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Executive Summary 

 
Traditionally static models have been used to develop strategies for the quantification of 

petroleum resources and other engineering processes. The focus has been on developing 

methods that improve our understanding of the range of possible outcomes and thus 

inform decision making processes to capitalize on unexpectedly good outcomes and to 

mitigate the impact of poor results. 

The cost and complexity of current processes dictate a need to develop new and robust 

techniques that quantify the range and the relative impact of uncertainty in parameters 

and inform on how this uncertainty propagates to model outcomes, especially when input 

information is limited.  

Historically Monte-Carlo simulations—multiple repetitions of the simulation using 

randomly chosen values for input variables—have been used to model such processes. 

However, depending on the dimension of the ‘sample space’, good approximations come 

at the cost of large numbers of simulations.  

Polynomial Chaos Expansions (PCE) provide surrogate models that can significantly 

reduce the number of simulations required to quantify uncertainty, while still retaining a 

low degree of error. The surrogate polynomial model takes the form 

𝑌 ≈ ∑ 𝑌𝑘𝑃𝑘(𝜀1,

𝑛

𝑘=0

… , 𝜀𝑑) 

where 𝜀𝑖 represents the d uncertain parameters, 𝑌𝑘 are coefficients and 𝑃𝑘 are orthogonal 

polynomials, with expectation ⟨𝑌⟩ =𝑌0 and variance   𝜎2 = ⟨𝑌2⟩ − 〈𝑌〉2 = ∑ 𝑌𝑘
2〈(𝑃𝑘)2〉𝑛

𝑘=1 .   

In Stage 2 of the current project we have developed high-level code to implement, test 

and calibrate PCE techniques on 3 distinct test models. 

 The modeling of a steady state fluid flow, with two uncertain variables, using both 

intrusive and non-intrusive PCE. 

 The modeling of a commercial black box solver, with four uncertain variables, for 

the quantification of peak and total gas recovery. 

 Modeling of discrete highly non-linear processes using rule based cellular 

automata. 

In each case we have developed and implemented workflows that reflect critical aspects 

of these scenarios. In particular we have constructed distinct surrogate models of 

increasing order, thus determining the convergence and error behavior of the solution.  

Results show that PCE performs well on these models, and therefore has the potential to 

value add to industry based research and development. 
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1. Stage 2 Outcomes 
 

We have: 
i. Augmented the research team with the right skills to execute an assessment of the 

feasibility of PCE for commercialization. Contributors to Stage 2 research include 
D Donovan, B Lawson, M Tas, B Thompson, S Tyson, F Zhou. 

ii. Extended and updated the literature review covering a wider class of applications 
and techniques for numerical integration. 

iii. Compared and contrasted non-intrusive and intrusive PCE techniques, concluding 

that non-intrusive PCE provides greater flexibility particularly when the 

complexity of the underlying model and the number of uncertain parameters is 

increased.  

iv. Updated and reviewed the documentation on the supporting mathematical theory. 

v. Generated the basic code necessary for surface fitting using orthogonal 
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polynomials. 

vi. Generated code for numerical integration using Gaussian quadrature and sparse 

grid quadrature. 

vii. Developed workflows. 

viii. Defined calibration and validation procedures. 

ix. Implemented workflows and calibration and validation procedures on three 

distinct prototype models. 

x. Prepared 3 articles on the quantification of uncertainty using PCE. 

Note 1: Non-intrusive PCE does not require modification of the existing “Model” code. 

Higher dimensionality may increase the complexity of non-intrusive PCE however 

methods such as sparse grid quadrature can help alleviate this problem.1  While intrusive 

PCE may deliver an elegant one-time solution to a system of equations and the PCE 

coefficients, the disadvantage is that the code is often application specific, with the 

reformulation being significantly larger than the original system. This results in increased 

time horizons for approximating solutions to systems of ODEs, and a process that is 

infeasible for systems of PDEs.2 

Note 2: While sparse grid quadrature is complex it has the advantage that data points can 

be reused as the order is increased. In contrast Gaussian quadrature requires the 

generation of new points. 

2. Workflows  
 

The workflow given below details steps necessary to develop the PCE enabling software. 

In any implementation of PCE many of the workflow steps will be automated. 

W1. Identify relevant “Model” to be approximated by surrogate PCE. 

W2. For the “Model” 𝑀(𝜃) identify uncertain variables 𝜃, their ranges and 

associated probability distributions. 

W3. Rescale the uncertain variables 𝜃 to standard ranges, relabeled 𝜀 here.  

W4. Set the tolerance for error. 

W5. Based on the probability distribution identify the correct class of orthogonal 

polynomials (e.g. Hermite, Legendre …). 

