Chapter 5.2

Q. Prove that $A \subseteq B$ if and only if $A \cap B = A$

Let p correspond to $x \in A$ and let q correspond to $x \in B$. Then the above statement is equivalent to $(p \to q) \leftrightarrow ((p \land q) \leftrightarrow p)$

The truth table for this statement form is:

Į)	q	$((p \rightarrow q)$	\leftrightarrow	$((p \land q)$	$\leftrightarrow p)$
1	-	T	T	Т	Т	T
1	7	F	F	T	F	F
F	7	T	T	T	F	T
F	ק	F	T	T	F	T

Since the statement form is a tautology the set law is true for all sets A and B.

Exercise Set 5.3

- Q20 No, as $S_a = \{\{a\}, \{a, b\}, \{a, c\}\}, S_b = \{\{b\}, \{a, b\}, \{b, c\}\}$ and $S_a \cap S_b = \{\{a, b\}\} \neq \emptyset$.
- Q1 $A \times B = \{(1, 2), (1, 3), (2, 2), (2, 3)\}$

$$\begin{aligned} \mathcal{P}(A \times B) &= \{ \emptyset, \{(1,2)\}, \{(1,3)\}, \{(2,2)\}, \{(2,3)\}, \{(1,2), (1,3)\}, \{(1,2), (2,2)\}, \\ \{(1,2), (2,3)\}, \{(1,3), (2,2)\}, \{(1,3), (2,3)\}, \{(2,2), (2,3)\}, \\ \{(1,2), (1,3), (2,2)\}\{(1,2), (1,3), (2,3)\}, \{(1,2), (2,2), (2,3)\}, \\ \{(1,3), (2,2), (2,3)\}, \{(1,2), (1,3), (2,2), (2,3)\} \}. \end{aligned}$$

$$\begin{array}{ll} \mathrm{Q2} & \mathrm{a}) \ \mathcal{P}(\emptyset) = \{\emptyset\}. \\ & \mathrm{b}) \ \mathcal{P}(\mathcal{P}(\emptyset)) = \{\emptyset, \{\emptyset\}\}, \, \mathrm{so} \ \mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} \ \end{array}$$

Exercise Set 11.1

Q4

Q9 i) e_1, e_2, e_7 ii) v_1, v_2 iii) e_2, e_7 iv) $e_1, e_3,$ v) e_4, e_5 vi) v_4 vii) $deg(v_3) = 2$ viii) total degree is 14.

Q21

Q23 Let v represent the number of vertices and since the sum of the degrees of the vertices must equal twice the number of edges, we have 3v = 18. So v = 6. Now the corresponding graph is:

