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ABSTRACT: In this paper we focus on the identification of
latin interchanges in latin squares which are the direct product
of latin squares of smaller orders. The results we obtain on
latin interchanges will be used to identify critical sets in direct
products. This work is an extension of research carried out by
Stinson and van Rees in 1982.

1 Introduction

Since 1978 researchers have been trying to identify those sets of elements
of a latin square which uniquely determine the square. Relevant papers
on this topic are [1, 2, 3, 4, 5, 7]. In [7] Stinson and van Rees focus on
latin squares which may be thought of as the direct product of smaller
latin squares. Stinson and van Rees use the structure of the underlying
squares to identify, in the direct product, a set of entries which uniquely
determine that square. In the present paper we seek to extend Stinson
and van Rees results to a more general setting. We present new results
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which use the existence of latin interchanges in the underlying square to
identify latin interchanges in the direct product. These results will lead
to a construction for critical sets in the direct product. This result is a
generalization of Theorem 2.8 of Stinson and van Rees [7] and is related to
the work of Cooper, Donovan and Gower [2].

2 Background Information

We begin by providing the reader with the necessary background informa-
tion.

A latin square L of order n is an n X n array with entries chosen from
the set X = {1,...,n}, such that each element of X occurs precisely once
in each row and each column. For ¢,j,k € {1,...,n} the ordered triple
(4,7 k) is used to represent the occurrence of element k in cell (7, j) of the
latin square. So a latin square may be represented by the set {(¢,5;k) |
entry k occurs in cell (i,5) of the latin square L}.

A latin square L is said to be unipotent if there exists a z € {1,...,n}
such that for all 4 € {1,...,n}, (i,4;2) € L. A latin square L is said to be
symmetric if, for all 4,5 € {1,...,n}, (i,j; k) € L implies (4,¢;k) € L.

Let M and N be two latin squares. The direct product of M with N is
the array given by the set

{((im;in)a (jmajn)E (kmakn)) | (imaijkm) € M and (inajmk‘n) € N}

The direct product is usually denoted by M x N. It is easily verified that
the array M x N is also a latin square.

A partial latin square P of order n is an n x n array with entries cho-
sen from the set {1,...,n} such that each element of {1,...,n} occurs at
most once in each row and each column. So P may contain a number
of empty cells. At times a partial latin square will be represented by the
set {(4,7; k) | entry k occurs in cell (i, j) of the partial latin square P}. In
addition, for a partial latin square P we define R(P) = {r | (r,c;e) € P},
C(P) = {c | (r,c;e) € P}, E(P) = {e | (r,c;e) € P}. Then for any
two partial latin squares P; and P, we say P, is isotopically equivalent
to P, if there exists an ordered triple (a,(,7) of one-to-one functions
such that a(R(P1)) = R(P»), B(C(P1)) = C(P2), y(E(P1)) = E(P) and
Py = {(a(i), BG); 1K) | Gr5i k) € Pr}.

In the proof of some of the results in this paper it will be useful to follow
the lead of Stinson and van Rees, [7] and think of a partial latin square as
a partial transversal design. To this end we associate a partial latin square
with a set of |P| unordered triples

T= {{Thcj:ek} | (Z,],k) € P}



Then the 3-set {r;,c;,er} is said to contain the three 2-subsets {r;,c;},
{ri,er} and {c;,ex}. Then a collection of 3-sets, T}, is a trade if there exists
a collection of 3-sets, T» disjoint from 7} and such that 7} and T, contain
precisely the same 2-subsets. The set T5 is said to be a disjoint mate of T;.
The collections 77 = {{r1,c1,e1}, {r1,ca,e2},{rs,c1,ea},{rs,ca,e1}} and
T> = {{r1,c1,e2},{r1,ca,e1},{r2,c1,e1},{rs,c2,e2}} provide examples of
a trade. A trade T is minimal if no proper subset of T' is a trade. A partial
latin square P is called a (minimal) latin interchange if T', the set of triples
associate with P, is a (minimal) trade. The trades listed above provide the
following examples of a latin interchange.

1|2 211
211 1|2

A latin interchange containing precisely four entries is said to be an
intercalate. Note that a latin path defined in [5] is a minimal latin inter-
change. In addition, if P, and P, are isotopically equivalent partial latin
squares and P; is a (minimal) latin interchange then P» is also a (minimal)
latin interchange.

