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Abstract

This paper provides constructions that prove that critical sets exist of all sizes between

[%J and "22_ n with the exception of ’2—2 + 1 for even n, in a latin square of order n.

1 Introduction

A latin square of order n is an n X n array with entries chosen from a set N, of size n, such
that each element of N occurs precisely once in each row and column.

This paper establishes critical set constructions in latin squares of any order n, thus pro-
viding a basis for the spectrum of critical sets. Theorem 4 in Section 3 provides the basis
for the main results of the paper, which are given in Theorems 17 and 30. The necessary
background information is provided in the following section.

2 Definitions

In what follows the set N is assumed to be {0, 1, ... ,n—1}. Further, the representation of
a latin square with a set of ordered triples {(7, j; k) | element k occurs in position (i, j) }
will be used often. In particular a back circulant latin square, denoted by BC,,, is given by
the set {(7,7;% + j(mod n)) | 0 < 4,5 <n —1}.

A partial latin square P, of order m, is an n X n array where the entries in non-empty
positions are chosen from a set IV, in such a way that each element of N occurs at most
once in each row and at most once in each column of the array. Let P be a partial latin
square of order n. Then |P| is said to be the size of the partial latin square and the set
of positions Sp = {(7,7) | (i,4;k) € P,3k € N} is said to determine the shape of P. Let
P and P’ be two partial latin squares of the same order, with the same size and shape.
Then P and P’ are said to be mutually balanced if the entries in each row (and column) of
P are the same as those in the corresponding row (and column) of P’. They are said to
be disjoint if no position in P’ contains the same entry as the corresponding position in P.
A latin interchange I is a partial latin square for which there exists another partial latin
square I’, of the same order, size and shape with the property that I and I’ are disjoint
and mutually balanced. The partial latin square I’ is said to be a disjoint mate of I. See
Table 1 for an example. An intercalate is an example of a latin interchange of size four,
and this is the smallest possible size for a latin interchange.

A partial latin square C, of order n is said to be uniquely completable (UC) (or to have
unique completion) if there is precisely one latin square L of order n that has element k in
position (4, j) for each (i, j; k) € C. A critical set is a partial latin square which is UC,
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and for which the removal of any entry destroys this property. An example is presented in
Table 1 above.
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Table 1: A latin interchange (on the left) of size 8 with its disjoint mate (in the centre),
and a critical set (on the right) of order 7 and size 12.

LEMMA 1 [3] A partial latin square C C L, of size s and order n, is a critical set for a
latin square L if and only if the following hold:

1. C contains an element of every latin interchange that occurs in L;

2. for each (i, j; k) € C, there exists a latin interchange I in L so that INC = {(4, j; k)}.

LEMMA 2 [3] For any latin interchange I, (with disjoint mate I') and any critical set
C in a latin square L, the set (C'\ I) UI' has unique completion to (L\I)UI'.

In 1978, Curran and van Rees [1] 2_1

of n. For even n, they produced a critical set of size 4 These ﬁndmgs have been expanded
on to provide the following general result proved by Donovan and Cooper [2]. This result,
and the partial latin square denoted by S, will form an integral part of the main results in
this paper.

for odd values

LEMMA 3 The partial latin square

S = {(4,4;i+j(modn)) |0
{4,451+ j(mod n)) | a

where a is an integer such that "T_?’ <a<n-—2,is a critical set for BCy,.

3 Interesting and useful latin interchanges

This section focuses on constructing latin interchanges which will be used in the proof of
the main results of this paper.

For r > ¢, let A denote an r X ¢ array, with rows indexed by z for 0 < z < r — 1, and
columns indexed by z for 0 < z < ¢ — 1, that satisfies the following:

1. the symbol occurring in the position corresponding to the first row and first column,
also occurs in the last column; and

2. the entry occurring in row x and column z of A is the symbol i, .



Thus, for 0 <z < r — 1, row = of A contains the symbols iy 10, i3+1,%242, - - lz+e—1,
in the given order. Let y denote the row that contains symbol 4y in column ¢ — 1. Hence,
iy+c—1 = io. Note that if A is embedded in BCy, then these properties are satisfied if
r+c¢>n+ 1. Further, y=n+1—c.

We define the sequence of numbers a1, ag, ... to be integers where
ap = c¢—1(mod y), and for 7 > 2,
o = a_1(mody—a; —...—a;_1).

That is, a; is the remainder when ¢ — 1 is divided by ¢ and «; the remainder when «;_1 is
divided by y — a3 — ... — a;—1. Clearly, there exists a value P where ap # 0 and apy; =0
for all ¢ > 0. We are thus interested in the sequence a1, as, ..., ap.

For + = 1,2,...,P, let §; = a1 + a2 + ... + ;. We use these integers to define sets
Ay, By, A1, By, ..., Ap, Bp, each occurring in A as follows. Note however, that if oy =
¢— 1 then the set By is empty, and for 1 < < P —1, if @; = ;41 then the set B; is empty.

Ay = {(0, 0;4p), (0, c—1;4,1)} and if ay # ¢ — 1 define

By = {(c—1-ay, ay; ic-1), (c— 1 —ay, (a+1)y; i) |
0<a< 179 4y
Y

If o # 0, define

A1 = {(ya c—1- g3 ’ic,1+y,a1), (ya c—1 ; ’L.O)}a and if g 7& a2 define
B = {(a1—aly—o), c—1—a1+aly—a1) ; ic—1),
(a1 —aly—o), c—1—ar+(a+1)(y —ai1); te—14y—as)
0<a< X1~ 1}.

y— o1

If P>2, for 2<i< P, define

Ai = {(y - 51'—11 c—1—o ; ic—l—l—y—ﬁi)a (y - 5’&'—1; c—1 ; ic—1+y—6¢_1)}a
and if o; # @41, define
B = {(ai —(y—di)a, c—1—ai+aly—26); ic1),
(i —a(y—0;), c—1—ai+ (a+1)(y = 6); te—14y-s);
(07 —OAZ'+]_
0<a< ———1%L
0<as® Sy

THEOREM 4 Let the sequence of integers a1, o, ...,ap be defined as above. Then the
set ] = AgUByU A1 UB1U...UAp U Bp, is a latin interchange in the array A.

Proof It is easy to check that the set I = AgUByUA; UByU...UAp U Bp, is a
partial latin square contained in A. Note that each row of I contains precisely two entries.
Construct a partial latin square I' which has the same positions in A as I does, but with



the entries in each corresponding row of I’ interchanged. The result is a partial latin square
I’ of the same size and shape and which is disjoint from I. Note also that column j, for

j¢{c—-1-—a1,c—1—ay,...,c—1—ap,c— 1}, contains precisely two entries and these
entries are the same in both I and I'. Therefore to complete the proof that I is a latin
interchange, it is necessary to prove that columns c—1—ay, c—1—ag, ..., c—1—ap, c—1,

of I and I’ are balanced.

