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ABSTRACT

In a paper in 1992, Drapal addressed the question of how far apart the
multiplication tables of two groups can be? In this paper we continue this
investigation; in particular we study the interaction between partial equalities

in the multiplication tables of the two groups and their subgroup structure.
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1 Introduction

In 1958 Fuchs [4] posed two problems about the distance between the multiplication
tables of two groups.

In order to explain these questions we define a Cayley matrix.

DEFINITION 1.1 A matrix (a;j), where {a;; | 1 < i,7 < n} ={1,...,n} is a
Cayley matriz if it is a Latin square which satisfies the quadrangle criterion; that is,
for all indices %, %1, 7, 71, k, k1, (, 1, it follows from the equations a;x = a; 1, , tir = @ik,

a1 = A4y, that Aj1 = Qi1 -

Such a matrix can be associated with a group by choosing an arbitrary row and an
arbitrary column to correspond to the identity of the group and then using these as
the headline and sideline to form a multiplication table.

Using this definition we can reword Fuchs’ problems as follows.

For a positive integer n, determine the largest integers k;(n) and ko(n) such

that, for all groups G of order n,
(a) if k1(n) elements are deleted at random from a Cayley matrix of G, then
the rest of the Cayley matrix determines GG up to isomorphism, and

(b) if ko(n) elements are deleted at random from a Cayley matrix of G, then

the Cayley matrix can be reconstructed uniquely from its remaining part.

Since the deletion of two rows (or two columns) of a Cayley matrix would allow their

interchange in any reconstruction, ko(n) < 2n—1. Dénes [2, Lemmas 2 and 3 and



Theorem 1] proved that for n # 4,6, ka(n) = 2n — 1, (and is independent of the
group). He also [2, Theorem 2] showed that k;(4) = ko(4) = 3. Dénes’s results
could also be regarded as saying that the minimum distance between two Cayley
matrices of order n is 2n.

Drépal [3] considered a slightly more restrictive case, where the matrix is taken
to be a multiplication table of a group with a fixed headline and sideline. He [3,
Theorem 6.2] showed that the minimal distance between the multiplication tables
of groups (G, o) and (G, *), of order n > 51, is y((G, 0)), where d¢((G,0)) is 6n — 18
if n is odd, 6n — 20 if (G, o) is dihedral of twice odd order n, and 6n — 24 in all other
cases. Moreover, he showed that for each (G, o) there exists a group (G, *) such that
the two multiplication tables differ in exactly dy((G, o)) entries. Drépal also showed
[3, Theorem 6.2] that the multiplication tables of non-isomorphic groups must differ
in at least n?/9 entries. He conjectured that since there are no known examples of
non-isomorphic groups of order n with multiplication tables which differ in less than
n?/4 entries, that this bound may be improved to n?/4.

The aim of this paper is to investigate the influence that the subgroup structure
of a group has on the structure of its multiplication table.

To be more precise, suppose that (G,0) and (G, ) are distinct groups based on
the same carrier set G of order n, say. Choose two (not necessarily distinct) orderings
of the elements of G and consider the multiplication tables L and L* for (G, o) and
(G, ) respectively, obtained by using the elements of G in the first ordering on the
headlines of both L and L* and in the second ordering on the sidelines of both L and

L*. Thus L and L* are n X n arrays with rows and columns indexed by G (in the
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chosen orderings) such that, for g, ¢’ € G, the (g, ¢')-entry is go ¢’ in L and g * ¢’ in
L*. We shall consider certain square subarrays of order m of the multiplication tables
L and L*, by which we mean subarrays indexed by some m—element subsets of the
rows and columns (the rows and columns may be indexed by different subsets of G).

In Section 2 we assume equality of certain collections of entries of L and L* and
conduct a preliminary study of the influence of the subgroup structure of (G, o) on
the subgroup structure of (G, *). We begin this section with a result (Lemma 2.2)
that shows that, if (H, o) is a subgroup of (G, o) of index 7, and if L and L* agree on
a subarray indexed by the rows of H and the columns of some right coset H o x (or
on a subarray indexed by the rows of some left coset y o H and the columns of H)
then (H,«) is a subgroup of (G, *) and the multiplication tables of (H, o) and (H, *)
are identical. We also show (Theorem 2.5) that, under certain conditions, if L and
L* agree on two particular subarrays and in one entry of a certain third subarray,
then they agree in every entry of this subarray. This section also contains two results
(Corollary 2.3 and Lemma 2.4) concerning the number of equal entries of L and L*
under certain extra conditions.

