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Abstract

To date very few families of critical sets for latin squares are known. In this
paper a new family of critical sets for back circulant latin squares is identified.
The proof that each element of the critical set is an essential part of the recon-
struction process relies on the proof of the existence of a large number of latin
interchanges.

1 Introduction

A critical set is a partial latin square which is contained in precisely one latin square,
of the same order, with the additional property that if one removes any entry from
the partial latin square, then what is left is contained in at least two latin squares
of the same order. Critical sets were first discussed by Nelder [7] in 1977. Critical
sets are of use when studying isotopy classes of latin squares and have applications
in cryptology, see for example [2] and [4].

In the late 1970’s Nelder [8] conjectured that if one takes the latin square which
represents the addition table of the integers modulo n, then the upper left triangle
of entries bounded by, but not including, the main right-to-left diagonal, is a critical
set in this latin square. Nelder commented that it is easy to show that this set is
contained in precisely one latin square, but not so easy to show that the omission of
any entry leads to ambiguity, [8]. In Section 3 of this paper, new techniques will be
developed which verify that every element of the partial latin square is necessary and,
in Section 4, a proof will be given that verifies the truth of this conjecture. However,
before this can be done the above ideas must be defined formally.

A latin square L of order n is an n X n array with entries chosen from a set N, of
size n, such that each element of N occurs precisely once in each row and column. If
N =1{0,1,...,n— 1}, then a back circulant latin square has the integer i + j(mod n)
in cell (7,7). A back circulant latin square, of order n, corresponds to the cyclic group
C,. For convenience, a latin square will sometimes be represented as a set of ordered
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triples (4, j; k), and this is taken to mean that element k occurs in cell (4, j) of the
latin square. Using this notation, a back circulant latin square can be represented by
the set {(7,7;7+ ) | 0 <4,7 < n — 1}, where addition is taken modulo n. Since this
paper deals specifically with back circulant latin squares it will be assumed, unless
otherwise stated, that all addition is taken modulo n. If L contains an s x s subarray
S and if S is a latin square of order s, then S is said to be a latin subsquare of L. A
partial latin square P of order n is an n X n array with entries chosen from a set N,
of size n, such that each element of N occurs at most once in each row and column.
A vpartial latin square C = {(4,5;k) | i, 7,k € N}, of order n, is said to have a unique
completion to the latin square L, if L is the only latin square of order n which has
element k in position (i, j), for each (i, j; k) € C; A critical set, in a latin square L of
order n, is a set C' = {(i,7; k) | 4,4,k € N} such that,

1. C has a unique completion to L, and
2. no proper subset of C' satisfies 1.

Let L be a back circulant latin square of order 7 and take the set C' = {(0,0;0),
(0,1;1),(0,2;2),(0,3;3), (1,0; 1), (1,1;2), (1,2 3), (2,0;2), (2,1;3), (3,0;3), (5,6;4),
(6,5;4),(6,6;5)}. Then C is a critical set in L. The latin square L and the crit-
ical set C are displayed below. The entry * indicates that the appropriate cell is
empty.

0 1 2 3 4 5 6 o 1 2 3 * * *
1 2 3 4 5 6 0 1 2 3 * * * %
2 3 4 5 6 0 1 2 3 kF k k kX%
3 4 5 6 0 1 2 3 ok kR kX
4 5 6 0 1 2 3 % * * * % * %
5 6 0 1 2 3 4 Kook ok ok xRy
6 0 1 2 3 4 5 ok ook X k4§
L C

In 1978, Curran and van Rees [3] showed that the set

C= {(Gj;i+j5)] i=0,...,n/2—1and j=0,...,n/2—-1—14} U
{G,j;i+7)| i=n/2+1,...,n—1and j=n/2—i,...,n— 1}

of cardinality n?/4, is a critical set in a back circulant latin square of even order n.
They showed that C' has a unique completion, and further, if any element (3, j; k)
of C is removed, then C' \ {(7,7;k)} has at least two completions. The proof of this
result relies on the fact that for each element (i, j; k) of C, there exists a subsquare

S=A{(,7;k),Gi+n/2,5;k+n/2), (@, +n/2;k+n/2),(i+n/2,j+n/2;k)},

such that SNC = {(7,4;k)}. (See also Smetaniuk, [9].)
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Curran and van Rees also showed that the set

C= {Gi,j;i+37)|i=0,...,(n—=3)/2and j=0,...,(n—3)/2—i} U
{G,5;i+37)|i=(n—-1)/2+1,...,n—T1and j = (n—1)/2 —4,...,n — 1},

of cardinality (n? —1)/4, has a unique completion to a back circulant latin square of
odd order n. However, they failed to show that if one removes an element from C,
then the remaining partial latin square has at least two completions. This fact was
verified by Cooper, Donovan and Seberry in [1]. The sets given by Curran and van
Rees [3] are the only known examples of general families of critical sets. Stinson and
van Rees [10] have shown that given a critical set in a latin square L which satisfies
certain properties, one may use a product construction to identify a critical set in
Cy x L. This is the only known construction for critical sets. The main aim of this
paper is to establish the existence of a new family of critical sets in back circulant
latin squares, and so settle Nelder’s conjecture. It will be shown that the partial latin
square
A={@,5;i1+7)]|1=0,...,n—2and j=0,...,n—2—1i}

is a critical set in a back circulant latin square of order n. This will be achieved by
generalising ideas from [1].

Cooper, Donovan and Seberry [1] showed that if one removes an element from the
set

C= {G,j;i+37)|i=0,...,(n—=3)/2and j=0,...,(n—3)/2—i} U
{G,5;i+7)|i=(n—-1)/2+1,...,n—T1and j = (n—1)/2 —4,...,n — 1},

then the remaining partial latin square has at least two completions. They achieved
this by showing that, for each (i,j; k) € C, there exists a partial latin square I in L
which satisfies the following properties,

e CNI={(ij;k)} and

e there exists a latin square L' distinct from L which agrees with L everywhere
except in 1.