W6. For Model 𝑀(𝜃) determine the method of implementation (i.e. non-intrusive or 

intrusive)  

W7. Set the initial order n of the PCE. 

W8. Execute PCE workflow (see below) to obtain a surrogate PCE of the form 

                                                           
1 B Debusschere, H Najm, K Sargsyan and C Safta, Polynomial Chaos based uncertainty propagation Intrusive and 
Non-Intrusive Methds, USC UQ Summer School, Sandia National Laboratories, 2013 
2 B Debusschere, H Najm, K Sargsyan and C Safta, Polynomial Chaos based uncertainty propagation Intrusive and 
Non-Intrusive Methds, USC UQ Summer School, Sandia National Laboratories, 2013 
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𝑌 ≈ ∑ 𝑌𝑘𝑃𝑘(𝜀1, ⋯ , 𝜀𝑑)
𝑛

𝑘=0
 

W9. Calibrate and validate the PCE. 

W10. From the PCE extract statistical information such as the cumulative distribution 

function (CDF), expectation and variance (mean and standard deviation) 

and/or execute parameter finding by recovering the physical values of the 

underlying uncertain variables.  

Specific workflow for non-intrusive PCE, to be inserted in step W8 above. 

NI.1. Based on the number of uncertain variables determine the method of numerical 

integration; i.e. Gaussian quadrature or sparse grid quadrature.  

NI.2. Set the order of the PCE (degree of the polynomial expansion). 

NI.3. Generate training (quadrature) points, associated weights and code the 

numerical integration method. 

NI.4. Evaluate the 𝑀(𝜃)  at the training points. 

NI.5. Based on training points determine the coefficients   

𝑌𝒌 =
∫ M(𝝃)𝑃𝒌(𝝃)𝜌(𝝃) ⅆ𝝃

𝛺

⟨𝑃𝒌(𝝃)2⟩
 

NI.6. Output the PCE surrogate model 𝑌 ≈ ∑ 𝑌𝑘𝑃𝑘(𝜀1, ⋯ , 𝜀𝑑)𝑛
𝑘=0 . 

Specific workflow for intrusive PCE, to be inserted in step W8 above.  

I.1. Develop a mathematical formulation for 𝑀(𝜃) based on spectral expansion of 

orthogonal polynomials.  

I.2. Identify and evaluate subsidiary conditions. 

I.3. Solve the expanded model, to obtain the coefficients 𝑌𝑘. 

I.4. Output the PCE surrogate model 𝑌 ≈ ∑ 𝑌𝑘𝑃𝑘(𝜀1, ⋯ , 𝜀𝑑)𝑛
𝑘=0 . 

3. Model Calibration and Validation Procedures 

 

Calibration: an initial filter for the checking of convergence  

C1. For the given order of the PCE determine the coefficients 𝑌𝑘 of the PCE. 

C2. Increment the order of the PCE and determine the coefficients 𝑌𝑘 of the new PCE. 

C3. If the changes in coefficients are not within the given tolerance return to Step C2. 

C4. Otherwise accept the coefficients and the surrogate model. 

Validation  

V1. Calculate Root Mean Square (RMS) error based on the difference of  𝑀(𝜃) and 

𝑃(𝜃)  at the training point. 
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V2. If the error is not within the set tolerances return to Workflow W7 and increase 

the order of the PCE expansion.  

V3. Use coarse Monte Carlo/Latin hypercube sampling to generate an evenly 

distributed population of test points across the parameter space. 

V4. Compute the absolute difference between the Model and the PCE surrogate at 

these data points. 

V5.  If the error is not within the set tolerances return to Workflow W7 and increase 

the order of the PCE. 

V6. Visualize the response surface to check for anomalies. 

In Validation Step V3 latin hypercube sampling is the preferred choice as it ensures good 

coverage of the parameter space and thus a good representation of the underlying 

variability of the variables.  In latin hypercube sampling, upper and lower bounds on the 

range of values for each parameter are specified with each range being subdivided into n 

equally-spaced sub-intervals thereby subdividing the parameter space into equally likely 

hyper-subcubes. A latin hypercube sample is a set of n sample points whereby each 

sample is the only one intersecting the corresponding subdivisions.  

It is worth noting that the approximation of error for PCE is a current area of intense 

research. It is known that any random variable is a function defined on a probability 

space and can be approximated in mean square by a finite PCE. So we can obtain good 

approximations to the moments of the random variable including mean and variance of 

the cumulative distribution function. This does not always translate to arbitrary precision 

uniformly across the parameter space, although it does for most problems of interest. 

However, in practice the PCE is seen as a model choice to represent what is known about 

the random variable. The rule of thumb is that the order of the PCE should be increased 

until successive results are within a given tolerance. This is not always fail proof but 

usually a low order PCE generally gives the desired error.3 

4. Prototype Testing and Results 

 

In the first two prototypes we step through the Workflow.   