If a1 > ap > ... > ap then column ¢ — 1 — «a; of I contains the symbols ig, ic 14y ay
and 7. 1, in the rows ¥y + a1, y and a1, respectively. Columns ¢ — 1 — a; of I’ contains
the symbols i._1, % and 4._14y—q,, in the rows y + a1, y and a1, respectively. And for
2 <k < P, column ¢ — 1 — o of I contains the symbols 4. 141y 5, ;5 Gc—1+y—6, and ic 1,
in the rows y — d;_1 + g, ¥y — 01 and ay, respectively. Columns ¢ — 1 — «ay, of I' contains
the symbols 7.1, ic_14y—g,_, and ic_14y_5,, in the rows y — 61 + g, y — dp—1 and o,
respectively.

If oy = ag11 = ... = agqp, where g € {1,..., P} and 1 < h < P. Then the column
¢ — 1 — a4 contains symbols 4.1 +y — 0g—1,%c—1 + Y — gy ... %c—1 + Yy — dg44 and 4.1 as
does I'.

Column ¢ — 1 of I contains the symbols iy in row y, 4¢c 14y o, in row y — a1, and for
2 <k<P,ic 14y, inrow y— d, and finally i._; in row 0. Column ¢ — 1 of I’ contains
the symbols 4c_14y_o, inrow y, and for 2 < k < P, 4._144_g, in Tow y — d;_1, and then
ic—1 in row y — dp, and iy in row 0.

Consequently I and I' are column balanced and I is a latin interchange with disjoint
mate I'. 0

It should be noted that each element (7,j;k) of S, (see Lemma 3), occurs in a latin
interchange in BC),, of the form given in Theorem 4. Further, this latin interchange inter-
sects S in (i, 7; k) alone. This observation, together with the fact that BC,, is symmetric,
can be used to prove that S is a critical set in BC),, and drastically reduces the complexity
of the proof given by Donovan and Cooper [2].

An example of the latin interchange, with r = ¢ = 13, corresponding to Theorem 4 is
displayed in Table 2.
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Table 2: A latin interchange, as per Theorem 4.



COROLLARY 5 Assume that r < ¢, and take an r X ¢ array, AT where symbol iy occurs
in rowr —1 of AT, in say, column y. Further, column z, for 0 < z < ¢ — 1, contains the
integers

iO-I—.’,Ca i1—|—wa 7;2+z7 s air—l—l—z,
in the given order. In particular, ir_11y = i9. It follows that AT contains a latin interchange
of the form IT = AT UBf uAT UBf U...uUALUBEL, where AT and B} are, respectively,
the transpose of the sets A; and B; given above. 0

COROLLARY 6 For r < c suppose an T X ¢ array B satisfies:
1. the symbol in position (r — 1,c — 1) also occurs in row 0; and
2. the symbol in position (0,c — 1), also occurs in row r — 1; and
3. the symbol in row x and column z 1S iz ,.

Then a latin interchange I exists in B that is isotopic to the latin interchange of Corol-
lary 5.

Proof Apply the permutation a(z) =7 —1— z to row z of B for 0 < z < r — 1. Then,
apply the permutation 3(z) = ¢ — 1 — z to column z of B for 0 < z < ¢ — 1. Let A denote
the transpose of B after the action of @ and 8. Then A satisfies the requirements to be
used in Theorem 4. 0
Note in the array A, with r > ¢, that row y may be either less than, equal to, or greater
than ¢—1. In particular, if A is embedded in BC),, and if ¢ > "T“LZ, theny < c—1;ifc < "T“,
then y > ¢—1; and if ¢ = "T*'Q, then ¢ — 1 = y = 5. The latin interchange I previously
defined is suitable for all these cases. Note that, in the event that y = ¢— 1, I is simply an
intercalate. Later in this paper it will be necessary to construct latin interchanges which
do not intersect specific rows or columns. To meet this need we now consider another two
constructions. The first deals specifically with the case where y < ¢ — 1, and the second
the case where y > ¢ — 1.
Let A be an r X ¢ array where r > ¢ and y < ¢ — 1. Then, define §; as follows:

Br = c(mody),
Bi = Pi—i(mody— B —...— Bi-1).
It is clear that there exists a @) such that Bg # 0, and for alli > @, 3; = 0. For 1 <17 < @,

let v; = 1 + ... + B;. Define the sets JAg, JBy,..., JAg, JBg as follows, noting that if
y > 5 then the set JBy will be empty and if 8; = 3; 11, then the set JB; will be empty.

JAy = {(c—1, b dc—14p), (¢, b icyp) |0 <b<y—1}andif y < g define
JBy = {(c—ay, ay—1;ic1), (c—ay, (a+1)y —1; i)
1<a< Py
y

If B1 # 0 define

JA1 = {(y,e—=1=P1; de—14y—p1)s (Ysc = 1; d0)}, and if By # Bo
JB1 = {(B1—aly—pBi),c—1=B1+aly—p1); ic1),
Br—aly—P),c=1=PBi+(a+1)(y—B1); ic—14y-p)
pr— P2 1.
y— 5

0<a<



IfQ > 2, for 2 <i<Q, define

JA; = {(ly—vi—1,c=1=Bi; be—14y—y), ¥ = Vi1, = 1} Ge—14y—y; 1)}
and if B; # Bi+1 define

JBi = {(Bi—(y—va, c—1=Bi+taly—); ic1),
Bi—aly—7i)sc—1=Bi+(a+1)(y —7) 5 te—14+y—);
l0<a< i — Biv1 _ 1}.
Y—"
THEOREM 7 Let the sequence of integers B1,Bs,...,Bq be defined as above. Then the
set J = AgUJAgUJByUJA1UJB1U...UJAgU JBq, is a latin interchange in the array
A, when y < c—1.

Proof Let J' be a partial latin square with the same size and shape as J. In J all
the nonempty rows, with the exception of row ¢ — 1 and ¢, contain precisely two entries.
The corresponding rows of J' will contain the same symbols chosen from N but with
their positions interchanged. Now fill the remaining positions of J' with the entries (¢ —
1,054c), (¢ — 1,byicyp), (c — 1,y — L54c—1), (¢, 0590), (¢, by te—14p), (¢, y — 13 dc—04y) for 1 < b <
y — 2. The proof of Theorem 4 can then be used to prove that the columns of J and J' are
mutually balanced and thus that J is a latin interchange. 0

COROLLARY 8 Letr >cand 1 <y < c— 1, where y is the row that contains symbol
ig in column ¢ — 1. Consider the latin interchanges I = AyUByUA; UB1U...UApU Bp,
and J =AyUJAyUJByUJA UJB1 U...UJAg U JBg. Both of these are contained in
A. Let c ={j |y <j <c—1-y} denote a subset of the columns of A. Then J and I do
not intersect in any column j of A if j € 0. Hence, if I intersects column j of A, where
j € o, then J does not.

Proof First note that a; # f1. To see this, note there are two cases: either ay =
y—1,ap =0and B = 0; or, oy < y—1 and By = a1 + 1. In either case, we have
0<ap<yand0< B <y. Hence, c—1—-y<c—1l—aqandc—-1—-y<c—1-—p.
Thus, the entries in column j of I for y < j < ¢ — 1 — 1y, are taken from the set By, and
each column contains precisely two symbols i._1 and ig. The columns used by By in this
range are Yy, 2y,3Y,...,c— 1 —y — ;.

Similarly, in this range, entries for J are taken from the set JBjy. Again each column

contains precisely two entries, i, and ip, and the columns used are 2y — 1,3y —1,...,c—
1—y—pi.
As y > 1, these two sets of columns are disjoint, and the result follows. 0

COROLLARY 9 Letr > ¢, y < ¢ — 1 and suppose that the partial latin square I as
defined above intersects row j of A where y < j < ¢— 1. Then the partial latin square J as
defined above does not intersect I in row j. 0

We now consider the case where y > ¢ — 1. Note that a1 = ¢ — 1 and so the set By is
empty. For this case, we set

1 = c¢—1(mod y—1);
Bi = Bii(mody—1—p1—...—Bi1);



and

JA1 = {(;biiyss), (y = L,bsiy—143) [0 < b < c—1}; and if §1 # 0,

JB; = {(c—1—-aly—1—c+1),aly—1—c+1);ic—1),
(c=1-aly—1—c+1),(a+1)(y —1—c+1);iy_1),

c—1-0

<ag< P2 4
Osas 1Y
IfQ > 2, for 2 << Q, define
JAi = {ly—1—vi—1,e =1 =i ; de—14y—1-3);

(y —1—9-1,c—1; 'ic—1+y—1—’7¢71)}7 and if IBZ 7& /8i+11
JB; = {(Bi—-(y—1=v)a,c—1=Fi+aly—1—7); ic1),
Bi—aly—1—v),c—1-Bi+(@+1)(y—1—%); fe—1ty—1-)
0<ac< Bi—Piv1 1},
y—1—

where v; = 81 + ...+ B;. Again note that if 8; = §;+1 then the set JB; is empty.

THEOREM 10 Let the sequence of integers 31,32, ..., Bq be defined as above. Then the
set J = AgUJAUJBIUJAUJByU...UJAQU JBg, is a latin interchange in the array
A, when y > c— 1.

Proof The proof follows that of the previous theorems. O

COROLLARY 11 Letr > ¢, y > c—1 and consider the latin interchanges I = AygU By U
A1 UBlu...UAPUBP, G,TldJ:AQUJA()UJB()UJAlUJB1U...UJAQUJBQ. Both
of these are contained in A. Let o = {j | c—1 < j <y — 1} denote a subset of the rows of
A. Then if I intersects row j of A, where j € o, then J does not.

Proof The row j is between y — 1 and ¢ — 1 and any such row of J is empty. Hence if 1
intersects row j, c — 1 < j <y — 1, J will not. O

4 The size of a critical set

From Lemma 3, we note that for every order n and each integer a such that ”7_3 <a<n-—2,
the set

S = {51+ j(modn)) [0<i<a0<j<a—1}U
{(i,75i +j(mod n)) |a+2<i<n—-1,n+14+a—-3i<j<n-1},

provides us with an example of a critical set of size a® + 3a + 2 + %nQ — %n — na.

For the remainder of this paper S will denote the set given above.

When a = n — 2, the critical set S is of size ”22_". If n is even and @ = 5 — 1 then the

critical set is of size ”TZ and if n is odd and a = "T*?’ the critical set is of size "24’ L With

7



one exception, it will be shown that for each n there exists a critical set of every size r
where ["TZJ <r< ”ZT”‘ The exception refers to the case where n is even and the size of
the possible critical set is % + 1. To date, a general construction is not known for a critical
set of this size. For n = 4, a critical set of size 5, is known for Cy x C9 and for BCy. For
n = 6, many critical sets exist of size 10 in latin squares other than BCj (see [5]). However,
we observe the following new result.

LEMMA 12 No critical set of size 10 exists for BC.

Proof Utilization of the method by one of the authors in [5], produces all UC sets of size
10. Each of these is found to contain a critical set of size 9, and hence no set of size 10 can
be a critical set. 0

To achieve the main results of this paper, we consider the cases nm even and n odd
separately.

4.1 Even n
In a back circulant latin square of even order the set of elements
n n n n n n
— Z 1= 1 —1-: b Z 1 i 1. =
I {(172 52)’( y 70)3(2 +172 50)5(2 +1,n 152)}

forms an intercalate. Let I} denote the disjoint mate of this intercalate.
Using Lemma 2 we see that (S'\ I2) U I} has unique completion. This fact can be used,
initially (see Lemma 13), to establish the existence of a critical set of size |S| + 2 and then

ultimately to establish critical sets of size ’2—2 +2 to "22_ % — 1 (see Theorem 17). These
critical sets will define latin squares that differ from BC), in columns § — 1 and n — 1.
Therefore, in the proof of the various results, care will be taken to find latin interchanges
which, as necessary, do not intersect columns % — 1 and n — 1. In the proof of Lemma 13
this requirement is not strictly necessary, however it is adhered to as it will simplify the
proof of subsequent results. For clarity, the information necessary to validate that each
of the elements of the relevant partial latin square is necessary for unique completion has
been summarised in a table. Each line of the table lists details which can be used to find
a latin interchange which intersects the partial latin square in the element (i, j; k) alone,
where ¢ and j are in the range given, respectively, in columns 1 and 2 of the table. In most
cases k = i + j(mod n) but if this is not so the specific value of k£ will be given in column
3. To minimize space we have used the notation {z,y} to mean the min{z,y}.

LEMMA 13 Ifn is even, n > 4 and § < a < n —3, the set I, = {(1,5 — 1;5),(1,n —
1;0),(5 +1,% —1;0),(3 + 1,n — 1; %)} forms an intercalate in BC,,. Denote the disjoint
mate of Iy by I;. Then the partial latin square

n n n n n
Co = (S\IQ)U{(1’§ _170)3(5 +1,§ _155)5(5 +1,n_1a0)}

is a critical set in (BCy, \ Io) UI5. The size of Co is |S| + 2.

