graph Kon on. That is, for some 7., ¢y, €, the edges {rs, ¢, } and {r., ¢,y } of GL™ are coloured
e, while edges {r,, c,} and {ry,c,} of GL™ are coloured e, and in the second colouring these
colours have been reversed.

In first colouring In second colouring

Figure 2

In this context Questions 1, 2, and 3 correspond to finding subgraphs of GL™ which fix GL"
and are minimal with respect to this property.

3 Theoretical results

The Stinson and van Rees result [2] proved that, for n > 1, L™ contains a 2-critical set of size
4™ — 3™. In this section we explore the other possible sizes of 2-critical sets in L™ and establish
some partial results.



Using the computational results given in Section 4 we see that there exists a 2-critical set
of size 6 in the latin square L?. Combining this with Stinson and van Rees original method of
construction we obtain the following result.

LEMMA 1 Forn > 2, let L™ be the latin square of order 2" as defined in Section 1. Then L"
contains a 2-critical set of size 4™ — 3" — 3772,

Proof: Let Q? be the partial latin square:

1 3

Construct a partial latin square Q", n > 3 recursively by taking L' and
e replacing symbol 1 in cell (1,1) of L' by a copy of L™,
e replacing symbol 2 in cell (1,2) of L' by a copy of Q7 ,
e replacing symbol 2 in cell (2,1) of L' by a copy of Q7™", and
e replacing symbol 1 in cell (2,2) of L' by a copy of Q.

Then this array can be partitioned as follows (note Q7" is defined appropriately).

Ln—l Q?_l

Q717,—1 Qn—l

Since the cells corresponding to the intersection of rows 1 to 2"~ with columns 1 to 2"~! contain
a complete copy of L"1, and since P!, as defined in Section 1, is contained in the unique latin
square L', one can use induction to prove that the partial latin square Q" is contained in a
unique latin square L™. One can also use induction to prove if we remove any entry from Q"
there are at least two completions which differ in an intercalate. Hence Q" is a 2-critical set of
size 4" — 3" — 3" 2,

LEMMA 2 Forn > 2, let L™ be the latin square of order 2" as defined in Section 1. Then L"
contains a 2—critical set of size 4™ — 3" — 271 4+ 1.

Proof: The partial latin square P", as defined in Section 1, is a 2-critical set of size 4" — 3™.
Let Q™ be a partial latin square obtained from P" by removing the symbol 2m + 1 from cell
(1,2m + 1), for m = 0,...,2"! — 1, and inserting the symbol 2" in cell (1,2"). Thus all odd
numbers have been removed from the first row and the symbol 2" has been inserted in the last



cell of the first row. We will prove that Q" is a 2-critical set. First we shall show that L™ is the
only latin square which contains Q”. Second we shall show that for each entry x in Q" there
exists an intercalate contained in L™ which intersects Q" in the entry x alone.

Let ¢ be odd and 1 < ¢ < 2". We see that each odd number 2m + 1, where 0 < m < 27! —1,
occurs in column ¢ of P". So the only odd number which does not occur in column ¢ of Q" is
symbol c. In addition, all of the even numbers occur in row 1. Thus when completing Q)" we
must place symbol 2m+1,0 < m < 2""' —1in cell (1,2m+1). Hence we obtain a superset of P™
which is contained in precisely one latin square, L™. Consequently ()" has a unique completion
to L".

Now we see that if symbol 2" is removed from cell (1,2") of @™, then the reduced partial latin
square has two completions and these two completions differ in the subarrays shown below:

EEE R
1]2"-1 2n 1 2" 2" —1
2" 2" —1 2012"—-1 2"
Subarray in L" Corresponding subarray in 2nd completion

In addition, for 1 < m < 2"7!, symbol 2m does not occur in column 2" — 1 of Q™ and symbol
2™ — 1 does not occur in column 2m. It is now immediate that if any symbol of the form 2m,
1 < m < 277! is removed from row 1, there will be two completions. These two completions
differ in the subarray indicated below.

| 2m |2 1] | 2m |2 1]
1 2m 2" —1 1 2" —1 2m
2" —=2m+2 | 2" -1 2m 2" —2m + 2 2m 2" —1
Subarray in L" Corresponding subarray in the 2nd completion

The fact that Q™ is 2-critical now follows from the Stinson and van Rees result.
From row one of P" we have removed 2" ! entries and added one entry. Thus the size of Q"
is 4" — 3" — 2771 4 1.

Combining this with Stinson and van Rees original method of construction we obtain the
following corollary.

COROLLARY 3 Forn > 2, let L™ be the latin square of order 2™ as defined in Section 1.
Then L™ contains a 2-critical set of size 4™ — 3" — 3.2""2 4 3.

This result can be generalised as follows.

LEMMA 4 Forn > 2 let L™ be the latin square of order 2" as defined in Section 1. Then L"
contains a 2—critical set of size 4™ — 3" — 271 _ 271 1 1 where1 <i<n—1.

Proof: The partial latin square P", as defined in Section 1, is a 2-critical set of size 4" — 3™.
Fix 4, 1 < ¢ < n — 1. Construct a partial latin square R" from P" by adding symbol 2¢ in
cell (2" — 2 + 1,2"), removing the symbol 2m + 1 from cells (2" — 2¢ 4 1,2" — 2! + 2m + 1),
m=0,...,2""1 — 1, and removing the symbol 2! from cells (1 + a2t} 2! + a21), for 0 < a <
2n—i=1 _ 1. So we have removed 2°~! odd numbers from row 2" — 2¢ 4+ 1. These symbols occurred
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in columns 2" — 2¢ 4+ 1 to 2". In addition from 2" %! cells we have removed the symbol 2¢, but
at the same time we have added symbol 2° in column 2". Once again we will show that L™ is
the only latin square of order 2" containing R"™ and that for each entry x in R"™ there exists an
intercalate contained in L™ which intersects R" in the entry x alone.