In Section 3 we continue our investigation of the relations between the subgroup
structures of (G,0) and (G, x). We assume that the conclusions of Lemma 2.2 hold
so that H is a subgroup of both (G, o) and (G, *) such that the multiplication tables
of (H,o) and (H,«) are identical. We assume in addition that, for some z,y € G,
yoHox =yx*H xz (as sets), thus determining a bijection ¢, : H — H defined by
yohox =y (h)py, xx for h € H. First we show (Theorem 3.3) that L and L* agree
on a subarray indexed by the rows of some left coset y o H and the columns of some
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right coset H oz if and only if ¢,, is defined and ¢, = ¢1, = ¢,1 is an isomorphism
from (H,o) to (H, ), and moreover if either z or y lies in H then ¢y, is the identity
map.

There are many other questions one could ask about the relationship between
properties which are common to the two groups (G, o) and (G, *) and equalities of
entries of certain subarrays of the multiplication tables L and L*. Some of these are

posed and discussed in Section 4.

2 Group Identities and subgroups

Let (G,0) and (G, *) be groups of order n, and let £° and L* be the corresponding
collections of multiplication tables, obtained from all possible reorderings of the rows
and columns of given multiplication tables for (G, o) and (G, ), respectively.

Since we assume that the carrier set G is the same for the two groups, the set of
rows, and the set of columns, of any element of £° or £* will be indexed by . Thus,
for g, ' € G, we shall speak of the entry in row g and column ¢’ in one of these squares
as its (g, ¢')-entry. We shall call L* € L* the element of L* corresponding to L € L°
if L* has the same headline and sideline as L. We shall specify the orderings of the
rows or columns only when it will be helpful for the discussion. It will be helpful to
have such an order specified when we wish to focus on, say, some subgroup (H, o) of

(G, 0) and its effect on the structure of squares in £°.

DEFINITION 2.1 Suppose that (H, o) is a subgroup of (G, o) of index . We define
a canonical element L(G, o, H) of L° corresponding to H as follows.
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(i) Choose an ordering of H, say hy = e, ho,...,hy,, where e is the identity of

(G,0), and n = mr.

(ii) Choose orderings of the right cosets and the left cosets of H in G;
Hoxy,Hoxy,...,Hoxz,,and y,0H,yo0H,...,y.0 H, where £, = y; = e,

and set x = (z1,...,2,) and y = (Y1,.--,¥p)-

(iii) Define L(G,o, H) to be the multiplication table of G with respect to indexing
the rows by 910 hy,...,410 hy, Y20 hi,...,y-0 hy, and the columns by

hioxy,...,hpoxi,hi0oZo,..., hyox,.

Let L(H) denote the multiplication table of (H, o) with respect to the ordering of (i).
Then the rows of L(G, o, H) are partitioned according to the partition of G into left
cosets of H, and the columns of L(G, o, H) are partitioned according to the partition
of G into right cosets of H; the square subarray, which is also a Latin subsquare,
corresponding to the rows of y; o H and the columns of H o z; is y; o L(H) o z;.
We shall call this decomposition of L(G, o, H) into the subsquares y; o H o x;, where
1 < 14,5 < r, the canonical coset decomposition corresponding to H. It depends on

the orderings chosen in Definition 2.1 (i) and (ii).

It is obvious that if e, e, are the identities of (G, o) and (G, x) respectively, then

either e = e,,orforallg € G, g #exg,gxe,e,ogor goe,.

LEMMA 2.2 Let (H,o) be a subgroup of (G,0) of index r > 1, and suppose that
the element L* € L* corresponding to L(G,o, H) agrees with L(G,o, H) in at least

one of the Latin subsquares of the form y; o L(H) or L(H) o x;, for some 1 <i <r.



Then e = e, (H,*) is a subgroup of (G, *), and moreover the multiplication tables of

(H,o) and (H,*) are identical.

Proof. Suppose that there is a subsquare L(H) o z; which agrees everywhere with
the corresponding rows and columns of L*. (The proof in the other case is similar.)
Then by the preceeding remark it follows that e = e,. Also, for all h,h' € H, the
(h,h' o x;) entries in the two multiplication tables are equal by assumption, so we
have h * (h' o z;) = ho (h' ox;), and in particular h * z; = hox; for all h € H.
Thus we have that for all h, h' € H: (hoh')xz; = (hoh') ox; which by associativity
equals ho (b ox;) = hx(h' ox;) = hx (h'*x;) which by associativity (of % this time)
equals (h * h') * z;. Then, multiplying in (G, *) on the right by the inverse z; of zj,
we obtain h o h' = h* h'. Tt follows that (H,x*) is a subgroup of (G, *) which has

identical multiplication table to that of (H, o).

COROLLARY 2.3 Let (H,o) be a subgroup of (G,0) of index r > 1, and suppose
that the element L* € L* corresponding to L(G,o, H) agrees with L(G,o0,H) in at
least 2 — 2r + 2 of the r? Latin subsquares of the canonical coset decomposition
corresponding to H. Then e = e,, (H, x) is a subgroup of (G, *) and the multiplication

tables of (H,o) and (H, x) are identical.

Proof. Since at least 7% — 2r + 2 of the subsquares of L(G, o, H) agree everywhere
with L*, there is at least one subsquare of the form y; o L(H) or L(H) o z; which
agrees everywhere with the corresponding rows and columns of L*. The result now

follows from Lemma 2.2.



LEMMA 2.4 Let (H,o) be a subgroup of (G,o) of order m, and suppose that the
element L* € L* corresponding to L(G,o, H) agrees with L(G,o, H) in at least the
Latin subsquares of the form y o L(H) and L(H) o x, for some x,y € G. Then the

number of entries of L* which agree with L(G, o0, H) in the subsquare yo L(H) oz is

m(m — |Ty|)

where Ty, ={h€ H|yohox #yxhxux}.

Proof. If T), ={h € H|yohox # y*hxxz}, then

{(yh1, hox) | hy € Hyhy € H and yo hyohyox # y * hy * hy x x}|

equals |H|.|T;| and the result is immediate.

THEOREM 2.5 Let H = {e, ho,...,hy} be a subgroup of (G,0) and suppose that
there is an element y € G such that y and y=' (the inverse of y in (G,0)) are both

left and right coset representatives as in Definition 2.1. Suppose in addition that
1. yoH=Hoy,
2. yohsoy ' =yxhyxy~! for some (fized) hy € H, and
3. the element L* € L* corresponding to L(G, o, H) agrees with L(G, o, H) either

(a) in the Latin subsquares L(H) oy~ and y=* o L(H), or

(b) in the Latin subsquares L(H) oy and y o L(H).

Then L* and L(G, o, H) also agree in the Latin subsquare yo L(H)oy™'.



Proof. We give the details of the proof for assumption 3(a). The proof for 3(b) is
analogous.

By Lemma 2.2, the multiplication tables for (H, o) and (H, *) are identical. Since
yoH = H oy it follows that y 'o H=Hoy 'and yo Hoy ! = H.

Choose any h; € H.
yohioy™' = yohsoh,oy !, forsome r,
= yohyoy 'oh, forsome p,
= (yohsoy ')*h,, sinceyoh,oy "t € H, and (H,o)= (H,*),
= (y*hs*xy ')*h,, by assumption 2.

By assumption 3(a) y™' % h, = y~' o h, and by the definition of h,, and assumption

1

3(a) again y o h, =h,0oy™! =h, xy~t So y~! x h, = h, xy~!. Hence

yohioy™ = (y*hs)*(hpxy™")
= y>|<(h5>i<llz,«)>|<y_1

= yxhyxy?,

(since (H,*) = (H,0)).

Now, if  and y~!

are not coset representatives, then we let z;, x;, y; and y; be
the coset representatives, as in Definition 2.1, for Hoy™!, Hoy, yo H, y' o H

respectively and proceed as follows.

COROLLARY 2.6 Let H = {e, hy,...,hy} be a subgroup of (G,0) and suppose

that there is an element y € G such that



1. yoH=Hoy,
2. yjo hsox; =y;* hs*xx; for some (fized) hy € H, and
3. the element L* € L* corresponding to L(G, o, H) agrees with L(G, o, H) either

(a) in the Latin subsquares L(H) o x; and yy o L(H), or

(b) in the Latin subsquares L(H) ox; and y; o L(H).
Then L* and L(G,o, H) also agree in the Latin subsquare y; o L(H) o x;.

Proof. As for Theorem 2.5, we give the proof only for assumption 3(a), that for 3(b)
being analogous.

By the definition of z; and y;, and assumption 1, yjo Hoz; =yoHoy ' = H
and also Hox; = Hoy '=y 'oH =ux;0H.

As in Theorem 2.5 we note that for any h; € H, h; = hy o h, = hy * h, for some r,

and h, o x; = z; o hy, for some p, and we obtain
yjohiox; = (yj*hs*x;)* hy.

By our observation above, z; 0 H = y~' o H = y; o H, so z; = y, o h, for some gq.
Using this, and assumption 3(a), and the fact that (H,0) = (H,*), we get x; 0 h, =
Yk 0 (hg 0 hy) = yr * (hg o hy) = yr * (hy * hy). Since z; = yx o hy = y * hy,
we have z; o h, = z; *x hy,. Then, by the definition of h,, and assumption 3(a),

x; * hy = ;0o hy = h, o x; = h, * z;. Finally we have

yjohiox; = (y;*hs)* (hy * ;)
= yj*ht*xi-
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COROLLARY 2.7 Let H={e, hy,...,hy,} be a subgroup of (G, o) of indez 2, and
suppose that the element L* € L* corresponding to L(G, o, H) agrees with L(G,o, H)
in the Latin subsquares of the form x o L(H) and L(H) o z, where x ¢ H, and for
some fized s, 1 < s<m, xohsox =x*xhsxx. Then L* € L* agrees with L(G, o, H)

everywhere.