The partial latin square I is termed a latin interchange and is defined as follows. Let
I ={(i,5;k) | 4,4,k € N} be a partial latin square of order n. Then |I| is said to be
the size of the partial latin square and the set of cells {(4,7) | (4,5;k) € I, 3k € N}
is said to determine the shape of I. Let I' = {(i,j; k') | i,j;k" € N} be a partial
latin square with the same shape as I. The partial latin squares I and I’ are said
to be mutually balanced if the entries in the cells of each row (and column) of I are
the same as those in the corresponding row (and column) of I'. They are said to be
disjoint if no cell in I’ contains the same entry as the corresponding cell of I. Let [
and I’ be two partial latin squares of the same size and shape. If I and I’ are disjoint



and mutually balanced, then [ is said to be a latin interchange and I’ is said to be a
disjoint mate of I. Keedwell [6] uses the term critical partial latin squares for latin
interchanges.

Note that if I can be completed to a latin square L of order n, then I’ can be
completed to a latin square which agrees with L everywhere except in the partial
latin square I’. So one may easily verify the following lemma.

Lemma 1 Let L be a latin square of order n, and C = {(i,5;k) | i,5,k € N} a
critical set in L. Then

e if I is a latin interchange in L, then C NI > 1, and

e for each (i,7; k) € C there exists a latin interchange I in L such that INC =

{(, 55 k)}.

With this in mind the following steps will be used to prove Nelder’s conjecture.
Let
A={(i,5;i+j)|i=0,...,n—2and j=0,...,n— 2 —i},

where all arithmetic is done modulo n.

1. It will be shown that A has a unique completion to a back circulant latin square
L, of order n.

2. It will be shown that for each element (0, j;5), 0 < j < n — 2, in the first row
of A there exists a latin interchange I in L such that

ANT = {(0,5:4)).

To show this for all possible j it will be necessary to develop three separate
recursive constructions. In each case a number of small examples will be given
and then these will be used to prove the existence of latin interchanges with the
required property.

3. Finally, the cyclic nature of the back circulant latin square will be used to show
that for all (7, j;47 4+ j) € A, there exists a latin interchange I such that

ANI={@,71i+7)}

On completion of the above steps, it will follow that A is indeed a critical set.

The next two general lemmas will be needed in Step 3.

In a symmetric latin square the entry in cell (4, j) is the same as the entry in cell
(4,1), for all i, 5.

Lemma 2 If I = {(i,5;k) | i,j,k € N} is a latin interchange in a symmetric latin
square L, then the set I" = {(j,4;k) | (1,7;k) € I} is also a latin interchange in L.



Proof. If I’ is a disjoint of mate of I, then it is easy to see that the set {(j, ;%) |
(i,5; k") € I'} and IT have the same size and shape, are disjoint and mutually bal-
anced. Therefore this set forms the disjoint mate of I7 and I7 is a latin interchange.

|

Lemma 3 Let L be a back circulant latin square of order n and let
I ={(i,j;k) | i,j,k € N} be a latin interchange in L. Then for any integers o
and B, J={(i+a,j+B;k+a+p)| (4,4;k) € I} is a latin interchange in L.

Proof. Let I' = {(4,j; k') | i, 4, k" € N} be a disjoint mate of I. First it is established
that J' ={(i+a,j+ B;k +a+p) | i,j,k" € N} is a disjoint mate of J. Since I and
I' have the same size and shape, J and J’ will have the same size and shape. It also
follows that J and J’ must be disjoint. Next it is shown that J and J’ are mutually
balanced. Assume they are not. Then without loss of generality we may assume that
there exists an entry in row ig + o of J which does not occur in row iy + « of J'. But
this implies that I and I’ differ in row 7y, which is a contradiction. One may repeat
this argument for the columns of J. Consequently, J and J' are mutually balanced
and so J is a latin interchange.

2 Unique Completion
Lemma 4 Let L be a back circulant latin square of order n and let
A={(i,5;i+j)|i=0,...,n—2and j=0,...,n— 2 —i},

where arithmetic s done modulo n. Then L is the only latin square of order n con-
taining A.

Proof. It must be shown that A has a unique completion to L.

The element n — 1 does not occur in the partial latin square A. Therefore, n — 1
must be placed in n empty cells. The only possible way of doing this is to place n —1
in the cells (i,n—1—1) fori = 0,...,n—1. Similarly it can be shown that the element
k must occur in the cell (kK +i,n—i) for k=0,...,n—2andi=1,...,n—1—k.
Thus A has a unique completion to L.



3 Families of Latin Interchanges

In what follows the notation I, is used to represent a partial latin square, of order
n, which includes, among its entries, (0,e;e) and (0,n — 1;n — 1). It will be shown
that for all n > 2 and for all e, 0 < e < n — 2, it is possible to construct a partial
latin square I, which has the following properties.

e The partial latin square I, will be contained in a back circulant latin square
of order n.

e The only entries in the first row of I, will be (0, ¢;¢e) and (0,7 — 1;n — 1).

e All other entries of I., will occur in columns e to n — 1 and either on the
right—to—left diagonal or below it.

e The partial latin square I, is a latin interchange.

From the third property above it can be seen that such a latin interchange will
intersect A in the entry e in the first row and in no other entry. Since all the entries
of I, will occur in columns e to n — 1 the distance between these columns will be
of importance in the construction of the latin interchanges. So, for each n > 2, let
r=n—1—¢e where 0 <e<n-—2andso

e=n—1-—uz,

where 1 < x <n — 1. Thus, for each n > 2 and for each z, 1 <z < n — 1, a partial
latin square I,, __,, will be constructed such that I, ;_, , is a latin interchange and

I gnNA={(0,n—1—2;n—1—2)}, (1)
where
A={(i,7;1+j)|i=0,...,n—2and =0,...,n — 2 —i}.