For 0 < o < 2" “1—1,inrow 1+a2tt! of R™ if cell (1+a2t!, §) is empty, then j = 2¢+2¢+?
or column j already contains symbol 2°. Hence in any completion of R", symbol 2! must be
placed in cell (1 4+ o271 2! + @2+ for 0 < o < 2"7*~! — 1. Once this is done we note that the
intersection of rows 2" — 2¢ +1 to 2" with columns 2" — 2¢ 4+ 1 to 2" contains a copy of the partial
latin subsquare @°, as defined in the proof of Lemma 2. And once cells (1 + a2+! 2! + 2¢F1)
for 0 < a < 277! — 1 have been filled, each of the symbols 1,...,2¢ occurs once in row r,
1 <r <2"—2 and once in column ¢, 1 < ¢ < 2" — 2!, Hence all cells in the intersection of
rows 2" — 2° + 1 to 2" with columns 2" — 2° + 1 to 2" must contain symbols chosen from the
set {1,...,2'}. By Lemma 2 these cells must contain a copy of L. This gives a superset of P"
which has unique completion to L™ and so R™ has unique completion to L".

The fact that R" is a 2-critical set follows, in the main part, from the Stinson and van Rees
result and Lemma 2. However we do have to check that for each occurrence of symbol 2 in cells
(2" + @2 + 1,207 4+ @20F1) for 0 < o < 2"7%~! — 1 there exists an intercalate which intersects
R™ in that cell alone. But we note that, for 0 < oo < 2"7*~! — 1, in L" the subsquare

H 2i+1 + a2i+1 ‘ on _ 21 ‘
2i + a2i+1 +1 2i on _ a2i+1
on _ 21'—1—1 +1 on _ aQi—l—l 21

contains at most one entry from R" and that entry is symbol 2¢ in the cell (2¢ + 2! + 1,201 +
a2'™1). Hence if this entry is removed from R™ there are at least two completions, L™ and a latin
square which differs from L™ in the subsquare:

H 2i—|—1 + Ck2i+1 ‘ on _ 21 ‘

2i + aQi—I—l + 1 on _ a2i—|—1 2i
2" — 271 11 2 2" — 21

We have removed 2'~! entries from row 2" — 2 + 1, 2"~~! entries containing the symbol 2°
and added one entry containing symbol 2¢. Thus the size of R" is 4" — 3" — 2"==1 — 271 4 1
where 1 <3 <n-—1.

Combining this with Stinson and van Rees original method of construction we obtain the
following corollary.

COROLLARY 5 Forn > 2, let L™ be the latin square of order 2" as defined in Section 1.
Then L™ contains a 2—critical set of size 4" — 3™ — 3.(2"~72 — 2171) +- 3, where 1 < i < n — 2.
4 Computational results

We give some partial answers to Questions 1, 2 and 3 for small values of n. In particular, we
focus on searching for 2-critical sets of order 2" and sizes between 4"~! and 4" — 3".



Forn = 2,4" ! = 4 and 4" —3" = 7. It is well-known that the size of any critical set contained
in L2 must have at least 5 filled cells. Hence any 2-critical set must contain at least 5 entries.
Exhaustive searches verify that there do not exist 2-critical sets of size 5 in L?. However they
do exist for sizes 7 (7 is obtained from the Stinson and van Rees work) and 6 .

11213 1 3
1 211

3 1 3 2
Size 7 Size 6

For n = 3, 4"! = 16 and 4™ — 3" = 37. In [1] it was shown that the size of any critical set
contained in L3 must have at least 25 filled cells. Hence any 2-critical set must contain at least
25 entries. To date we have been able to construct 2-critical sets of sizes 37, 35,34, ...,27 and
26. (Note size 37 is obtained from the Stinson and van Rees work.)

112134567 1123|145 7 112345 7
21114|13]6]|5 21114/3|6|5 21114(3]6]|5
3141|127 5 3|4 217 6 3|4 2|7 6
413121 413121 413121
5167 1123 56| 7 1 3 5167 1123
6|5 2|1 6|5 211 5 211
7 5 3 1 7 5 3 1 7 3 1
6
Size 37 Size 35 Size 34
1 31415 7 1 31415 7 1]2 4 6 8
21114|13]6]|5 2111413|6|5 1141365
34 2|7 6 3141127 6 4 2|7 5
413121 41 3 1 413121
5167 1 3 56| 7 1 3 6|7 3
6|5 2|1 5 211 6|5 211
7 5 3 2 7 3 2 5 3
6 8 1
Size 33 Size 32 Size 31
2 4 6 8 2 4 6 8 4 6 8
211 3/6|5 2|1 3165 2|1 316
411127 5 411 815 1]2 5
413121 41 3 1 4 1 7
6|7 112 1 3 6|7 1]2
6|5 1 6|5 211 6|5 1
5 3 1 7 3 2 5 3 1
8 6 8
Size 30 Size 29 Size 28



1|2 4 6 8 516|7|8
211 316 1 3|6

4 2 5 41112 5
4 211 7 4 211 7

67 2 6|7 2
6|5 1|4 65 4

5 3 5 3 2
8 1 8 1
Size 27 Size 26
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