Semester 2, 2005

Solutions Ass. 5

Exercise Set 4.2

Q7 Let P(n) be the statement that $1 + 6 + 11 + \ldots + (5n - 4) = \frac{n(5n-3)}{2}$. That is, let P(n) be the statement

$$\sum_{i=1}^{n} (5i-4) = \frac{n(5n-3)}{2}.$$

Then when n = 1 we have $\sum_{i=1}^{1} (5i - 4) = 1$ and $\frac{1(5 \times 1 - 3)}{2} = 1$. Hence P(1) is true. Assume P(k) is true. That is, assume $\sum_{i=1}^{k} (5i - 4) = \frac{k(5k - 3)}{2}$. Prove P(k + 1) is true. That is, prove $\sum_{i=1}^{k+1} (5i - 4) = \frac{(k+1)(5(k+1)-3)}{2}$.

$$L.H.S = \sum_{i=1}^{k+1} (5i-4) = \sum_{i=1}^{k} (5i-4) + 5(k+1) - 4$$
$$= \frac{k(5k-3)}{2} + 5(k+1) - 4$$
$$= \frac{k(5k-3) + 10(k+1) - 8}{2}$$
$$= \frac{5k^2 + 7k + 2}{2}$$
$$R.H.S. = \frac{(k+1)(5(k+1) - 3)}{2}$$
$$= \frac{5k^2 + 7k + 2}{2}$$

Hence L.H.S. = R.H.S. and P(k+1) is true. Thus by the Principle of Mathematical Induction P(n) is true for all $n \ge 1$.

Exercise Set 4.3

Q21 Let P(n) be the statement that $\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}}$, $n \ge 2$. That is,

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i}} > \sqrt{n} , \ n \ge 2.$$

When n = 2, $\sum_{i=1}^{2} \frac{1}{\sqrt{i}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} = 1 + \frac{1}{\sqrt{2}} = \frac{\sqrt{2}+1}{\sqrt{2}} > \frac{\sqrt{1}+1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}$. Hence P(2) is true.

Assume P(k) is true. That is, assume $\sum_{i=1}^{k} \frac{1}{\sqrt{i}} > \sqrt{k}$. Prove P(k+1) is true. That is, prove $\sum_{i=1}^{k+1} \frac{1}{\sqrt{i}} > \sqrt{k+1}$.

L.H.S. =
$$\sum_{i=1}^{k+1} \frac{1}{\sqrt{i}} = \sum_{i=1}^{k} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{k+1}}$$
$$> \sqrt{k} + \frac{1}{\sqrt{k+1}}$$
$$= \frac{\sqrt{k}\sqrt{k+1} + 1}{\sqrt{k+1}}$$
$$> \frac{\sqrt{k}\sqrt{k} + 1}{\sqrt{k+1}}$$
$$= \frac{k+1}{\sqrt{k+1}} = \sqrt{k+1} = R.H.S.$$

Hence by the Principle of Mathematical Induction P(n) is true, $\forall n \geq 2$.

Exercise Set 5.1

Q8

g) Yes, $\{1\} \subseteq \{1, 2\}$. h) No, $1 \notin \{\{1\}, 2\}$. i) Yes, $\{1\} \subseteq \{1, \{2\}\}$. j) Yes, $\{1\} \subseteq \{1\}$.	c) e) g)		d) f) h)	
---	----------------	--	----------------	--

Q12 a) Yes, $\mathbb{Z}^+ \subseteq \mathbb{Q}$.

- b) No, as $-\sqrt{2} \in \mathbb{R}^-$, but $-\sqrt{2} \notin Q$.
- c) No, $\frac{1}{2} \in \mathbb{Q}$ but $\frac{1}{2} \notin \mathbb{Z}$.
- d) No, $0 \in \mathbb{Z}$, but $0 \notin (\mathbb{Z}^- \cup \mathbb{Z}^+)$.
- e) Yes, for any sets A, B where $A \subseteq B$, $A \cap B = A$ (see below).
- f) Yes, for any sets A, B where $A \subseteq B$, $B \cup A = B$.
- g) Yes, as in e) above.
- h) No, see f) above for an explanation.