Proof We first show that C has UC. Consider row 0. Fork =a+1,a+2,...,n—1,

element k& must occur in position (0, k). Next, in row 1, element a + 1 is forced to occur in

(1,a). Then, for k=a+1,a+2,...,n— 2, element £ + 1 must occur in position (1, k).

Then, element 3 is forced to occur in cell (1,n — 1) and so the element (1,7 —1;%) is not

necessary for unique completion and so by Lemma 2 the given set has unique completion.
It will be shown that all remaining elements form a critical set of size |S| + 2.

8



| RANGE OF ¢ | RANGE OF j | COMMENTS
. . Cn . n
a4+ 2ton—1 n+1+a—1to Use' an intercalate on rows i — 5 to 4, columns j — 5
n—1 to j.
Use Theorem 4 on columns j to n — 2, rows % to
n—2—j+14 As i+ j occurs in row i + j + 2 of
0 to j 0 to I_HT_GJ columnn—Q,'y-:-j—l—Zgivingj+yS"Tfl,nand
c—1=n—-2—jgivingy <c—-landn—-2-y > 5-1.
Thus use Corollary 8 to avoid column 7 — 1, if
necessary.
n— 1t Use Theorem 4 on columns j to n — 2, rows ¢ to
0 to {j, a — j} %T2J + © | n—2+i—j. Note column y of A is column 2 +2 >
2 2 41 in BCy, so column % — 1 is not intersected.
Consider the transpose and use Theorem 4 on
columns 2 ton — 1, and rows jton — 14+ 75 — ¢
lto™ —3 0to {i—1,% — | in the transpose. Sincey =i+1,c—1=n—-1—1,
2 3—i} y<c—1,j+y<5—-1<j+c—1 Thus use
Corollary 9 to avoid row 5 —1, and so column § —1
in the original array.
1241 t0 21 %—2—.71 to {i— Use intercalates on rows 4 to ¢ + %, columns j to
1,a — i} J+3-
Consider the transpose and use Theorem 4 on
. columns % to n — 2, rows j to ¢ + 7 + 2, or since
n Oto{i—%,a— . ; .
5 toa ) 2 y=1i+2,c—1=n—-2—-4,y>c—1,j+c—1<
! 5 —1<y—1+j. Thus use Corollary 11 to avoid
row 5 — 1, and so column % — 1 in the transpose.
Consider the transpose and use Theorem 4 on
5o (214 columns 7 to n — 2 — j + (1 — §) and rows j to
2 O—i 1 to |27°] 2 +2j 42 Notethat c—1 =% —2—j and
5a=J y=2+2+jandthat j+c—1<2-1<j+y,
so use Corollary 11 to avoid row 3 — 1.
ne 1t Use Corollary 6 on rows ¢ to i+ j+2 and columns j
g toa—7j ET?} + °lton— 2, since there are no entries in columns j + 1
2 to 2j column % — 1 is avoided.




RANGE OF i | RANGE OF j | COMMENTS

. n Use Theorem 4 on columns j to n — 2, rows ¢ to
Otoa—y 5 toa O
t+J+2.
Oand 2toa— | , Use intercalates on rows 4 and § + 4 with columns
| 2 1 Z_landn-1
2 2 :
n_1q For symbol 0, use Theorem 4 on columns 5 — 1 to
1 2 n — 2, rows 1 to 3.
For symbol 7, use Theorem 4 on columns § — 1 to
n n_q n — 3, rows 5 + 1 to n — 1. It intersects column
2 2 % —1linrows 5 +1and n —1 only. Note for n =6
use column § — 1 to n — 2.
n o q n—1 For symbol 0, use Theorem 4 on columns 5 to n—1,
2 rows ¢ to 5 + 1.
0

In what follows, let Ty[I;] = I; UI; U... U I} and let T} [I;] denote the disjoint mate.

COROLLARY 14 Ifn is even and 5 < a < n—3, the set I; = {(1,5 —1; 5 —1+14), (i,n—
Li—1),(3+4,5-Li-1),(3 +in—-1%+i-1)}, fori=1,...,a— % +1, forms an
intercalate in BCy,. Denote the disjoint mate of I; by I, Then for 1 <k <a— 2 +1, the
partial latin square

Co, = (S\Tk[IZ]) U T]é[Ii\(’L‘,’n— 1,6 — 1)]
is a critical set in (BCy \ Ty[L;]) U T{[I;]. The size of Coy, is |S| + 2k.

Proof The proof of UC follows the argument given in the proof of Lemma 13. We now
show that all elements are necessary.
The necessity of the elements in S\ Tj[I;] follows from Lemma 13.

RANGE OF ¢ | RANGE OF j | COMMENTS |

For symbol 7 — 1, use Theorem 4, (or Corollary 5, if

ltoa—5+1 | §—1 i > 32) on columns 2—1ton—1—4 (2—1+i+5+1)
rows i to 3.
For symbol i — 1, use Theorem 4 (or Corollary 5, if
gtltoa+1 | 51 i > 2 —2)on columns % —1 to 3 ——2, and rows

1ton—1.
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| RANGE OF ¢ | RANGE OF j | COMMENTS

For symbol 7 — 5 — 1, use Corollary 6 on rows 3 to

24+1 1 — .
g tltoat n—1 i, and columns 3 to n — 1.

0

Similar arguments can be used to verify the following theorem.

LEMMA 15 Ifn is even the set J3 ={(a+2—-5,5 —L;a+1),(a+2-5,n—1;a— 5+
1),(a+2,5 16— 5+1),(a+2,n—1;a+1)} forms an intercalate in BCy,. Denote the
disjoint mate of Js by Ji. Then partial latin square

CgZ(S\Jg,)UJé
is a critical set in (BCy \ J3) U J5. The size of Cs is |S| + 3.
Proof Unique completion follows directly from Lemma 2. A similar argument to that

used in the proof of Lemma 13 can be used to verify that each of the elements of the set
S\ J3 is necessary for UC. (For full details see [4].) 0

COROLLARY 16 Ifn is even the set I; = {(i, 5 —1; 8 —1414), ({,n—1;i—1), (5 +14, 5 —
Li—-1),(5+in-15-1 -I—z)} fori=1,...,a—%+1, forms an intercalate in BC,, as
does the set J3 :{(a—I—Z 2,5 —La+1),(a+2-%n—-1la-%5+1),(a+2,2-1;a—
24+1),(a+2,n—1;a+1)}. Denote the disjoint mate of I; by I} and the disjoint mate of
Js by J. Then for k=1,...,a — % + 1, the partial latin square

Corss = (S\ (Js UTKIL)) U T\ (6,0 — 136 — 1)]U T4

is a critical set in (BCp \ (J3 U Ti[L;]) U Ty[I}] U J5. The size of Coxy3 is |S| + 2k + 3.
(Note, for a =n — 3, the range for k is restricted to 1 <k <a—%).

