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Abstract Many distinct objects may exemplify a particular combinatorial struc-
ture, for example, a block design or latin square. When studying such
objects with the same parameters, two questions arise naturally:

e Given two such objects, where and how do they differ?
e What portion of a particular object identifies it uniquely?

Here we consider triple systems and latin squares. The first question
leads to the ideas of a trade in a triple system and of a latin trade in a
latin square. The second question leads to the ideas of a defining set, in
particular a minimal defining set, in a triple system and of a uniquely
completable set, in particular a critical set, in a latin square. We study
the relationship between latin squares and triple systems, especially that
between the trades and defining sets of the triple system and the latin
trades and critical sets of the square.

‘We apply these ideas and construct new families of minimal defining
sets for triple systems associated with AG(d, 3).

1. Background

In [7] Gower identified sets of 2d hyperplanes in AG(d, 3), d > 2, the
lines of which uniquely determine the incidence structure of the affine
geometry. In this paper we go beyond the specific examples given by
Gower, and determine general conditions which, when satisfied, identify
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sets of hyperplanes for which the associated lines define the incidence
structure. The Main Theorem of this paper is:

Theorem 1 Let H be a set of hyperplanes of AG(d,3), d > 2, whose
equations are:

a11T4—1 + @12Tg—2 + ... + @g—1T1 + auTe = b
a21Tg—1 + a2r4o2 + ... + agg1T1 + axyqrg = bo
a31Tq—1 + aszoTq—2 + ... + as3qd—1T1 + azqry = b3

{
[ @m1Zd—1 + am2Zi2 + ...+ amd1T1 + Ama%o = bp.

Let H be the collection of blocks which lie within the hyperplanes of H.
Let P be the partial Steiner latin square corresponding to H. Suppose
that:

(1) there is one point of AG(d,3) which is not incident with any hy-
perplane of H;

(2) P is a uniquely completable set of order 3¢;

(3) for each block {i,j,k} of H there is a trade T of type one in
AG(d,3) such that TNH = {{i,j,k}}.

Let H* be the extension of H to an analogous set of hyperplanes in
AG(d+1,3), and let H* be the collection of blocks within the hyperplanes
of H*. Finally, let P* be the partial Steiner latin square corresponding
to H*. Then:

(1) there is one point of AG(d + 1,3) which is not incident with any
hyperplane of H*;

(2') P* is a uniquely completable set of order 3%+1;

(3") for each block {i,7,k} of H* there is a trade T of type ome in
AG(d +1,3) such that T* N H* = {{i,5,k}}.

We then develop examples which show that this theory can be applied
to determine new families of defining sets. The key to the determination
of the results is the representation of the lines of AG(d,3) as blocks of
a Steiner triple system (S7'S) or entries of an associated latin square.
Through this approach the theory of direct products of latin squares
is used to recursively develop sets of hyperplanes of AG(d + 1,3) from
well chosen sets of hyperplanes of AG(d,3). In this way it is relatively
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straightforward to prove that the corresponding lines (blocks) form a
minimal defining set in AG(d + 1,3) (the Steiner triple system).

The examples of minimal defining sets in the Steiner triple system are
interesting in their own right. Let M be the collection of all minimal
defining sets of a design D and define the spectrum to be spec(D) =
{m|M is a minimal defining set of D and |[M| = m}. We say that the
spectrum contains a hole if there exist £ < m < n such that /,n €
spec(D), but m ¢ spec(D). Little is known about the spectra of designs
or even whether there exist spectra with holes. As far as the authors
are aware, the five Steiner triple systems set out in Table 1.1 are the
only ones for which the spectra of minimal defining sets are fully known.
However Ramsay [15] contains many partial results for the other 79
Steiner triple systems on 15 points. The results presented in this paper
shed new light on the spectrum of the Steiner triple system correspond-
ing to AG(d, 3) and document new techniques which may be adapted to
construct defining sets for general designs.

v | Type of STS spec(D) Reference

7 {3} 9

9 14,5} 8

13 cyclic 19,10, 11, 12,13} [12],[11]
noncyclic {8,9,10,11,12,13} [12],[11]

15 | PG(3,2) | {16,17, 18,19, 20, 21, 22} [15]

Table 1.1 Spectra for minimal defining sets in some ST'Ss of small order

2. Introduction

We start with basic material which allows us to develop our Main The-
orem (Theorem 1). In this section definitions and results are illustrated
with carefully chosen examples. These examples will be used extensively
in Sections 3, 4 and 5.

Definition 2 Let F be the Galois field of order ¢, denoted by GF(q).
An affine d-dimensional space over F is denoted by AG(d, q) and defined
as follows:

= points are vectors of F¢;
m lines are cosets of 1-dimensional subspaces of F¢;
m planes are cosets of 2-dimensional subspaces of F¢:

= m-flats are cosets of m-dimensional subspaces of F¢;

hyperplanes are cosets of (d — 1)-dimensional subspaces of F¢.
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Two m-flats are said to be parallel if they are both cosets of the same
subspace, and the set of all the cosets of a particular subspace is known
collectively as a parallel class.

Definition 3 Let Z = (z4—1,%4¢—2,Z4—3,--- , L1,Zo) be a point in AG(d,
3). The integer

T = 3d_1.’1)d_1 + 3d_2.’1)d_2 + 3d_3.’1)d_3 + ...+ 3z + g

is called the integer representation of T and the vector Z is called the
vector representation of x.
Moreover, for b € {0, 1,2}, we define bz to be the point

(b7 Td—1,Td—2,Td—35--- L1, :L.O)

in AG(d + 1,3). In this paper we sometimes assume that the points of
AG(d,3) are integers x for 0 < z < 3¢ — 1 and the lines (blocks) of
AG(d,3) are of the form {z,y, z}, where 0 < z,7y,z < 3¢ — 1.

Note that there is a one-to-one correspondence between the integers
z and the points of AG(d,3), where 0 < z < 3% — 1.

Example 4 When d = 2 the correspondence between vector and integer
representations is that given in the following table.

Vector representations | Integer representations
0 =(0,0) 0.3'4+03°=0
1=(0,1) 03" +1.3°=1
2=(0,2) 0.3 +2.3°=2
3=(1,0) 1.3' +03°=3
i=(1,1) 13" +1.3°=4
5=(1,2) 1.3' +23%°=5
6 =(2,0) 2.3'+0.3°=6
7=(2,1) 231 +13°=7
§=(2,2) 2.3' +23°=8

Since the vector space has nine vectors, the affine space has nine points.
In the vector space, the equation 1z; + Ox¢ = 0 defines a 1-dimensional
subspace which contains the points with position vectors (0,0),(0,1)
and (0, 2). The corresponding line in the affine space is incident with the
points 0, 1 and 2. The other subspaces in the vector space are determined
by the equations 0z; + 1z¢g = 0, 121 + 229 = 0 and 1lz; + 1lzg = 0
respectively, and the corresponding lines are incident with the points
{0,3,6}, {0,4,8}, {0,5,7}.

