Critical Sets for Families of Latin Squares

Diane Donovan

Center for Combinatorics,
Mathematics Department,
The University of Queensland,
Queensland, 4072, Australia.

Abstract. In this paper I give details of new constructions for critical
sets in latin squares. These latin squares, of order n, are such that they can
be partitioned into four subsquares each of which is based on the addition
table of the integers modulo n/2, an isotopism of this or a conjugate.

1 Introduction

In this paper I focus on latin squares, of order n, which can be partitioned

into four latin subsquares of order 7. The subsquares will be labled Ly,

Lo, L3 and L4 as shown on the left in Table 1 and will be refered to as
quadrants 1, 2, 3 and 4 respectively.
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Table 1

Let Cy, Cs, C3 and C4 represent critical sets in Ly, Ly, L3 and L4 respec-
tively. It will be shown that if one chooses the critical sets C7, C2, C3 and
Cy with care, then one can essentially combine these critical sets to form
a critical set in L. The basic shape of the critical sets C1, C3, C3 and Cy
is illustrated on the right in Table 1. One of the interesting feature of the
results presented in this paper, is that there is some degree of freedom when
choosing L1, Ly, L3 and Ly. It will be shown that this basic pattern can



be used to construct critical sets for an infinte number of classes of latin
squares.

To achieve this I will need examples of critical sets which are complete
in all entries above or below the main or back diagonal. So in Section 3,
Theorem 3.5, I construct a new class of critical sets, with the desired prop-
erty. This class is based on examples taken from the paper [12] by Stinson
and van Rees. I will show that these examples can be generalised. Donovan
and Cooper, in [5], have also constructed critical sets which comprise of all
entries above or below the diagonal. Details of their critical sets are given
in Theorem 2.4. Their result will be used throughout this paper.

If one takes a partial latin square with the basic format described above,
then the position of elements in C; and C3 play a major role in determining
the completion of the partial latin squre. The significance of these entries
will be discussed in Section 4.

Recently Donovan and Hoffman [7] constructed critical sets for the mul-
tiplication table of the group of order 4h, h > 2, with generating relations
a?® =1, b2 = a” and ba = a'b. These critical sets conform to the basic
shape described above. However, Donovan and Hoffman’s result only ap-
plies to a small class of latin squares. In Section 5, I will extend Donovan
and Hoffman’s ideas and construct critical sets for an infinte number of
classes of latin squares.

Finally, in Section 6, I will illustrate the flexibility of the given tech-
niques, by constructing critical sets for a different class of latin squares.

The main results of this paper are presented in Theorems 3.5, 5.8, 6.9
and 6.10. It should be noted that in order to meet the requirements of
the referee all examples have been deleted and only brief proofs are given.
For full details contact the author for a copy of the corresponding technical
report.

I begin the paper with the necessary background information.

2 Background

A latin square L of order n is an n X n array with entries chosen from a set,
N, of size n, in such a way that each element of N occurs precisely once
in each row and column of the array. (See [4].) Throughout this paper,
a latin square L will be represented as a set of ordered triples {(i, j; k) |
cell (4,j) contains k}. By way of example, the array, H;, given in Table 2
is a latin square of order 7. Here N = {0,...,6}.



0 1 2 3 4 0 1 2 3 %

1 2 3 4 0 1 2 3 4 %

2 3 4 0 1 2 3 4 * %

3 4 0 1 2 3 4 * x %

4 0 1 2 3 * % * * %
'Hl CHl

Table 2

This latin square is the addition table for the integers modulo 7 and can
be written as the set {(4,j;4 + j(mod 7)) | 4,5 € {0,...,6}}. In general,
the addition table for the integers modulo g can be represented by the set
{(i,j3i+ j(mod g)) | i,5 €0,...,9— 1}}.

A latin square L' is said to be isotopic to L if L' can be obtained from L
by permuting the rows and/or the columns and/or the entries of L. That
is, L' is said to be isotopic to L if there exists permutations a, 3, 7 such
that L' = {(ia, jB;k7) | (i,5;k) € L}. Then (a, B, 7) is said to be an
isotopism from L to L'.

There are six conjugate latin squares associated with each latin square
L. The reader will find the definition of these in [4]. In this paper I require
one of these conjugates and so define it as follows:

L' ={(i,k;j) | (i,5; k) € L},

is a conjugate of the latin square L. The latin square Ha = {(¢,7;5 —
i(mod h)) | 4,5 € {0,...,h—1}} is a conjuage of the addition table for the
integers modulo h. The latin square Hq = {(i,5;5 — ¢ + f(mod h)) | i,j €
{0,...,h —1}} where f € {1,...,h — 1} is an isotopism of this conjugate.

If a latin square L contains an s x s subarray S and if S is a latin square
of order s, then S is said to be a latin subsquare of L.

A partial latin square P, of order n, is an n X n array with some cells
containing entries chosen from the set NV, in such a way that each element of
N occurs at most once in each row and at most once in each column of the
array. A partial latin square C = {(i,j; k) | cell (4, ) contains k}, of order
n, is said to have a completion to a latin square L, if L is a latin square of
order n which has element k in cell (7, j), for each (i, j; k) € C. The partial
latin square C is said to have a unique completion to L if L is unique. The
partial latin square C'y; given in Table 2 has a unique completion to Hj,
the addition table of the integers modulo 7. (Note * indicates an empty
cell.)

A critical set in a latin square L, of order n, is a set C C L such that,

1. C has a unique completion to L, and

2. no proper subset of C satisfies 1.



Donovan and Cooper [6] showed that if, in the example C3; given in Table
2, one removes any element from the partial latin square then what is left
is contained in at least two latin squares of order 7. Thus the above partial
latin square is an example of a critical set.

Relevant results relating to critical sets in latin squares are as follows.

LEMMA 2.1 If L is a latin square of order n, S a subsquare in L and C
a critical set in L, then C N S must have a unique completion in S.

In 1995 Donovan, Cooper, Seberry and Nott [5] proved the following
two results.

LEMMA 2.2 Let L be a latin square with critical set C. Let (, 3,7) be
an isotopism from the critical set C onto C'. Then C' is a critical set in the
latin square L' isotopic to L.

LEMMA 2.3 Let L be a latin square with critical set C and let C' be a
conjugate of C. Then C' is a critical set in the corresponding conjugate L'
of L.

Recently Donovan and Cooper [6] extended work of Curran and van
Rees [3] and Cooper, Donovan and Seberry [1] and constructed infinite
families of critical sets for the addition tables of the integers modulo n.
Their result is as follows.

THEOREM 2.4 Let L be the addition table for the integers modulo n,
then the set

¢ = {(G,j;i+j)|i=0,...,rand j=0,...,r —i} U
{(i,559+ ) |i=r+2,...,.n—1land j=r+1—4,...,n—1}

where 252 < <n —2, is a critical set in L.

COROLLARY 2.4.1 Let L be the addition table for the integers modulo
n, and

P = {Gj;i+5)|i=0,....,randj=1,...,r —i}U
{( 551 +)) |i=r+2,...,.n—1land j=r+1—i,...,n—1}

where "773 < r < n-—2. If one removes any element from P then the

remaining partial latin square completes to L and to a latin square which
agrees with L in column 1.

See also the work by Smetaniuk [11], Sittampalam (with Keedwell)
[10], Burgess, see [9], Donovan and Hoffman [7], Howse [8] and Cooper,
Donovan and Gower, [1].



3 A new class of critical sets

In this section assume all arithmetic is done modulo m unless otherwise
stated.

Here T will generalise an example of a critical set given by Stinson and
van Rees in Lemma 3.7 of the paper [12] and thus construct a new class
of critical sets.