3 Direct Products and Latin Interchanges

Let M and N be latin squares of order m and n respectively and L =
M x N be the direct product of M with N. Let IM be a latin interchange
contained in M and let IN be a latin interchange contained in N. Denote
the corresponding sets of triples by M and T'N respectively. That is, let

TM = {{rin,Cn:€kn} | Gm;,Jm;km) € IM} and
TN = {{ri..cj.,er.} | (insjn;kn) € IN}.

Let IM' and IN' denote the partial latin squares associated with the dis-
joint mates TM' and T N', respectively. The following lemmas establish
the existence of latin interchanges in M x N.

Lemma 1 Let IN be a latin interchange in N. Then for each
(4m, Jm; km) € M, the partial latin square

IL = {((iwuin)a (jm:jn)5 (kmakn)) | (imjmkn) € IN}
s a latin interchange in the direct product L = M x N.

Proof: Since IN is a latin interchange there exists a corresponding trade
TN. Now consider the following collection of 3-sets:

TL = {{T(im,in)7c(jm7jn)7e(kmykn)} | {’I“i",Cjn,ekn} c TN}.



Since T'N is a trade and (iy, jm; km) is a fixed element in M it follows that
TL is also a trade. So IL is a latin interchange in L. d
Similarly:

Lemma 2 Let IM be a latin interchange in M. Then for each
(in, Jn; kn) € N, the partial latin square

{((Zmazn)a (jm;jn); (km; kn)) | (im,jm; km) € IM}
is a latin interchange in the direct product L = M X N.

Lemma 3 Let IM and IN be isotopically equivalent latin interchanges.
For any triple (o, 8,7) which provides this equivalence, the following partial
latin square in L = M x N is a latin interchange.

IL = {((im,(im)), (ms B(m)); km, Y(km))) | (Gmy Jm; km) € IM}
Proof: It is clear that IL is a subset of L. Let
TM = {{’I"im,ij,ekm} | (Zm7.7m7km) € IM}

be the trade associated with TM. Since IN is isotopically equivalent to
IM the set

TN = {{ra(in)sC8(jm)> €v(km) } | (imsJm; km) € IM}

is the trade associated with IN. Further, if {ry ,c;; ,ex } € TM’', the
disjoint mate of TM, then {rqs ),ca(;r ),€ak: )} € TN', the disjoint mate
of TN.

We need to show that the two sets

TL = {{r(im,a(m))1 CGmBGm))> €kmy(km)) } | {Tims Cirnr €k, } € TM}
and
TL' = {{ra,.a6,)) G 6000 €k At} | {Tir, - it exp, } € TM'}

form a trade TL and its disjoint mate T'L'.

Assume that this is not the case. Then either TL and T'L' are not
disjoint or T'L contains a particular 2-set while 'L’ does not.

Now if {r(im,a(im))ac(jm,ﬁ(jm))ve(km,’v(km))} € TL n TL' then
{TipsCins €k, } € TM NTM' which is a contradiction.

Next assume that the 2-set {r(;.. .a(in))> €(kmv(kn))} Delongs to TL.
Thus {r;,,, ek, } is a 2-set in TM and {rq(,.), €y (k) } is a 2-set in TN.
Since TM and TN are trades, both {r;,, e, } and {rqe,.),€y(kn)} are
2-sets in TM' and TN’ respectively. Moreover since IM and IN are iso-
topically equivalent there exists c;,, such that {r;, ,c;,., ek, } € TM' and



{ra(im); CB(jm)> 67(]97")} € TN'. Tt now follows that {T(im,a(im)): e(km,'y(km))}
belongs to TL'. Similarly, if the 2-sets {7(i. a(im))) CGmv(im))} OF
{C0msa(im)) 1 €(km,v(km)) } Delong to T'L then they also belong to T'L'. Hence
TL is a latin interchange. ]

These latin interchanges are used in the next section to construct critical
sets.

4 Critical Sets and Direct Products

A critical set, in a latin square L of order n, is a partial latin square C such
that,

1. L is the only latin square of order n which has element k in position
(i,7), for each (4, j; k) € C;

2. no proper subset of C satisfies 1.