Model 1. Surrogate to a 2-variable DE model with analytical solution. 

 

W1. The relevant “Model” to be approximated by PCE 

Solute transport in groundwater:   

Solutes are transported through groundwater primarily via two processes, dispersion 

and advection. In the 1-dimensional case, possibly corresponding to a 3-dimensional 

                                                           
3 B Debusschere, H Najm, K Sargsyan and C Safta, Polynomial Chaos based uncertainty propagation Intrusive and 
Non-Intrusive Methds, USC UQ Summer School, Sandia National Laboratories, 2013 
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stream-tube with homogeneous properties, the spread of a solute S is modelled by  

𝑅𝑓

𝜕𝑆

𝜕𝑡
= 𝐷𝐿

𝜕2𝑆

𝜕𝑥2
− 𝑉𝑤

𝜕𝑆

𝜕𝑥
 

with Rf   the retardation factor, DL the dispersivity and Vw the velocity of the groundwater, 

each expressed in terms of specific physical properties of the transport material. This 

model has an exact solution  

𝑆(𝑥, 𝑡) =
1

2
𝑆0 [𝑒𝑟𝑓𝑐 (

𝑅𝐹𝑥−𝑉𝑤𝑡

√4𝐷𝐿𝑅𝑓𝑡
) + 𝑒

𝑉𝑤𝑥

𝐷𝑙 𝑒𝑟𝑓𝑐 (
𝑅𝐹𝑥+𝑉𝑤𝑡

√4𝐷𝐿𝑅𝑓𝑡
)].. 

W2. For 𝑆(𝑥, 𝑡), two uncertain variables, both with uniform distribution and  their 

ranges are 

-hydraulic conductivity K (related to permeability), range [1.0𝐸 − 7,1.0𝐸 − 3 ] 𝑐𝑚/𝑠 

-organic carbon partition coefficient Koc , range [20,500] 𝑐𝑐/𝑔  

W3. Rescale the parameters to standard ranges. 

𝜉1 =
2(𝐾−�̅�)

𝐾𝑚𝑎𝑥−𝐾𝑚𝑖𝑛
               𝜉2 =

2(𝐾𝑜𝑐−𝐾𝑜𝑐̅̅ ̅̅ ̅)

𝐾𝑜𝑐𝑚𝑎𝑥−𝐾𝑜𝑐𝑚𝑖𝑛
 

W4. The error tolerance was set at 3 × 10−2. 

W5. The correct class of orthogonal polynomials is Legendre. 

(𝑚 + 1)𝐿𝑚−1(𝜖) = (2𝑚 + 1)𝜀𝐿𝑚(𝜀) − 𝑚𝐿𝑚−1(𝜀) 

𝐿1(𝜀) = 𝜖 

𝐿0(𝜀) = 1 

W6. Both intrusive and non-intrusive PCE surrogate models were developed. Only non-

intrusive will be reported here.  

W7. The initial order n of the PCE was set at n=1. 

W8. Workflow for non-intrusive PCE was executed. 

 

NI.1. Both Gaussian quadrature and sparse grid quadrature were tested, but only 

Gaussian quadrature is reported on here.  

NI.2. Training (quadrature) points, associated weights and numerical integration 

code were generated.  The number of training (quadrature) points are given 

below 
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PCE Level  Number of training 
points 

n=1 4 
n=2 9 
n=5 36 
n=10 121 

Table 1 Training Points 

The training points for n=5 are displayed in Figure 1. 

 

Figure 1: Heat map of training points, showing S(x,t) evaluated at 36 points, chosen to 

minimise numerical integration error. 

NI.3. 𝑆(𝑥, 𝑡) was evaluated at t=1000 and the penetration distance was obtained for 

the appropriate training (quadrature points) (𝐾, 𝐾𝑜𝑐). The coefficients  𝑌𝑘 were 

determined using 

𝑌𝒌 =
∫ M(𝝃)𝑃𝒌(𝝃)𝜌(𝝃) 𝑑𝝃

𝛺

⟨𝑃𝒌(𝝃)2⟩
. 

NI.4. A PCE surrogate model 𝑌 ≈ ∑ 𝑌𝑘𝑃𝑘(𝜀1, ⋯ , 𝜀𝑑)𝑛
𝑘=0  was determined. 

 

W9. Execute calibration and validation procedures. 

Calibration 

C1.—C3. The order was initially set at n=1 and incremented to n=2 and n=3 with the 

change in the 𝑌𝑘 between orders 2 and 3 converging. Hence level 2 was accepted 

for coefficient convergence. 