For completeness the case where n = 2 and x = 1 will be considered. There is one
possible partial latin square Iyo which is a latin interchange and satisfies (1). This
latin interchange together with its disjoint mate I, are given below.

Lop |0 1 I, |0 1
0[0 1 0[1 0
1/1 0 1]0 1

Let n = 3 and z = 1, 2. The following two partial latin squares I; 3 and I 3 satisfy
(1) and are both latin interchanges.

Liz[0 1 2 Loz |0 1 2
0 1 2 00 2
1 2 0 1 2 0
2 0 1 212 0



The disjoint mates of these two latin interchanges are the partial latin squares 7 5
and I 5 (respectively) given below.

I3[0 1 2 I3]0 1 2
0 2 1 0]2 0
1 0 2 1 0 2
2 10 2|0 2

It will now be proven that for any n > 2 there exist partial latin squares I,, o,
and I, which are latin interchanges and satisfy (1) and, further in the case where
is a divisor of n or n — z is a divisor of z, it will be shown that there exists a partial
latin square I,_i_;, which is a latin interchange with the required property.

Lemma 5 Let L be a back circulant latin square of order n > 2.

1. There exists a partial latin square I,_o, in L which is a latin interchange and
is such that I, NA={(0,n —2;n—2)}.

2. There exists a partial latin square Iy, wn L which is a latin interchange and is
such that Iy, N A= {(0,0;0)}.

3. For any z, where 2 < z < n/2 and n = 0(mod x), there exists a partial latin
square In_1 g, in L which is a latin interchange and is such that I, 1 5 ,NA =
{(0,n—1—2z;n—1—2x)}.

4. For any x, where n/2 < x <n —1 and x = 0(mod n — x), there exists a latin
interchange I,,_y_z, in L such that I,,_y_,,NA={0,n—1—-x;n—1—1)}.

Proof.

Case 1: For any n the last two columns form the required latin interchange.

Case 2: For any n the set {(i,n —4;0),(i,n—(i+1);n—1)|i=0,...,n—1}isa
latin interchange satisfying (1).

Case 3: Fix n and take z such that 2 < x < n/2 where n = 0(mod z). Let

Ii1_gn = {(iz,n—1—2z; (n—1)+(i—1)z), (iz,n—1;n—1+iz) | i =0,1,..., (n/x)—1}.

This set is displayed in the following table.

Ini—gn| n—1—-2x n—1
0| n—1—-2x n—1

T n—1 r—1

2z r—1 2z — 1
n—x|n—1—2x n—1—x




Let

i
In—l—w,n

={(iz,n—1—z;n—1+1iz), (ix,n—1;(n—1)+(i—-1)x) | i =0,1,...,n/z—1}.

It is easy to check that I;L_l_z,n is the disjoint mate of I,,_1_;, and so I,_1_,, is a

latin interchange which satisfies (1).
Case 4: Fix n and take the case where n/2 <z <n—1and x = 0(mod n — z). Let

Lioien ={ ((n—2),(n—=1)+(G—-1)z;n—1-21),
(iln—2x),(n—1)4+iz;n—1)|i1=0,...,z/(n — )},

where all arithmetic is done modulo n, and

Lt an =1{ ((n—2),(n—1)+ (- z;n-1),
(iln—2),(n—1)+iz;n—1—-2)]i=0,...,2/(n—x)}.

The partial latin square I,_1_;, can be represented by the following table.

Ini—gn|n—1-2 n—1-—2z n—1+zx n—1
Oln—1—2 n—1

n—=o n—1 n—x—1

n—2x n—1—-x

n+ 2z n—1

T n—1 n—1—x

Once again it is easy to check that I,’ka,n is the disjoint mate of I, 1, , and so

I, 1, , is a latin interchange which satisfies (1).

|

At this point it has been shown that in a back circulant latin square of order 4,
there exist partial latin squares I54, I1 4 and Iy 4, which are latin interchanges and all
of which satisfy (1).

Consider a back circulant latin square of order 5. Latin interchanges Iy 5 and I35
exist by Lemma 5. The following tables give the partial latin squares I5 5 and I; 5, and
it is easy to check that they are in fact latin interchanges with the required property.



L;|0 1 2 3 4 Lsl0 1 2 3 4
0 2 4 0 1 4
1 1 4 0
2 4 0 1 2 0 1
3 0 1 2 3 4 1
4 4

Given a back circulant latin square of order n, where 2 < n < 5, it has been shown
that for all z, where 1 <z < n — 1 there exist a partial latin square I,,_;_;,, which
is a latin interchange and satisfies (1).

Lemma 5 deals with a number of special cases and uses a simple construction
which does not work in general. However variations of Cases 3 and 4, in Lemma
5, can be used to cover all possible values. So to develop general techniques, n is
fixed and separate constructions are developed for the cases where 2 < z < n/2
and n/2 < x < n — 2. The constructions will be recursive in nature and somewhat
complicated. Therefore, a general description of the constructions will be given,
followed by a formal statement of the construction with a proof that the partial latin
square is a latin interchange and then an example will be given.