3 Subgroups and bijections

In this section we assume that (G, o) and (G, %) are groups of order n, and that H is
a subgroup of both (G, o) and (G, ) such that the multiplication tables of (H, o) and
(H, %) are identical. Thus we are assuming that the conclusion of Lemma 2.2 holds.
We shall say that these groups have a consistent right (left) coset decomposition with
respect to x = (z1,...,2,), if Hox; = H xx; (r; o H = z; * H respectively) for
it =1,...,7r. Also we shall say that they have a consistent 2-sided coset decomposition
with respect to x = (z1,...,x,) and y = (y1,...,¥,) if the groups have a consistent
right coset decomposition with respect to x and a consistent left coset decomposition
with respect to y. Under these conditions, of course, for all g € G, H* g = H o g and
g+ H = go H. However the existence of a consistent 2—sided coset decomposition
does not ensure the equality of all “2-sided” cosets y* H *x and yo H oz, even if the
multiplication tables of (H, x) and (H, o) are identical; see for example the subgroup
Hj3 in the example after Corollary 3.2. We shall consider L(G, o, H) and the element
L* € L£* corresponding to L(G,o, H). (L* is not, of course, in general the same as
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L(G, %, H), since the cosets of H in the (G,0) and (G, *) are only equal as sets.)

As in Section 2, we order the right and left cosets of (H,o) in G as H ox1,H o
ZTo,...,Hox,, and yyoH,ys0H, ..., y,0 H, where ;1 = y; = e. Under our assumption
of a consistent 2-sided coset decomposition, for each 7, j, with 1 < 4,7 < r, there are
bijections ¢;; and ¢;; on H determined by the equations y; o h = y; * (h)@;; and
hoxz; = (h)¢1; * x; respectively, for h € H. If, further, we assume that for some
Zj, y; we have y;0 H ox; = y; x H x x; then we have a bijection ¢;; on H determined
similarly by y; o h o x; = y; * (h)¢;; * x;. By our assumptions about H, ¢1; is the

identity map. Also, since e = e*,

(€)pi = (e)¢n; = e

for all 7 and j. We shall investigate restrictions on the maps ¢;; implied by certain

equalities in the entries of L(G, o0, H) and L*.

PROPOSITION 3.1 Leth,h' € H, and1 < 1,7 <r, and if both i and j are greater
than 1, also assume that ¢;; is defined. Then the (y; o h, h' o x;)-entries of L(G, o, H)

and L* are equal if and only if

(hoh')gij = (h)dir * (B)b1;.

Proof. The (y; o h,h' o x;)-entries of L(G,0, H) and L* are equal if and only if
(yio h)o (b ox;) = (yio h) % (k' ox;), that is if and only if y; * (h o h')¢;; * z; =

Yi * (h)(]ﬁzl * (h,)d)l] *Zj, which is true if and on]y if (h o hl)d)zj = (h)¢zl * (h')nglJ

We shall explore some consequences of this result.
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COROLLARY 3.2 Let h € H, and 1 < 1,57 < r, and if both © and j are greater

than 1, assume also that ¢;; is defined.

(a) The (y; o h,x;)-entries of L(G, 0, H) and L* are equal if and only if
(h)gi; = (h)dir.
(b) The (yi, h o z;)-entries of L(G, 0, H) and L* are equal if and only if
(h)ij = (h) ;-
This follows immediately from the facts that (e)¢i1 = (e)¢1; =e.

The emphasis of this section is on exploring the relationships between the bijections
¢i1, ¢1; and ¢;;. So, at this point, it is worth examining an example which highlights
various aspects of these relations. In order to display information about several
subgroups on one table we shall not restrict ourselves to a canonical headline and
sideline. Instead, we choose a headline that exhibits the coset decomposition with
respect to the various subgroups. Also, since subgroups in question are normal, we
take the sideline to be equal to the headline.

Let G = {e,a* a,a’,a% a% a3 a’,b,a*b, ab, a®b, a’b, a®b, a®b, a’d} and take the fol-

lowing two groups of order 16:
(G,o) where da®=¢e, b*=¢e, ba=a"'b (the dihedral group),
(G,*)  where ad=e b =e, ba=ad.
Using the ordering given above the multiplication table for the first group (the