C4. The coefficients and the surrogate model were accepted. 
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Validation 

V1.-V6. The point to point Root Mean Square (RMS) error across the entire parameter 

space was calculated as 

𝑅𝑀𝑆 = √
𝐸

𝑁
 

where N is the number of points and 

𝐸 = ∑ (𝑆(𝑥𝑖 ,  𝑡𝑖) − 𝑆𝑃𝐶𝐸(𝑥𝑖,  𝑡𝑖))
2

𝑁
𝑖=1 . 

The order of the PCE was increased until n=5 at which point the required tolerances 

were obtained. As the computation was extremely fast and this was a test case, the 

order was increased to n=10. The following graphics display the point to point error for 

two specific values of (𝐾, 𝐾𝑜𝑐) when n=10. 

 

Figure 2 Point to point RMS error across the entire parameter space showing errors of 10-1 
at extremes and as low as 10-7. 

This map indicates that the change in the uncertainty in the value for the organic carbon 

partition coefficient does not impact on the error estimates. The regions of low error 

correspond to the values of the training points for the hydraulic conductivity. However, 

for the regions in between these training points the error is less than 10−3 except when 

the hydraulic conductivity is low there is little penetration and sharp fronts, but even in 

this case the PCE has maintained an error of less than 10−1.  
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The following two plots emphasize the error decreases as the order of the PCE increases.  

 

Figure 3. Plot of solute concentration for (𝐾, 𝐾𝑜𝑐) = (−0.81,0.85), at varying penetration 
distance from source when t=1000 days and for PCE up to order 10. The “Model’s” solution 
S(x,1000) is displayed in black. 

In Figure 3 it can be seen that when the PCE order is 1 in a linear approximation to the 

“Model” the concentration dips below zero. While this is physically infeasible in a 

theoretical sense it is entirely possible and once again demonstrates the power of higher 

order PCE over linear systems. 

 

,  

Figure 4 Plot of solute concentration for (𝐾, 𝐾𝑜𝑐) = (0.75, −0.9) at varying penetration 
distance from source when t=1000 days and for PCE up to order 10. The “Model’s” solution 
S(x,1000) is displayed in black. 

The model was not tested against a Monte Carlo or latin hypercube simulation, but when 

tested against the exact solution it was found that n=5 gave results within the given error 

tolerances.  
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At this stage the PCE surrogate produced a good approximation within the given 

tolerances across the full surface, as displayed in Figure 5. 

 

Figure 5 Full surrogate response surface for penetration distance of the solute at t=1000 
days as a function of the hydraulic conductivity and the organic carbon partition coefficient. 

W9. Statistical information and inverse quantification 

The Cumulative Distribution Function (CDF) was calculated to determine confidence 

intervals for the penetration distance at t=1000 days. Since an exact solution exists for 

this problem it was possible to compare the CDF for the PCE surrogate model with the 

CDF for the exact solution. This information is given in Figure 6. It can be seen that for 

n=10 there is almost an exact correspondence. 

 

Figure 6 CDF for PCE and exact solution, showing CDF for the penetration distance at 
t=1000 days. 
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Parameter Finding and Inverse Uncertainty Quantification 

The problem of inverse uncertainty quantification is then to accurately and quickly 

explore the parameter space in order to find those points or regions with that minimise 

error.  

Artificial data was generated, representative values for the hydraulic conductivity and 

organic carbon partition coefficient were chosen and used in the “Model” to obtain an 

output value at this point. For instance, taking  K = 7.70 × 10−4  and 𝐾𝑜𝑐 = 254.6. The 

values of 𝐾, 𝐾𝑜𝑐  were then discarded. A full PCE surrogate model was developed and the 

response surface interrogated to determine the values of 𝐾, 𝐾𝑜𝑐that minimised the 

pointwise error between the PCE surrogate and the “Model” output.  So for instance, the 

value  K = 7.74 × 10−4 minimised the percentage error at 0.52% for hydraulic 

conductivity and the value 𝐾𝑜𝑐 = 254.2 minimised the percentage error at 0.63% for 

organic carbon partition coefficient. Comparison with the error for other standard 

techniques can be found in the following table. Of interest is the number of model 

evaluations necessary to obtain this error.   