These four subspaces have two cosets each. For example, the subspace
with equation 1z 4+ 0zg = 0 has cosets 1z1 +0zg = 1 and 121 + 0zy = 2
which correspond to the lines incident with the points {3,4,5} and {6,7,8}
respectively. Altogether there are 12 lines.
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Definition 5 Let m be a positive integer and let 0 < a;; < 2 and
0<b <2foralll <i,57 <m. Let H be a set of m hyperplanes of
AG(d,3) whose equations are:

([ a11T4—1 + apTao + ... + @11 + aamo = b
a21Tg—1 + a2T42 + ... + agg1T1 + axqro = bo
a31Tg—1 + @32T4-2 + ... + aszg-1z1 +  azqxo = b3

q
[ @m1Za—1 + am2Za—2 + ... + ami-1T1 + ama%o = b

By the extension of H, denoted H*, we mean the following set of m + 2
hyperplanes of AG(d + 1, 3).

( lzg + Ozg1 + 0xg_ o + . + Oz1 + Oxg = 0
lzy + Oxg_1 + 0xg_o + . + Oz1 + Oz = 1
0zg + anzg 1 + ai2Tg 2 + ... + ag 171 + agro = b
0zg + a21m4—1 + ag2rq42 + ... + agq_171 + azezo = by

¢ 0zg + azizg-1 + aszxzqg—2 + ... + azq—171 + azqro = b3

| 04 + amaTa—1 + @meTa—2 + ... + Gmd—1T1 + AmdTo = bp.

Definition 6 A triple system is a pair (V, B) where V is a v-set and B is
a collection of b 3-subsets of V' (blocks or triples) such that each element
of V is contained in precisely r blocks and each 2-subset of V' is contained
in precisely A blocks. The numbers v, b,  and A are the parameters of the
triple system and simple counting arguments show that r = A(v — 1)/2
and b = vr/3. If A =1 the triple system is called a Steiner triple system
(ST'S(v)) which has r = (v — 1)/2 and b = v(v — 1) /6.

A partial Steiner triple system is a pair (V, B') where B’ is a collection
of 3-subsets (blocks) of V' such that each 2-subset of V' is contained in
at most one block.

Example 7 Let V and B respectively be the set of points and the set of
lines of AG(d,3). Then the pair (V. B) forms a Steiner triple system on
3¢ points, denoted by ST S4(3%). In particular, if d = 2, then the set of
points of the ST'S(32) is V = {0,1,2,3,4,5,6,7,8} and the set of blocks
B are those of the following table, where each column shows the blocks
of one parallel class.



{0,1,2} {0,3,6} {0,4,8} {0,5,7}
{3,4,5} {1,47} {1,5,6} {1,3,8}
{6,7,8} {2,5,8} {2,3,7} {2,4,6}

Note that although every ST'S(9) is isomorphic to ST'S4(3%), there
are in general many ST'S(3%) not isomorphic to ST'S(34).

We now consider the idea of a defining set, introduced by Gray [9]
in the more general context of balanced incomplete block designs. We
need it only for Steiner triple systems.

Definition 8 A set of blocks which is a subset of a unique ST'S(v)
is said to be a defining set of that Steiner triple system. A minimal
defining set is a defining set, no proper subset of which is a defining set.
A smallest defining set is a defining set such that no other defining set
has smaller cardinality.

Since B itself forms a defining set of the ST'S(v) (V, B), every Steiner
triple system has a defining set. Since every defining set can be reduced,
by deletion of blocks, to at least one minimal defining set, every Steiner
triple system has at least one minimal defining set.

Example 9 In the STS4(32) of Example 7, the following set S of six
blocks is a defining set.

{0,1,2}  {0,3,6} {0,4,8}
{3,4,5} {1,4,7} {1,3,8}

Its subsets S5 = S\ {{1,4,7}} and Sy = S\ {{0,4,8},{1,3,8}} are
minimal defining sets; S4 is a smallest defining set.
On the other hand, the following set of six blocks, N,
{0,1,2}
{3,4,5}
{6,7,8t {2,58} {2,3,7} {2,4,6}
is not a defining set since it can be completed to an ST'S(9) by adjoining
either the six remaining blocks of B, or the six blocks of F, given below.

{0,4,7v {0,5,6} {0,3,8}
{1,361 {1,4,8} {1,57}

Similarly, the following set M of six blocks, five of which lie in the set
B, is not a defining set of an ST'S(9) since it cannot be completed to an
STS(9) at all.

{0,1,2} {0,3,6} {0,4,8} {0,5,7}
{3,4,5} {1,7,8}
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Lemma 10 (Gray [9]) Any defining set of an ST S(v) has at least v—1
elements of V occurring in its blocks.

Example 11 In the defining sets of ST'S4(32) given in Example 9, the
blocks of § contain all elements of V, those of S4 contain all except 8,
and those of S5 all except 7.

Definition 12 Let T} and T5 be two collections of m 3-sets of elements
of the v-set V. If each 2-set of elements of V' occurs in the triples of T}
with precisely the same multiplicity that it occurs in the triples of T,
then the collections 77 and T» are said to be mutually balanced. If for
a collection of 3-sets T7, there exists a collection of 3-sets T5 such that
T1 and T3 are mutually balanced and have no common triple, they are
disjoint and we say 11 is a Steiner trade of volume m. If the triples of
T} are triples of a Steiner triple system ST'S(v), then ST'S(v) is said to
contain the trade T7.

Example 13 In the ST'S4(3%) of Example 7 with the defining sets of
Example 9, let the set of six blocks T3 = B\ N. Let Ty = F. Then T} is
a trade of volume six contained in ST'S4(3?).

Lemma 14 (Gray [9]) In an STS(v), every defining set has at least
one block in common with every trade.

Example 15 In the ST'S4(3?) of Examples 7 and 9, S4NTy = {{0, 3,6},
{1,4,7}} and S5 N Ty = {{0,3,6};{0,4,8};{1,3,8}}.

Definition 16 There are only two non-isomorphic Steiner trades of vol-
ume 6 and block size 3; see [14] for example. These are called a trade of
type one, such as

n = {{0,2,5},{0,3,6},{0,4,7},{1,2,6},{1,3,7},{1,4,5}},

and a trade of type two, such as

= {{0,3,4},{0,5,6},{1,3,5},{1,4,6},{2,3,6},{2,4,5}}.