If a partial latin square satisfies condition 1 above it is said to have unique
completion.

It is clear from the definitions of latin interchanges and critical sets that
the following lemma must be satisfied.

Lemma 4 Let L be o latin square and C a partial latin square contained
in L. Then C is a critical set if and only if the following hold:

1. for any latin interchange I in L, [CNI| > 1;

2. for each (i,j;k) € C, there exists a latin interchange I in L such that
Ine={(i,5;k)}.

The definition of a critical set can be strengthened as follows. Let L
be a latin square, of order n, based on the set N. Let L contain a critical
set C. The set C is said to be a strong critical set if there exists a set
{P\,P,,...,P,} of m = n? — |C| partial latin squares, of order n, which
satisfy the following properties:

.C=PCchcCc...CP,1CP,CL;

2. for any 2 < i < m, given P; = P;_1 U{(r,s;t)}, then the set P;_; U
{(r,s;t")} is not a partial latin square for any #' € N \ {t}.

Let C be a critical set in the latin square L. C is called semi-strong
critical set if

C(a,b,c) = {(%a,Tp;7c) | (T1,72;73) € C}



is a strong critical set in

Ligp,e) = {(@a,2p; %) | (@1, 22;23) € L}

for some {a,b,c} ={1,2,3}.
We now use the latin interchanges given in Lemma 3 to extend Stinson
and van Rees, [7], Theorem 2.8, in a more general setting.

Theorem 5 Let CN and CM be critical sets in N and M respectively such
that at least one of CN and C'M is either a strong or a semi-strong critical
set. Assume that for each pair of triples with (zp,Yym;2zm) € CM and
(TnyYn; 2n) € CN there exist latin interchanges IM C M and IN C N and
an ordered triple of one-to-one and onto functions («,8,v) which satisfy
the following conditions.

1. IMNCM = {(Tm,Ym; 2m)};

INNCN ={(zn,Yn; 2n)};

a(R(IM)) = R(IN), B(C(IM)) = C(IN), v(E(IM)) = E(IN);
IN = {(e(im), B(m); ¥(km)) | (im; jm; km) € IM}; and

ATm) = Tn, B(Ym) = Yn, and ¥(2m) = 2.

SAER S

Then the partial lotin square

CL = { (Zmazn) (Jmajn) (kmak ))
b, Jmsi k ) e CM, (Znajn;kn) € N} U

(
| (i
{(myin), (Gm> Jn); (km, kn))
| (ims Jm; km) € M\ CM, (in, jn; kn) € CN}

s a critical set in M x N.

Proof: For the unique completion of CL see [6]. Now we prove each entry
in C'L is necessary.

The latin interchanges existing in N together with Lemma 1 are enough
to prove the necessity of the elements of the set

{((im;in) (]m;]n) (kmak )) | (imajm;km) € M\CM, (ijnykn) € CN}

For each of the elements of the set

{Gmsin), Gy Jn); (Bmy kn)) | (imy Jm; km) € CM, (in, jn; kn) € N\ CN}



Lemma 2 and the latin interchanges in M demonstrate the necessity of
these elements for unique completion.

So it remains to prove that each element of CM x CN is necessary.
Let (Zm, Ym; 2m) be in CM and (%, Yn; 2,) be in CN. Then by the initial
assumptions, there exist latin interchanges IM and IN such that IN =
{(a(im), B(m); v(km)) | (imsJm; km) € IM} and further that IMNCM =
{(Zm,Ym; 2m)} and INNCN = {(a(zm), B(ym);7(2m))}. We need to check
that C'L intersects the following latin interchange (see Lemma 3)

{((im, a(im)), (Gms B(m)); (Kms v (km))) | (ims Jm; km) € IM}

in the entry ((m,Tn), (Ym,Yn); (2m,2n)) alone. Assume it does not. Then
there exists an entry ((um,un), (Vm,vn); (Wn,w,)) distinct from
(Zmy®n)y Ym,Yn); (Zm, 2n)) which belongs to CL N {((im,(im)),
(Jm> B(Jm)); (km, Y(km))) | (ims jm; km) € IM}. But then (um, vm;wm) €
IM and (un,vn;wn) = (@(um), B(vm); ¥(wm)) € IN. However from the
assumptions (umavm;wm) = (xmamezm) and (unavn;wn) = (xn;yann);
which is a contradiction. This completes the proof. d
We now provide an example of this theorem.