Method Model Evals. Predicted 𝑲 Predicted 𝑲𝒐𝒄 

Brute Force 10201 7.60 × 10−4 250.4 

Interpolated 
Surface 

121 7.84 × 10−4 260.0 

PCE Surface 121 7.74 × 10−4 256.2 

Conjugate Gradient 5683 7.75 × 10−4 256.4 

Conjugate Gradient ~500,000 7.70 × 10−4 254.6 

Table 2 Parameter finding using PCE compared to other standard techniques 

The results for two different cases are visualized in Figure 7 where it can be seen that the 

error is indeed minimised in the vicinity of the correct point in the parameter space. It is 

seen that an “almost linear slice” of values through the parameter space results in good 

fits with the data, but with the best fits indeed occurring at the correct location in the 

parameter space. Minimisation of the error between data and model predictions thus 

does successfully find parameter values for this problem, even when a PCE surrogate is 

used instead of the full model to generate these model predictions. 
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Figure 7 For the parameter space (hydraulic conductivity vs organic carbon partition 

coefficient) these error maps shows the (logarithmic) variation between the data 

generated directly from the underlying model and the solutions predicted by a PCE 

surrogate model with order n=10. The “true” parameter values used to generate the data 

are shown by the red dot. 
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Model 2. Surrogate to a 4-variable commercial Black-box model. 

 

W1. The relevant “Model” to be approximated by PCE 

 

Extraction of adsorbed gases:  

 

The Computer Modelling Group’s (CMG) `black box’ solver for predicting the extraction of 

adsorbed gases was approximated using a non-intrusive PCE surrogate model. A model is 

built around a radial grid system referenced by x-, y- and z- axes which, respectively, are 

divided into 40 by 36 by 6 cells, as shown in Figure 8.   The radial size is taken to be 600m 

and coal seam thickness is 5 m, which is about an average coal seam thickness in the 

Upper Juandah formation of the Surat Basin. One well is located at centre and perforated 

at all six layers. The top depth of this model is 440 m which is similar to the average burial 

depth of Upper Juandah in the Surat Basin. The “Model’s” properties are listed in Table 3. 

The initial pressure in cleats is 4440 kPa at a reference depth of 440 m by assuming a 

hydrostatical pressure system while the initial pressure in the matrix is assigned as 2750 

kPa. This leads to an initial gas saturation of about 77% in the matrix. A desorption time 

of 0.4 days is sourced from communications with an Australian CSG company.  

 

Figure 8 Grid system for numerical simulation. 

  

600m

5m

x
y

z
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Parameters Ranges Unit 
Model Dual porosity - 
Shape factor formulation Gilman-Kazmi - 
Fluid component model Peng-Robinson equation - 
Model geometry Radial grid - 
Grid system 40×36×6 - 
Thickness, h 5 m 
Matrix porosity, ϕm 0.01 % 
Fracture porosity, ϕ [0.005,0.05] % 
Matrix permeability, km 0.01 mD 
Fracture permeability in x-direction, kx [10,1000] mD 
Initial reservoir pressure in fracture, Prf 4440 kPa 
Initial reservoir pressure in matrix, Prf 2750 kPa 
Reservoir temperature, Tr 45 °C 
Langmuir pressure, PL [0.00017,0.0003] kPa 
Langmuir volume, VL [0.2,1] gmole/kg 
Sorption time, τ 0.4 days 
Coal density, ρ 1435 kg/m3 
Well bottom-hole pressure, BHP 300 kPa 
Relative permeability, kr Corey equation with exponent of 2 
Separation condition 15°C and 101.3 kPa  

Table 3 Reservoir properties and ranges used in simulation. 

W2. For “black box” model identify uncertain variables, their ranges and the associated 

probability distributions. 

Four uncertain variables:  

 Fracture permeability kx, range [10,1000]𝑚𝐷 

 Fracture porosity ϕ, range [0.005,0.05] %  

 Langmuir volume VL, range [0.2,1] gmole/kg 

 Langmuir pressure PL, range [0.00017,0.0003] kPa 

A uniform distribution was assumed. 

W3. Rescale the parameters to standard ranges. 

𝜉1 =
2(𝑘𝑥−�̅�𝑥

̅̅̅̅ )

𝑘𝑥𝑚𝑎𝑥−𝑘𝑥𝑚𝑖𝑛

               𝜉2 =
2(𝜙−�̅�)

𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛
   𝜉3 =

2(𝑉𝐿−𝑉𝐿̅̅ ̅̅ )

𝑉𝐿𝑚𝑎𝑥−𝑉𝐿𝑚𝑖𝑛

     𝜉4 =
2(𝑃𝐿−𝑃𝐿̅̅ ̅̅ )

𝑃𝐿𝑚𝑎𝑥−𝑃𝐿𝑚𝑖𝑛

 

W4. The error tolerance was set 2%. 

W5. The correct class of orthogonal polynomials is Legendre. 

(𝑚 + 1)𝐿𝑚−1(𝜖) = (2𝑚 + 1)𝜀𝐿𝑚(𝜀) − 𝑚𝐿𝑚−1(𝜀) 

𝐿1(𝜀) = 𝜖 

𝐿0(𝜀) = 1 
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W6. A non-intrusive PCE surrogate model was developed. 

W7. The initial order n of the PCE was set at n=5. 

W8. Workflow for non-intrusive PCE was executed. 