In this paper only trades of type one occur. Note that the six blocks of a
trade of type one consist of three disjoint pairs, whereas any two blocks
of a trade of type two intersect each other.

Definition 17 A latin square L of order n is an n X n array with entries
chosen from a set N, of size n, such that each element of N occurs
precisely once in each row and column. Similarly, a partial latin square
P of order n is an n X n array with entries chosen from a set N, of size
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n, such that each element of N occurs at most once in each row and
column. Thus P may contain a number of empty cells. For convenience,
a (partial) latin square will sometimes be represented as a set of ordered
triples (4, j; k), which is read to mean that element k occurs in cell (3, j)
of the (partial) latin square L. For a (partial) latin square of order n
we label entries, rows and columns by 0,1,2,...,n — 1. |P| denotes the
number of non-empty cells of the partial latin square P and is called the
size of P, and the set of positions Sp = {(4,J) | (%, j; k) for some k € N}
is said to determine the shape of P.

Example 18 Define the partial latin squares R, S and W, and the latin
square L, each of order 3, as follows.

0]2 0 0]1 021
R=[2 s=[|1 W = 2| L=[2]1
1]0]2

Then R and S can each be completed to L but to no other latin square
of order 3, and W cannot be completed to any latin square of order 3.
Note that throughout this paper S stands for this particular partial latin
square of order 3.

Definition 19 Let M and N be two latin squares of orders m and n,
with entries chosen from the sets {0,1,2,... ,m—1} and {0,1,2,... ,n—
1}, respectively. Suppose that P is a (partial) latin square in M and
Q is a (partial) latin square in N. Let P" be the array obtained from
P by adding rm to the entry in each non-empty cell of P, for r =
0,1,2,... ,n — 1. Similarly, let M" be the array obtained from M by
adding rm to the entry in each cell of M, for r =0,1,2,... ,n—1. Then
we define the completable product of Q and P, with respect to M and
N, to be the (partial) latin square T' of order mn obtained by replacing
each cell containing the entry r of @) with the array M" and each cell
of N\ Q with the array P". The completable product of  with P will
be denoted QQ ® P. If Q) is a latin square then the completable product
corresponds to the definition of the direct product of the latin squares
Q@ and N, usually denoted @ x N.

Example 20 Let R and S be the partial latin squares and L the latin
square defined in Example 18. We consider three examples with L =
M = N, and a fourth subsquare of the first which cannot be written as
a completable product.
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() L=P=Q.

0[{2(1|6(8|7|3|5]|4
211108716543
1101271684 (3]|5
2] It 6|8|7(3[5|4(0]2]1
Ly=Q®P=LxL= L2V |=[8|7]6]5]4]3]2]1]0
L' I°| L2 716814135102
35402 |1]6|8]|7
5141312108716
41315102768
(i) S=P=Q.
01216 3
21110 7 4
110(2
IV] S%] St 6 315410
Lyy=Q®P=S5S®S=|S?|L'[S%|=| [7] [5]4]3 1
STSV |82 41315
3 0 6
4 1 7
(iii) R=P = Q.
IL° [ I? | R!
Q®P=RQR=|L°|R'|R°
Rl RO R2

(iv) The following partial latin square, Lg 5, cannot be written as a
completable product.

0[2[1]6]8] 3] |4

210 3

1[0]2

68| |3]5]4]0] |1
Los=|8 543 0

41315
3 0 6
413 [[1]0 8
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Example 21 We also need some partial latin squares with special prop-
erties. We choose examples of order 5, where A belongs to the second
main class of latin squares of order 5 (see [3], page 129) and each of the
partial latin squares B,C and D can be completed to A.

1{2]13(4|5
21114153 1 3
A=|3|4\|5|1|2| B= 5
41512131 4 1
513124 5 2
5
1 3 114
C= 4 1 D=3
2 4 2
5 2 2

Definition 22 Let (V, B) be a (partial) Steiner triple system of order v
on the element set V ={0,1,2,... ,u—1}. We define the corresponding
(partial) Steiner latin square of order v to be the array with entry k in
the cell (4,7), i # j, if and only if {4, j,k} € B. Moreover, the cell (i,1%)
contains the entry ¢ if and only if the element 7 occurs in a block. Note
that some elements may not occur in any block of a partial Steiner triple
system of order v.

Example 23 The Steiner triple system ST'S4(3%) of Example 7 corre-
sponds to the Steiner latin square Lg given in Example 20, and its min-
imal defining sets S and S given in Example 9 to the partial squares
Lgs and Lg4 given in Example 20. Note that the element 7 missing
from the blocks of S5 does not appear on the diagonal of Lg 5, nor does
the element 8 missing from the blocks of Sy appear on the diagonal of
Lg 4.

Definition 24 A critical set in a latin square L of order n is a set
C = {(i,5;k) | i,7,k € N}, such that both of the following conditions
hold:

(1) L is the only latin square of order n with element k in cell (3, 5)
for each (i,7; k) € C;

(2) no proper subset of C satisfies (1).

A uniquely completable set in a latin square L of order n is a partial latin
square in L satisfying condition (1). Condition (2) guarantees that each
entry of C is necessary for the completion to be unique.
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Example 25 In Example 18 the partial latin square S is a critical set of
the latin square L. In Example 20 the partial latin squares Lg 5 and Lg 4
are both critical sets of the latin square Lg. In Example 21 the partial
latin squares B, C and D are all critical sets of the latin square A.

Definition 26 Let U be a uniquely completable set in the latin square
L of order n. The adjunction of a triple ¢t = (r,¢; s) is said to be forced
(see [13]) during completion of a set P of triples (|[P| < n? U C P C L)
to the complete set of triples which represents L, if at least one of the
following conditions holds:

(i) Vr' # r, 32 # ¢ such that (r',z;8) € P or 3z # s such that
(r',¢;z) € P (that is, in the partial completion F of L, each cell
of column c¢ except that in row r is either in a row of F which
already contains the symbol s or is already filled with an element
z distinct from s);

(i1) V' # ¢, 3z # r such that (z,¢;8) € P or 3z # s such that
(r,d;z) € P (that is, in the partial completion F of L, each cell
of row r except that in column c is either in a column of F’ which
already contains the symbol s or is already filled with an element
z distinct from s);

(iii) Vs’ # s, 3z # r such that (z,¢8") € P or 32 # ¢ such that
(r,z;8') € P (that is, in the partial completion F' of L, every
symbol except s already occurs either in column ¢ or in row r of

The uniquely completable set U is called strong if we can define a se-
quence of sets of triples U = F} C F, C F3 C --- C F, = L such that
each triple ¢t € Fj;1 \ F; is forced in F; for 1 <4 < r — 1. If U is not
strong, it is called weak. A completable set is super-strong if each triple
in this sequence is forced by virtue of property (iii) alone. In particular,
a critical set can be super-strong, strong but not super-strong, or weak.