Example 6 Let M be the latin square representing the cyclic group of
order 3, which is given below on the left, and take CM to be the critical
set given on the right.

M CM
11213 1
3|1

3112 2

Then take N to be the latin square representing the cyclic group of order
6, which is given below on the left and take C'IV to be the critical set given
on the right.

N CN
1123|456 1123
2134|561 213
3(4(5]6|1]2 3
41516123
5612|314 4
612345 4|5

The set CL in M x N is given below.



1| 2| 34| 5| 6| 7| 89 13| 14| 15
21 3| 4|5/ 6] 1| 89 14| 15
3| 4] 5|16/ 1| 2| 9 15
41 5| 61| 2| 3
51 6| 12| 3| 4 10 16
6 1] 2|3 4] 5 10| 11 16| 17
7| 81 9 13| 14| 15 1123
81 9 14| 15 2|3
9 15 3
10 16 4
10| 11 16| 17 4] 5
13| 14| 15 11 2] 3 7| 8| 9] 10| 11| 12
14| 15 21 3 8| 9] 10| 11} 12| 7
15 3 9(10| 11 12| 7| 8
10| 111 12| 7| 8| 9
16 41 111 12] 7| 8] 9|10
16| 17 4| 5|12 7| 8| 9| 10| 11

To verify that Theorem 5 can be applied to this example we need only
focus on the entries

(1,1;1),(1,2;2),(1,3;3),(2,152),(2,2;3), (3, 1;3), (5,6;4), (6,5;4), (6,65 5)

of M x N. Then the symmetry of the latin square can be used to justify
the necessity of the entries in rows 13 to 18 and columns 13 to 18. So first
consider (1,3;3) of M x N. We see that M contains the entries

{(1,151),(1,2;2),(2,1;2),(2,2;3),(3,153),(3,2;1) }

which correspond to the latin interchange:

1|2
213
3|1

The latin square N contains the entries {(1,3;3), (1,5;5),(3,3;5), (3, 5; 1),
(5,3;1), (5,5;3)} and they correspond to the latin interchange

3 )
5 1
1 3




These two latin interchanges are isotopically equivalent. Therefore the
partial latin square

in M x N (which corresponds to the set {(1,3;3),(1,11;11),(9,3;11),
(9,11;13),(17,3;13),(17,11; 3)}, when using the symbols 1 to 18), is a latin
interchange and it is easy to check that it intersects C'L in the entry (1, 3; 3)
alone. Similar arguments verify that the necessity of the remaining ele-
ments. However it should be mentioned that care should be taken with en-
try (1,1;1). Here the latin interchanges {(1,1;1),(1,3;3),(2,3;1),(2,2;3),
(3,2;1),(3,3;3)} in M and {(1,1;1),(1,5;5),(3,5;1),(3,3;5),(5,3;1),
(5,1;5)} in N should be used.

For a more general example, represent the cyclic group C,, by the latin
square BCy, = {(i,j;i+j) | 0 <4,j < n — 1}, where addition is modulo n.
Then if n is even the partial latin square

En = AGgii+)1i=0,.., 5 —Tand j=0,., 5 —1-i} U
{6 i+ )
|z=g+1,,n—1andj=(3?n—l);;"—1};

is a critical set in BC),. If n is odd the partial latin square

-3 n—3

0, = {(z‘,j;i+j)|i:0,...,n2 and j =0,..., —i} U
{G, 450+ 75)
-1 3n—1
|i:”2 +1,...,n—1andj=("2 ), — 1),

is a critical set in BC,,. When n is even, it is easy to see that for each
(z,y;2) € &, there exists an intercalate I = {(z,y;2),(z,y + n/2;z +
n/2), (xz+n/2,y; 2+n/2), (x+n/2,y+n/2; z)} such that INE, = {(z,y;2) }.
If n is odd, then for each (z,y;z) € Oy, where 0 < z < ”T’?’, there exists
a latin interchange I = {(z,y; 2), (z,y + %5t 2+ 251), (z + 25, y + 452 +
i+ 250, (z+ 2y + iz +i+ 2 i =0,..., 251} such that TN O, =
{(z,y; 2)}. Similarly, one can see that if "T“ < z < n—1 then there exists
a latin interchange J which is isotopically equivalent to I and is such that
JNO, ={(z,y;2)}.
These observations suggest the next two corollaries.