When z is in the range 2 to n/2, one constructs a partial latin square I, _1_zp
which has entries in the columns bordered by columns n — 1 —x and n — 1 and in the
rows bordered by rows 0 and n—z. Sincen—x—0=n—-z >n—-1—(n—-1-z) ==z
this subarray is “longer” than it is “wider” and so a technique similar to that used in
Case 3 of Lemma 5 will be developed. Basically this region of L will be divided into
as many overlapping 2 x 2 subarrays each spanning x + 1 rows and = + 1 columns as
possible. Thus the following entries will be placed in I),_1_4 n—1:

0,n—1—xz;n—1—2x), (0,n —1;n—1),
(x,n—1—z;n—1), (x,n—1;2—1),
(2z,n—1—z;2 — 1), (2z,n —1;2z — 1),

(p—Dz,n—1-=z;(p—2)2—-1), (p—Vz,n—-1(p—1)z—1)

where p = |*>%|. However since n — 2 = pr + u, where 1 < u < x this set will
not form a latin interchange. In fact it only accounts for rows 0 to (p — 1)z. To
obtain a latin interchange entries from rows pz to n — x, (note that this is u + 1
rows intersecting = + 1 columns), must be included in such a way that it is possible to
prove that I,, 1, has a disjoint mate. To choose the pattern for the non-empty cells
in these rows it is assumed that there exists a partial latin square I, 1z, of order
x + u, which is a latin interchange in a back circulant latin square of order = + u and
satisfies (1). Note that since + < n/2 and 1 < u < z, x + u < n. This smaller latin
interchange is chosen in such a way that the non—empty cells occur in columns z — 1



to x +u —1 and rows 0 to x. So the non-empty cells in this smaller latin interchange
occur in a subarray with x + 1 rows and v + 1 columns. Further, it will be chosen
in such a way that the only entries in the first row are x — 1 and = + v — 1 and the
only other occurence of x — 1 is in the cell (z,z + u — 1) so this implies that the cell
(z,z — 1) is also non—empty. The transpose of this smaller latin interchange is taken
and used to identify the entries from rows pz to n — x which are to be included in
Inflfw,n-

This method is described formally in Construction 1 and an example produced
after this description.

When z is in the range n/2 < x < n — 2 it is not possible to use the above
construction to obtain a latin interchange which intersects A only in the prescribed
element. However, the columns n—1—x ton—1, 41 columns in total, can be divided
into groups of n — z columns and the last v + 1 columns, where z = p(n — z) + v, are
treated separately. The elements in I,,_;_, ,, follow the pattern of Case 4 Lemma 5 up
until the last v+ 1 columns and here a smaller latin interchange is used to provide the
pattern for the elements chosen from these columns. The smaller latin interchange
will have been constructed using Construction 1 or by taking the transpose of a latin
interchange constructed using Construction 1. Each of these two situations will be
treated as separate subcases. A formal description of both methods will be given in
Constructions 2 and 3.

Construction 1

Fix n and take z such that 2 < z < n/2 and n = u(mod z), where v # 0. Let
L be a back circulant latin square of order n. It will be shown that there exists
a partial latin square I, 1, in L which is a latin interchange and is such that
Iy gnNA={0,n—1—2;n—1—2)}.

Note that, since 2 <z <n/2and 1 <u <z, u+z <n.

Assume there exists a partial latin square I, ; 5, in a back circulant latin square
of order x + u, which is an latin interchange and has the following properties.

o Ifthecell (¢, 7) of I;_1 5+, is non-empty, then 0 < i < zand z—1 < j < z+u—1,
and
o 1, N{(G,5;i+7)]|i=0,...,24+u—2and j=0,...,2+u—2—13}
— {02~ Lz 1)},
By Lemma 2, Ty 1 410 = {(4, 5 k) | (4,55 k) € Iy—1 514} is also a latin interchange and

To1p+uN{(,;i+7)|i=0,...,24+u—2and j=0,...,24+u—2—1i}

={(z-1,0;z -1}  (2)
Denote the disjoint mate of T;,_1 44, by T;_l,z 4y The latin interchange T _1 ;4 is

used to determine the shape of a partial latin square R in L.
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Let p = |*-*]. For each non-empty cell (j,7) of T;_1 z1, place an entry in the cell
(pr4+u)—(z+u—1—j),n—z—14+4) =(p—1)x+j+1,n—z—1+1) of R. The
entry in this cell should be the sum ((p—1)z+j+14+n—2—1+14)(mod n) and so

R= {((p—1)$+j+1,n—$—1+l,(p—2)$+l+j) | (],’L,k) ETm—l,m+u}-

Now it may be deduced that R has the following structure.

e Column 0 of T;_; 4, contains the two entries z — 1 and = + u — 1. Therefore
column n —x — 1 of R will contain the entries (p— 1)z —1 and (p— 1)z — 1+ u.

e The entries in columns 1 to u of T;_; 44, must be drawn from the set {0,1, ...,
u— 1,z +u—1}. The entry z +u — 1 in T4 44, will be mapped to the
entry (p — 1)z — 1+ w in column n —z — 1 + u of R and the remaining entries
k€ {0,1,...,u— 1} will be mapped to the entries (p — 1)z + u + k in columns
n—xton—x—1+uof R.

e Anyentry k € {0,1,...,z—1} in columns u+1 to z of T;_; 5, will be mapped
to the entry (p — 1)z +u + k in columns n — z + u to n — 1 of R.

Now define I,,_;_, , to be the set

{O,n—-1-—2z;n—-1—1x), 0,n—1;n —1),
(x,n—1—xz;n—1), (x,n—1;2—1),
(2z,n —1—z;2 — 1), (2z,n — 1;2z — 1),
((p—Dz,n—1-mz;(p—2)z—1), (p—Dz,n—1(p—- 1z —1)}
U R.

