1. Let $\pi_1 = (P_1, L_1)$ and $\pi_2 = (P_2, L_2)$ be two projective planes of order n and ϕ be an isomorphism from π_1 onto π_2. Prove that

(i) ϕ is one–to–one from P_1 onto P_2 and
(ii) ϕ is one–to–one from L_1 onto L_2.

2. Let $\pi_1 = (P_1, L_1)$ and $\pi_2 = (P_2, L_2)$ be two projective planes of order n and ϕ be an isomorphism from π_1 onto π_2. Prove that ϕ preserves non–incidence. (That is, ϕ is such that, if P_1 is not on L_1 in π_1, then $\phi(P_1)$ is not on $\phi(L_1)$ in π_2, or equivalently if $\phi(P_1)$ is on $\phi(L_1)$, then P_1 is on L_1.)

3. Let Q be a quadrangle of a finite projective plane π. Show that, if the diagonal points D_1, D_2 and D_3 are collinear (on a line L_∞ say), then the substructure of π defined obtained from the restriction of π to the set of points

$$Q \cup \{D_1, D_2, D_3\}$$

is a projective plane of order two.

4. A collection C of axioms is said to be self–dual if, for each axiom A in C, the dual of A is in C or follows from C.
 Show that the collection of axioms A_1, A_5, A_6 and A_7 are not self–dual.

5. Show that any finite affine plane possesses a set of four points no three of which are collinear.

6. Let α be an affine plane of order n and let L be a line of α. Show that the number of lines meeting L in a unique point is n^2.

7. Let $\alpha = (P_\alpha, L_\alpha)$ be an affine plane of order 3.

 (i) What is $|P_\alpha|$?
 (ii) What is $|L_\alpha|$?
 (iii) What is $|P|$, where $P \in P_\alpha$?
 (iv) What is $|L|$, where $L \in L_\alpha$?
 (v) What is $|c|$, where c is a parallel class of α?
 (vi) How many parallel classes are there in α?
 (vii) Construct an affine plane of order 3.
 (viii) Find the projective completion of the plane constructed in (vii).