Let £ be a latin square given by the set

L£={(u@),u@@);u(i-4)} U {(@),v();v(G-0)} U
{(w(@),u(i);v(E-4))} U {(w(@),v(5);uli - i)}

where ¢,7 = 0,...m — 1, m > 2. Note that the rows and columns of this
latin square are indexed by the set {u(0),...,u(m—1),v(0),...,v(m—1)},
in the given order and all arithmetic is done modulo m.

THEOREM 3.5 The partial lotin square

Ce = {(u(r),v(s);v(s=r))|r=0,....m—-1,s=0,...,m—1} U
{(U(Z)JU(J)7u(Z_.7))7(1)(7’)7“(])71)(7' _]))J(U(Z)7U(])7U(J —Z))},
where i =0,.... m—2,j=4i+1,...,m—1 and m > 2, is a critical set in

the latin square L defined above.

Proof.

Note that C. is complete in rows u(0) to u(m — 1) of columns v(0) to
v(m—1) and so the unique completion of C. to £ follows immediately from
Lemmas 2.2 and 2.3 and Theorem 2.4.

Fori =0,...,m—1and j = 4,...,m — 1 the existence of the 2 x 2
subsquares on the elements (u(%),u(i);u(0)), (u(?),v(j);v(j — 7)) implies
that each of the elements (u(i),v(j);v(j — i)) is necessary for the unique
completion of C,. Similarly for each ¢ = 1,...,m —1,j = 0,...,i — 1
the 2 x 2 subsquare on the elements (u(i),u(0);u(t)), (u(i),v(j);v(j — 7))
implies the entry (u(¢),v(j);v(j — 1)) is also necessary. The necessity of the
remaining elements can be obtained from Lemmas 2.2 and 2.3 and Theorem
2.4. O

Results establishing the existence of critical sets of size is greater than
(2m)? /2 are relatively rare. Therefore the above result is of interest as this
critical set is of size

m2—m  5m?2—3m

2 2
Infact for latin squares of orders 6, 8, and 10 this construction produces

the largest known critical set.
This critical sets will be of use in Section 6.

m? +3



4 A partial completion

In this section, two of the four latin subsquares L;, Ly, L3 and L, will be
specifically defined, as will their critical sets. The subsquares Ly and L3 will
be taken to be the addition table of the integers modulo h or a conjugate
of this, while L; and L4 will be thought of as general latin squares of order
h. It will be shown that the subsquares L, and L3 and their critical sets
play a major role in the completion of the partial latin square.

In this section it should be assumed that all arithmetic is done modulo
h unless otherwise stated.

Let H1 = {(s(¢),5(j); 5(k)) | 0 < 4,5 < h—1} and Hq = {(s(2), s(j); s(k))
| 0 <4,j < h—1} be two latin squares of order h, where h > 3.

Let ‘H be the latin square, of order 2h, represented by the set

Ho= {(s(d),s();s(k)) | (s(2),5(5); (k) € Ha} U {(s(d),1(5);8(5 — 1))}
U

{@(@), ()t + )} U {(#60), 2(5); s()) | (s(i), 5(5); (k) € Ha},

where ¢,5 =0,...,h — 1.
Finally let C4; be the partial latin square represented by the set

{(s(i), 5(0); 5(k)) | (5(i), 5(0); s(k)) € Hx A i=0,...,h—2} U
{(s(0),2(0);2(0)} U {(s(h —1),2(0);2(1))} U
{(s(i),t(G);t(G =) |i=2,...,h=1,5=1,...,i—1} U
{(tG@),s(G);ti+4) |i=1,...,h—=1,j=h—1i,...,h—1} U
{(t(@), ()5 5(k)) [ (5(0),5(7); s(k)) € Ha, A
i=0,...,h=2,j=i+1,...,h—1}.

LEMMA 4.6 Any completion of the partial latin square Cy agrees with
H in rows s(0) to s(h — 1) of columns t(1) to t(h —1).