dihedral group) is:
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e a* a a a®> a® a® " b a*b ab a®b a’b ab a®b a’b
e e a* a a a®> a® a® " b a*b ab a®b a’b a®b a®b a’b
at | a* e a® a dab @ o a® a* b d°b ab abb a®b a"b 3D
a | a a a®> a® a® d a* e ab a®b a®b a®b a®b a’b a*b b
a® | a® a a® a®> a" @ e a* a’b ab a®b @®b a"b @b a*b b
a’> | a®> a® a® a" a* e d® a a®b a® a®b a'b b a'b a®b ab
ab | a® a®> a" a® e a* a a® a® a®b a'b a®b b a*b ab a®b
a® | a® a" a* e d® a a® a® a®b a'b a*b b a®b ab a®b a%b
a" | a” a® e a* a & a® a® a'b a®b b a*b ab a®b a®b a%b
b b a*b a’b a®b a®b a®b a’b ab e a* a” @ a® a® a® «a
a*b | a*b b a®b a'b a’b a%b ab a®b a* e @ o' a® @ a d°
ab | ab a®b b a*b a'b a®b a® a’b a a® e a* a’ a® af a?
a®b | a®b ab a*b b a®b a’b a®b ab d® @ a* e @ " a® a
a’b | a*b ab ab a®b b a*b a’b a*b a® a® a a® e a* df @
abb | a®b a’b @%b ab a*b b a®*b ab a® a® @ a a* e @ o
a*b | a®b a'b a®b a®b ab @%b b a*b a® 4 @ a° a a® e a*
a’b | a’d a®b ab a?b a®b ab a*b b " a® a® a® a® a o e

Using the same ordering the multiplication table for the second group is:
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at | a* e d® a a® @2 a & a*b b d®°b ab ab @%b b b
a a a® a® a® & o a* e ab a®b a®b a®b @®b a'b a*b b
a® | a® a a® a® a" @ e a* a®b ab abb a?b a'b a®b a*b b

a a a® a a a e a a a®b a® a®b a'b b a*b a®b ab

a" | a” a® e a* a & a® a® a'b a®b b a*b ab a®b a®b a%b
b b a*b a®b ab a®b a® a'b a*b e a* @& a a® a® o dd
atb | a*db b ab a®b abb a®b a®b ab a* e a a® a® a* @ o
ab | ab a®b a®b a®b a®b ab b a*b a d® a® a® @& 4 e «a
a’b | a®b ab a’b abb a'b a®b a*b b d® a a® a® o @@ ' e
a’b | a*b a®b a’b a®b a*b b ab a®b a® a® 4" @ a* e a d°
abb | a®b a?b a®b a'b b a*h a®b ab a® a® @ df e a* @ «a
a’b | a®b a™b b a*b a®b ab a*b ab a® o e a* d® a a* a

a’b|a’d a®b a*b b ab a®b @%b @b o @ a* e a @ o a?

Note that the multiplication tables for these groups have a 2-sided consistent coset
decomposition, with respect to the subgroup H; = {e, a,a?, a®, a* a°,a’ a’}, and ¢y
is defined. In addition the bijection ¢o; is the identity. However neither ¢;5 nor ¢o
is the identity.

The two multiplication tables also have a 2-sided consistent coset decomposition,
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with respect to the subgroup Ho = {e,a?, a*, a®}, for which all ¢;; are defined. We
note that if we let z; = y; = a then both ¢1; and ¢;;, are the identity, as is ¢;;.
However we note that if we let z; = y; = b then ¢y, is the identity but neither ¢;;
nor ¢;; is the identity.

One can also consider the subgroup Hz = {e, a*}. However it should be noted that
in this case the multiplication tables have a 2-sided consistent coset decomposition,
but we do not have y; o Hy o x; = y; * Hs * x; for all 4, j, and hence not all ¢;; are
defined. It can be seen that if y; € {a,a? a®} and z; = b then ¢1;, ¢;1, and ¢;; are all
equal to the identity.

However, even though ¢;; is defined when y; = x; = a®b and ¢;; and ¢;; are the
identity, ¢;; is not.

The next result goes some way towards clarifying these relationships.

THEOREM 3.3 Let 1 < 1,57 < r, and if both © and j are greater than 1, assume
¢ij is defined. Then the Latin subsquare y; o L(H) o z; of L(G,o, H) is equal to the
corresponding subsquare of L* if and only if

bij = bin = 15,
and ¢;; is an isomorphism from (H,o) to (H,x). In particular, if this is the case and

it =1 o0rj =1, then ¢;; is the identity map.

Proof. Suppose first that the subsquare y;, 0 L(H) o z; of L(G, 0, H) is equal to the
corresponding subsquare of L*. By Corollary 3.2 we have (h)¢;; = (h)¢1; = (h)dan

for all h € H. Hence ¢;; = ¢i1 = ¢15, and so by Proposition 3.1, (h o h')¢;; =
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(h)¢ij * (h')¢i; for all h,h' € H. Since ¢;; is a bijection, it follows that ¢;; is an
isomorphism from (H, o) to (H, ).

Conversely, suppose that ¢;; = ¢i1 = ¢1; is an isomorphism from (H, o) to (H, ).
Then, for h,h' € H, the (y; o h,h’ o x;)-entry of L(G,0,H) is (y; 0 h) o (b ox;) =
y; o (hoh') ox;, which by definition of ¢;; is equal to y; * (h o h')¢;; * z;. Also the
(yi o h, b/ o mj)-entry of L* is (y; o h) * (b’ o z;) = (yi * (h)di1) * ((h')¢1; * x;) by the
definition of ¢;; and ¢1;, and since ¢;; = ¢;1 = ¢y, is an isomorphism, this is equal to
yi * (h o h')¢;; * x;. Hence the subsquare y; o L(H) o z; of L(G, 0, H) is equal to the
corresponding subsquare of L*. Finally the assertion that ¢;; is the identity map if

1 =1 or j =1 follows from Lemma 2.2.