Corollary 7 Let m and n be positive even integers. Then the partial latin



square

{(Gmy i)y Gmo J1); (Bms K1) | (ims Jms km) € Em, (i1, i3 k1) € BCr} U
{((imail); (jm:jl)3 (kmakl)) | (im;jm;km) € ch \ gm; (ilajl; kl) € En}

is a critical set in BC,, x BC,.

When m = 2, Stinson and van Rees’s result (see [7]) is a special case of
this result.

Corollary 8 Letm be an odd positive integer. Then the partial latin square

{((imail); (]m:]l); (km;kl)) | (Zma]mykm) S Om; (ilajl;kl) S ch} U
{((im;il)y (jmajl); (km;kl)) | (imaijkm) € BCm \ Oma (il;jl;kl) € Om}

is a critical set in BC,, X BCy,.

We would like to conclude this section with an example which produces
a uniquely completable set but one which is not critical. In this example the
conditions 1 to 5 of Theorem 5 are not satisfied and so not all the elements
of the resulting partial latin square are necessary for unique completion.

Example 9 Let both M and N be the latin square given below on the
left. Likewise let both CM and C'N be the critical set given on the right.

M=N CM =CN
11234 1|2
21143 4
34|12 2
413121 3

So M x N will be the direct product of M with itself. In CM each of
the entries (1,1;1),(2,3;4), (3,4;2), (4,2; 3) occurs in an intercalate which
intersects CM in this entry alone. It can also be seen that the set M \
{(1,1;1),(2,3;4),(3,4;2),(4,2;3)} is a latin interchange which intersects
CM in the entry (1,2;2) alone.

The partial latin square CL in M x M, is given below.

10



1| 2| 3] 4| 56| 7| 8| 9|10 13| 14
211 4| 3| 6| 5| 8|7 12 16
3] 4| 1| 2| 7| 8 5| 6 10 14
41 3| 2| 1| 8 7] 6|5 11 15
5] 6 1] 2 13| 14| 15| 16| 9| 10
8 4 14| 13| 16| 15 12
6 2| 15| 16| 13| 14 10
7 3 16| 15| 14| 13 11
9110 13| 14 1] 2 51 6| 7| 8
12 16 4 6| 5| 8| 7
10 14 21 7| 8] 5] 6
11 15 3 8| 7] 6| 5
13| 14 9| 10| 11| 12| 5| 6 1| 2
16 10 9| 12| 11 8 4
14| 11| 12} 9| 10 6 2
15 12| 11} 10| 9 7 3

Since (), is strong it is easy to see that this partial latin square has
a unique completion. However not all entries in this partial latin square
are necessary. If we take elements (1,2;2) and (3,4;2) of CM we see
that they do not satisfy conditions of Theorem 5 and so this theorem does
not apply to this partial latin square. Further one can show that the entry
((1,3),(2,4);(2,2)), which may be thought of as the entry
(9,14;6) in the above partial latin square, is not necessary for unique com-
pletion. Therefore, the above partial latin square is not a critical set in
M x M.

5 More on latin interchanges and direct
products

The initial condition placed on the critical sets CN and C M in Theorem 5
are quite strong. However it is not clear which, if any, of these conditions
can be relaxed, (see Example 9). To understand this problem we must
investigate fully the occurrence of latin interchanges in the direct product
M x N. One interesting question is “Do all latin interchanges in M x N
correspond to latin interchanges in M or N or the direct product of these
latin interchanges?” We do not know the answer to this question, however
we feel that the following results shed a little light on this question. For
these results we need to place certain restrictions on the entries of M and
N.

Property 1 Assume that there exists a symbol x € {1,...,n} such that

11



(a,b;2),(c,d;z) € IN and (a,d;z),(c,b;z) € IN', where a,b,c,d €
{1,...,n} with a # c.