 

NI.1. For this model a non-intrusive PCE implementation was developed using both 

standard Gaussian quadrature and sparse grid quadrature, both are reported 

on here.  

NI.2. Training (quadrature) points, associated weights and numerical integration 

code were generated.  The number of training points are given below. 

PCE Level  Number of training points 

 Gaussian quadrature Sparse grid quadrature 

n=5 1296 1105 

n=6 2401 2929 

Table 4 Number of training points 

It is not possible to visualize the grids for levels n=5 and n=6 but to give an idea of the 

sparse grid distribution, grids for levels n=2 and n=3 are displayed in Figure 9. 

 

 

Figure 9 Sparse grids for n=2 and n=3. 
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NI.3. The “black box” model was evaluated at 1296 training points for Gaussian 

quadrature and 1105 training points for sparse grid quadrature and the 

Cumulative Gas and Peak Gas were calculated.  

NI.4. The coefficients  𝑌𝑘 were determined using 𝑌𝒌 =
∫ M(𝝃)𝑃𝒌(𝝃)𝜌(𝝃) 𝑑𝝃

𝛺

⟨𝑃𝒌(𝝃)2⟩
. 

NI.5. A PCE surrogate model 𝑌 ≈ ∑ 𝑌𝑘𝑃𝑘(𝜀1, ⋯ , 𝜀𝑑)𝑛
𝑘=0  was determined. 

 

W9. Execute calibration and validation procedures. 

Calibration 

C1.—C3. The order was initially set at n=5 and incremented to n=6 with the 𝑌𝑘  

converging so n=5 was within the given tolerance. 

C4. The coefficients and the surrogate model were accepted. 

Validation 

V1.-V2. The point to point Root Mean Square error was calculated across the entire 

parameter space  

𝑅𝑀𝑆 = √
𝐸

𝑁
 

where N is the number of points and 

𝐸 = ∑ (𝑆(𝑥𝑖 ,  𝑡𝑖) − 𝑆𝑃𝐶𝐸(𝑥𝑖,  𝑡𝑖))
2

𝑁
𝑖=1 . 

The error for level n=5 is shown in Table 5 and it can be seen that across both cumulative 

and peak gas the error was not within the given tolerance. Therefore the order of the PCE 

was increased to n=6 giving the required tolerances. 

Method Model Evals. % error RMS 

  
Cumulative Gas Peak Gas  

Full grid PCE, p = 5 1296 2.54% 0.46% 

Full grid PCE, p = 6 2401 1.67% 0.39% 

Sparse PCE, p = 5 1105 2.68% 1.68% 

Sparse PCE, p = 6 2929 1.72% 2.10% 

Table 5 The percentage error for Cumulative and Peak Gas using the PCE surrogate model. 
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V4.-V7. The model was tested against a simulation based on latin hypercube sampling, 

using 3000 sample points and the error remained within the given tolerance. 

 

W9. Statistical information. 

The Cumulative Distribution Function (CDF) was calculated for both cumulative gas and 

peak gas with the results visualized in Figure 10. 

 

 

 

Figure 10 Confidence intervals and cumulative distribution functions for the total gas production and 
the peak extraction rate. The CDF for the PCE surrogate is the red line and the CDF for the simulation 
based on the 3000 latin hypercube sample points is in black.   

The confidence intervals are large as the simulation was across the entire possible range of 

parameters and this would be reduced if the parameter ranges were refined. 
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Model 3. Surrogate to a 4-variable hexagonal grid cellular automata 

Cellular Automata:  Cellular automata are locally rule based models that can exhibit 

highly non-linear behaviour. The resulting data can show sharp fronts.  We developed a 

cellular automata model to test the calibration and validation procedures of a surrogate 

PCE model. The sole purpose was to quantify the error in a surrogate PCE model for a 

highly non-linear system that exhibited volatile stochastic behaviour. For example, can a 

low order PCE produce good accuracy in such situations? 

A cellular automata, based on a hexagonal grid with four uncertain variables, was 

approximated using a non-intrusive PCE surrogate. 

We chose to use a well-known cellular automata model and used it to predict the spread 

of fire. The uncertain variables were taken to be initial fuel load, wind strength, base burn 

rate and burn variance with the output quantifying the total amount of burnt fuel, % 

variability across regions and maximum distance. Simulations were initiated by a change 

(fire ignition) in state for a central grid site, and at each time step a specified rule 

governed changes in the state of neighbouring sites. For each set of specific variable 

values, repeated simulations were executed until the mean output was within a given 

tolerance.  

This is on-going work with the results not in a format to display here. However, a PCE of 

level n=6 using standard grid training points, produced a surrogate model with errors 

within given tolerances.  