We are interested in the number of subsquares at which the multiplication tables
of distinct groups (G, o) and (G, %) can coincide. (We say that subarrays coincide if
they agree entry by entry.) It is difficult to get a precise solution to this problem, but

Theorem 3.3 has the following consequence.

COROLLARY 3.4 If the Latin multiplication tables L(G, o, H) and L* coincide on
all the subsquares y; o L(H)ox;, withi > 1, j > 1, and at least one of the subsquares

yio L(H) ox; withi=1 or j =1 then L(G,o0, H) = L*.

Proof. By Lemma 2.2, (H,o) = (H, *) and the assumptions of this section hold.

By Theorem 3.3 it follows that ¢;; is equal to the identity map for all , j.

We would like to get a better result than this. However it supports our belief that

distinct multiplication tables L(G, o, H) and L* must differ in a reasonable proportion
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of the subsquares. We also believe that the position of coinciding subsquares is

important. We illustrate this with a sample result.

PROPOSITION 3.5 Suppose that for some i, j, ¢i and ¢1; exist and equal the
identity map. Then, for h,h' € H, the (y; o h,h' o z;)-entries in L(G,0,H) and L*

are equal if and only if ho h' = (h o h')¢;;.

Proof. By Proposition 3.1, equality of the (y; o h, A’ o x;)-entries is equivalent to
(hoh)gij = (h)pi * (h')p1; = hx h', which is equal to h o A’ since the multiplication

tables for (H,o) and (H, %) are identical.

4  Some interesting questions

In this section we list some interesting questions which arose while we were working
on this problem. In some cases we provide an answer or a partial answer to the
question. We include these as we feel they are of interest to the discussion in general.
We close the paper with a curiosity involving the multiplication tables of the dihedral
and quaternion groups of order 8. In what follows we assume that we have two groups
(G, 0) and (G, *) and that we are discussing their multiplication tables. We denote the
inverse of g € G in the groups (G, o) and (G, *) by g~! and g* respectively. In addition
we note that we can recognise the identity elements e and e, from the multiplication
tables for (G, o) and (G, %) respectively, since we require our multiplication tables to
have sidelines and headlines. By permuting the elements of (G, x) we may therefore

assume that e = e,. While this may not necessarily be what we wish to do for
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comparing two Latin squares, it is a reasonable assumption if we wish to compare
the influence of the subgroup structure on the Latin square structure. We begin by
investigating what happens when two multiplication tables have a Latin subsquare S

in common.

Question 1: What can we say if the two multiplication tables coincide on a subsquare

of order 27

Partial Answer: It is obvious that this one condition will not force the multiplication
tables to coincide in all entries. However we can deduce some information about
subgroups in the corresponding groups.

If we take a group (G, o), then it is easy to verify that every subsquare of the
multiplication table of G is of the form yH o Hx, for some H a subgroup of G.
Consequently, if the multiplication tables for two groups coincide in a subsquare S of
order 2, there must exist subgroups H and H' of order 2 in the groups such that S is
a subsquare in the respective coset decompositions.

Formalising these ideas we obtain:

PROPOSITION 4.1 (a) Let ¢ € G. Then the multiplication table for (G, o) has a

2 x 2-subsquare S of the form

x e
with one of the rows of S corresponding to row ¢ of the multiplication table for (G, o)

if and only if x has order 2 in (G, o), and setting H =< ¢ 'ozoc >= {c loxoc,e} =
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{y,e}, S forms the subsquare co L(H) o ¢c™! in the canonical coset decomposition of
L(G, o, H) relative to H.
(b) Now suppose that e = e.. Then the multiplication tables for (G,o) and (G, *)

have the subsquare S above in common, where S involves row c, if and only if

1 *

ror=Ir*xr=e€ € =C, XTOC=I*C ¢!

ox =c**xx.

Moreover, if this is the case, then S = coL(H)oc™! = cx L(H')xc*, where H := {y, e}
and H' := {y',e} withy := c lozoc and y' := c* *x * c of order 2 in (G,0) and

(G, *) respectively; and y =y' if and only if ¢* * (x * ¢) = ¢* o (z * ¢).

Proof. (a) Suppose first that such an S is a subsquare. Then it is immediate from
the above remark that z o x = e. Let the rows involved in S correspond to elements
c and d of G. Then, considering the diagonal entries of S, the columns involved in
S must correspond to ¢ ! and d'. Now doc ! = z implies that d = zo0c = coy,

and d™' = ¢ loxz = yoc'. Hence S = co L(H) oc™! with H as in part (a).