To prove that I,,_,_,, is a latin interchange the disjoint mate I;L—l—w,n of I,_1_zn
is identified. This is achieved by defining a set R’ as follows. Take cell ((p— 1)z +j+
1,n—x —1+41) of R, for some ¢, j. This cell corresponds to cell (j,4) in T;_; 5+, and
cell (j,7) of T, , ,,,- Assume element k' occurs in cell (5,7) of T, _; .. The partial
latin squares T, 44+, and Talc—m 1o are mutually balanced, therefore there exists an 7'
such that &' occurs in cell (j,4") of T;_; z4,. Since R is contained in a back circulant
latin square entry (p—2)z+1i' 4 j must occur in cell (p—1D)z+j+1,n—z—1+7') of
I, 1 4 n. Theentry (p—2)x+4'+j is now placed in cell (p—1)z+j+1,n—x—1+1)
of R'. Repeat this process for each cell of R and define I’ to be the set

n—l—zx,n
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{(0,n—1—2x;n—1), O0,n—1;n—1-—x),

(x,n —1—z;2 — 1), (x,n—1;n —1),
(2z,n —1—z;2x — 1), (2z,n—1;2 - 1),
(p—Dz,n—1-2;(p—1)z 1), (p—Dz,n—1;(p—2)z - 1)}
U R

Then I, 1 4, and I, ;_,, will certainly have the same size and shape. Since
Ty—1,5+y and T;rl:—l,m 4o are disjoint and mutually balanced, it follows that I,,_1_;, and
I, ., have the same entries in corresponding rows and are disjoint in these rows.
Finally, one needs to check that I, ; ;, and I, ; ., have the same entries in their
corresponding columns. Consider columnn—1—=z of I}, ; .. It is easy to see that
it contains the entriesn—1, x —1, 2z —1,...,(p— 1)z — 1. Therefore one need only
show that it also contains the entriesn—1—x and (p—1)z —1+4wu. The entry n—1—=z
occurred in cell (n —z,n—1) of I,,_1_,, and its corresponding entry in 7,1 z1, was
the entry = — 1 in cell (v +u — 1,z). Now since T; 1 54, and T, , .., are mutually
balanced and the only entries in column 0 of T;_; 5, are z+u—1 and z —1, it follows
that x —1 must occur in cell (z+u—1,0) of T;_, ,,,. Thus entry n—1—x must occur
incell (n—z,n—1-x)of I, , ... A similar argument verifies that (p — 1)z —1+u
must occur in cell (pr,n —1—x) of I, ;. Therefore, I, 1 ,, and I ; ,  have
the same entries in column n — 1 —z. Next consider columns ¢, forn—z < ¢ <n-—2.
Recall that the entry (p—1)z+u+k has been placed in a cell of R if the corresponding
cell in T, _1 41, contained the entry k, for & € {0,1,...,2—1}. Therefore if £ is in cell
(r,c) of T; 4 41y, then (p — 1)z +u + k will be in the corresponding cell of I, ; ..
Similarly, it can be shown that (p — 1)z — 1 + u occurs in a cell of I , , , if the
corresponding cell in T;_, ,,, contained the entry x+u—1. Therefore, since T;_1 514
and T, ., are mutually balanced I, 1 4, and I, _; ., will have the same entries
in any particular column ¢ where n — z < ¢ < n — 2. Finally, a combination of the
above two arguments shows that I, ,, and I, ,  both contain the same entries
in column n — 1. Thus I,,_y_,, and I}, are mutually balanced and I,,_;_;, is a

latin interchange.

—1l—z,n

Example 1 A partial latin square I1p;4 which is a latin interchange and satisfies
(1) will be constructed. Since n = 14 and n — 1 — 2 = 10, this implies z = 3 and
n—x =11 = 3.3+ 2, so u = 2. Therefore, a partial latin square I55, which was
constructed earlier, will be needed. Note that it has all the required properties. The
transpose of I 5 is

T2,5 = {(25 0; 2)’ (2’ 2; 4)’ (25 3; 0)’ (3’ 2; 0)’ (3’ 3; 1)’ (4’ 0; 4)’ (4’ 2; 1)’ (4’ 3; 2)}

12



Using p = |22, gives p = [ 52| = 3 and so R is taken to be the partial latin square

R ={ (9,10;5),(9,12;7),(9,13;8),(10,12;8),
(10,13:9), (11,10;7), (11,12;9), (11,13; 10)}.

The set 110,14 is taken to be the set

o4 = {(0,10;10), (0, 13; 13), (3,10;13), (3,13;2), (6, 10;2), (6, 13; 5), (9, 10; 5),
(9,12;7),(9,13;8), (10,12;8), (10,13;9), (11,105 7), (11,123 9), (11, 13; 10) }.

This set is displayed in the following table.

Lo 10 11 12 13
0 10 13
3 13 2
6 2 5
9 5 7 8
10 8 9
11 7 9 10

The disjoint mate of the latin interchange Iy 14 is the set

110,14 = {(Oa 10, 13)5 (Oa 13: 10): (35 10, 2): (3: 137 13)5 (65 107 5)5 (65 137 2)5 (95 107 7)5
(9,12:8),(9,13;5), (10,12;9), (10, 13;8), (11, 10; 10), (11,12; 7), (11,13;9)}.

The cases dealt with by Construction 1 are summarised in the following lemma.

Lemma 6 Let L be a back circulant latin square of order n > 3. Assume that for all
m <n—1 and for all x, where 1 < x < m/2, there exists latin interchanges I, _1_yzm
i a back circulant latin square of order m such that,

o if the cell (i,)) of Im—1—zm s non—empty, then 0 <i<m-—z andm—1—x <
j<m-—1, and
olp 1 omN{(i,j3i+7)]i=0,...,m—2andj=0,...,m—2—i}=
{(0,m—-1—2z;m—1—1x)}.

Then for all y, where 2 <y < n/2 and n Z 0(mod y), there exists latin interchanges
I_1_yn such that

Lii_ynN{(4,755i+7)|i=0,...,n—2and j=0,...,n—2—1i} =
{(0,n—1—y;n—1—19y)}.

13



Proof.

Let 2 <y < n/2 and n = u(mod y), where 0 < v < y. Then y+u <n—1. So
by the assumption there exists a latin interchange I, 4, in a back circulant latin
square of order y +u. Now Construction 1 may be used to prove the existence of the
latin interchange Ip,_1_y 5.

Construction 2

Fix n and take z such that n/2 < z < n—1 and ¢ = v(mod n — z), where
0<wv<(n—x)/2. Let L be a back circulant latin square of order n. It will be shown
that there exists a partial latin square I,,_;_,, in L which is a latin interchange and
is such that I, ; ,,NA={(0,n—1—2;n—1—2x)}.