Lemma 10 Let M and N be latin squares. Suppose IM C M and IN C N
are latin interchanges and IN satisfies Property 1. For any fixed entry
rm € E(IM) the set

{((imain) (Jm:Jn) (Tmakn)) | (imaijTm) €IM and
(in,Jn; kn) € IN \ {(a,b;7), (c,d; z)}} U
{((im, @), (m; b); (km, ©)), ((im, ©), (Jm,d) (km,z)) |
(imy Jm; km) € IM and ky, # 1o }

s a latin interchange in M x N.

Proof: To verify the existence of this latin interchange we will use Lemmas
1 and 2 to identify appropriate latin interchanges in the product. Then the
successive substitution of these latin interchanges will verify that the above
set has a disjoint mate and hence is a latin interchange.

{From Lemma 1 we know that for each (in,,jm;7m) € IM the set of
entries

{(Gesin); Gms din)s (Tms ki) | (ins Jnikn) € IN'}
is a latin interchange in M x N.

Next let u,v € {1,...,n} be such that (a,b;u), (c,d;v) € IN'. Then it
follows that for each (Zm,jm,Tm) € IM, ((im,a), (jm,b); (tm,u)) € L and
((im, €), (jm,d); (rm,v)) € L, where L = ((M x N) \ A) U B and
(

A = ((imsin), Gm>dn); (Tm, kn))

(lmajm;rm) € IM and (zm]nakn) € IN};
((Emyin)s (Jms Jn); (rmak;))
(

ims Jm;Tm) € IM and (in, jn; k) € IN'}.

{
|
B = {
|

Next using Lemma 2 and the latin interchange IM, with disjoint mate
IM’, the sets

{((im> @), (Gm, 0); (rms ), ((im; @), (Fms b); ($m, )
| (imyJm;Tm) € IM, Sy #rm}, and
{((ims €); (G, d); (rm, v)), ((im; €); (Fm, d); ($m, )
| (ims Jm3m) € IM, 8m # T}

form latin interchanges in L.

Now if we replace these sets by their corresponding disjoint mates and
focus on the subsquare corresponding to (S, tm;7m) € IM, for some fixed

12



cell ($m,tm), we see that the set

{((sm,a), (tm; b); (175 2)), ((8m, @), (tm, d); (rm, @),
(515 ), (b ); (P ), (5105 ), (b ); (P, )

where z is as in Property 1 and r/, is the symbol in cell (s, tm) of IM',
forms an intercalate and can be replaced by the set of entries

{((sm,a), (tm; b); (Tm; ), ((sm, @), (tm, d); (v,
((8m» ), (tm; b); (115 7)), ((8ms €); (Em d); (T, 2)) }-

Repeat this process for each cell (s, t,) of IM which contains the symbol

rm. Notice that at this point for all i,,, jm, such that (im,jm;Tm) € IM,

the cells ((im,a), (jm,b)) and ((im,c), (jm,d)) contain the entries (r,,,x)

and so the successive substitution of this series of latin interchanges is a

partial latin square which is the disjoint mate of the set given above. The

result is now immediate. O
We now provide an example of this theorem.

)

Example 11 Let M and N be the latin squares representing the cyclic
groups of order 3 and 5, respectively, and let IM C M and IN C N be
two latin interchanges which are given below.

M IM
11213 2|3
213 |1 3|1
3112 112
N IN
1123|145 2 4
21314 |5]|1
314 (5|1]2 4151
415111213 5112
5111234

Then IN satisfies Property 1 with (1,2;2) and (4,4;2) giving the triads
(a,b;x) and (c,d; z). Note that entries, row and column numbers in N and
IN are in {1,2,3,4,5}. Choose 7, to be 3 in IM which occurs in two
places. Now applying Lemma 10 leads to the following latin interchange.

13



7 14
14| 15| 11

7 15| 11
14 2

14| 15| 11

15 11 2

2 7
2 7

In [1], Cooper, Donovan and Gower identified a series of latin inter-
changes in the direct product of Cs, the cyclic group of order 2, with C,,
the cyclic group of order n where n is odd. An example of their family of
latin interchange is given below. The latin square C2 x Cs, is given on the
left and the latin interchange on the right.