5. Timing 

 

The number of model evaluations to obtain the required tolerances has been given 

earlier. But for completeness these results are summarized in Table 6. 

 
Method 

Model Evaluations(% error RMS) 
Model 1: 

2 uncertain variables 
Model 2: 4 uncertain variables 

Cumulative Gas Peak Gas 
PCE Gaussian quad: 
Level 5 

36(2.69×10-2 ) 1296(2.54×10-2 ) 1296(4.6×10-3 ) 

PCE Sparse quad: 
Level 5 

- 1105(2.68×10-2 ) 1105(1.68×10-3 ) 

PCE Gaussian quad: 
Level 6 

49(1.87×10-2 ) 2401(2.54×10-2 ) 2401(4.6×10-3 ) 

PCE Sparse quad: 
Level 6 

- 2929(1.72×10-2 ) 2929(2.01×10-3 ) 

PCE Gaussian quad: 
Level 10 

121(7.5×10-3 ) - - 

Table 6 Number of training points and hence evaluations of the “Model” to obtain a PCE surrogate 
with the state error.  
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6. Conclusions 

 

As demonstrated, the PCE surrogate approximates the two test models using a small 

number of evaluations and with a relatively small error.  

PCE can be used to explore the parameter space, and given the relatively low 

computational cost it can easily be evaluated at a very large number of points in order to 

identify candidate parameter sets that could reproduce the observed data.  

The difference in running time between PCE and other methods is pronounced. The 

performance of the method versus “traditional” exploration of the parameter space via a 

large number of full model evaluations has been summarized, with the PCE surrogate 

model demonstrating very good performance.  

The PCE surrogate also provided direct access to statistical information such as 

Cumulative Distribution Function, Confidence Intervals, Mean and Variance. 

7. Future Directions 

 

 To work with industry partners to test PCE on industry data sets and simulated by 
standard commercial packages. 

 Fully specify and optimise algorithms, with a focus on updating workflows for 
higher dimensional models. 

 Refine calibration techniques and acceptance protocols. 
 Investigate using local block-decompositions constructions with a view to 

combining local block statistics to obtain global statistics. 
 Develop Petrel plug-in for PCE. 
 Final Report and Presentation to Technical Working Group. 

 

8. A Brief Review of the Theory 
 

Uncertainty quantification in modelling processes is multifaceted including: 

1. Estimation of uncertainty in model inputs 

2. Propagation of uncertainty of inputs to model outputs 

3. Estimation of uncertainty in model outputs. 

Historically, Monte Carlo methods have been widely applied as a stochastic technique 

that uses randomness in the input variables to model uncertainty in the outputs. It 

involves repeated simulations based on pseudo-random inputs to generate a set of model 

outputs.  However the required number of simulations to achieve acceptable error can be 

prohibitive. Thus the challenge is to develop efficient and effective techniques for 

harnessing this random process while still successfully capturing the uncertainty in the 
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input parameters.  

Polynomial Chaos is a stochastic method that has recently been applied to quantify 

uncertainty in physical input 

parameters and an 

associated basis of 

polynomials to propagate 

this uncertainty to model 

outputs with a limited 

number of simulations. 

Thus Polynomial Chaos, PC, 

allows for uncertainty 

quantification of input 

parameters and response 

outputs within a probabilistic 

framework. This framework 

allows for the physical 

characteristics, such as the 

topology and geometry of the region, 

or substance variation and impurities, to be incorporated into the system.  

The central technique of Polynomial Chaos is the use of orthogonal polynomials as a 

basis for the fitting of response outputs based on a probabilistic data set. This data set 

may be the result of some experiment or simulation for which we want to fit a response 

surface, or alternatively the data may be instances of uncertain input values to variables 

within a model or simulation. 

 

Principle Ideas 

 

To explain the concept of PC we will restrict our discussion to a model with 2 input 

variables and 1 output variable so in 3- dimensional space. The inputs will be denoted x 

and y and the outputs z=f(x,y). It will be assumed that a number of sample points 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) 

are chosen as input to the model giving output values 

𝑧1 = 𝑓(𝑥1, 𝑦1),   𝑧2 = 𝑓(𝑥2, 𝑦2)  , … , 𝑧𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛) 

The initial goal is to fit a response surface z=X(x,y)≈f(x,y) using  these values 𝑧1, 𝑧2, …, 𝑧𝑛; 

that is, we wish to identify a suitable function X(x,y) that approximates the response 

distribution f(x,y) using PCE.  