Let p = |-*=|. Assume there exists a partial latin square I, ;1 5, . in a back
circulant latin square of order n —z, which is a latin interchange and has the following
properties.

o If the cell (i,7) of I,y 1-yn— is non-empty, then 0 < ¢ < n —z — v and

n—zrz—1—v<j<n—z-—1,and

ol v 1—vn—onN{(i,j;i+37)|i=0,...n—2z—2and j=0,...,n—z—2—13}
={0,n—z—1—v;n—z—1-0v)}. (3)

Set R equal to the set

R= {(Z+U,$+],.’L‘+Z+]+U) | (Zajak) S Infzflf'u,nfza Hk}a

where arithmetic is done modulo n. Using (3) it may be deduced that R has the
following structure.

e Row 0 of I,,_;_1_yn—s contains the two entries n —z —1—v and n —z — 1.
These entries are mapped to the entries n — 1 and v — 1, respectively, in row v

of R.

e The entries in rows 1 to v of I;,_,_1_, —, must be drawn from the set {0,1,...,
v—1,n—2 —1}. The entry n — z — 1 will be mapped to the entry v — 1 in
R and the remaining entries k& € {0,1,...,v — 1} will be mapped to the entries
k+wvin R.

e Any entry kinrowsv+1ton—z —wv of I,,_; 1 4, , will be mapped to the
entry k 4+ v of R.

14



Now let I,_i_;, be the set

{0,n—1—2;n—1-1x), (0,n—1;n—1)}
U R U
{v—z,n—1—-v+z;n—1), (w—z,n—1—v;n—1-1),
(v—2z,n—1—v+42z;n—1), (v—2z,n—1—-v+4+z;n—1-—1),
(v—pr,n—1—v+px;n—1), (w—prx,n—1—v+(p—Dz;n—1-2)}.

(Note that the calculations above are taken modulo n.)

A partial latin square R’ is constructed as in Construction 1. Take cell (i +v, 2+ j)
of R, for some 4,j. This cell corresponds to cell (4,) in I, 4,5 and cell (3, )
of I, | , 4, 4 the disjoint mate of I;, _1_;_y 5. Assume element k' occurs in cell
(4,5) of I}, 1 4 4o There must exist a column j' such that &’ occurs in cell (4, j') of
Iy 1_yn—z- Since R is contained in a back circulant latin square entry i+v+j' 4+
must occur in cell (¢ 4+ v,5' + z) of I,_1_,,. The entry i + v + j' + = is now placed
in cell (i +v,j + x) of R'. This process is repeated for each cell of R and I, is
defined to be the set

—1l—z,n

{(0,n—1—1z;n—1), 0,n—1;n—1-1)}

U R U
{v—z,n—1—-v+z;n—1-—1), (v—z,n—1—v;n—1),
(v—2z,n—1—-v+2z;n—1—1x), (v=2z,n—1—v+x;n—1),
(v—pr,n—1—v+pr;n—1-—1), (w—pzr,n—1—v+(p—1z;n—1)}

It follows that I, 1 ,, and I;Lflf:c,n have the same size and shape and are disjoint.
In addition, one may use a similar argument to that used in Construction 1 to show
that they have the same entries in corresponding rows and columns. Hence I,,_;_;,
is a latin interchange which satisfies (1).

The example below illustrates this construction.

Example 2 A partial latin square I, ;7 in a back circulant latin square of order 17,
which is a latin interchange and satisfies (1) will be constructed. Since n = 17 and
n—1—1z =4, it follows that x = 12. From the equation z = v(mod n — z) it may be
deduced that v = 2 and since p = | -*—], p = 2. It has been shown that there exists
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a latin interchange I, 5 which satisfies (1). So let
R ={(2,14;16), (2,16;1), (4,14; 1), (4, 15; 2), (4,16; 3), (5, 14; 2), (5,15; 3), (5, 16; 4) }
and

Iiar ={ (0,4;4),(0,16;16),(2,14;16), (2,16;1), (4,14;1), (4, 15; 2), (4, 16; 3),
(5,14;2), (5,15; 3), (5,16;4), (7,9; 16), (7, 14; 4), (12,4; 16), (12,9; 4) }.

This set is displayed in the following table.

Iy17 4 9 14 15 16
0 4 16
2 16 1
4 1 2 3
5 2 3 4
7 16 4

12 16 4

Then
R ={(2,14;1),(2,16;16), (4,14;2), (4,15;3), (4,165 1), (5, 14;4), (5,15; 2), (5, 16; 3) }
and
I =1 (0,4;16),(0,16;4),(2,14;1),(2,16;16), (4,14;2), (4,15; 3), (4,16; 1),
(5,14;4), (5,15;2), (5,165 3), (7,9;4), (7,14, 16), (12,4; 4), (12,9; 16) }.
The cases covered by this construction are summarised in the following lemma.

Lemma 7 Let L be a back circulant latin square of order n > 3. Assume that for all
m <n—1 and for all x, where 1 < x < m/2, there exists latin interchanges Ipn_1_zm
i a back circulant latin square of order m such that,

o if the cell (i,7) of Iyy—1—ym is non—empty, then 0 <i<m—z andm—1—1z <
j<m-—1, and

ol 1—amN{(,5;i4+7)|i=0,....m—2and j=0,...,m—2—i} =
{(0,m—-1—2z;m—1—1x)}.
Then for all y satisfying the conditions, n/2 <y <n—1 and y = w(n—y)+v, where

w and v are positive integers and 0 < v < (n—y)/2, there ezists a partial latin square
I, 1y, which is a latin interchange and is such that

Lii_ynN{(4,7;5i+7)]|i=0,...,n—2and j=0,...,n—2—1i} =
{(0,n—1—y;n—1—19y)}.
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Proof.