112345 6| 7| 8| 910
23|45 1| 7| 8| 9|10| 6
31 4|5 1| 2| 8| 9|10]6| 7
41 5| 1| 23| 9100 6] 7| 8
51| 2| 3| 4|10 6| 7] 8|9
6| 7| 8| 9(10| 1| 2| 3| 4|5
78| 9100 6 2| 3| 4| 5|1
81 9|10 6 7| 3| 4| 5| 1| 2
9110| 6| 7| 8| 4| 5| 1] 2] 3
100 6| 7| 8| 9| 65| 1| 2] 3| 4
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2 8 9
81910
3 10 7
8 10| 6 3
6|7
10 7 2

In the next three lemmas we refine this construction and give general meth-
ods for constructing latin interchanges of this nature. Therefore M will
be restricted to a latin square of order 2, and so will be denoted by Cs.
It should also be mentioned that the latin interchanges have been pre-
sented using the (4, j; k) notation to facilitate recognition of patterns and
the proofs have been omitted for brevity.

Lemma 12 Let N be a symmetric and unipotent latin square of order n
then (i,i;2) € N for all i € {1,...,n}. Moreover, suppose that IN is a
latin interchange in N satisfying Property 1. Then the partial latin square
consisting of the triples

{((1,2),(2,); (2,%)), ((2,4), (1,4); (2,k)) | (¢,5; k) € IN \{(a,b;2)}} U
{((laa)7 (laa); (laz))a ((170)7 (170); (17z))7 ((27 b)7 (27 b); (l,z)),
((27d)7(2ad)5(laz))}

is a latin interchange in Co X N.

Let JN also be a latin interchange in N, where JN and IN are distinct.
However JN must satisfy the following property.

Property 2 For a given symbol y € {1,...,n} assume that (a,e;y),
(f,d;y) € JN, and (a,d;y),(f,e;y) € JN', where a,d are as in Property
lande,fe{1,...,n} witha # f.

Further, IN and JN together must satisfy:

Property 3 Fory as in Property 2, (¢,b;y) € IN, (¢,d;y), (a,b;u) € IN'
and (a,e;u) € JN' for some u € {1,...,n}.

Lemma 13 If N is a latin square of order n and IN and JN are latin
interchanges in N where IN satisfies Properties 1 and 3 and JN Properties
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2 and 3, then the partial latin square consisting of the triples

{((1,9), (1,5); (LK) | (i, 35 %) € IN\ {(a, b; 2), (¢, d; 2)}} U

{(1,a), (2, ); (2.9)). (1,0), (2. d); 2,2))} U

{((2,a), (1,0); (2,2)), ((2, ),( d);(2,9)r U
(20, 2,9): (LK) | (5,33 K) € IN\ {(@,es9)}},

is a latin interchange in Co X N.

Alternatively if IN and JN satisfy the following properties, the direct
product will contain the latin interchange given below.

Property 4 For a given symbol y € {1,...,n} assume that (g,e;y),
(f,h;y) € JN, and (g,h;y),(f,e;y) € JN', where e, f,g,h € {1,...,n}
with g # f.

Property 5 Leta,b,c,d be as in Property 1 and let e, f, g, h be as in Prop-
erty 4. There exist u,v € {1,...,n} such that (a,b;u), (c,d;v) € IN', and
(9,€;u), (f, h;v) € JN',

In addition N must satisfy:

Property 6 For a,b,c,d as in Property 1, e, f,g,h as in Property 4 and
for some w,z € {1,...,n}, (a,e;w), (f,d;w), (c, h; 2),(g,b;2) € N.

Lemma 14 If N is a latin square of order n and IN and JN are latin
interchanges in N which satisfy the appropriate Properties 1, 4, 5 and 6.
Then the partial latin square consisting of the triples

{((1,9),(1,5); (LK) | G, 45 k) € IN \{(a,b;2), (¢, d; 2)}} [
{1, a),(2,€); (2,w)), (1, 0), (2,h); (2,2))} U

{((2.9), (1,0);(2,2)), (2, f), (1, d); (2, 0))}
{((2,9),(2,5); (1K) | (555 k) € IN\{(g,e;9), (f, b 9) }}

is a latin interchange in Cy X N.
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