THEOREM 17 When n is even, n > 4, there exists a critical set of order n and size
2 2_
se{n i pon 3. nmon_qniony

Proof Let n be an even number and fix a such that § —1 <a <n — 2. From Lemma 3
there exists a critical set of size a® + 3a + 2 + n — %n —na. If a is restricted to the range
5 —1<a<n—3. Corollary 14 provides examples of critical sets of sizes

1
a2+3a+2+—n2—gn—na+a,

where a € {2,4,...,2(a — 5—[—1)} Note that a? +3a+2+3n2—3n—na+2(a— 2 +1) =
(a +1)2 4+ 3(a + 1) + 2+ 30?2 —3n—n(a+1) -2 L1kew1se if we restrict a to the range
% _1<a<n-3,Lemma 15 provides a critical set of size a® + 3a + 2+ n — %n na+ 3.
Slmllarly, when a satisfies 5 < a < n — 4, Corollary 16 proves the ex1stence of critical sets
of sizes

1
a2+3a+2+§n2—gn—na+a,

where a € {5,7,...,2(a — )+32( ———|—1)+3} Note that a? + 3a + 2 + n—%n—

na—|—2(a——)—|—3—(a+1 +3(a+1)+2+4n%—3n— (a+1)—1anda +3a+2+

n?—3n—na+2(a—2+1)+3=(a+1)? +3(a+1)+2+ n?—3n—n(a+1)+1.
Finally, for a = n — 3, there are critical sets of size n? 23" + 2 + 5, ”53" + 247,

nzfn

vwl@

.., 5" — 1. Thus, all values in the range %2, cees "25” with the exception of "4—2 + 1 are

covered. O
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4.2 0Odd n

In a back circulant latin square of odd order the set of elements

n—3 n—3 n+1 n—3
I, = —_— —1;n—-1 —:n—-1
2 {(Oa 2 ) 2 ),(O,Tb n )7( 2 ) 2 yn )a
1 -3
(Pa=on =% " 5), n = 2 = 24 4), (o — L~ 144),
n—1
,=1,...
|7' 7 ? 2 }

forms a latin interchange. The partial latin square I5 = {(0, 253;n—1), (0,n—1; %52), (i,n—
25n —1+1), (5,n — lyn — 2+14), (B, 258, 028y (il oy 2 —1) |3 =1,..., %1} forms
a disjoint mate of Is.

Using Lemma 2 we see that (S\ I2) U I5 has unique completion and this fact can be used

initially (see Lemma 18), to establish the existence of a critical set of size |S| + 2 and then

ultimately to establish critical sets of size "24_ Li1to "22_ % —1 when n > 11 (see Theorem
30). (Note that the existence of critical sets of this size, for n < 10, has been established
by Donovan in [6].) These critical sets will define latin squares which differ from BC,, in

columns ”Tg, n — 2 and n — 1. Therefore, in the proof of the various results, care will be

taken to find latin interchanges which, as necessary, do not intersect columns "Tf?’, n — 2
and n — 1. In the proof of Lemma 18 this requirement is not strictly necessary, however
it is adhered to as it will simplify the proof of subsequent results. Once again for clarity,
the information necessary to validate that each of the elements of the relevant partial latin
square is necessary for unique completion, has been summarised in a table. To minimize
space we have used the notation {z,y} to mean the min{z,y}.

LEMMA 18 Ifn > 11 is odd and "T_?’ <a<n-—4, the set

n—3 n—3 n+1 n—3
I2 - {(07 9 5 2 )(On n_l)a( 9 ' 9 777'_1)1
1 -3
(n; 2 5 ——),(,n—2;n—2414),(i,n — L;n —1+1),
n—1
i=1,...
|Z 7 7 2 }

forms a latin interchange in BC,. Denote the disjoint mate of I by I;. Then the partial
latin square

n—3 n+1l n—-3 n—3, n+1
02—(S\IZ)U{(07T’”’_1)’( 92 ’ 9 ) 9 )’( 9 ,n_Qan_l)}

is a critical set in (BCy, \ Io) UI5. The size of Co is |S| + 2.

Proof We first show that Cy has UC. The partial latin square Cs, is a subset of (S\ Io) UI),
therefore if it is shown that C has UC to (S \ I2) U I3, then UC to (BC,, \ I) U I} follows
from Lemma 2. For 7 = a+ 1 to n — 2 symbol 7 must occur in cell (0,7) and thus "T_?’ must
occur in column n — 1 of row 0. For ¢ = a+ 1 down to ”+1 symbol 7 — 1 must occur in cell
(i,n — 1). Similarly for i = a + 2 down to %2 symbol z -2 must occur in cell (i,n — 2).
Cell (%, n — 2) already contains the symbol n — 1 and so for 7 = %= down to 1 symbol

~1
i — 1 must occur in cell (i,n — 2). This completes column n — 2. Next for i = 251 down to

12



2 symbol i — 2 must occur in cell (i,n — 1). It is then clear that symbol n — 1 must occur
1). Thus, any latin square which contains the partial latin square Cy must

in cell (1,n

also contain (S'\ Iz) U I}. Finally since (S'\ I2) U I} has UC, C; has UC.

Next it will be shown that each of the entries of Cs are necessary for unique completion

and hence that Cs is a critical set of size |S| + 2.

l RANGE OF i

| RANGE OF jj

| COMMENTS

n+1
2

n—1

Ifa= 3 use Theorem 4 on columns 5 ton—1,

rows 2 to ot

a+2ton—1

Use an intercalate on rows 7 — "Tfl and %, columns
”T_?’ and n — 1.

a+3ton—1

If n = 1(mod 4) use the latin interchange K;
listed in the Appendix and if n = 3 (mod 4), use
K, given in the Appendix.

at+4ton—1

n+1l4+a—1to
n—3

Use Theorem 4 or Corollary 6 on rows 0 to 1,
columns a + 1 to j.

0toy

0 to [272]

Use Theorem 4 on columns j to n — 3, rows ¢ to
n—3—j+14 Sincec—1=n—-3—-j5,y=35+3
and y < c—1 it follows that y + 5 < ”T_3 and
jte—1—y>122=2

, for n > 9, so Corollary 8 can
be used to avoid column ”T if necessary.

1to [57]

Otoz—1

Take the transpose and use Theorem 4 on columns
1 ton — 3 and rows j to 1 +j + 3 in the transpose.
Since 7 < |_ J j+y <22 and Corollary 9 will

avoid row "5 3 and hence column ; if necessary.

_7 .
OtOnT— .

Use Theorem 4 on columns j to n — 3, rows ¢ to
n—3—j+i. Sincey <c—1and?2j+3> 73
column "5* 3 is not intersected.