Let n/2 <y <n—1and y = v(mod n —y), where 0 < v < (n — y)/2. Then
n—y <n—1. So by the assumption there exists a latin interchange I,,_,_1_n—, in a
back circulant latin square of order n —y. Now Construction 2 may be used to prove
the existence of the latin interchange I,,_i_, ».

Construction 3

Fix n and take x such that n/2 < z < n —1 and £ = v(mod n — ), where
v > (n —x)/2. Let L be a back circulant latin square of order n. It will be shown
that there exists a partial latin square I,,_;_;, which is a latin interchange and is
such that I,,_;_,, NA={0,n—1—-x;n—1—1x)}.

Let p = Lﬁj Assume there exists a partial latin square I, ;, , in a back

circulant latin square of order n—x, which is an latin interchange and has the following
properties.

e If the cell (4, ) of I,_1,,—4 is non-empty, then 0 < i <vandv—1<j <n—z—1,

and

ol 1nan{(G;i+j)]|i=0,...n—2—2and j=0,...,n—2z—2— i}
={(0,v—-1;v—-1)}.
Then its transpose T;,_1,,—, is a latin interchange which satisfies the condition
Ty-1p-oen{(,j;i+j)]|i=0,...n—2x—2and j=0,...,n—2—2—i}
={(v-1,00v-1} (4
Define R as follows.
R: {(.7 + 157’_ 1 _U77’+.7 —’U) | (],Z,k) € Tv—l,n—w}-
Take I, 1 5, to be the set

{O,n—-1-z;n—1-2x), (0,mn—1;n—1)}
U R U
{v—z,n—1—-v;n—1-2), (v—z,n—14+z—v;n—1),
(v—2x,n—1—-v+4+z;n—1-—1x), (v—2x,n—1—v+2zx;n—1),
(v—pr,n—1—v+((p—1z;n—1-—1), (v—pr,n—1—v+pr;n—1)}
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The partial latin square R’ is constructed as in Construction 1 and take I’ to

n—1l—x,n
be the set

{(0,n—1—z;n—1), O0,n—1n—1—x)}
U R U
{v—2z,n—1—-v;n—1), (v—z,n—-14z—v;n—1-1),
(v=2z,n—1—v+x;n—1), (v—2x,n—1—v+4+2z;n—1-—1x),
(v—pz,n—1—v+(p—1Dz;n—1), (v—pz,n—1—v+pr;n—1-—1x)}

As in Construction 1 it can be verified that I,_,_;, is a latin interchange which
satisfies (1).
The cases covered by this construction are summarised in the following lemma.

Lemma 8 Let L be a back circulant latin square of order n > 3. Assume that for all
m < n—1 and for all x, where 1 < x < m/2, there exists latin interchanges I,_1_y m
i a back circulant latin square of order m such that,

o if the cell (i,7) of Iy_1_zm is non-empty, then 0 <i<m-—z andm—1—x <
j<m-—1, and

ol 1 omN{(,5i+7)|i=0,....m—2and j=0,...,m—2—i} =
{(0,m—-1—2;m—1—1x)}.

Then for all y satisfying the conditions, n/2 <y <n—1 andy = w(n—y)+v, where
w and v are positive integers and (n — y)/2 < v < n —y, there exists a partial latin
square Ip,_1_yn which is a latin interchange and is such that

Lt yn N{G,jii+4)|i=0,...,n—2and j=0,...,n—2 —i} =
{(0,n—1-y;n—-1-y)}.

Proof.

Let n/2 <y <n—1and y = v(mod n —y), where (n —y)/2 < v < n—y. Then
n—1y <n—1. So by the assumption there exists a latin interchange I,_;,_, in a
back circulant latin square of order n —y. Now Construction 3 may be used to prove
the existence of the latin interchange I,,_1_, .

The results of Lemmas 5, 6, 7 and 8 are brought together in Lemma 9.

18



Lemma 9 Let L be a back circulant latin square of order n > 3. Assume that for all
m < n—1 and for all x, where 1 < x < m/2, there exists latin interchanges Im_1—zm
i a back circulant latin square of order m such that

o if the cell (i,7) of Im—1—zm is non—-empty, then 0 <i<m-—-z andm—1—x <
j<m-—1, and
ol 1_amN{(,j;i+7)|i=0,...,m—2and j=0,...,m—2—i} =
{(0,m—-1—2;m—1-—1x)}.
Then for all y, where 1 <y < n—1, there exists latin interchanges I,,_i_, , such that

L1 yn N{G,j;i+4)|i=0,...,n—2and j=0,...,n—2—i} =
{(On—1—y;n—1-9y)}

Proof. If y =1 or n — 1, then the result follows directly from Lemma 5. The result
also follows from Lemma 5 if n is divisible by y, or y is divisible by n — y.

So assume that none of the above hold. If 2 < y < n/2, then the result follows
from Lemma 6 and if n/2 < y < n — 1 then the result follows from Lemmas 7 and 8.

|

These results lead to the proof of the following theorem.
Theorem 1 Let L be a back circulant latin square of order n and
A={(i,7;1+j)|i=0,...,n—2and j=0,...,n— 2 —i}.

Then for each x, where 1 <z < mn — 1, there exists a partial latin square In_1_z, in
L which is a latin interchange and is such that

ANlpq—gn={0,n—-1—2;n—1—2x)}.

Proof. The initial cases given in this section together with the above lemma can be
used to prove this result.
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4 A New Family of Critical Sets

The constructions and proofs given in the previous two sections lead to the main
theorem of this paper.

Theorem 2 Let L be a back circulant latin square of order n and let
A={(i,5;i+j)|i=0,...,n—2and j=0,...,n— 2 —i}.
Then A is a critical set in L.

Proof. In order to prove that A is a critical set it must be shown that A has a unique
completion to L and that any proper subset of A has at least two completions.