1

Conversely, if y has order 2 in (G, o), then, for any ¢ € G, setting = := coyoc™' and

H:=<y>={y,e}, we have co L(H) o ¢! equal to:

T €

(b) Once again by the remark above, if S is in common, then z oz = z xx =

1

e, ¢cl=c zoc=zxxcandc!

ox = c*xx. Conversely, let x have order 2 in both

1 1

groups, and let ¢ be such that c™ =c¢*and roc=x+xc=dsay and ¢ ox =" *x.
Then d~! = ¢ ! oz = ¢* xx = d* and the subsquare S corresponding to rows ¢ and d
and columns ¢! and d~! = d* is
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x e.
Moreover, defining y, 4’ as in part (b), it is easily checked that S =co L(H)oc™ =

cx L(H') xc* and y = ¢ if and only if ¢* * (z x ¢) = ¢* o (z x ¢).

The subgroups H and H', of the groups (G, o) and (G, %) respectively, may not be
the same, but each is a conjugate (in the relevant group) of the common subgroup

{z,e}. The rows involved in S are row ¢ and row d := x o ¢ = z * ¢, and the columns

1 1

are columnc¢ ' =c*and columnd ' =d* =c oz =c* x 2.
We now examine the column ¢! to see where the entries ¢, d occur in the two
multiplication tables. In L(G, o, H) they will be in rows coc and zo(coc) respectively,

while in L* they will be in rows c*c and x * c* ¢ respectively. If we assume in addition

that these two entries coincide in the two multiplication tables then we will have that

C*xC = COCc, rococ=x*cCx*xcC.

Now we investigate the situation in which the multiplication tables coincide in a
specified set of subsquares in a 2—sided consistent coset decomposition induced by the

subgroups (H,o) and (H, *).

Question 2: If the multiplication tables L(G, o, H) and L* coincide in all subsquares
of the form y;0 L(H) and all subsquares of the form L(H )ox;, as well as in a transversal

of subsquares, then are L(G, 0, H) and L* identical?

Partial Answer: This condition does not imply that the multiplication tables will
agree everywhere.
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Below we give the multiplication table for a group of order 16. If this multiplication
table is compared with the multiplication table for the dihedral group given in Section
3, it can be seen that the two multiplication tables agree in all subsquares in the first
row and first column, and in addition in all the subsquares in some transversal of
subsquares. (Note that for purposes of comparison we have used the same headline
and sideline as were used in the example in Section 3, rather than the canonical one.)

Let G = {e,a*,a,a’,a% a® a3 a’,b,a*b, ab, a®b, a®b, a®b, a®b, a’b} and take the fol-

lowing group:

(G,*) where a®=e, b*=e, ba=a’

Use the ordering given in the set above to label the headline and sideline of the
multiplication table.

The multiplication table for this group is:
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e a* a a a® d @& a b a*b ab a®b a®b a® a®b a’b
e e a [a]la®] @2 a® & a7 b a'h ab @%b a2 a® ab b
at | ot e IZl a® a® a" a® a'b b a’b ab aSb a®b a'b b
a | a @ da o & d ab a®b a*b ab a*b a’d a*b b
a@ | & a a® a® d" a’b ab a%b a?b a"baPb b a'h
a2 | a® a® @ o a* e d® a a*ba®h a®b a’b a'b b
a® | a® a® a" @® e a* a d® @b a®b a’b a®b b a'b
a>| a® d a* e a a da® a® a®bd"b IIl a’b ab a®b a*b
o | a” @ e a* a @ a® a® d'b a?’bIIl ab a®b a*b a%b
b b a*h a®ba’d % a’b ab a®b e a* a® d a a
atb | a*® b a'ba*b a®b a®b @®b ab a* e o d? @ a
ab | ab d®b a'b b aba® a a® a* e d @ a® df
a’b| a®b ab b a'b a®ba’h a® a e a* @ d & d®
a’b a®b ab b a'b @®ba’b a® a® a® a e a* @ o
a®b ab a®b a*d b a'ba*h a® a® a a® @ e o a
a®b | a®b a’b a®b a®b ab a®b a'b b a® a®> a d® a* e
a’d | a’d a®b a*b a®b a®b ab b a4b a> a® @ a e at

It can be seen that H = {e,a’} is a subgroup of both this group and the dihedral
group. In addition the boxed entries form a transversal of subsquares. Further the two

multiplication tables agree in the first two rows and columns and in the transversal

of subsquares, but are not identical.

What if we increase the proportions of subsquares which must coincide?

23



Question 3: In how large a proportion of subsquares can L(G, o, H) and L* coincide

without being equal?