0 to 257 —

Take the transpose and use Theorem 4 on columns
tton—1,rows jton+j—4—1, orsince j+y <
”T_?’ < j 4 ¢ —1 use Corollary 9 to avoid row 23;

2
and thus column ”7_3 in the original array.
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RANGE OF ¢

RANGE OF j

| COMMENTS

—5
].tOnT

3
o

to

SN

-1
—7

{Taa_i}

Use a latin interchange isotopic to Is.

7
ot

If n 3(mod4), use the latin interchange Kj
given in the Appendix and if n = 1(mod 4) use the
latin interchange K, given in the Appendix.

Take latin interchanges isotopic to K3 and Ky

”T_?’ n_93 (shifted right by one column) thus using rows
"T_?’, n — 3,n — 2, and take the transpose.
n—9 Take latin interchanges isotopic to K3 and K4 on
n—1 0 to 5 20— n—1
S n-9) columns “5=,n — 2,n — 1, and take the transpose
2 as per the previous row of this table.
"T_?’ "7_7 If @ > n — 5, use a latin interchange isotopic to Is.
”7*1 ”7*7 Use K5 given in the Appendix.
If a = n—4 and n = 3(mod 4), use K; given in the
"T_?’ "T_‘L” Appendix, and if a =n — 4 and n = 1(mod 4), use
K7 given in the Appendix.
Consider the transpose and use Theorem 4 on
columns % to n — 2, rows j to 2 + j + 2, or since
n+l 0 to ; : : n—3
= toa ntl y=1+2,c—=1l=n—-2—4,y>c—1,j+c—-1 <35>,

andy—1+4+j > ”Tf?’, use Corollary 11 to avoid row

73 and so column "T*?’ in the original array.

2

n+1 n+1
L= to {5 +

Take the transpose and use Theorem 4 or Corollary

. , 1to |22] ) : TR
j—1la—j} 11 on columns i to n — 2 — 7, rows j to ¢ + 25 + 2.
_ Use Corollary 6 on rows 4 to i+ j 4+ 3, columns j to
n+1 . n—J +1toa— . . n—3
P toa—j nid n—3. Notec—1=j+3and y+c—1=2j+3 > *5=

so there is no intersection with column ”T_?’
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RANGE OF i | RANGE OF j | COMMENTS

1to n—3 n—3 Use an intercalate on columns —"53 and n — 2, rows
a— 5= o= ) .
2 2 i and 4 + 2L
Otoa—j "T_l to a Use Theorem 4 on columns j to n — 3.
For symbol n — 1, use Theorem 4 on rows 0 to
0 n—3 23 columns 232 to n — 3. This latin interchange
intersects column ”T_?’ in rows 0 and ”T_?’ only.
For symbol 253, use Theorem 4 on rows “f! to
ntl n=3 n—2, columns 252 to n—4. This latin interchange
intersects column ”7_3 in rows "TH and n — 2 only.
ntl For symbol n— 1, use Corollary 6 on rows 2 to "TH,
2 n — 2 n—1
and columns “5= to n — 2.
0

LEMMA 19 Take Iy and Cy as in Lemma 18. Then if n > 11 is odd and a =n — 3, Co
is a critical set in (BCy \ Iz) U I,. The size of Cy is |S| + 2.

Proof The proof follows that of Lemma 18 with a few small exceptions. (For full details
see [4].) 0

LEMMA 20 When n, n > 11, is odd, and ”T“ <a < n—4, critical sets exist of order n
and sizes |S| + 4.

Proof Let

n—3 n—3 n—3 n—3
- - . = —1:a—
2 ) 2 ’a)’(a 2 7n ?a

-3 -3
(a+1, 75 a— === =2),(a+1Ln - La)}

2

Jo = {(a-

It will be shown that the partial latin square

Cy = (S\I2)\ (J2) U
{(O’nT—?);n_1)’(n-2|-1’n;3;n;3)’(n-2i-1

-3 -3 -3 -3 -3
{(a—n2 ’n2 ;a—n2 —2),(a—|—1,n2 ;a),(a—l—l,n—l;a—n2 -2)}

,nm—2n—1)} U

is a critical set.
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Considering column n — 1. In the completion of Cy the symbol a must be placed in row
a — 2. Tt is now immediate from Theorem 18 and the UC of C5 that this partial latin
square has UcC.

Proof that element (z,y;2z) € (S\ I2) \ J2, is necessary for UC follows from Theorem
18, as in each relevant case, a latin interchange was produced that did not intersect column
"T_?’, n—2orn—1.

The necessity of elements (0, 253;n — 1), (25, 223, 23) (2l 'y — 2:p — 1) follows as
in the proof that Cy is a critical set.

The elements (a — 252,220 — 223 —2) (a+1,%5%;4a), (e +1,n — 1;a — 252 — 2)} can
be dealt with individually. For details see [4]. 0

M‘

LEMMA 21 Forn > 11 odd, and a =n — 3, there ezists a critical set of size |S| + 4.

Proof Take the partial latin square given below:
n+1 n-3 n—-3, n+1l
Ci = (S\L)\{(n—1n—-1n—-2)} U{( 5 g
n—1n-3 n-5 ,n-1 n—3

-5
(n—1,n— 172}

For UC, note that for row 0 symbol n — 2 must occur in column n — 2, symbol ”; must
occur in column n — 1 and hence symbol n — 1 must occur in column 2 3 . Thus UC follows
from Lemma 2.

The necessity of most elements follows that of the Lemma 19. For details of a few
exceptions see [4]. 0

We note that for 2 < i < a— ”7_3 the position (3, ”T_?’) occurs in the following intercalate:

n—3_i+n—3
2 2
-1 n-3 -1 -3

(z'—I—n2 ’n2 i —2), (z+n n—l;i—}—n )}

Further, let Tj;[H;] = Ho U Hy U ... U Hy, where 2 < k < a — %53, Denote the disjoint
mate of this latin interchange by T} [H;].

COROLLARY 22 Formn,n > 11, odd and "T‘H <a<n—4, the partial latin square

Cor = (S\ D) \Te[H] UTi[H;\ {(i,n - 1;i = 2)}] U

n—3 n+1 n—-3 n—-3, n+1
{(O,T;n_l)a( 2 ) ) ; 9 )a( 9

H; = {(Za ),(i,n—l;i—?),

n—2;n—1)}

is a critical set of size |S|+ 2k, for 2<k<a— ”T_3

Proof For UC, consider row 0, for e = a + 1 up to n — 2 symbol e must occur in column

e, and hence symbol "_3 must occur in column n — 1. In column n — 1, k < a— T’ for

e = a down to "5* Sy —|— 1, symbol e must occur in row e + 1, and symbol 25= in row "+1
In addition, for e equal to 2 3 + k down to "—H , symbol e must occur in row e— % and
UC follows from Lemma 2.

For elements in (S\ Ib) \ Tx[H;], and {(0, %53;n— 1), (242, 253, 253), (2 n—2;n—1)}
the proof for Lemma 18 provides a latin 1nterchange which meets the necessary require-

ments.
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RANGE OF i | RANGE OF j | COMMENTS

n—3 For symbol 7 — 2, use either Theorem 4 or Corollary
2 to k 5 n—3 3
2 .
"T_l + 2 to]| ,_3 For symbol ¢+ 1, use either Theorem 4 or Corollary
”T_l-l—k 2 5 on rows i to n — 2, columns 252 to n — 2.
"T_l + 2 to 1 For symbol i — "—+3 , Corollary 6 on rows "T_l to 1
nlik n (or rows %52 to z) and columns “to n — 1.
0

LEMMA 23 When n, n > 11, is odd and a = n — 3 there exists a critical set of size
IS| +1+2(k—2) for 3 <k <23,

Proof For 3 <k < ”773, and ¢ = n — 3 it will be shown that the partial latin square

n—l—ln 3_n—3) (n+1
2 7 2 7Y 2

(S\ 12) \ Ty [Hi] UA{(
TilHi \ {(i,n - 1;i — 2)}]

is a critical set.

For UC, observe the following. If the completion of this partial latin square does not con-
tain entry (0, 252;n—1) then it must contain the entries (0, 25%; n—2), (0,n—2; 252), (0,n—
Iin—1),(1,n—3;n-1),(1,n—2;n-2),(1,n—1;0),(2,n—4;n—1),(2,n—3;n — 2) (2,n—
2;0), (2,n — 1;1). However symbol 1 already occurs in cell (%2 +1,n — 1) and so we have

a contradiction. Thus any completion of this partial latin square must contain the entry

,m—2n—1} U

(0, %2;n —1).

Now consider column n — 1. For e = n — 3 down to ”T_l + k, symbol e must occur in
row e + 1. Then 2 must occur in row 243 and n=l ntl Then for e = k + 252
down to ""’3 symbol e must occur in row e — 22 Now ucC follows as in previous results

The necess1ty of the elements follows as in prev10us results except in a small number of
cases and details of these cases can be found in [4]. 0

COROLLARY 24 For n, n > 11, odd and a = n — 3 there ezists critical sets of sizes
IS|+4+2(k—2) for3<k <22

Proof Fora=n—-3and 3 <k < Ts the partial latin square:

n—i—l n— 3.n—3

Cor = ((S\L)\Ti[H]) \{(n —1,n —1;n - 2)} U{( 5 )
(a2 = 2m = 1) U T{H\ {(n = 15i ~ 2))] u{("‘l,";?’,”f),
n—1 n—3 -9
( 2 ,n—1,n—2),(n—I,T,n—2),(n—1,n—1 9 )}

is a critical set of the required size. 0
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LEMMA 25 Forn, n > 11, odd and ”Tf?’ < a <n—4, there exists a critical set of order

n and size |S| + 5 and when ”;1 < a <n—>5 there exists a critical set of order n and size

|S]+ 8.

Proof Let "T_?’ <a<n-—4and

2 2
It will be shown that the partial latin square

Dy = (S\E)\I U {(0,2=2n—1),

n+1 n—-3 n—-3, n+1 n-—1
. —2n—=1
e e G T ) VR (e

—1 -3 -5
- Lin—2),(n— 1" —2),(n - Ln— 15

is a critical set.

Lemma, 2 and the proof of Lemma 18 can be used to show that this partial latin square
has UC.

The necessity of elements of (S \ I») \ Is and (0, 25%;n — 1), (232, 253, 3 (ntl oy
2;n — 1) follows as in the proof of Lemma 18 and for all remaining elements see [4]. 0

Let an < a <n —5 and consider the partial latin square:

n—3 n—3 n—3
2 +1, 5 ,a+1),(a—T+1,n—1,a—
3 n—3

n—
2 .
(a + 2, 5 ja — 5

It will be shown that the partial latin square
Cs = (S\L)\I3)\J3 U
n—3 n+l n-3 n-3 n+1l
{(O,T,n—l),( 5 g g ), ( 5 ,n—2;n—1)} U

n—1 n—3.n—5 n—1

Js = {(a—

—1),(a+2,n—1;a+1)}

{( 9 9 ' 9 )7( 9 7n_1;n_2)7
n—3 n—2>5
(n— I,T;n—2),(n— 1,n— I;T)} U
-3 -3 -3 -3
{a- "S-+, 550 - o=~ 1), (e - "=+ 1Ln—-La+1),
2 2 2
-3 -3
(a+2 "5 "ia+1),(@+2n—La- " -1)}
is a critical set.
The proof that Cs is a critical set follows as above. (For full details see [4].) O

COROLLARY 26 For n > 11 odd and "T_?’ < a < n—4, there exists a critical set of
order n and size |S|+5+2(k — 1), where 2 < k < a— 252 and when 251 < a < n—5 there
exists a critical set of order n and size |S| + 8 4+ 2(k — 1), where 2 < k < a — %32,
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The following corollary is necessary to prove the existence of a critical set of size |S|+1
when a = n — 3 and can be proved by using latin interchanges I, J3, D5 and Hy3 U Hn-7.
2

COROLLARY 27 For n > 11 odd and a = n — 4, there exists a critical set of order n
and size |S| + 8 +2(%52 —1).

LEMMA 28 Forn, n > 11, odd there exists a critical set of size "ZTf" —2.

Proof It will be verified that the partial latin square

S = ({G, j,z—l-j(modn)) [0<i<n—-20<j<n—-2—i}\{(0,n—2;n—2),
(1,7L 2) ( - 5,1;7L _4)7(77’ _4a0;n _4)1(”’ - 3,0;7L - 3)}) U
{(n—2 n—2 n—4),(n—1,n-3,n—-4),(n—1,n—2,n—3)}
is a critical set.

To verify UC we note that if symbol n — 2 is to occur in row n — 1 it must occur in
column n — 1. Similarly if symbol n — 3 is to occur in row n — 2 it must occur in column
n — 1. Now symbol n — 3 occurs n — 1 times in the partial latin square hence a completion
must have symbol n — 3 in cell (n — 3,0) and it follows that if symbol n — 4 is to occur in
row 1 — 2 it must occur in column n — 1. Now UC can be obtained from the UC of S when
a=n-—>5.

The necessity, for UC, of each of the elements of the above partial latin square follows
as in previous argument. See [4] for full details. 0

LEMMA 29 Forn, n > 11, odd there exists a critical set of size "22_" -1
Proof It will be verified that the partial latin square

S = ({(injsi+i(modn)) [0<i<n-20<j<n—2i)
\{(0,n —2;n —2),(n —3,0;n —3)} U
{(n—1,n—-2,n—-3)}

is a critical set.

