Semester 2, 2005

Exercise Set 1.1

Q26

p	q	r	$p \vee q$	$p \wedge r$	$(p \lor q) \lor (p \land r)$	$(p \lor q) \land r$
T	T	T	T	T	Т	T
T	T	F	T	F	Т	F
T	F	T	T	T	T	T
T	F	F	T	F	T	F
F	T	T	T	F	Т	T
F	T	F	T	F	T	F
F	F	T	F	F	F	F
F	F	F	F	F	F	F

No the given statements forms are not logically equivalent.

Q35

The statement can be rewritten as -2 < x and x < 7. So let p represent -2 < x and q represent x < 7. Then -2 < x < 7 is the statement form $p \land q$. By DeMorgan's Law $\sim (p \land q) \equiv \sim p \lor \sim q$ and $\sim p$ represents $-2 \ge x$ and $\sim q$ represents $x \ge 7$. So the negation of -2 < x < 7 is $-2 \ge x$ or $x \ge 7$, or equivalently $x \le -2$ or $x \ge 7$.

Q43

p	q	r	$((\sim p \land q)$	\wedge	$(q \wedge r))$	\wedge	$\sim q$
T	T	T	F	F	T	F	F
T	T	F	F	F	F	F	F
T	F	T	F	F	F	F	T
T	F	F	F	F	F	F	T
F	T	T	T	T	T	F	F
F	T	F	T	F	F	F	F
F	F	T	F	F	F	F	T
F	F	F	F	F	F	F	T

This is a contradiction as the statement form takes the value F (false) in all cases.

Exercise Set 1.2

	p	q	r	$(p \rightarrow r)$	\leftrightarrow	$(q \rightarrow r)$
	T	T	T	T	T	Т
	T	T	F	F	T	F
	T	F	T	T	T	T
Q10	T	F	F	F	F	T
	F	T	T	T	T	T
	F	T	F	T	F	F
	F	F	T	T	T	T
	F	F	F	T	Т	T

Q20e e) Let n represent the statement x is non-negative, p represent the statement x is positive, and o represent the statement x is 0. Then 'If x is non-negative, then x is positive or x is 0' is equivalent to $n \to (p \lor o)$.

So
$$n \to (p \lor o) \equiv \sim n \lor (p \lor o)$$
$$\sim (n \to (p \lor o)) \equiv \sim (\sim n \lor (p \lor o)) \equiv n \land \sim (p \lor o)$$
$$\equiv n \land (\sim p \land \sim o)$$

Q21bc If $p \to q$ is false then p is true and q is false.

b) So $p \lor q$ has truth value 'true'.

c) And $q \rightarrow p$ has truth value 'true'.

Exercise Set 1.3

Q32 Let

c represent the statement I get a Christmas bonus.

s represent the statement I will buy a stereo.

m represent the statement I will sell my motorcycle.

Then the argument is equivalent to

$$((c \to s) \land (m \to s)) \to ((c \lor m) \to s)$$

Assume that the given statement can take a false value. Hence assume the premise is true and the conclusion is false. So $(c \to s) \land (m \to s)$ is true, and $(c \lor m) \to s$ is false.

Since $c \lor m \to s$ is false, $c \lor m$ is true and s is false.

Since $(c \to s) \land (m \to s)$ is true, $c \to s$ is true and $m \to s$ is true. But from the previous step s is false, so both c and m must be false. But we now have c and m false, and $c \lor m$ true. This is a contradiction so the original argument must be valid.