Proof. This result is established by first noting that the element ¢(0) must

occur in cell (¢(0), s(0)). Then after noting that column s(0) has a unique

completion, it is easy to see that columns (1) to t(h—1) of quadrant 2 have a

unique completion and so the result follows. O
This partial completion will be used, in the next section.

5 Infinitely many critical sets

In this section the latin squares H; and Hg4, of Section 4, are replaced by
the addition table for the integers modulo h and an isotopism of one of its



conjugates. Critical sets will then be constructed for these latin squares.

Once again all arithmetic will be done modulo h unless otherwise stated.
It will be shown that the following example of a critical set can be

generalised to construct critical sets for a class of latin squares.
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THEOREM 5.7 Let ‘H be a latin square of order 2h, h > 3, defined as
follows:

H={(s(),5(7);s(i + 7))} U {(s(:),(5);2(G —9))} U
{(#(@),5();t(i+5))} U {{@),t(); s( =)}

where 1,7 = 0,...,h — 1. Let Cy be the partial latin square represented by
the set

Cu = {(s(i),s(4);8(+4))|i=0,....,h—2,7=0,...,h—2—1i} U
{(s(0),%(0);¢(0))} U
{(s(d),t(§);t(j —i)) |i=1,...,h—=1,j=0,...,i—1} U
{(t(3),s();tGi+4)) |i=1,....,h=1,j=h—i,....,h =1} U
{(t(3),t(j);8(j —4)) |i=0,...,h—=2,j=i+1,...,h —1}.

Then Cy is a critical set in H.

Proof. The proof of Lemma 4.6 can be used to show that the completion
of C3; will agree with 7 in all entries in rows s(0) to s(h — 1) of columns
t(0) to t(h — 1). At this point one can apply Lemma 2.3 and Theorem 2.4
to prove that Cy has a unique completion to H.

Lemmas 2.1 and 2.3 and Theorem 2.4 can be used to prove that each
of the elements in the first, third and fourth quadrants is necessary for the
unique completion of Cy to H.

Lemmas 2.1 and 2.3 and Corollary 2.4.1 can be used to prove that each of
the elements of the set {(s(¢),¢(4);t(j—i)) |i=2,...,h=1,5=1,...,i—1}
is necessary for the unique completion of Cy to H.



Next consider the elements of the set {(s(i),#(0);t(h—14)) |i =1,...,h—
1}. Fix ¢ and assume that entry (s(i),¢(0); t(h—1)) is removed from Cy. The
result is a partial latin square that will complete to H and to a latin square
which agrees with H in all entries except a 2 x 2 subsquare on (s(7), s(h —
1); 8(0)), (s(7),t(0);t(h—1)). Hence each of these entries is necessary for the
unique completion of Cy to H.

Finally consider element (s(0),%(0);¢(0)) of Cy. If (s(0),t(0);¢(0)) is
removed from Cy, the result is a partial latin square that will complete to
‘H and to a latin square which agrees with H in all entries except

(5(0),8(h = 1);5(h — 1)), (5(0),(0); ¢(0)),

(5(0),t(h = 1); ¢(h = 1)),

(s(i),s(h —1—i);s(h—1)),  (s(i),s(h—1);5(0)),
(s(h —1),5(0); s(h — 1)), (s(h —1),5(1);5(0)),
(s(h = 1),2(h — 1);£(0)),

((0),5(0); £(0)), ((0), s(h — 1);t(h — 1)),
(@L() 5(0)),
(t(2), (i — 1); s(h — 1)), (t(i), (i); 5(0)),

(t(h —1),t(h = 2);5(h = 1)), (¢(h —1),5(0);t(h — 1)),

t
(t(h = 1),t(h - 1);5(0)),
wherei=1,...,h — 2.

The relevant entries in quadrant 1 are on or below the back diagonal and
in quadrant 4 the relevant entries are all on or below the main diagonal.
Therefore one can easily check that these elements intersect C¢ in element
(s(0),t(0);¢(0)) alone. Thus (s(0),%(0);¢(0)) is necessary for the unique
completion of Cy to H.