Example 27 The critical sets Lgs and Lg 4 of Example 20 are both
super-strong. In Example 21, the critical set B is super-strong, the
critical set C is strong but not super-strong, and the critical set D is
weak; see [1], [2].

Definition 28 Let P and P’ be two partial latin squares of the same
order, with the same size and shape. Then P and P’ are said to be mutu-
ally balanced if the entries in each row (and column) of P are the same as
those in the corresponding row (and column) of P’. They are said to be
disjoint if no position in P’ contains the same entry as the corresponding
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position in P. A latin trade (sometimes called a latin interchange) is a
partial latin square I for which there exists another partial latin square
I’ of the same order, size and shape, with the property that I and I’ are
disjoint and mutually balanced. Then I’ is called the disjoint mate of I.
The smallest possible size for such partial latin squares is four, and such
a latin trade is called an intercalate.

Example 29 The partial latin square I; is an example of an intercalate;
that is a latin trade of size 4, with disjoint mate Ij. The partial latin
square I, is an example of a latin trade of order 3 and size 8, with
disjoint mate I.

1 0 2 0
I = Il = L=[2[3]1] Ib=[3]1]2
3[1(0 031

In a given latin square L, every latin trade contained in L must in-
tersect every critical set contained in L. More precisely, we have the
following result.

Theorem 30 (Donovan and Howse [4]) A partial latin square C of the
latin square L is a critical set of L if and only if the following conditions
hold:

(1) C intersects every latin trade that occurs in L;

(2) for each (i,j;k) € C, there exists a latin trade I in L such that
INC={(i7;k)}.

Lemma 31 Consider 7 as given in Definition 16. Then 11 defines siz
disjoint latin trades each of size six.

Proof. Define

L = {(05215)7(07376)a(074a7)a(15276)a(173a7)7(1a475)}
I, = {(23(); 5)a(3a0; G)a(470; 7)a(251;6)a(371;7)a(4—a1;5)}
I; = {(0,5;2),(0,6;3),(0,7;4),(1,6;2),(1,7;3),(1,5;4)}
I4 - {(570; 2),(6,0; 3),(750;4)1(671;2)1(751;3),(511;4)}
Is = {(572;O)a(6a3;0)a(774;0)1(672; 1)a(773; 1)a(5a4; 1)}
Is = {(2,50),(3,6;0),(4,7;0),(2,6;1),(3,7;1), (4,5 1) }.
It is easy to see that I, for 1 < r < 6 is a latin trade. Moreover,

I.NI; = 0 for 1 <r < s < 6. These latin trades are shown in the
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following table.

51671234
6|7|5|42|3
5|6 0]1
6|7 0]1
715 1 0
21410 1
312110
413 1/0 0

In Section 3, we give some lemmas and constructions needed for the
proof of the Main Theorem. The proof itself is given in Section 4.

3. Further Preliminaries

Lemma 32 (Gower [6]) Let P be a strongly completable set in the latin
square M of order m and let QQ be a (strongly) completable set in the
latin square N of order n. Then P ® Q is a (strongly) completable set
of order mn in the latin square M x N.

Example 33 Let S and L be as defined in Example 20. Then S is a
super-strong critical set in L. Now let P = @ = S and M = N = L.
Then Lgs = Q® P =S ® S as in Example 20, and the fact that it is a
strongly completable set of order 9 is confirmed by Lemma, 32.

The following result states the relationship between a completable set
and a defining set.

Lemma 34 (Gower [5]) Let (V,B) be a Steiner triple system of order
v and let B' C B. Suppose that P is the partial Steiner latin square

corresponding to (V,B'). If P is a completable set of order v then B' is
a defining set in (V, B).

Unfortunately the partial Steiner latin square corresponding to a defin-
ing set of an ST'S(v) need not be uniquely completable. For an example
of this, see the Appendix.

Example 35 Consider the latin square Lg and the partial latin squares
S and Lg 5 discussed in Example 18. Note that Lg 5 is a partial Steiner
latin square. The partial Steiner triple system corresponding to Lg s
consists of the blocks {0, 1,2}, {0, 3,6}, {0,4,8}, {1,3,8} and {3,4, 5},
which constitute the set S5 given in Example 9 as a minimal defining
set of the ST'S(9) given in Example 7. Lemma 34 confirms that these
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blocks yield a defining set of order 9, and it is also easy to check that all

the blocks are necessary for unique completion.

Now by Lemma 32, R = S ® Lo is a strongly completable set of
order 27. (Indeed, we see later that R is a critical set by Theorem 46,
Section 6.) One can observe that R is a partial Steiner latin square. The
partial Steiner triple system corresponding to R consists of the following

67 blocks.

{0, 1, 2} {o,
{0, 10, 20} {0,
{0, 17,22} {1,
{1, 10, 19} {1,
{2, 4, 6} {2
(3, 4, 5} {3,
{3, 14,22} {3,
{4, 13,22} {4,
{5, 14,23} {6,
{8, 9,22} {8,
{9, 10,11} {9,
{10, 13, 16} {10,
{12, 13, 14} {15,
{19, 21, 26} {21,

3, 6}
11, 19}
3, 8}
11, 18}
5, 8}
9, 24}
15, 18}
14, 21}
7, 8}
10, 21}
12, 15}
14, 15}
16, 17}

22, 23}

{07 47
{0, 12,
{]‘7 47
{1, 12,
{2, 9,
{3, 10,
{3, 17,
{4, 17,
{6, 9,
{8, 12,
{9, 13,
{11, 12,
{18, 19,

8}
24}

7}
26}
19}
26}
19}
18}
21}
19}
17}
16}
20}

{0,
{0,
{1,
{1,
{2,
{3,
{4,
{5,
{6,
{8,
{9,

5,
13,

5,
17,
10,
12,

9,
12,
12,
13,
14,

{11, 13,
{18, 21, 24}

7}
26}

6}
21}
18}
21}
261
22}
18}
18}
16}
15}

{0, o,
{0, 15,
{1, o,
{2, 3,
{2, 11,
{3, 13,
{4, 12,
{5, 13,
{6, 15,
{8, 17,
{10, 12,
{11, 14,
{18, 22,

18}
21}
20}

7}
20}
23}
23}
21}
24}
26}
17}
17}
26}

By Lemma 34, these blocks yield a defining set of order 27. (Indeed,
these blocks yield a minimal defining set in AG(3,3) by Theorem 44,

Section 5.)