Partial Answer: It can be seen that the multiplication tables given above and the
multiplication table for the dihedral group given in Section 3 agree in 75% of all
subsquares of the form y;L(H)z;, where H = {e,a*} and 1 < i,j < 8, and yet still
do not agree everywhere.

For a more general example we may take n > 4 and consider the groups, of order

2™, with generators a and b, and determined by the relations
(1) ¥ ' =¢, B2 =a®"", ba = a™'b, the generalized quaternion group,
(2) a2 =e, b2 =e, ba = a~'b, the dihedral group,
(3) " =e, W =e, ba=at?p,
(4) @ ' =¢, B2 =¢, ba=a""t""D.

If we fix n and use the cosets H = {e,a®" " },aH,d*H,...,a> ~'H,bH,abH,a*bH,
..,a2""~'bH to label the headline and sideline of the multiplication tables for these
groups, then we obtain examples of groups which agree in 75% of all subsquares, of
the form y; L(H)x;, where H = {e,a*} and 1 <4, < 2"! but not everywhere.
It is easy to see that given this labelling the multiplication tables of these four
groups will agree in all rows indexed by H = {e,a®" "}, aH,a?H,...,a* ~'H and

so they must agree in 50% of all such subsquares. However we want more.

LEMMA 4.2 The multiplication tables of the dihedral group of order 2™ with gen-
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erating relations
2n—1

a =e, V> =e, ba =a'b,

and the group of order 2™ with generating relations

on—1

_ n—2
a =e, b’ =e ba=a"'T" b

agree in 75% of all subsquares of the form y,L(H)x;, where H = {e, a®”’} and

1<4,j<2on 1,
Proof First consider the dihedral group. Here
a"ba® = a""°b

and in the second group
_ n—2
a"ba® = a" ST,

If 5 is even, then a*>" " = (a*""')*/?> = e and the multiplication tables will coincide in

entries of the form a"ba®. Observe that in the dihedral group
a"ba’h = ar—st =g
and in the second group

_ n—2 _ n—2
arbasb — ar s+s2 b2 — ar s+s2

and so the two multiplication tables will coincide when s is even and the result follows.

In a similar fashion, we can calculate the percentage of subsquares of the form
y;L(H)z; in which the various multiplication tables of all four groups of order 2"
given above agree. (Here, again, H is the subgroup {e,a?" ’} of order 2.) The results
are shown in the table below.
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(G,0) 1 1 1 2 3

(G, %) 2 4 3 3 4

% equal subsquares | 75 75 <75 <75 <75

In fact, as was pointed out by one of the referees, if we take any two groups whose
multiplication tables agree in 75% of subsquares, then the direct products of these
groups with the cyclic group C,. have the same properties, providing an infinite set of
examples.

The subgroup H = {e,a*" °} of order 2 used in the above example is normal, and

it seems reasonable to investigate the following question.

Question 4: If (H,o) = (H,x), where (H,o) is a normal subgroup in (G,o) and
(H, ) is a subgroup in (G, x*), under what conditions on the multiplication tables

L(G,0,H) and L(G, *, H) can we deduce that (H, ) is normal in (G, *)?

Partial Answer: Note that for normality of (H, *) in (G, %), it is not sufficient simply
to assume that (H,o) = (H,*), as is evident on considering any two groups G; and
(G5 of the same order with isomorphic subgroups H;, H, of GG, G5 respectively such
that H; is normal in Gy, but Hy is not normal in G5, (for example Zg and S3 with
subgroups of order 2). However, to assume that (G,o) and (G, *) have a consistent
2—-sided coset decomposition with respect to x = (z1,...,z,) and y = (y1, ..., y;), is

too strong as it is immediate that (H, *) is a normal subgroup of (G, *).

Also it is not clear what can be deduced from the fact that H is abelian and normal.

We also lack examples of groups with distinct unit elements whose multiplication
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tables differ in only a small number of places.

We leave the reader with a nice example.

If we rewrite the multiplication tables for the quaternion and dihedral groups of
order 8 using G = {e,a™,a?%,a,b7',a™'b',a?b™!, ab™'} and the relations a* = e, b* =
e, b=tab = a~! for the dihedral group and relations a* = e,b'ab = a™!, b? = a? for
the quaternion group then we may write the multiplication tables for both these

groups as follows.

o e a !  a® a b=t a7t @?bt ab?
e e a ! a? a b=t a7t @%bt bt
a a e a!  a® ab™! b=t a7t %7t
a? a? a e al a®b'  ab! bt albt
[ a? a e a7t a?p! ab™! bt
b b ba~'  ba? ba e a a? a!
ba ba a ba”'  ba? a! e a a®
ba? | ba®>  ba b ba! a? a~ ! e a
ba=' | ba='  ba?  ba b a a® a "t e

These tables appear to be the same, however there is actually a deception as in
the dihedral group b=! = b, whereas this is not the case in the quaternion group.
(In connection with this example, see the remarks made by Bedford [1] before his

Theorem 1.)
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