The proof of UC is straight forward and the proof that each of the elements is necessary
for UC follows that of previous results, with the exception of entry ((n—2,0;n—2). However
the following latin interchanges verifies the necessity of this element. {(i,n —2;n — 2 +
i), (1,n—1;n—1+14), (n—2,4;n—2+1), (n—1,3;n—141), (n—2,n—2;n—4), (n—1,n—1;n—2) |
i=0,...,n—3}. 0

THEOREM 30 Critical sets exist of all sizes between ”24_1 and ”22_” for odd values of
n, n > 11.

Proof From Lemma 3 there exists a critical set of size a? + 3a + 2 + n — %n — na which

we will denote by |S,|. Note that |S,+1| = |Sal = 2a —I— 4 —n. We now show that critical

sets exist for every size between |S,| and |S, 11| for %53 < a < n — 3 First, for a= "33
|Sq| = = |Sg+1|- Thus the result is true for a = 252, For a = %+, Lemma
18 w1th a= pr0v1des a critical set of siz = |Sn1 noi |+ 1 Then using Lemma 18
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with @ = 251 provides a critical set of size n’~1 4 3. Then [Snt1]| = "24*1 + 4 so the result
2

2
holds for a = ”T_l A critical set of size ”24_ L 4 5 is provided by Lemma 25, using a = ”7_3;
and a critical set of size "247 L 1 6 is provided by Lemma 25 using a = ”T*I A critical set of
size "2; Ly7= |S nt1 + 3 is provided in the Appendix. Lemma 20 with a = "T“ provides
a critical set of size =1 + 8 = |Suga| + 4. Finally |Suss| = W=l 1 9. A critical set of
size |Snt3| + 1 is provided in the Appendix, and one of size |Sx»+3| + 3 by Lemma 25 with
a=ngL, 2

We will now generalise the proof of existence for < a < n — 4 using the results
provided in Lemma 18 through to Corollary 26.

For "TH <a <n -4, Lemmas 18 and 20 and Corollary 22 provide critical sets of sizes
{1Sal +2,[Sal +4,- .., Sat1] = 3,[Sat1| — 1}. For 2 < @ < n—4, Lemma 25 and Corollary
26 and Corollary 22 provide critical sets of sizes {|S,|+5, [Sa|+7, .., |Sat1]|—4,|Sa+1|—2}.
Then for "T’L?’ <a <n -5, Lemma 25 and and Corollary 26 provide the additional sizes of
{|Sa+1|+1,|Sa+1| + 3} and these then provide critical sets of sizes |S,| + 1 and |S,| + 3 for
”T’L‘r’ <a<n-—4

We have now produced critical sets of all sizes between |S n74,| and |Sy,—3|. It remains to

n+3
2

fill in those os sizes between |S,,_3| and |S,_2|.

Corollary 27 provides us with a critical set of size |S,_3|+1 = "2; " —n+3. Lemmas 19,
21 and Corollary 24 provided critical sets of sizes {|S,—3| + 2, |Sn—3| +4,...,|Sn—3| +n —
5,|Sp—2| — 3}. Lemma 23 provides critical sets of sizes {|Sp—3| + 3, |Sn—3| +5,...,|Sn—3| +
n — 6,]Sp—2| —4}. Lemmas 28, 29 provided critical sets of sizes {|Sp—3| — 2,|Sp—2| — 1}
respectively.

At this point all cases have been verified.
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Appendix

Kl_{(Z_nTil?n%fg_Z)a Z_T%lan 3az+”%)a (i_%a 1_231_}'”7_1)}}{{(7’_"7714_
2k,m —3 —2k;i+"5°), (1 — "= +2k,n—3—-2(k—-1);i+ ") [ 1<k < P2}

K2: (_%,%;1_2)az_ngl,n 3’,L+n_—5),(z_nT—1n_2’z+n%),(,l 2,n_—5_|_
20 + 133), i—2,"55+3,z+"?_3), (i — 1,25 + 250 + 32), (i — 1,7%5° + 34 + 71),
(i, 25255+ 255), (4, %55 + 254+ 257) } U{(i — 252 + 2k, n — 3 — 2k; 4+ 250), (i — 25% + 2k, n—
3-2k—-1)i+2) [1<k<23 -1}

K3 ={(i, 552; 52 i), (zn n—3+i)} Ui(z, §5+22;"T_:+m+2z)1|3:.:”T_1+i,5%3.+
0,0 <z < 33 U{(%5 BT a), (B i, n— 4 25T 44), (B 4 i, n - 3250 4 4)}
K4:{(i,”;5,”7_5 7 (zn 3n— 37—H)}U{(alc 2'—F2 Ti+@+2z)1\:c':"7—1+i,5"73.+
i,0 <z <22} U{(%5 Liin—327149), (m +z,n—4;"%+z),(%+z,n—3;"; +1),
(M3 +i,n — 4,252 +4)}

R - 2 2 7 2T 2 2 12 N2

3; 250), (n— 1,555 150), (n— 1,n — 3y — 4), (B +24,m — 6 — 23 5510, (S5 + 20,n — 4 —
26;257) |i=0...,%77}

K7 ={(%5%, %52 n = 4), (%52, n = 3; 252), (%52, n = 4 251), (n — Lin = 3in —4), (%52, m
5; n—ll)’(ngl,n_4; ";9),(”51,71—3; n57’ n;l +2i,n —5— 2i; nall)’("T*l +2i,n—3—
26 757), (n — 1,755 5T, [ i = 0., °F")

Ko ={(25%, 555 n —4), (%52, n - 1 250), (n =3, 252 + 25 251 + 295) [y = 1., =2} U
(n—1,255 4+ 255257 4+ 25) |y =0..., 255}

A CRITICAL SET OF SIZE |S| + 3 when a = 2. Begin by ta,klng Co, for a = 253
and take the partial latin square Cy \ {(%52,n — 2; 251), (242, n — 2; 2H) U {(0,n — 2, n—
n—1 —

2 ’ 27
2)7(17 n23,0)’( ’73;1)’(n42>3’n7%’);;),(n+5 n23.n+1)’(n42>3,,n_2;0)’(n_42>5’n_2;1)}_

2
A CRITICAL SET OF SIZE [S| + 1 when a = 22, Begin by taking Cs, for a = %
and take the partial latin square C \ {(1, 252; 251), (2, 253; 2L YU {(1, 2525 0), (2, 252; 1),
5

2
(252, 2535 ng ), (42, 25 2, (42, n — 2;0), (252, —2;1)}-

§u
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