Theorem 36 (Gower [7]) Let H be the following 2d hyperplanes in

AG(d,3), d > 2.

lzg1
lzg—1
0zq—1
0zq—1

0zq—1
0zq—1
0zq_1
0zq—1

++ 4+

+ 4+ + +

0z4—2
0z4—2
1242
lzg—o

0zq—2
0zq—2
0zq_2
0zq—2

++ 4+

++ 4+ +

+ 4+ +

+ 4+ +

O:I?l
O:El
O:El
0331

111
1331
O!El
Oxl

++ 4+

+ 4+ +

0.’130
0.’L‘0
0.7,‘0
0(170

0.7,‘0
0(170
1£L‘()
1:170

Il
—_ o = O

Il
—_ O = O
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Then the lines contained within these hyperplanes correspond to blocks
of the PSTS(3%) which are a minimal defining set for this Steiner triple
system.

Theorem 37 (Gower [7]) The hyperplanes of Theorem 36 can be re-
placed by another set of 2d hyperplanes of AG(d,3) provided these new
hyperplanes are such that:

(1) they belong to d parallel classes with precisely two hyperplanes cho-
sen from each of these parallel classes;

(2) no line of AG(d,3) is contained within any d of them;

(8) there is a point of AG(d,3) which is incident with none of these
2d hyperplanes.

By Lemma 10, it is necessary for a set of hyperplanes in AG(d,3)
which provides a defining set in AG(d, 3) to cover all points of AG(d, 3)
except possibly one. We state this fact in the following lemma and give
a simple proof for it.

Lemma 38 Let H be a set of hyperplanes in AG(d,3), where d > 2.
Suppose that the points i and j of AG(d,3) are not incident with any
hyperplane of H. Then the lines within the hyperplanes of H do not
form a defining set.

Proof. Let k # —i — j be a point of AG(d,3). Let T consist of the
following blocks:
{ga Z'la _g_l}}a {Za _5+3+E7 _3_,%}’ {E,E—3+Z},;+5—E},

{ja ka _j_k}’ {55 _i+3+l}7 i+.§_k}a {.}a 5_3_‘_%’ _7’_];;}
First we note that 7" is a type one trade. Secondly, for each {z,y, z} of

T we have T+ 3+ 2z =0. So T is a trade in AG(d, 3). Thirdly, no block
of T lies in any hyperplane of H. Now the result follows. O

Lemma 39 Consider the set of hyperplanes H in AG(d,3) defined in
Definition 5. Let L be the Steiner latin square corresponding to the
blocks of AG(d,3). Let H be the collection of blocks contained within
the hyperplanes of H. Suppose that P is the partial Steiner latin square
of order 3% corresponding to H. Let H* be the set of blocks within the
hyperplanes of H*, the extension of H. Then the partial Steiner latin
square P* corresponding to H* is

V| P?| P!
Pr=S@P=|P?|L'|P
PP P?
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where S is as in Example 18.

Proof. First for each block of H* we find the corresponding elements
of S ® P. Note that each block of H* fills precisely six off-diagonal cells
of P*. Conversely, for each off-diagonal element of S ® P we give its
corresponding block of H*. Finally, for a diagonal element (i,i;4) of
S ® P we prove that 7 occurs in a block of H*.

Let {i,7,k} be a block of H* and let i = (ig,%4_1,3q_2,--- ,%1,%0), J =
(jdajdflajdea s 7j15j0)7 and k = (kda kd*lakd:%_' e akl_a kO) Suppose
that ¢, j and k are integer representations of ¢, 7 and k, respectively.
Without loss of generality, we can assume i < j < k. This leads to

(14, ja, kq) € {(0,0,0),(1,1,1),(2,2,2),(0,1,2)}.

Define ¢ = (ig—1,44-2,--- ,40), J' = (Ja—1,Jd-2,--- ,Jo), and k' = (kq_1,
kg_g,... ko). Then 4 +] —I—k’—Osmcez—i-j—i-k:O So {i,j',k'} is
a block of AG(d, 3).

Case (ig,jd,ka) = (0,0,0): It is obvious that the points i, j and k
are in the first hyperplane of H*. So the block {7,7,k} lies in this
hyperplane. On the other hand, the integer representations for ¢/, j' and
k' are i, j and k, respectively. Moreover, (ig, ja,kq) = (0,0,0) 1mphes
that 0 < i,5,k < 34, Qo (i,5; k) € L.

Case (ig,j4,kq) = (1,1,1): It is obvious that the points i, j and k
are in the second hyperplane of H*. So the block {4,j,k} lies in this
hyperplane. On the other hand, the integer representations for ¢/, j' and
k" are i — 3% 5 — 3% and k — 3d respectively. Moreover, (zd,]d,kd) =
(1,1,1) implies that 3¢ < 4,4,k < 2.3%. So (i — 3%, 5 — 3% k) e L.

Case (ig,j4,kq) = (2,2,2): It is obvious that the points i, j and k
cannot be in the first or second hyperplane of H*. So the block {E 7.k}
must be in one of the last m — 2 hyperplanes of H*. Let {7, j,k} be in
the nth hyperplane of H*, where 3 < n < m + 2. Then the points ¢/, j’
and k' are in the (n — 2)nd hyperplane of H. So the block {i’, 5/, k’} is
in H. Moreover, (ig,j4,kq) = (2,2,2) implies that 2.3¢ < 4,4,k < 34+
So (i —2.3%,5 — 2.3% k) € P2

Case (ig,j4,kq) = (0,1,2): It is obvious that the poigt_lz:_cannot be
in the first or second hyperplane of H*. So the block {i,j, k} must be
in one of the last m — 2 hyperplanes of H*. Let {i,,k} be in the nth

hyperplane of H*, where 3 < n < m + 2. Then the points 4’, j' and
k' are in the (n — 2)nd hyperplane of H. Now if ¢ # j (mod 3d) then
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i # j'. So {#',5',k'} is a block in H. Moreover, (i4,j4,kq) = (0,1,2)
implies that 0 < i < 3%, 3¢ < j < 2.3% and 2.3¢ < k < 34! So
(4,5 — 3%, k) € P?. Finally, if i = j (mod 3%) then i’ = j/ = k'. So
the cell (i,5 — 3%) is a diagonal cell in P. Now by the definition of P?
we have (3,7 — 3%k — 2.3%) € P if and only if (3,5 — 3% k) € P2. Note
that in this case the six off-diagonal elements corresponding to the block
{i,7,k} are in the two PUs, the two P's and the two (off-diagonal) P?s
in the latin square above.