Lemma 4 verifies that A has a unique completion to a back circulant latin square
of order n.

Assume that the element (0, ¢;c) is removed from A. In Section 3, it was shown
that there exists a partial latin square I.,, which is a latin interchange and is such
that ANI., = {(0,c;c)}. Therefore the set A\{(0, c; c)} has at least two completions,
L and (L\ I.,) U I}, where I , is a disjoint mate of I.,. If ¢ > |(n —1)/2], then
the entries of I, occur in rows 0 to ¢ + 1. Therefore, by Lemma 3 for each s, where
1<s<n—-—c—2,

[+ 5,530+ +9) | (05 F) € Ln)
is a latin interchange which intersects A in the unique entry (s,c;s +¢). If ¢ <

|(n—1)/2], then the entries of I.,, occur in rows 0 to n—c—1. Therefore, by Lemma
3 for each s, where 1 < s < ¢,

{G+s,d5i+7+s) | (4,5:k) € Ien}

is a latin interchange which intersects A in the unique entry (s, c; s+ c).

It has been shown that the entries of any one of the entries (4, ;7 + j), where
i=0,...,|n/2—1] and j =4,...,n—2 —1, is removed from A the remaining partial
latin square has at least two completions. Now by Lemma 2 the transpose of each of
these latin interchanges is a latin interchange and so if one removes any one of the
entries (j,4;¢ + j), where i = 0,...,|n/2—1] and j =4,...,n — 2 — i, from A the
remaining partial latin square has at least two completions.

It has been shown that if any entry from A is removed the resulting partial latin
square has at least two completion. Thus A is a critical set.

|

Theorem 3 Let L be a back circulant latin square of order n and, for some r, where
”T’?’ <r<n-—2,let

B = {(i,5;1+j)]|i=0,...,rand j=0,...,7r—4} U
{(G,j;i+j)|i=r+2,....n—1land j=r+1—4,...,n—1}.

Then B is a critical set in L.
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Proof. Using a similar argument to that used in the proof of Theorem 2 it can be
shown that B has a unique completion to a back circulant latin square of order n.

Next consider the entries in the set {(4,j;i+j) |¢=0,...,7and j =0,...,r — i}
It was shown in the proof of Theorem 2 that for each (i,7;7 + j) in this set there
exists a latin interchange I such that I N A = {(i,7;¢+ j)}. The entries in I belong
to the set {0,...,7+ j,n — 1}, where i + j is taken modulo n. Therefore it follows
that 7N B = {(i,7;i+ j)}.

If n is even, then for each element (r,¢;r + ¢) of L the set I = {(r,¢;r + ¢), (r +
n/2,c;r+c+n/2), (r,c+n/2;r+c+n/2), (r+n/2,c+n/2;r+c)} is a latin interchange.
Further if (r, ¢;r +¢) is an element of the set {(i,j;i+j) |i =7r+2,...,n—1 and j =
r+1—i,...,n—1}, then INB ={(r,¢;7 +¢)}. (See [3].)

If n is odd, then for each element (r, c;7+c) of L the set I = {(r,¢;r+c¢), (r—s,c—
(n—=1)/2+s;r+c—(n—1)/2), (r—s,c—(n+1)/2+s;r+c—(n+1)/2), (r—(n—1)/2,c—
(n+1)/2;7r+¢)|s=0,...,(n—1)/2} is a latin interchange. Further if (r,¢;7+c¢) is
an element of the set {(,j;i+j) |i=r+2,...,n—land j=r+1—4,...,n—1},
then I N B = {(r,¢;7 +¢)}. (See [1].)

Consequently if any element is removed from B the remaining partial latin square
has at least two completions. Thus B is a critical set.

5 Conclusion

In this paper the existence of a new family of critical sets in back circulant latin squares
has been established. The importance of identifying large families of latin interchanges
has been highlighted and general methods for constructing latin interchanges in back
circulant latin squares have been given.

Acknowledgement The authors would like to thank the referees for their sug-
gestions. The first author would like to acknowledge the support of a New Staff
Research Grant at the University of Queensland and a Postdoctoral Fellowship at
Queensland University Technology. The second author would like to acknowledge the
support of an ARC Grant S6600306.

References

[1] Joan Cooper, Diane Donovan and Jennifer Seberry, Latin squares and critical
sets of minimal size, Australas. J. Combin., 4, 1991, pp. 113-120.

[2] Joan Cooper, Diane Donovan and Jennifer Seberry, Secret sharing schemes aris-
ing from latin squares, Bull. Inst. Combin. Applications, (to appear).

21



3]

D. Curran and G.H.J. van Rees, Critical sets in latin squares, Congressus Nu-
merantium, 22, 1978, pp. 165-168.

Ed Dawson, Diane Donovan and Alan Offer, Quasigroups, isotopisms and au-
thentications schemes, (submitted).

Diane Donovan, Joan Cooper, D.J. Nott and Jennifer Seberry, Latin squares:
critical sets and their lower bounds, Ars Combinatoria, to appear

D. Keedwell, Critical sets and Critical partial latin squares, Proc. Third China—
USA Internation. Conf. on Graph Theory, Combinatorics, Algorithms and Ap-
plications, Beijing, June 1993, (to appear).

John Nelder, Critical sets in latin squares, CSIRO Div. of Math. and Stats,
Newsletter 38, 1977.

John Nelder, Private communications from John Nelder to J. Seberry, Jan. 1979.

Bohdan Smetaniuk, On the minimal critical set of a latin square, 16, Utilitas
Math., 1979, pp. 97-100.

D.R. Stinson and G.H.J. van Rees, Some large critical sets, Congressus Numer-
antium, 34, 1982, pp. 441-456.

Centre for Combinatorics,
Mathematics Department,
The University of Queensland,
Brisbane, 4072, Australia,

and

Department of Information and
Communication Technology,
Unaversity of Wollongong,
Wollongong, 2500, Australia.

22