Consequently Cy is a critical set in H. O

This last result can be generalized and critical sets can be constructed
for an infinte number of classes of latin squares.

THEOREM 5.8 Let h > 3 and let f range over the values 1,..., h — 2.
Take H to be a latin square of order h defined as follows:
H={(s(2),5(); s +5)} U {(s(2),2(4);¢(j —4)} U
{(t(),s(); (i +5)} U {@0), () s(f +7—0)}

where 1,7 = 0,...,h — 1. Let Cy be the partial latin square represented by
the set

Cu = {(s(i),s(4);8(i+3))|i=0,....,h—2,7=0,...,.h—2—1i} U
{(s(0),(0);¢(0))} U
{(s(i),t(0);t(h —d)) |i=f+1,...,h—1} U
{(s(d),t(§);t(G —i)) |i=2,...,h—=1,j=1,...,i—1} U
{(t@i),s();t(i+4) |i=1,...,h=1,j=h—14,...,h—1} U
{(t(0),t(§);s(f+j—1)]i=0,...,h—2,j=i+1,...,h—1}.



Then Cy is a critical set in H.

Proof. Fix f. Now using a similar argument to that used in the proof
of Lemma 4.6 one can show that Cy agrees with H in column s(0) and
columns #(1) to t(h — 1). Next it can be shown that rows s(f + 1) to
s(h — 1) are uniquely completable and therefore so is column #(0). The
unique completion of C is now obvious.

The necessity of elements in quadrants 1, 3 and 4 follows from Lemmas
2.1, 2.2 and 2.3 and Theorem 2.4.

Similarly Lemma 2.3 and Corollary 2.4.1 can be used to show that each
of the elements of the sets {(s(0),#(0);¢(0))} and {(s(¢),t(4);¢(j — 1)) | i =
2,...,h—1,7=1,...,i—1} is necessary for the unique completion of Cy.

The remaining elements which need to be checked are (s(e), t(0); t(h—e))
where e = f+1,...,h—1. Fix e and assume (s(e), t(0); t(h—e)) is removed
from Cy. Choose a such that e = a(mod f) and consider the following cases

1. a #0, and
2. a=0.

Case 1. The remaining partial latin square completes to H, but also to a
latin square which agrees with # in all entries except

(s(a), s(h — a); 5(0)),
(s(a), t(0); t(h — a)),

(s(a + fi),s(h —a— fi);s(0)), for i=1,..., 7 -1,
(s(a+ fi),s(h —a— f(i —1);s(f)), for i=1,__.,e;“_1,
(s(e), s(h — €); 5(0)),
(s(e),s(h —e+ f);s(f)),
(s(e),t(0);t(h — e)),
(t(0),t(0); s(f)),
(t(0), s(h —a — fi);t(h — a— fi)), for i=1,...,e;“_1,
(t(0),5(h — a); t(h — a)),
(t(O),S(h— )at(h ))7
(t(f),s(h—e);t(h —e+ f)),
(t(f),s(h—a— fi)it(h—a— f(i —1))), for i=1,...,5- 21

)
(#(f),£(0); 5(0)).



The relevant entries in quadrant 1 are on or below the back diagonal
and in quadrant 3 they are on or above the back diagonal. Therefore it is
easily checked that these elements intersect Cy in (s(e), t(0); t(h—e)) alone.
Thus (s(e), t(0); t(h — €)) is necessary for the completion of Cy to H.
Case 2. When a = 0, a is repaced by f in the above argument and
once again it can be shown that (s(e),t(0);t(h — e)) is necessary for the
completion of Cy to H.