Suppose that (4, j; k) is an element of S® P. We consider the following
cases:

_ First, assume i = j. Then (7, j; k) is a diagonal element of S ® P. So
¢’ is incident with a hyperplane of H and i is incident with one of the
last m hyperplanes of H*. Therefore 7 occurs in one of the blocks of H*.

Now we assume that 7 # j. - -
Case 0 < 7,7,k < 3% One can see that ¢, j and k are incident with the
first hyperplane of H*. Since i # j, {3, 7,k} is a block of H*.

Case 3% < 1,5,k < 2.3%: One can see that i, j and k are incident with
the second hyperplane of H*. Since i # j, {i, 7, k} is a block of H*.
Case 2.3% < 4,5,k < 3%+1: Suppose that i = (iq,ig_1,... ,41,%0), ] =
(jdajd—la' e 7j17j0)7 and k = (kdakd—la"' aklakO)' Then since 23d <
i,5,k < 3.3% we have iq = jy = kq = 2. Since i # j and (i — 2.3%,5 —
2.3% k) € P? we have {i', 5, k'} € H, where i’ = (ig_1,... ,i1,%0), J =
(Jd—1,--- y51,50), and k" = (k4_1,... ,k1,ko). So the block {i’, 5, k'} lies
in one of the hyperplanes of H. Therefore, the block {7,7, k} lies in one
of the last m hyperplanes of H*. Hence, {i,7,k} € H*.
The remaining six cases are as follows.

0 <i< 3¢ 3¢ <j< 234 ]23¢ <E< 3¢t
0 <i< 3¢ |23 <j< 31| 34 <k< 239
3¢ <i< 23¢9 0 <j< 3¢ |23¢ <k< 3¢t
3 << 2371237 <j< 341 0 <k< 3¢
2.3¢ <4< 3L 0 <j< 3¢ 3¢ <k< 239
230 <j< 3] 3¢ <j< 239 0 <k< 3¢

SO W N

These cases are similar to the case 2.3% < .5,k < 39! and we leave

them to the reader. O
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4. Proof of the Main Theorem

First we prove the following lemmas, in which we let H, H*, H and
H* be as defined in Definition 5 and applied in Theorem 1.

Lemma 40 Let {i,7,k} be a block of H and let
T = {{i’.;’ E}’ {i’ é’ f_}’ {g’g7 B}’ {Z7j’ é}’ {Z’ k_:’ g}’ {Z7 f’ 77’}}
be a trade in AG(d,3) such that TNH = {{i,j,k}}. Then there erist

trades Ty and Ty, of type one, in AG(d + 1,3) such that Tg N H* =
{{03,07,08)} and TF NH* = {{1i,17,1k}}.

Proof. First define

Ty = {{0,05,0k},{07,1&,2f}, {07, 1g, 2R},
{2Z7 03’ ]'é}’ {2E7 OE’ 1g}7 {2@, 2f7 25}}'
Since for each block {7, 5,t} € T we have 7+ 5+t = 0 it follows that for
each block {Z,7, 2} € T; we have T + § + Z = 0. Therefore, the blocks
of Ty are in AG(d +1,3). Using the fact that T NH = {{i,4,k}}, it is
straightforward to see that T NH* = {{0z,05,0k}}.
Next define

Ty = {{14,1j,1k},{1i,08,2f},{11,0g,2h},

{2Ea 157 Oé}a {2& 1%5 Og}’ {2& 2JF’ 2}_7‘}}
Similarly, the blocks of T} are in AG(d+1,3) and Ty "H* = {{17,15, 1k} }.
O

Lemma 41 Let {i,j,k} be a block in AG(d,3) \ H. Then there exist
trades T§ and Ty of type one in AG(d + 1,3) such that Ty N H* =
{{07,07,0k}} and T; NH* = {{13,1], 1k}}.

Proof. First define
Ty = {{0:,07, 015}, {01,137, 2/%}, {01,274, 115},
{2;7 055 1%}7 {225 155 0%}7 {255 235 2];;}}

Obviously, any block of 7§ is a block of AG(d+1,3). Moreover, the fact
that {i,7,%k} is not a block of H leads to Ty N H* = {{04,04,0k}}.
Next define

T = {{1i,15,1k},{1i,07, 2k}, {14,25,0k},
{2i,05, 1k}, {23, 15,0k}, {24, 25, 2k} }.
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Similarly, any block of T} is a block of AG(d + 1,3) and T} N H* =
{{13,15, 1k}}. O

Lemma 42 Lety = (V4-1,Yd—2,--- ,V1,Y0) be a point of AG(d, 3) which
occurs in one of the blocks of H. Then there exists a trade T of type
one in AG(d + 1,3) such that T* N H* = {{07,17,27}}.

Proof. Suppose that the point 6 of AG(d,3) is not incident with any
hyperplane of H. So it does not occur in any block of H. Now define

T = {{07,1%,27},{04,10,26},{07,14, 26},
{Oga 1;)/5 28}7 {09_’ 15, 2’_}1}7 {09_’ 155 25}}

where § = —7 — 0. First note that for each block {Z,,Z} in T* we have

Z+7y+2z=0. SoT* is a trade of type one in AG(d +1,3). Secondly, it

is easy to see that T* N H* = {{0%,1%,27}}. O
Now we are ready to prove Theorem 1.

Proof of Theorem 1 (1') Suppose 8 is the point which is not incident
with any hyperplane of H. Then 26 is not incident with any hyperplane
of H*.

(2') Let L be the Steiner latin square corresponding to the blocks of
AG(d,3). Then, by Lemma 39, P* is the product of S = {(0,0;0),
(1,1;1)} and P; that is:

V| P?| P!
Pr=S@P=|P?|L'|P°
Pl PV P2

Since the partial latin square S is a super-strong critical set of order
three, by Lemma 32, P* is a completable set of order 3%t1. So the
blocks of H* form a defining set in AG(d + 1, 3).

(3") Let {i,7,k} be a block of H* and let i = (ig,iq—1,%d2, ... ,i1,%0),
J= (jdajd—lajd—?a s 7j1aj0)’ and k = (kdakd—la_k'd_—% .- 'Jkla kO) Sup'
pose that i, j and k are integer representations of ¢, j and k, respectively.
Without loss of generality, we can assume ¢ < j < k. This leads to

(idajda kd) € {(Oa Oa O)a (13 ]-a ]-)a (25 23 2)1 (07 ]-a 2)}
Define

~

i = (Z.d,]_,‘idfg,... 57;0)5

jl = (jd—lajd—?a"' ajo)a

and

k' = (kd—la kd—?a R akO)'
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Then ¢/ + ' + k' = 0 since i + j + k = 0. So {#,5,k'} is a block of
AG(d, 3).