A plot of PCEs of varying degree using a Hermite 

Polynomial basis to approximate a periodic function. 
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More precisely, based on this data we want to identify orthogonal polynomials 

𝜙1, 𝜙2, … , 𝜙𝑞and coefficients 𝑤1, 𝑤2, … , 𝑤𝑞 such that  

𝑋(𝑥, 𝑦)  =  𝑤1𝜙1(𝑥, 𝑦) + 𝑤2𝜙2(𝑥, 𝑦) + ⋯ + 𝑤𝑞𝜙𝑞(𝑥, 𝑦) ≈ 𝑓(𝑥, 𝑦) 

Here distinct polynomials 𝜙𝑗 and 𝜙𝑘 are orthogonal if the expected value of the product is 

zero; that is,  

𝔼(𝜙𝑗  𝜙𝑘) = ∫ 𝜙𝑗(𝜖)𝜙𝑘(𝜖)𝑝(𝜖)ⅆ𝜖 = 0,  

To explain the basic theory of PC we digress and give an analogy to aid understanding. 

Take any point X=(x,y,z) in 3-dimensional space. This point can be written as 

𝑋 = 𝑥[1,0,0] + 𝑦[0,1,0] + 𝑧[0,0,1], 𝑥, 𝑦, 𝑧 ∈ ℝ. 

That is, the point X can be written as a linear combination of the three basis vectors 

[1,0,0], [0,1,0], [0,0,1]. 

In 3-dimensional space these three vectors are at right angles to each other and are said to 

be orthogonal to each other; that is, 

[1,0,0]. [0,1,0] = 1.0 + 0.1 + 0.0 = 0, 

 [1,0,0]. [0,0,1] = 1.0 + 0.0 + 0.1 = 0,  

[0,1,0]. [0,0,1] = 0.0 + 1.0 + 0.1 = 0. 

So, for instance, we can solve directly for x by using 

𝑥 = 𝑋. [1,0,0]. 

This orthogonality property significantly reduces computation. 

 

In general we want to find a function that  

can be used to approximate the surface  

passing through the sample points.  
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where p is the probability density function for the random variable 𝜖.  The theory tells us 

that the coefficients 𝑤1, 𝑤2, … , 𝑤𝑞 can be evaluated as 

𝑤𝑘 =
𝔼(𝜙𝑘 𝑓)

𝔼(𝜙𝑘 𝜙𝑘)
=

∫ 𝜙𝑘(𝜖)𝑓(𝜖)𝑝(𝜖)ⅆ𝜖

∫ 𝜙𝑘(𝜖)𝜙𝑘(𝜖)𝑝(𝜖)ⅆ𝜖
, 

where we choose the sample points (xi,yi) to be the quadrature points need to 

numerically compute ∫ 𝜙𝑘(𝜖)𝑓(𝜖)𝑝(𝜖)ⅆ𝜖. The orthogonal polynomials “play nicely 

together” and reduce the necessary computation.  

In addition, we want the model to capture the uncertainty and variability in our 

parameters so we choose the underlying probability distribution and associated set of 

orthogonal polynomials accordingly. In particular, if the sample points are from a uniform 

distribution. 

 
The mathematical theory behind Polynomial Chaos tells us such an approximation is 
possible and numerical quadrature allows us to achieve this with reduced costs.  

  

Higher degree PCEs approximate the underlying 

distribution more accurately. 
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Advantages and Disadvantages 

 
Advantages of Polynomial Chaos: 

 fast and efficient 
 different probability distributions can be assigned to input parameters 
 a spectral representation for the random process in terms of orthogonal basis 

functions, thus simplifying implementation 
 relatively low degree polynomials usually give small error 
 reduces computation cost significantly when compared to brute force methods 

such as Monte-Carlo simulations 
 easy access to the statistics of the random outputs including moments and the 

cumulative distribution function, providing an expansion where the zero-index 
term contains the solution mean 

 sensitivity to the chosen probability distribution and thus the variability in 
parameters and propagates this effect through the model to the response 

 can use existing commercial solvers with non-intrusive Polynomial Chaos 
 can accommodate a large number of uncertain parameters. 

 
Disadvantages of Polynomial Chaos: 

 Non-normal random input distributions must be treated with care. Generalised 
polynomial chaos and the Askey scheme are techniques suggested to increase rate 
of convergence [Choi et. al. (2004)] or transformation techniques [Tatang (1995)] 

 convergence domains must be studied with care for both smooth and non-smooth 
outputs [Crestaux et.al. (2009)] 

 PC does not quantify the approximation error as a component of uncertainty 
[O’Hagan (2013) p. 10] 

 changing the input distribution could require the output strengths to be 
recomputed and also the convergence and truncation parameter to be recomputed 
[O’Hagan (2013) p. 15]   

 Intrusive Polynomial Chaos requires modification of the solver. This is usually not 
feasible where commercial black box solvers are used. Moreover even if one has 
and can modify the source code the resulting solver may exhibit instability and, 
even if it doesn’t, most likely will run extremely slowly. 
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