Consequently Cy is a critical set in . O

6 More critical sets

In this section the techniques employed in Theorem 5.7 are adapted and
used to construct critical sets for latin squares in which the latin subsquare
L, is replaced by £ of Section 3. Finally it will be shown in Theorem 6.10
that when each of the latin subsquares Ly, Lo, L3 and L, is replaced by
latin squares associated with £, it is still possible to construct critical sets.

In Theorem 6.9 all arithmetic will be done modulo h unless otherwise
stated.

THEOREM 6.9 Let L4 be a latin square given by the set

L4 =A{(u(@), u(f); uli — j)(mod m))} U {(u(),v(5);v(j — i)(mod m))}
U {(v(@), u(5);v(i = j)(mod m))} U {(v(i),v(j); u(j - i)(mod m))},

where 1,7 =0,...m —1 and m > 2. Let C. be a partial latin square given
by the set Cr =

{(u(r),v(s);v(s —r)(mod m)) | r=0,...,m—-1,s=0,....m—-1} U

{(u(@), u(4); u(@ — j)(mod m)), (v(i), u(j); v(i — j)(mod m)),

(v(@),v(j);u(j —i)(mod m)) |i=0,...,m—2,j=i+1,...,m—1}
Let s(i) = u(i), fori =0,...,m—1 and s(i) = v(i—m), fori =m,...,2m—

1. Then define G to be a latin square of order 2h where h = 2m defined as
follows:

G =A{(s(i),s(); s + )} U {(s()),2(G);¢(G —4))} U
{@(@),sG): e+ U {(E6),1(5);s()) | (s(2), 5(5); (k) € La},

where i,j = 0,...,h—1. Let Cg be the partial latin square represented by
the set

~—

Cg = {(s(i),s(4);s(i+34)|i=0,...,h—=2,j=0,...,h—2—1i} U
{(s(0),t(0);£(0))} U

10



Then Cg is a critical set in G.

Proof.

The proof of Lemma 4.6 can be used to show that the completion of
Cg will agree with G in all entries in rows s(0) to s(h — 1) of columns #(0)
to t(h — 1). At this point one can apply Lemmas 2.1, 2.2 and 2.3 and
Theorems 2.4 and 3.5 to prove that Cg has a unique completion to G.

The necessity of elements in quadrants 1, 3 and 4 follows from Lemmas
2.1 and 2.3 and Theorems 2.4 and 3.5.

Lemmas 2.1 and 2.3 and Corollary 2.4.1 can be used to prove that each of
the elements of the set {(s(2),t(j);t(j—%)) |i=2,...,h—=1,j=1,...,i—1}
is necessary for the unique completion of Cg to G.

Next consider the elements of the set

{(s(),2(0);t(h —0)) | i =1,...,h — 1},

Fix 7 and assume that entry (s(4),¢(0);t(h — 7)) is removed from Cg. The
result is a partial latin square that will complete to G and to a latin square
which agrees with G in all entries except a 2 X 2 subsquare on (s(i), s(h —
1); 8(0)), (s(7),t(0);t(h—1)). Hence each of these entries is necessary for the
unique completion of Cg to G.

Finally assume that (s(0),(0);¢(0)) is removed from Cg. The result is
a partial latin square that will complete to G and to a latin square which
agrees with G in all entries except

(5(0),5(h — 1); 5(h — 1)), (5(0),(0);%(0)),

1
(s(h —1),t(h — 1);(0)),
((0), 5(0);1(0)), (t(0), s(h — 1);¢(h — 1)),
((0),£(0); 5(0)),
(t(h = 1),5(0);t(h = 1)),  (¢(h —1),£(0);s(h —1)),
(t(h = 1),¢(h — 1); 5(0)),

wherei=1,...,h — 2.

The relevant entries in quadrant 1 are all on or below the back diagonal.
Thus it can be easily checked that these elements intersect Cg in the element
(s(0),t(0);t(0)) alone. Therefore (s(0),%(0);#(0)) is necessary for the unique
completion of Cg to G.

11



Consequently Cg is a critical set in G. |
In Theorem 6.10 all arithmetic will be done modulo m.