Case (ig, ja, ka) = (0,0,0): If {i_’,j_’,l%’} € H we take T} as defined in
Lemma 40. If the block {#',j',k'} is not in H we take T as defined in
Lemma 41. In both cases Ty N H* = {{7,7,k}}.

Case (ig, jg,kq) = (1,1,1): This case is quite similar to the case (i4, jq,
kg) = (0,0,0) and the proof is left to the reader.

Case (ig, jg, ka) = (2,2,2): By Lemma 39 the block {¢/, 5/, k'} is in . So
there is a trade T of type one in AG(d, 3) such that TNH = {{¢', j', k'}}.
Now define

1* = ({22,292} (.7} € T).
Then T* is a trade of type one in AG(d+1,3) and T*NH* = {{4,5,k}}.

Case (iq, jg, kq) = (0,1,2): First let ¢ # j (mod 3¢). Then by Lemma 39
the block {4', 5/, k'} is in H. So there is a trade T of type one in AG(3,d)
such that TNH = {{#',5',k'}}. Now define

T = {{0z, 1y, 2z}| {z,y,2} € T}.

Then T* is a trade of type one in AG(d+1,3) and T*NH* = {{i, ], k}}.
Secondly, if i = j (mod 3¢) then ¢/ = j' = k' and i’ occurs in a block of
H. So if T* is the trade defined in Lemma 42 then T*NH* = {{4,7,k}}.
This completes the proof. O

Remark 43 Consider H as in Theorem 1. Then by Lemma 34 and
Condition (2) in Theorem 1 we see that  is a defining set in AG(d, 3).
Now Condition (3) in Theorem 1 guarantees that each block of H is
necessary for unique completion. Therefore 7 is a minimal defining set

in AG(d, 3).

5. Sets of good hyperplanes in AG(d, 3)

In this section we show first that Theorem 36 is a simple corollary of
Theorem 1. Then we introduce two sets of hyperplanes which provide
minimal defining sets of different sizes in AG(d, 3). These two sets are
also different from the set introduced in Theorem 36. Note that for
simplicity we use integer representation for the points of AG(d,3) in
this section.
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Proof of Theorem 36 If d = 2 then H consists of the following four
hyperplanes of AG(2,3):

lzy 4+ O0zp = 0
lz; + 0z = 1
Ozy + 1lzg = O
Oz1 + 1z = 1.

One can see that the set of blocks which lie within these hyperplanes is

Sy ={{0,1,2},{3,4,5}:{0,3,6},{1,4,7}}.

Moreover, the partial Steiner latin square corresponding to Sy is the
partial Steiner latin square Lg 4 given in Example 20. Now it is straight-
forward to check that:

(1) the point 8 (8 = (2,2)) is not incident with any hyperplane of H;
(2) Lo, is a completable set of order 9;

(3) for each block {i,7,k} of H there is a trade T of type one in
AG(2,3) such that TNH = {{i,7,k}}.

So by Remark 43 we see that A is a minimal defining set in AG(2, 3).
Now for d > 3 Theorem 36 follows by Theorem 1 and an induction on
d. O

Theorem 44 Let H consist of the following 2d+1 hyperplanes of AG(d,
3), where d > 2.

(lzg 1 + 0O0zg—2 + Ozg_3 + + 0z + O0zg = 0
1.Td_1 + 0.’L‘d_2 + O.Td_g + + 0.’1}1 + O.T(] =1
Oxg-1 + 1lxg—2 + Ozgq_3 + 4+ 0z; + Ozp = O
Oxg 1 + 1xg o + Ozg.3 + 4+ 0z; + 0Oz =1
O0xg-1 + Oxq_2 + lzg_3 + + 0z; + 0zp = O
Ozg—1 + Ozg_o + Ilzxg_3 —+ + 0zy 4+ Oz = 1

<
O0xg-1 + Oxq_2 + Ozgq_3 + + 1z; + 0zp = 0
Ozg—1 + Ozyg_o + Oxgq_3 —+ + 1lz;y 4+ Oz = 1
Ozg-1 + Ozyg_o + Oxgq_3 —+ 4+ 0z; + 1lzp = 0
Oxg-1 + Oxq_2 + Ozgq_3 + + lz; + 229 = 0
( 0z4g—1 + Oz4—o + Ozg_3 + 4+ 1z 4+ lzg = 1

Then H, the collection of blocks contained within the hyperplanes of H,
is a minimal defining set in AG(d,3).
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Proof. If d = 2 then H consists of the following five hyperplanes of
AG(2,3):

1£E1 + O:EQ = 0
lzy + 0xy = 1
Oz1 + 1zp = O
lz. + 229 = 0
1:171 + 1:170 = 1.

It is easy to see that the blocks which lie in these hyperplanes are

Ss = {{0,1,2},{0,3,6},{0,4,8},{1,3,8},{3,4,5}}.

Moreover, the partial Steiner latin square corresponding to #H is the
partial Steiner latin square Lg 5 given in Example 20. Now it is straight-
forward to check that:

(1) the point 7 (7 = (2,1)) is not incident with any hyperplane of H;
(2) Lgs is a completable set of order 9;

(3) for each block {i,j,k} of H there is a trade T of type one in
AG(2,3) such that TNH = {{3,j,k}}.

So by Remark 43 we see that A is a minimal defining set in AG(2, 3).
Now for d > 3 the result follows by Theorem 1 and an induction on d.
O

Theorem 45 Let H consist of the following 2d+1 hyperplanes of AG(d,
3), where d > 3.

((lxg_1 + Ozg_o + + 0zo 4+ 0O0z1 + Oz = O
1.Td_1 + O.Td_g + + OLIIQ + 0:111 + 0.’1)() = 1
Oxg_1 + lzg_o + + 0zo 4+ 0O0z;1 + Oxyp = O
Oxg 1 + lzg o + 4+ 0z9 + 0x;1 + 0z = 1
OCCd_l + O.Td_g + + 0372 + 03)1 + 0.’L‘() = 0
Ozg—1 + Ozg_o + + Oz9 + O0z1 + 0Oz¢y = 1

<
OCCd_l + 0.’L‘d_2 + + 0372 + 13,‘1 + 0.’L‘() = 0
0z4—1 + Ozg_o + + 0z + 1lzy + Ozp = 1
0zg—1 + Ozg— + + 0z + 0z; + 1lxg = O
0zg1 + Oz + + lzo 4+ 1z1 + 229 = 0
{ Oz4g-1 + Oz4o + + lzo + 1z; + 1lxg = 1
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Then H, the collection of blocks contained within the hyperplanes of H,
is a minimal defining set in AG(d,3).