THEOREM 6.10 Let G be a latin square with rows and columns in-
dexed by the set {u( ), .-, u(m — 1),v(0),...,v(m — 1),w(0),...,w(m —
)

1),2(0),...,z(m } and entries as follows:

{(u@,u@);ul+4)} U {(u@), v(G)vi+75)} U
{(@),u@@)vim—-2-(+7))} U {(i),v()um—-2->+7))} U
{(u(@), w(@);w(G —))} U {(u@),z();2(—4))} U
{(@),wi);2(i -5} U {(@@),2();w( - 7))} U
{(w(@),u(@);w(i+35)} U {(w(),v(d);2(+4))} U
{(z@),u();2(m —2-(i+7))} U {(2(),v();wlm -2 - (i+j))} U
{(w(@),w(i);u@@ —))} U {(wh),20();v(G —9))} U

{(z(0),w(G);v(i =)} U {(2(),2(5); u(i — 5))},

fori,j=0,....,m—1.
Let Cg be a partial latin square with entries as follows:

{(u@),u(g);u@@+74)) 4,5 =0,...,m =1} U

{(u(@),v(5); (i + 7)), (v(@), u(G); v(m — 2 = (i + 5))),
(v(@),v();u(m =2 —=(i+7)) |i=0,...,m=2,j=0,...m — 2 — i}

U {(u(0), w(0);w(0))} U
{(uw(@),w(y);w(G—1)|i=2,....m—1,j=1,...,i—1} U
{(w(@),w(§);2(i =) | 4,5 =0,...,m =1} U

{(u(@), 2(5); 2(5 = 1)), (v(4), 2(4); w(i = 7))
li=1,...,.m—1,=0,...,i—1} U
{(w(@),u(d); w(i + 7)), (w(i), v(5); 2(i + ),

(z(0),u(j);z(m—=2—-(i+35)) |i=1,....m—1,5=m—4,...,m—1}
U {(z@(),v(§);wm—-2-(Gi+3j))|4j=0,....m—1} U
{(w(),z(j);v(f—1)|4i=0,....m—1} U

{(w(@), w(f); u(f — 1)), (2(9), w(4); v(i = j)),
(2(0),2(3);u(i—3))|i=0,....m—2,j=i+1,...,m—1}.

Then Cg is a critical set in G.

Proof.
The unique completion of Cg can be verified using similar techniques to
those used in earlier results.
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The necessity of the elements in quadrants 1, 3 and 4 follows from
Lemmas 2.1, 2.2 and 2.3 and Theorem 3.5. As can the necessity of all
elements of quadrant 2 except {(v(7),w(j);2(¢ —j)) |4, =0,...,m —1}.

If one removes any of the elements of the set {(v(i),w(0);2(7)) | i =
0,...,m — 2}, then the remaining partial latin square will complete to G
and to a latin square which agrees with G in all entries except a 2 x 2
subsquare on (u(1),w(0); w(m — 1)), (u(1), 2(5 + 1); 2(3)).

If one removes the element (v(m — 1), w(0); z(m — 1)) then the remain-
ing partial latin square will complete to G and to a latin square which
agrees with G in all entries except a 2 x 2 subsquare on (v(m — 1),v(m —
1);u(0)), (v(m — 1), w(0); 2(m — 1)).

The fact that each of the elements of the set

{(U('&),W(]),Z(l—j)) l i:O,...,m—l,j:1,...,m—1},

is necessary for the unique completion follows from the proof of Theorem
3.5.
Thus Cg is a critical set in G. O

7 Conclusions

Several new constructions have been presented for critical sets in latin
squares. Theorem 5.8 can be used to construct critical sets for an infinte
number of classes of latin squares.

One question which the work in this paper raises is “Can the critical
set given in Theorem 6.10 be generalised in the same way that Theorem
5.8 generalised the critical set in Theorem 5.77”
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