Proof. If d = 3 then H consists of the following seven hyperplanes of

AG(3,3):

1:62
1:172
0.’E2
< Ozo
O.’EQ
1:62
1:172

\

+++++++

0331
03)1
1£L‘1
1.’131
0:131
1:131
1331

++ A+t

OiL'()
OiL‘()
OiL‘()
0:17()
liL‘()
2£L'0
liL‘()

— o O =), OoO O

It is straightforward to see that the blocks which lie in these hyperplanes

are as follows.

{0,
{0,
{1,
{1,
{2,
{3,
{3,
{4,
{6,
{8,

1, 2}
10, 20}
3, 8}
11, 18}
5, 8}
9, 24}
16, 20}
15, 20}
9, 21}
14, 20}
{9, 13, 17}
{11, 12, 16}
{18, 19, 20}

3,
11,
4,
14,
9,
12,
10,
12,
12,

{0,
{0,
{1,
{1,
{2,
{3,
{4,
{5,
{6,
{8, 15,
{9, 14,
{11, 13,
{18, 21,

6}
19}

7}
24}
19}
21}
25}
22}
18}
25}
16}
15}
24}

4,
12,

9,
16,
10,
13,
12,
13,

{0,
{0,
{1,
{1,
{2,
{3,
{4,
{5,
{6, 15,
{8, 16,
{10, 12,
{11, 14,
{20, 21,

8}
24}

6}
22}
18}
23}
23}
21}
24}
24}
17}
17}
25}

{0,
{0,
{1,
{2,
{2,
{3,
{4,
{5,

5, 7}
14, 25}
9, 20}
3, 7}
11, 20}
14, 22}
13, 22}
14, 23}
{8, 9,22}
{9, 10, 11}
{10, 13, 16}
{12, 13, 14}
{20, 22, 24}

9,
15,
10,

4,

4,
15,
14,

7

{0,
{0,
{1,
{2,
{3,
{3,
{4,
{6, 7,
{8, 10,
{9, 12,
{10, 14,
{15, 16,
{21, 22,

18}
21}
19}

6}

5}
18}
21}

8}
21}
15}
15}
17}
23}

Let P be the partial Steiner latin square corresponding to . Then:

(1) the point 26 (26 = (2,2,2)) is not incident with any hyperplane of

H

(2) a backtrack search shows that P is a completable set of order 27;

(3) a modification of the backtrack search given in [15] shows that for
each block {i,7,k} of H there is a trade T of type one in AG(3,3)
such that T NH = {{7,7,k}}.

So by Remark 43 we see that 7 is a minimal defining set in AG(3, 3).
Now for d > 4 the result follows by Theorem 1 and an induction on d.

O
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6. Related critical sets

In [7], Gower shows that the number of blocks in the minimal defining
set in Theorem 36 is %(3‘1(3‘1 —1) — 7% 4+ 1). In this section we calculate
the number of blocks in minimal defining sets obtained in Theorems 44
and 45. Moreover, we prove that the partial Steiner latin squares corre-
sponding to the minimal defining sets obtained in Theorems 36, 44 and
45 are critical sets.

Theorem 46 Let H, H and P be as in Theorem 1. Then P is a critical
set of order 3¢.

Proof. By Condition (2) we only need to prove that each entry of P is
necessary for completion. First consider the off-diagonal entry (i, j; k)
of P. By Condition (3) there is a trade T of type one in AG(d,3) such
that T NH = {{7,5,k}}. Now by an extension of Lemma 31 we see
that the entry (i, j;k) is necessary. Secondly, consider the entry (i,%;1%)
of P. By Condition (1) there is a point, j say, of AG(d,3) which is
not incident with any hyperplane of H. So the cell (j, j) of P is empty.
Let k = —i — j, where 7 and j are vector representations of i and j
respectively. Define the latin trade

I'={(6,4;9), (i, k; 5), (4, k32), (4, 55 9), (K, 359), (K, 45 ) -

Since {i,7,k} is not a block of H and the cell (j,5) of P is empty it
follows that I N P = {(4,4;7)}. So the entry (4,4;7) of P is necessary. [

Theorem 47 For all d > 2 the partial Steiner latin square P corre-
sponding to the minimal defining set in Theorem 36 is a critical set of
size 94 — 74,

Proof. First note that by Theorem 46 P is a critical set of order 3¢.
Since each block of the minimal defining set fills exactly six off-diagonal
cells of the partial Steiner latin square and there is exactly one point of
AG(d, 3) which is not incident with any hyperplanes in Theorem 36 it
follows that the number of entries is

a%@%W—ly—W+1»+@d—n

= 3¢-1)B¢+1)-7¢+1=9¢4_7%
O

Theorem 48 For all d > 2 the partial Steiner latin square P in Theo-
rem 44 is a critical set of size 9% — 43.7972,



Affine geometries over GF[3]: Their minimal defining sets 12 25

Proof. First note that by Theorem 46 P is a critical set of order 3¢. If
d = 2 the number of entries in the partial latin square P (see the partial
latin square Lg 5 given in Example 20) is 38 = 3* — 43.7°. Now by an
induction on d the proof for d > 3 follows. g

Since any block {3, j,k} of H corresponds to exactly six off-diagonal
entries of P and there is exactly one point of AG(d,3) which is not in
any block of H we have the following result on the number of blocks of

H.

Theorem 49 Let H be as in Theorem 44. Then the number of blocks
m H is
1
E(sd(?,d —1) =72 1) -7
Theorem 50 For all d > 3 the partial Steiner latin square P in Theo-
rem 45 is a critical set of size 9% — 313.7473.

Proof. First note that by Theorem 46 P is a critical set of order 3¢.

If d = 3 then P is the partial Steiner latin square corresponding to the

blocks given in Theorem 45. The number of entries in P is 416 = 3% —313.

Now by an induction on d the proof for d > 4 follows. O
As for Theorem 49 we can prove the following result.

Theorem 51 Let H be as in Theorem 45. Then the number of blocks
i H s
1

; (39(3¢ — 1) — 7973 + 1) — 52.79°3,

7. Appendix

The following 12 blocks form a definig set for the noncyclic ST'S(13)
on {0,1,2,... ,12}.

{1, 7, 5} {1, 6,12} {2, 4,10} {2,6,8} {3, 4, 9}
{3, 5,11} {4, 7, 8 {58, 9} {6,7, 9} {7, 10, 11}
{8, 11, 12} {9, 10, 12}

Let P be the partial Steiner latin square corresponding to this defining
set. Then P has precisely 9 completions. Here we present a completion
which is not a Steiner latin square.
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